Sample records for polymer-solvent interaction parameters

  1. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I.

    PubMed

    Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk

    2003-04-01

    A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.

  2. Assessment of the thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) by inverse gas chromatography.

    PubMed

    Papadopoulou, Stella K; Panayiotou, Costas

    2014-01-10

    The thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were determined by the aid of the inverse gas chromatography technique (IGC), at infinite dilution. The interactions between the polymer and 15 solvents were examined in the temperature range of 120-150 °C via the estimation of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficients and the Flory-Huggins interaction parameters. Additionally, the total and the partial solubility parameters of PTFEMA were estimated. The findings of this work indicate that the type and strength of the intermolecular interactions between the polymer and the solvents are strongly depended on the functional groups of the polymer and the solvents. The proton acceptor character of the polymer is responsible for the preferential solubility of PTFEMA in chloroform which acts as a proton donor solvent. The results also reveal that the polymer is insoluble in alkanes and alcohols whereas it presents good miscibility with polar solvents, especially with 2-butanone, 2-pentanone and 1,4-dioxane. Furthermore, the total and dispersive solubility parameters appear diminishing upon temperature rise, whereas the opposite behavior is noticed for the polar and hydrogen bonding solubility parameters. The latter increase with temperature, probably, due to conformational changes of the polymer on the solid support. Finally, comparison of the solubilization profiles of fluorinated methacrylic polymers studied by IGC, leads to the conclusion that PTFEMA is more soluble compared to polymers with higher fluorine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes

    DOE PAGES

    Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev

    2016-09-13

    In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less

  4. Polymer Nanocomposites: Insights from Theory and Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Pani, Rakhee

    Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the polymer chains, how energetics and surface tension change with chemical composition of the polymer/dendrimer blocks, influence of nanoparticle on structural properties of polymer and factors which may contribute to the phase separation of the polymer from nanoparticle. Interfacial characteristics are not only determined by the size-induced properties, but also the surface chemistry of the particles. Presence of solvent and the resultant interactions with the solvent are known to influence the morphology and prevent or induce aggregation of nanoparticles in polymers. We found that surface chemistry can induce change in the structure of dendrimers encapsulating a redox active core and change the solubility of the nanoparticles. The interactions between nanoparticles and polymers can also influence the morphology. We performed investigation on the role of orientation of fullerene derivatives and surface energy of polymer surface which may induce the aggregation of the fullerene nanoparticles. Furthermore, we used quantitative measurements like cluster analysis to understand the most probable orientation of the fullerene derivative with respect to the polymer chains and the diffusion of the fullerene nanoparticle, which is related to the efficiency of solar cells, can change on presence of regiorandom and regioregular polymer chains. Furthermore, we have also used different solvents based on their Hildebrand solubility parameters to investigate factors governing the morphology of polymer nanocomposite via solvent interactions. We showed that change in solvent interactions affect the compatibility, aggregation/dispersion of the gold nanoparticles, which will directly affect the morphology of polymer matrix and structural aspects which can impact their functionality. Overall, our research indicated that solvent interaction play a role in controlling the morphology of polymer nanocomposite and solubility parameter can help us to predict the resulting morphology.

  5. Polymer/Solvent and Polymer/Polymer Interaction Studies

    DTIC Science & Technology

    1980-09-01

    temperatures up to 450 12 before serious degradation occurs. They have good hydrolytic stability, good solvent resistance, and excellent thermo- oxidative ...Concentration for Sorption in Glassy PVC 5 Temperature Dependence of the Flory-Huggins Interaction Parameters 115 6 Solubility of Dichloromethane in Polysulfone...116 7 Test of Applicability of the Langmuir Equation for Describing Sorption Data 117 8 Temperature Dependence of the Specific Volume of an Amorphous

  6. Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.

    PubMed

    Sarkar, Biswajit; Alexandridis, Paschalis

    2012-11-13

    The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.

  7. Investigation of migrant-polymer interaction in pharmaceutical packaging material using the linear interaction energy algorithm.

    PubMed

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2014-10-01

    The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Solubility and surface thermodynamics of conducting polymers by inverse gas chromatography. III: polypyrrole chloride.

    PubMed

    Duaij, Omar K; Alghamdi, Ali; Al-Saigh, Zeki Y

    2013-05-24

    Inverse gas chromatography, IGC, was applied to characterize conducting polypyrrole chloride (PPyCl) using twenty three solvents. IGC is able to reveal the change in the morphology, the strength of solvent-PPyCl interactions, thermodynamics parameters (χ12, Ω1(∞)), solvent and polymer solubility parameters, and molar heats of sorption, mixing and evaporation (ΔH1(s), ΔH1(∞), ΔH1(v)). The following solvents showed stronger interactions than others; yet, none of these solvents are good solvents for PPyCl: dodecane among the alkane family, tetrahydrofuran and methyl ethyl ketone among the oxy and keto group, dichloromethane among the chlorinated group up to 120°C and chloroform at 180°C, and toluene among the cyclic and aromatic group. Overall, the groups showed higher affinities to PPyCl are: acetates, oxy and cyclic, and chlorinated groups. Comprehensive solvents and PPyCl solubility parameters are obtained. The latter showed that PPyCl is not soluble in any solvent used. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    PubMed

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  10. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.

    PubMed

    Pramanik, Chandrani; Gissinger, Jacob R; Kumar, Satish; Heinz, Hendrik

    2017-12-26

    Debundling and dispersion of carbon nanotubes (CNTs) in polymer solutions play a major role in the preparation of carbon nanofibers due to early effects on interfacial ordering and mechanical properties. A roadblock toward ultrastrong fibers is the difficulty to achieve homogeneous dispersions of CNTs in polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) precursor solutions in solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). In this contribution, molecular dynamics simulations with accurate interatomic potentials for graphitic materials that include virtual π electrons are reported to analyze the interaction of pristine single wall CNTs with the solvents and polymer solutions at 25 °C. The results explain the barriers toward dispersion of SWCNTs and quantify CNT-solvent, polymer-solvent, as well as CNT-polymer interactions in atomic detail. Debundling of CNTs is overall endothermic and unfavorable with dispersion energies of +20 to +30 mJ/m 2 in the pure solvents, + 20 to +40 mJ/m 2 in PAN solutions, and +20 to +60 mJ/m 2 in PMMA solutions. Differences arise due to molecular geometry, polar, van der Waals, and CH-π interactions. Among the pure solvents, DMF restricts CNT dispersion less due to the planar geometry and stronger van der Waals interactions. PAN and PMMA interact favorably with the pure solvents with dissolution energies of -0.7 to -1.1 kcal per mole monomer and -1.5 to -2.2 kcal per mole monomer, respectively. Adsorption of PMMA onto CNTs is stronger than that of PAN in all solvents as the molecular geometry enables more van der Waals contacts between alkyl groups and the CNT surface. Polar side groups in both polymers prefer interactions with the polar solvents. Higher polymer concentrations in solution lead to polymer aggregation via alkyl groups and reduce adsorption onto CNTs. PAN and PMMA solutions in DMSO and dilute solutions in DMF support CNT dispersion more than other combinations whereby the polymers significantly adsorb onto CNTs in DMSO solution. The observations by molecular simulations are consistent with available experimental data and solubility parameters and aid in the design of carbon nanofibers. The methods can be applied to other multiphase graphitic materials.

  11. Theoretical study of solvent effects on the coil-globule transition

    NASA Astrophysics Data System (ADS)

    Polson, James M.; Opps, Sheldon B.; Abou Risk, Nicholas

    2009-06-01

    The coil-globule transition of a polymer in a solvent has been studied using Monte Carlo simulations of a single chain subject to intramolecular interactions as well as a solvent-mediated effective potential. This solvation potential was calculated using several different theoretical approaches for two simple polymer/solvent models, each employing hard-sphere chains and hard-sphere solvent particles as well as attractive square-well potentials between some interaction sites. For each model, collapse is driven by variation in a parameter which changes the energy mismatch between monomers and solvent particles. The solvation potentials were calculated using two fundamentally different methodologies, each designed to predict the conformational behavior of polymers in solution: (1) the polymer reference interaction site model (PRISM) theory and (2) a many-body solvation potential (MBSP) based on scaled particle theory introduced by Grayce [J. Chem. Phys. 106, 5171 (1997)]. For the PRISM calculations, two well-studied solvation monomer-monomer pair potentials were employed, each distinguished by the closure relation used in its derivation: (i) a hypernetted-chain (HNC)-type potential and (ii) a Percus-Yevick (PY)-type potential. The theoretical predictions were each compared to results obtained from explicit-solvent discontinuous molecular dynamics simulations on the same polymer/solvent model systems [J. Chem. Phys. 125, 194904 (2006)]. In each case, the variation in the coil-globule transition properties with solvent density is mostly qualitatively correct, though the quantitative agreement between the theory and prediction is typically poor. The HNC-type potential yields results that are more qualitatively consistent with simulation. The conformational behavior of the polymer upon collapse predicted by the MBSP approach is quantitatively correct for low and moderate solvent densities but is increasingly less accurate for higher densities. At high solvent densities, the PRISM-HNC and MBSP approaches tend to overestimate, while the PRISM-PY approach underestimates the tendency of the solvent to drive polymer collapse.

  12. Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.

    PubMed

    Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell

    2017-11-08

    Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.

  13. Configurations and Dynamics of Semi-Flexible Polymers in Good and Poor Solvents

    NASA Astrophysics Data System (ADS)

    Larson, Ronald

    We develop coarse-graining procedures for determining the conformational and dynamic behavior of semi-flexible chains with and without flow using Brownian dynamics (BD) simulations that are insensitive to the degree of coarse-graining. In the absence of flow, in a poor solvent, we find three main collapsed states: torus, bundle, and globule over a range of dimensionless ratios of the three energy parameters, namely solvent-polymer surface energy, energy of polymer folds, and polymer bending energy or persistence length. A theoretical phase diagram, confirmed by BD simulations, captures the general phase behavior of a single long chain (>10 Kuhn lengths) at moderately high (order unity) dimensionless temperature, which is the ratio of thermal energy to the attractive interaction between neighboring monomers. We also find converged results for polymer conformations in shear or extensional flow in solvents of various qualities and determine scaling laws for chain dimensions for low, moderate, and high Weissenberg numbers Wi. We also derive scaling laws to describe chains dimensions and tumbling rates in these regimes.

  14. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.

  15. Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudowicz, Jacek, E-mail: dudowicz@jfi.uchicago.edu; Freed, Karl F.; Douglas, Jack F.

    2015-10-07

    Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are comparedmore » to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.« less

  16. Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics

    NASA Astrophysics Data System (ADS)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.

    2009-03-01

    Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.

  17. High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions.

    PubMed

    Jeong, Seung Pyo; Renna, Lawrence A; Boyle, Connor J; Kwak, Hyunwook S; Harder, Edward; Damm, Wolfgang; Venkataraman, Dhandapani

    2017-12-19

    Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

  18. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice

    PubMed Central

    Ma, Chi

    2017-01-01

    Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate nanofibrous architecture into well-defined macroporous 3D scaffolds or injectable microspheres. Here we report a nonelectrospinning approach that is effective at generating nanofibers from a variety of synthetic and natural biodegradable polymers and integrating these nanofibers into (1) 3D scaffolds with constructive geometry and designed internal macropore structures; and (2) injectable microspheres. Our approach to generating polymer nanofibers is based on the control of polymer–solvent interaction parameter χp-s. We obtained the χp-s and solvent composition phase diagrams of different temperatures according to the Flory–Huggins classic lattice model and the Hildebrand-Scott solubility parameter equation. A critical polymer–solvent interaction parameter χcrit was introduced as a criterion to predict phase separation and nanofiber formation. To test the effectiveness of our approach, a total of 15 widely used biodegradable polymers were selected and successfully fabricated into nanofibrous matrices. Furthermore, macroporous nanofibrous 3D scaffolds with complex architecture and nanofibrous injectable microspheres were generated from those biodegradable polymers by combining our method with other processes. Our approach is universally effective to fabricate nanofibrous matrices from any polymeric materials. This work, therefore, greatly expands our ability to design appropriate biomimetic 3D scaffolds and injectable cell carriers for advanced regenerative therapies. PMID:27923327

  19. The link between a negative high resolution resist contrast/developer performance and the Flory-Huggins parameter estimated from the Hansen solubility sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    StCaire, Lorri; Olynick, Deirdre L.; Chao, Weilun L.

    We have implemented a technique to identify candidate polymer solvents for spinning, developing, and rinsing for a high resolution, negative electron beam resist hexa-methyl acetoxy calix(6)arene to elicit the optimum pattern development performance. Using the three dimensional Hansen solubility parameters for over 40 solvents, we have constructed a Hansen solubility sphere. From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast and the Flory-Huggins parameter. This provides new insights into the development behavior of resist materials which are necessary for obtaining the ultimate lithographic resolution.

  20. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Grest, Gary S.

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  1. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE PAGES

    Cheng, Shengfeng; Grest, Gary S.

    2016-05-19

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  2. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    NASA Technical Reports Server (NTRS)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  3. Thermodynamic approach to boron nitride nanotube solubility and dispersion.

    PubMed

    Tiano, A L; Gibbons, L; Tsui, M; Applin, S I; Silva, R; Park, C; Fay, C C

    2016-02-21

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(1/2) for δd, δp, and δh, respectively, with a calculated Hildebrand parameter of 21.8 MPa(1/2).

  4. Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi

    Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.

  5. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru; National Research University Higher School of Economics, Moscow; Department of Chemistry, Lomonosov Moscow State University, Moscow

    2014-11-28

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radiusmore » of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.« less

  6. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a newmore » organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case will not impact decontamination or immobilization operations at Savannah River Site (SRS). Some applications have zero tolerance for dimensional changes such as the operation of valves while other applications a finite dimensional change improves the function of the application such as seals and gaskets. Additional considerations are required before using the conclusions from this work to judge outcomes in field applications. Decane, a component of Isopar L that is most likely to interact with the polymers, mildly interacted with the elastomers and the propylene based polymers but their degree of swelling is at most 10% and the confined geometry that they are typically placed in indicate this is not significant. In addition, it was found that Vellumoid may leach protein into the NGS solvent. Since Vellumoid is used at the mixer in Saltstone where it sees minimum quantities of solvent, this leaching has no effect on the extraction process at MCU or the immobilization process at saltstone. No significant interaction is expected between MaxCalix and the polymers and elastomers used at MCU, DWPF, and Saltstone. Overall, minimal and insignificant interactions are expected on extraction and immobilization operations when MCU switches from CSSX to NGS solvent. It is expected that contacting NGS will not accelerate the aging rate of polymers and elastomers under radiation and heat. This is due to the minimal interaction between NGS and the polymers and the confined geometries for these polymers. SRNL recommends the use of the HSP method (for screening) and some testing to evaluate the impact of other organic such as alcohols, glycolate, and their byproducts on the polymers used throughout the site.« less

  7. Attraction between Opposing Planar Dipolar Polymer Brushes

    DOE PAGES

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    2017-08-01

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  8. Gibbs Ensemble Simulations of the Solvent Swelling of Polymer Films

    NASA Astrophysics Data System (ADS)

    Gartner, Thomas; Epps, Thomas, III; Jayaraman, Arthi

    Solvent vapor annealing (SVA) is a useful technique to tune the morphology of block polymer, polymer blend, and polymer nanocomposite films. Despite SVA's utility, standardized SVA protocols have not been established, partly due to a lack of fundamental knowledge regarding the interplay between the polymer(s), solvent, substrate, and free-surface during solvent annealing and evaporation. An understanding of how to tune polymer film properties in a controllable manner through SVA processes is needed. Herein, the thermodynamic implications of the presence of solvent in the swollen polymer film is explored through two alternative Gibbs ensemble simulation methods that we have developed and extended: Gibbs ensemble molecular dynamics (GEMD) and hybrid Monte Carlo (MC)/molecular dynamics (MD). In this poster, we will describe these simulation methods and demonstrate their application to polystyrene films swollen by toluene and n-hexane. Polymer film swelling experiments, Gibbs ensemble molecular simulations, and polymer reference interaction site model (PRISM) theory are combined to calculate an effective Flory-Huggins χ (χeff) for polymer-solvent mixtures. The effects of solvent chemistry, solvent content, polymer molecular weight, and polymer architecture on χeff are examined, providing a platform to control and understand the thermodynamics of polymer film swelling.

  9. Asymmetric lipid-polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition.

    PubMed

    Jindal, Anil B; Devarajan, Padma V

    2015-07-15

    Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structure of a tethered polymer under flow using molecular dynamics and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Coveney, Peter V.

    2006-03-01

    We analyse the structure of a single polymer tethered to a solid surface undergoing a Couette flow. We study the problem using molecular dynamics (MD) and hybrid MD-continuum simulations, wherein the polymer and the surrounding solvent are treated via standard MD, and the solvent flow farther away from the polymer is solved by continuum fluid dynamics (CFD). The polymer represents a freely jointed chain (FJC) and is modelled by Lennard-Jones (LJ) beads interacting through the FENE potential. The solvent (modelled as a LJ fluid) and a weakly attractive wall are treated at the molecular level. At large shear rates the polymer becomes more elongated than predicted by existing theoretical scaling laws. Also, along the normal-to-wall direction the structure observed for the FJC is, surprisingly, very similar to that predicted for a semiflexible chain. Comparison with previous Brownian dynamics simulations (which exclude both solvent and wall potential) indicates that these effects are due to the polymer-solvent and polymer-wall interactions. The hybrid simulations are in perfect agreement with the MD simulations, showing no trace of finite size effects. Importantly, the extra cost required to couple the MD and CFD domains is negligible.

  11. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  12. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  14. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.

  15. Using tethered triblock copolymers to mediate the interaction between substrates

    NASA Astrophysics Data System (ADS)

    Chern, Shyh-Shi; Zhulina, Ekaterina B.; Pickett, Galen T.; Balazs, Anna C.

    1998-04-01

    Using scaling analysis and a self-consistent field (SCF) theory, we compress two copolymer-coated surfaces and isolate conditions that yield multiple, distinct minima in the interaction profile. We focus on planar surfaces that are coated with ABC triblock copolymers. Tethered to the surface by the last monomer in the C block, the copolymers are grafted at relatively low densities. The surrounding solution is a poor solvent for both the A and C blocks, and is a good solvent for the B blocks. Through scaling theory, we pinpoint the parameters that yield two minima in the interaction profile. The SCF calculations reveal the changes in the morphology of the polymers as the layers are compressed. Through both studies, we determine how the morphological changes give rise to the observed surface interactions. The results provide guidelines for creating polymer-coated colloidal systems that can form two stable crystal structures. Such systems could be used for bistable, optical switches. The findings also yield a prescription for creating systems that exhibit additional minima in the free energy of interaction.

  16. Characterization of 2-(2-Methoxyethoxy)ethanol Substituted Phosphazene Polymers Using Pervaporation, Solubility Parameters and Sorption Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, Christopher Joseph; Klaehn, John Ray; Harrup, Mason Kurt

    Two linear phosphazene polymers were synthesized with differing amounts of hydrophilic 2-(2-methoxyethoxy)ethanol (MEE) and hydrophobic 4-methoxyphenol (MEOP) substituted on the backbone. These high polymers were cast into membranes and their permeability to water, methanol, ethanol, and 2-propanol was evaluated as a function of temperature. An additional polymer with a low content of MEE was studied for water permeation and was characterized by trace flux. At higher levels of MEE on the backbone, fluxes of all solvents increased. Solubility also was found to increase with increasing MEE content for all solvents except water. Unexpectedly, water was found to be less solublemore » in the higher MEE polymer, although higher membrane fluxes were observed. Diffusion coefficients showed the following trend: methanol 2-propanol > ethanol water. Finally, the affinity of solvents and polymers was discussed in terms of Hansen solubility parameters.« less

  17. Controlling microtube permeability via grafted polymers and solvent quality.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We examine pressure-driven flow through a microtube with grafted polymers using a "doubly self-consistent field" steady-state theory. Our focus is on the structure of the polymer layer, the tube permeability, and the effects of solvent quality, for different regimes of open and closed tubes. We find that, within experimentally attainable pressure gradients, the flow has very little effect on the grafted layer. However, the polymers, and in particular variations in the solvent quality and cylinder radii, can have large effects on the flow. We find that the permeability can either increase or decrease with either the radius or solvent quality, and we identify the regimes for different behaviors in terms of general parameters that can be used to generalize to other systems. This allows us to identify regimes where the systems are most sensitive to these "tuning" parameters, and we find that they correspond to the boundaries between open and closed tubes identified earlier.

  18. Design, construction, and testing a purpose-built climate-controlled solvent vapor annealing chamber for guided self-assembly of block polymer thin films

    NASA Astrophysics Data System (ADS)

    Gnabasik, Ryan; Haase, Rustin; Baruth, Andrew

    2014-03-01

    Despite its efficacy to produce well-ordered, periodic nanostructures, the intricate role multiple parameters play in solvent vapor annealing has not been fully established. In solvent vapor annealing a thin polymer film is exposed to the vapors of a solvent(s) thus forming a swollen and mobile layer to direct the self-assembly process at the nanoscale. Recent developments in both theory and experiment have directly identified critical parameters, but controlling them in any systematic way has proven non-trivial. These identified parameters include vapor pressure, solvent concentration in the film, and, critically, the solvent evaporation rate. To explore their role, a purpose-built solvent vapor annealing chamber was designed and constructed. The all-metal chamber is inert to solvent exposure and pneumatically actuated valves allow for precision timing in the introduction and withdrawal of solvent vapor. Furthermore, the mass flow controlled inlet, chamber pressure gauges, in situ spectral reflectance-based thickness monitoring, and high precision micrometer relief valve, give real-time monitoring and control during the annealing and evaporation phases. Using atomic force microscopy to image the annealed films, we are able to map out the parameter space for a series of polystyrene- b-polylactide (Mn = 75 kg/mol and fPLA = 0.28) block polymer thin films with an intrinsic cylindrical morphology and identify their role in directed assembly. Funded by Creighton University Summer Research Grant.

  19. Ordering nanoparticles with polymer brushes

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-01

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.

  20. Self-Organization of Polymer Brush Layers in a Poor Solvent

    NASA Astrophysics Data System (ADS)

    Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.

    1995-10-01

    Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.

  1. Vitrification of polymer solutions as a function of solvent quality, analyzed via vapor pressures

    NASA Astrophysics Data System (ADS)

    Bercea, Maria; Wolf, Bernhard A.

    2006-05-01

    Vapor pressures (headspace sampling in combination with gas chromatography) and glass transition temperatures [differential scanning calorimetry (DSC)] have been measured for solutions of polystyrene (PS) in either toluene (TL) (10-70°C) or cyclohexane (CH) (32-60°C) from moderately concentrated solutions up to the pure polymer. As long as the mixtures are liquid, the vapor pressure of TL (good solvent) is considerably lower than that of CH (theta solvent) under other identical conditions. These differences vanish upon the vitrification of the solutions. For TL the isothermal liquid-solid transition induced by an increase of polymer concentration takes place within a finite composition interval at constant vapor pressure; with CH this phenomenon is either absent or too insignificant to be detected. For PS solutions in TL the DSC traces look as usual, whereas these curves may become bimodal for solutions in CH. The implications of the vitrification of the polymer solutions for the determination of Flory-Huggins interaction parameters from vapor pressure data are discussed. A comparison of the results for TL/PS with recently published data on the same system demonstrates that the experimental method employed for the determination of vapor pressures plays an important role at high polymer concentrations and low temperatures.

  2. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  3. Solvent-annealing-induced nanowetting in templates: towards tailored polymer nanostructures.

    PubMed

    Chen, Jiun-Tai; Lee, Chih-Wei; Chi, Mu-Huan; Yao, I-Chun

    2013-02-25

    We study the solvent-annealing-induced nanowetting in templates using porous anodic aluminum oxide membranes. The morphology of polystyrene and poly(methyl methacrylate) nanostructures can be controlled, depending on whether the swollen polymers are in the partial or complete wetting regimes, which are characterized by the spreading coefficient. When the swollen polymers are in the partial wetting regime, polymers wet the nanopores by capillary action, resulting in the formation of polymer nanorods. When the swollen polymers are in the complete wetting regime, polymers form wetting layers in the nanopores, resulting in the formation of polymer nanotubes. The solubility parameters of polymers and solvents are also used to predict the wetting behavior of swollen polymers in cylindrical geometry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  5. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    NASA Astrophysics Data System (ADS)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  6. Structure and Dynamics of Solvated Polymers near a Silica Surface: On the Different Roles Played by Solvent.

    PubMed

    Perrin, Elsa; Schoen, Martin; Coudert, François-Xavier; Boutin, Anne

    2018-04-26

    Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer-solvent interactions can lead to drastically different behavior of the polymer-surface adhesion. Comparing explicit and implicit solvent models, we conclude that this effect cannot be fully described in an implicit solvent. We highlight the crucial role of polymer solvation for the adsorption of the polymer chain on the silica surface, the significant dynamics of polymer chains on the surface, and details of the modifications in the structure solvated polymer close to the interface.

  7. Reduced Crystallization Temperature Methodology for Polymer Selection in Amorphous Solid Dispersions: Stability Perspective.

    PubMed

    Bhugra, Chandan; Telang, Chitra; Schwabe, Robert; Zhong, Li

    2016-09-06

    API-polymer interactions, used to select the right polymeric matrix with an aim to stabilize an amorphous dispersion, are routinely studied using spectroscopic and/or calorimetric techniques (i.e., melting point depression). An alternate selection tool has been explored to rank order polymers for formation of stable amorphous dispersions as a pragmatic method for polymer selection. Reduced crystallization temperature of API, a parameter introduced by Zhou et al.,1 was utilized in this study for rank ordering interactions in API-polymeric systems. The trends in reduced crystallization temperature monitored over polymer concentration range of up to 20% polymer loading were utilized to calculate "crystallization parameter" or CP for two model systems (nifedipine and BI ABC). The rank order of CP, i.e., a measure of API-polymer interaction, for nifedipine followed the order PVP > PVP-VA > Soluplus > HPMCAS > PV Ac > PAA. This rank ordering was correlated to published results of molecular interactions and physical stability for nifedipine. A different rank ordering was observed for BI ABC: PAA > PVP > HPMCAS > Soluplus > PVPV-VA > PVAc. Interactions for BI ABC were not as differentiated when compared to nifedipine based on CP trends. BI ABC dispersions at drug loadings between 40 and 60% were physically stable for prolonged periods under ICH conditions as well as accelerated stress. We propose that large CP differences among polymers could be predictive of stability outcomes. Acceptable stability at pharmaceutically relevant drug loadings would suggest that the relative influence of downstream processes, such as polymer solubility in various solvents, process suitability and selection, and more importantly supersaturation potential, should be higher compared to stability considerations while developing compounds like BI ABC.

  8. Molecular modeling of polymer composite interactions with analytes in electronic nose sensors for environmental monitoring in International Space Station

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL Electronic Nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings (with no hydrogens). The Dreiding 2.21 force field is used for the polymer and solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4- vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic (ammonia) and organic (methanol, toluene, hydrazine) compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.

  9. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  10. FTIR Imaging Coupled with Multivariate Analysis for Study of Initial Diffusion of Different Solvents in Cellulose Acetate Butyrate Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindblad, M.S.; Keyes, B.; Gedvilas, L.

    Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less

  11. Ordering nanoparticles with polymer brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  12. Ordering nanoparticles with polymer brushes

    DOE PAGES

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-08

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  13. Antisolvent Recrystallization Strategy to Screen Appropriate Carriers to Stabilize Filgotinib Amorphous Solid Dispersions.

    PubMed

    Ren, Fuzheng; Sun, Hanjing; Cui, Lin; Si, Yike; Chen, Ning; Ren, Guobin; Jing, Qiufang

    2018-06-01

    Drugs in amorphous solid dispersions (ASDs) are highly dispersed in hydrophilic polymeric carriers, which also help to restrain recrystallization and stabilize the ASDs. In this study, microscopic observation after antisolvent recrystallization was developed as a rapid screening method to select appropriate polymers for the initial design filgotinib (FTN) ASDs. Using solvent evaporation, FTN ASDs with the polymers were prepared, and accelerated experimentation validated this screening method. Fourier-transform infrared spectroscopy, Raman scattering, and nuclear magnetic resonance revealed hydrogen-bonding formation in the drug-polymer binary system, which was critical for ASDs stabilization. A Flory-Huggins interaction parameter and water sorption isotherms were applied to evaluate the strength of the interaction between FTN and the polymers. The dissolution rate was also significantly improved by ASDs formulation, and the presence of the polymers exerted solubilization effects. These results suggested the efficacy of this screening method as a preliminary tool for polymer selection in ASDs design. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.

    PubMed

    Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza

    2015-12-01

    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.

  15. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  16. Conformational Order in Aggregates of Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.

    With the abundant variety and increasing chemical complexity of conjugated poly-friers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly) not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficientmore » organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive pi-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.« less

  17. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.

    PubMed

    Beck-Broichsitter, Moritz

    2016-09-10

    The introduction of "Ouzo diagrams" has enhanced the applicability of the basic nanoprecipitation process for drug delivery research. The current study investigated the interaction of two relevant polymer/solvent systems, which is thought to impact the location of the stability-limit "Ouzo boundary". Viscosity measurements (Kurata-Stockmayer-Fixman approach) and static light scattering (Debye method) underlined a distinct interplay of the employed polymer (poly(lactide-co-glycolide)) with the utilized organic solvents (acetone and tetrahydrofuran). Both methods indicated that tetrahydrofuran was the "better" solvent for poly(lactide-co-glycolide). Thus, nanoprecipitation of this polymer/solvent composition resulted in larger nanoparticles. This observation can be attributed to the chain configuration of poly(lactide-co-glycolide) in the organic solvent, which influenced the extent of the break-up of the injected solvent layer. Accordingly, the stability-limit curve of the "Ouzo region" was shifted to lower poly(lactide-co-glycolide) fractions for tetrahydrofuran. Overall, the location of the "Ouzo region", which is an essential tool for drug delivery research, is influenced by the employed organic solvent. The current study described two distinct methods suitable to identify relevant polymer-solvent interactions, which dictate the stability-limit "Ouzo boundary" for relevant poly(lactide-co-glycolide). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Wang, Dong; Russell, Thomas

    2014-03-01

    The effects of various processing solvents on the morphology of diketopyrrolopyrrole (DPP)-based low band gap polymer (PDPPBT) and phenyl-C71-butyric acid methyl ester (PC71BM) blends are studied. The quality of the processing solvents was varied systematically using a mixture of a non-aromatic polar primary solvent with high boiling point secondary solvents of increasing polarities. An unfavorable solvent-PC71BM interaction affects the growth process of polymer crystallites inside the blend. When non-aromatic polar solvent was used, large PC71BM aggregates were formed that increase in size with the addition of non-polar secondary solvents. When polar solvents were instead used as the secondary solvents, the size scales of the aggregates decrease markedly, creating a percolated fibrillar network. Power conversion efficiencies of 0.03% to 5% are obtained, depending on the solvent system used.

  19. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  20. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  1. Collapse in two good solvents, swelling in two poor solvents: defying the laws of polymer solubility?

    NASA Astrophysics Data System (ADS)

    Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt

    2018-01-01

    In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.

  2. Solvent Additive-Assisted Anisotropic Assembly and Enhanced Charge Transport of π-Conjugated Polymer Thin Films.

    PubMed

    Jeong, Jae Won; Jo, Gyounglyul; Choi, Solip; Kim, Yoong Ahm; Yoon, Hyeonseok; Ryu, Sang-Wan; Jung, Jaehan; Chang, Mincheol

    2018-05-30

    Charge transport in π-conjugated polymer films involves π-π interactions within or between polymer chains. Here, we demonstrate a facile solution processing strategy that provides enhanced intra- and interchain π-π interactions of the resultant polymer films using a good solvent additive with low volatility. These increased interactions result in enhanced charge transport properties. The effect of the good solvent additive on the intra- and intermolecular interactions, morphologies, and charge transport properties of poly(3-hexylthiophene) (P3HT) films is systematically investigated. We found that the good solvent additive facilitates the self-assembly of P3HT chains into crystalline fibrillar nanostructures by extending the solvent drying time during thin-film formation. As compared to the prior approach using a nonsolvent additive with low volatility, the solvent blend system containing a good solvent additive results in enhanced charge transport in P3HT organic field-effect transistor (OFET) devices [from ca. 1.7 × 10 -2 to ca. 8.2 × 10 -2 cm 2 V -1 s -1 for dichlorobenzene (DCB) versus 4.4 × 10 -2 cm 2 V -1 s -1 for acetonitrile]. The mobility appears to be maximized over a broad spectrum of additive concentrations (1-7 vol %), indicative of a wide processing window. Detailed analysis results regarding the charge injection and transport characteristics of the OFET devices reveal that a high-boiling-point solvent additive decreases both the contact resistance ( R c ) and channel resistance ( R ch ), contributing to the mobility enhancement of the devices. Finally, the platform presented here is proven to be applicable to alternative good solvent additives with low volatility, such as chlorobenzene (CB) and trichlorobenzene (TCB). Specifically, the mobility enhancement of the resultant P3HT films increases in the order CB (bp 131 °C) < DCB (bp 180 °C) < TCB (bp 214 °C), suggesting that solvent additives with higher boiling points provide resultant films with preferable molecular ordering and morphologies for efficient charge transport.

  3. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    PubMed

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  4. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE PAGES

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...

    2018-02-09

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  5. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  6. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2009-11-19

    We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.

  7. Kinetics of shear-induced gel deswelling/solvent release.

    PubMed

    Zeo, Undina; Tarabukina, Elena; Budtova, Tatiana

    2005-11-02

    The kinetics of shear-induced deswelling of gel particles based on synthetic (sodium polyacrylate) and natural (alginate) polymers was studied by rheo-optical technique. A swollen spherical gel particle of 100+/-50 microm diameter was placed in silicone oil and the evolution of the gel size as a function of time and shear rate was monitored. Different aqueous polymer solutions were used as synthetic gel solvent: polyvinylpyrrolidone, hydroxypropyl cellulose and glucose-based polymer. The interfacial tension (gel solvent)/(silicone oil), gel degree of swelling, solvent quality and viscosity are the main parameters influencing the kinetics of shear-induced gel deswelling. The kinetics of gel volume loss was approximated by a modified Weibull equation.

  8. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions.

    PubMed

    Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2004-08-10

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.

  9. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: The role of electrostatic and hydrophobic interactions

    PubMed Central

    Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2004-01-01

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375

  10. Balancing size exclusion and adsorption of polymers in nanopores

    NASA Astrophysics Data System (ADS)

    Kim, Won; Ryu, Chang Y.

    2006-03-01

    The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.

  11. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  12. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  13. Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy.

    PubMed

    Schäfer, Thomas; Di Paolo, Roberto E; Franco, Ricardo; Crespo, João G

    2005-05-28

    We report on the molecular interactions between room-temperature ionic liquids (RTILs) and Nafion and PDMS membranes, proving that in contact with these polymers RTILs behave like electrolytes rather than solvents.

  14. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions,more » Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.« less

  16. Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Konecki, Christina

    Industrial coating formulations are often made for volatile organic content compliance and ease of application, with little regard for the solvent impact on resultant performance characteristics. Our research objective was to understand the effect of both solvent retention and chemical structure on water transport through polymer films and resultant corrosion area growth of coated steel substrates. A clear, unpigmented Phenoxy(TM) thermoplastic polymer (PKHH) was formulated into resin solutions with three separate solvent blends selected by Hansen solubility parameter (HSP), boiling point, and ability to solubilize PKHH. Polymer films cast from MEK/PGME (methyl ethyl ketone/ propylene glycol methyl ether), dried under ambient conditions (AMB, > 6wt.% residual solvent) produced a porous morphology, which resulted in a corrosion area greater than 50%. We attributed this to the water-soluble solvent used in film preparation, which enabled residual PGME to be extracted by water. The resin solution prepared with CYCOH/DXL (Cyclohexanol/ 1,3 dioxolane) was selected because CYCOH is a solid at room temperature which acts as a pigment in the final film. Therefore, increasing the tortuosity of water transport, as well as a high hydrogen bonding character, which caused more interactions with water, slowing diffusion, producing a nodular morphology, and 37% less corrosion area than MEK/PGME AMB. The HSP of PKHH and EEP (ethyl 3-ethoxypropionate) are within 5% of each other, which produced a homogeneous morphology and resulted in comparable corrosion rates regardless of residual solvent content. We utilized electrochemical techniques and attenuated total reflectance- Fourier transform infrared spectroscopy to elucidate dynamic water absorption and solvent extraction in the exposed model formulations. We found that water absorption resulted in a loss of barrier properties, and increased corrosion due to the voids formed by solvent extraction. The polymer films were rejuvenated (removal of water) as an attempt to decrease the number of water transport pathways during exposure. Results found that samples rejuvenated at temperatures above the glass transition temperature of the samples achieved lower moisture content and consequently, lower corrosion growth rates. In commercial systems, rejuvenation lowered the corrosion rate up to 60% indicating better coating formulations and maintenance cycles would control the corrosion rate.

  17. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  18. The solvent effects on dimethyl phthalate investigated by FTIR characterization, solvent parameter correlation and DFT computation

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian

    2018-06-01

    This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.

  19. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    PubMed Central

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  20. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  1. Revisiting Hansen Solubility Parameters by Including Thermodynamics.

    PubMed

    Louwerse, Manuel J; Maldonado, Ana; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-11-03

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy and enthalpy, several corrections are suggested that make the methodology thermodynamically sound without losing its ease of use. The most important corrections include accounting for the solvent molecules' size, the destruction of the solid's crystal structure, and the specificity of hydrogen-bonding interactions, as well as opportunities to predict the solubility at extrapolated temperatures. Testing the original and the improved methods on a large industrial dataset including solvent blends, fit qualities improved from 0.89 to 0.97 and the percentage of correct predictions rose from 54 % to 78 %. Full Matlab scripts are included in the Supporting Information, allowing readers to implement these improvements on their own datasets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Local conformation and intermolecular interaction of rigid ring polymers are not always the same as the linear analogue: cyclic amylose tris(phenylcarbamate) in Θ solvents.

    PubMed

    Asano, Natsuki; Kitamura, Shinichi; Terao, Ken

    2013-08-15

    Small-angle X-ray scattering and static and dynamic light scattering measurements were made for cyclic amylose tris(phenylcarbamate) (cATPC) of which weight-average molar mass M(w) ranges from 1.3 × 10(4) to 1.5 × 10(5) to determine their z-average mean square radius of gyration z, particle scattering function P(q), hydrodynamic radius R(H), and second virial coefficient A2 in methyl acetate (MEA), ethyl acetate (EA), and 4-methyl-2-pentanone (MIBK). The obtained z, P(q), and R(H) data were analyzed in terms of the wormlike ring to estimate the helix pitch per residue h and the Kuhn segment length λ(-1) (the stiffness parameter, twice the persistence length). Both h and λ(-1) for cATPC in MEA, EA, and MIBK are smaller than those for linear amylose tris(phenylcarbamate) (ATPC) in the corresponding solvent and the discrepancy becomes more significant with increasing the molar volume of the solvent. This indicates that not every rigid ring has the same local helical structure and chain stiffness as that for the linear polymer in the M(w) range investigated while infinitely long ring chains should have the same local conformation. This conformational difference also affects A2. In actuality, negative A2 was observed for cATPC in MIBK at the Θ temperature of linear ATPC whereas intermolecular topological interaction of ring polymers increases A2.

  3. Development and study of the displaced foam dispersion methodology for the manufacture of multiscale/hybrid composites

    NASA Astrophysics Data System (ADS)

    McCrary-Dennis, Micah C. L.

    Incorporating nanostructured functional constituents within polymers has become extensive in processes and products for manufacturing composites. The conception of carbon nanotubes (CNTs) and their heralded attributes yielding property enhancements to the carrier system is leading many industries and research endeavors. Displaced Foam Dispersion (DFD) methodology is a novel and effective approach to facilitating the incorporation of CNTs within fiber reinforced polymer composites (FRPC). The methodology consists of six separate solubility phases that lead to the manufacture of CNT-FRPCs (also termed hybrid/multiscale composites). This study was primarily initiated to characterize the interaction parameters of nanomaterials (multiwall carbon nanotubes), polymers (polystyrene), and solvents (dimethyl formamide (DMF) and acetone) in the current paradigm of the DFD materials manufacture. Secondly, we sought to illustrate the theoretical potential for the methodology to be used in conjunction with other nanomaterial-polymer-solvent systems. Herein, the theory of Hansen's solubility parameters (HSP) is employed to explain the DFD constituents manufacturing combination parameters and aid in the explanation of the experimental results. The results illustrate quantitative values for the relative energy differences between each polymer-solvent system. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to characterize the multiwalled carbon nanotubes (MWCNTs) in each of the solubility stages and culminates with an indication of good dispersion potential in the final multiscale composite. Additionally, acetone absorption, evaporation mass loss and retention are reported for the sorbed plasticized PS-CNT (CNTaffy) nanocomposites that has successfully achieved up through approximately 60 weight percent loading. The findings indicate that as CNT loading percentage increases the acetone absorbency also increases, but the materials retention of acetone over time decreases. This directly influences the manufacturability of the porous polymer nanocomposite (P-PNC) in the DFD methodology. Localized interlaminar CNT enrichment was achieved through 60 wt. % loading within the P-PNC and verified under two-electrode electrical conductivity testing of the final multiscale composite. The electrical properties of low weight percent (approximately 0.15 - 2.5 wt. %) nanomaterials show a decreasing trend in the materials' resistivity that indicates the ability to become increasingly conductive with increasing CNT loadings. Finally, the mechanical properties will show evidence of toughness, increased strain to failure, and the potential for greater energy absorption.

  4. Polymer/Solvent and Polymer/Polymer Interaction Studies

    DTIC Science & Technology

    1979-08-01

    sealed these solvents (still under nitrogen) in glass tubes. During the first distillation a dark residue remained in the boiler , but no such residue...rN ’ N ýd C’ d 0q 0- H H- H- -1 0j Ob) 0 04i O 󈧭Ji H, 0; C; 0! : H 41-4 4-4 E 4-1 CO H 1-1 ŕ C- C) -- 0p 0 p- v. i> mt %D m >fr 0 4-4 0𔃾-4> HHO

  5. The solubility parameter for biomedical polymers-Application of inverse gas chromatography.

    PubMed

    Adamska, K; Voelkel, A; Berlińska, A

    2016-08-05

    The solubility parameter seems to be a useful tool for thermodynamic characterisation of different materials. The solubility parameter concept can be used to predict sufficient miscibility or solubility between a solvent and a polymer, as well as components of co-polymer matrix in composite biomaterials. The values of solubility parameter were determined for polycaprolactone (PCL), polylactic acid (PLA) and polyethylene glycol (PEG) by using different procedures and experimental data, collected by means of inverse gas chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    PubMed

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  7. Softening of the stiffness of bottle-brush polymers by mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetty, S.; Airaud, C.; Rosenfeldt, S.

    2007-04-15

    We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less

  8. Biosensor-assisted selection of optimal parameters for designing molecularly imprinted polymers selective to phosmet insecticide.

    PubMed

    Aftim, Nadin; Istamboulié, Georges; Piletska, Elena; Piletsky, Sergey; Calas-Blanchard, Carole; Noguer, Thierry

    2017-11-01

    Molecularly imprinted polymers (MIPs) for phosmet insecticide were synthesized by batch polymerization. The affinity of functional monomers to phosmet was tested using an original method involving an electrochemical biosensor based on acetylcholinesterase inhibition. It was demonstrated that association of phosmet with appropriate functional monomers resulted in a decrease of enzyme inhibition. Using this method, it was shown that N,N-methylenebis(acrylamide) displayed the highest interactions with phosmet using DMSO as solvent. These results were in good accordance with those obtained by conventional computational modeling. Molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were synthesized and adsorption isotherms were studied to describe their interaction with phosmet. Freundlich isotherm was able to fit phosmet adsorption on MIPs with good agreement (R 2 = 0.9). The pre-exponential factor K F determined for MIPs was 1.439mg (1-N) g -1 L N , more that 10 times higher than for NIPs (0.125mg (1-N) g -1 . L N ), indicating an increase of binding sites number and average affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Main-chain metallopolymers at the static-dynamic boundary based on nickelocene

    NASA Astrophysics Data System (ADS)

    Musgrave, Rebecca A.; Russell, Andrew D.; Hayward, Dominic W.; Whittell, George R.; Lawrence, Paul G.; Gates, Paul J.; Green, Jennifer C.; Manners, Ian

    2017-08-01

    Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal-cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel-cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer-monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.

  10. Polymer chain collapse induced by many-body dipole correlations.

    PubMed

    Budkov, Yu A; Kalikin, N N; Kolesnikov, A L

    2017-04-01

    We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

  11. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions

    PubMed Central

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F.; de Pablo, Juan J.

    2008-01-01

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory–Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory–Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions. PMID:19045224

  12. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.

    PubMed

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J

    2008-10-21

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions.

  13. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  14. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    PubMed

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2018-01-01

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  15. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Binder, Kurt

    2014-06-01

    Molecular-dynamics simulations of a coarse-grained model of a dense brush of flexible polymers (of type A) interacting with a long flexible macromolecule (of type B) are presented, considering the case of an attractive AB interaction, while effective interactions between AA and BB pairs of monomers are repulsive. Varying the strength \\varepsilon_{AB} of the attraction between unlike monomers, an adsorption transition at some critical value \\varepsilon^c_{AB} is found, where the B-chain is bound to the brush-solvent interface, similar to the adsorption on a planar solid substrate. However, when \\varepsilon_{AB} is much higher than \\varepsilon^c_{AB} , the long macromolecule is gradually “sucked in” the brush, developing many pieces that are locally stretched in the z-direction perpendicular to the substrate, in order to fit between the brush chains. The resulting hairpin-like structures of the absorbed chain shows up via oscillatory decay of the bond vector autocorrelation function. Chain relaxation is only possible via reptation.

  17. Differentiation of Chemical Components in a Binary Solvent Vapor Mixture Using Carbon/Polymer Composite-Based Chemiresistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sanjay V.; Jenkins, Mark W.; Hughes, Robert C.

    1999-07-19

    We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their compositemore » coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.« less

  18. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    DTIC Science & Technology

    2016-06-15

    transition metal and non- pair electrons of amine allows us to develop scalable, stable and uniform composite films with numerous combinations of TMD...modification of TMDs sheets with amine-terminated polymers is introduced and the strong Lewis acid-base interaction between transition metal and non- pair ...can be readily entangled with other chains of the matrix polymer, thereby ensuring homogeneous PNC formation. The solvent medium offers an extra

  19. Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent.

    PubMed

    Holder, Simon J; Achilleos, Mariliz; Jones, Richard G

    2006-09-27

    In this communication, we will demonstrate that polymerization in a chiral solvent can affect the molecular weight distribution of the product by perturbing the balance of the P and M helical screw senses of the growing chains. Specifically, for the Wurtz-type synthesis of polymethylphenylsilane (PMPS) in either (R) or (S)-limonene, the weight-average molecular weight of the products (average Mw = 80 000) was twice that of PMPS synthesized in (R/S)-limonene (average Mw = 39 200). Peturbation of the helical segmentation along the polymer chains leads to a reduction in the rate of occurrence of a key termination step. This the first time that a chiral solvent has been demonstrated to have such an effect on a polymerization process in affecting molecular weight parameters in contrast to affecting tacticity.

  20. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  1. An investigative study of polymer adsorption onto montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McConnell Boykin, Cheri Lynn

    For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the nonionic polymers act as H-bond acceptors (amide and acid moieties) and donators (acid groups) which result in associatively stabilized homogeneous montmorillonite clay dispersions. The cationic copolymers exhibit strong, irreversible interactions with the clay resulting in heterogeneous bridging flocculation, which was shown to be dependent on the charge density of the copolymer. Furthermore, the anionic copolymers show no signs of adsorption, but create a network of repulsive forces with the montmorillonite clay, which ultimately results in depletion stabilization with some degree of depletion flocculation.

  2. Through the looking glass: Unraveling the network structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, D. M.; Stec, D. F.; Botto, R. E.

    1999-12-23

    Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less

  3. Protein-style dynamical transition in a non-biological polymer and a non-aqueous solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, E.; Sharma, V. K.; Borreguero, J. M.

    Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed.more » Ultimately, we conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.« less

  4. Protein-style dynamical transition in a non-biological polymer and a non-aqueous solvent

    DOE PAGES

    Mamontov, E.; Sharma, V. K.; Borreguero, J. M.; ...

    2016-03-15

    Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed.more » Ultimately, we conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.« less

  5. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant concentrations and structures on CNT interactions in water were investigated at room conditions. CNT interactions in polymer solution were also investigated with polyethylene oxide (PEO) polymer and water as a solvent. In all cases, the atomic arrangement of molecules was discussed in detailed. Simulations revealed that CNT orientation, length, diameter, and addition of surfactant and its structures can significantly affect CNT interactions (i.e., PMFs varied significantly) and in-turn the degree of CNT dispersion in aqueous solution. For all simulation cases, a uniform sampling was achieved by using the ABF method to calculate the governing PMF between CNTs indicating the effectiveness and convergence of the adaptive sampling scheme. The surfactant molecules were shown to adsorb at the CNT surface and contribute to weaker interactions between CNTs which resulted less CNT aggregate size at the mesoscale. Surfactant consisting with a benzene ring contributed much weaker interactions between CNTs as compared with that of without benzene ring. The increase in CNT length contributed the stronger CNT interactions where the increase in CNT diameter caused weaker CNT interactions in water. The interfacial characteristics between the CNT, surfactant and the polymer were also predicted and discussed. The model can be expanded for more solvents, surfactants, and polymers.

  6. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  7. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption

    PubMed Central

    Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt

    2014-01-01

    Water and alcohol, such as methanol or ethanol, are miscible and, individually, good solvents for poly(N-isopropylacrylamide) (PNIPAm), but this polymer precipitates in water–alcohol mixtures. The intriguing behaviour of solvent mixtures that cannot dissolve a given polymer or a given protein, while the same macromolecule dissolves well in each of the cosolvents, is called cononsolvency. It is a widespread phenomenon, relevant for many formulation steps in the physicochemical and pharmaceutical industry, that is usually explained by invoking specific chemical details of the mixtures: as such, it has so far eluded any generic explanation. Here, by using a combination of simulations and theory, we present a simple and universal treatment that requires only the preferential interaction of one of the cosolvents with the polymer. The results show striking quantitative agreement with experiments and chemically specific simulations, opening a new perspective towards an operational understanding of macromolecular solubility. PMID:25216245

  8. Dynamics of water in sulfonated poly(phenylene) membranes

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher

    2011-03-01

    The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.

  9. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  10. Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Bucholz, Eric W.; Haskins, Justin B.; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2017-01-01

    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final post-cured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of phenolic chain structure and solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered, ethylene glycol (EGL) and H2O. In addition, three phenolic chain structures were considered including two novolac-type chains with either an ortho-ortho (OON) or ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through structural analysis of the solvation shell and hydrogen bonding environment as well as through quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of the simulations and analyses indicate that EGL provides a larger solvation free energy than H2O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, phenolic chain structure significantly impacts solvation performance with OON having limited intermolecular hydrogen bond formations while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H2O, and other similar solvents.

  11. Phenolic Polymer Solvation in Water and Ethylene Glycol, I: Molecular Dynamics Simulations.

    PubMed

    Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W

    2017-04-06

    Interactions between pre-cured phenolic polymer chains and a solvent have a significant impact on the structure and properties of the final postcured phenolic resin. Developing an understanding of the nature of these interactions is important and will aid in the selection of the proper solvent that will lead to the desired final product. Here, we investigate the role of the phenolic chain structure and the solvent type on the overall solvation performance of the system through molecular dynamics simulations. Two types of solvents are considered: ethylene glycol (EGL) and H 2 O. In addition, three phenolic chain structures are considered, including two novolac-type chains with either an ortho-ortho (OON) or an ortho-para (OPN) backbone network and a resole-type (RES) chain with an ortho-ortho network. Each system is characterized through a structural analysis of the solvation shell and the hydrogen-bonding environment as well as through a quantification of the solvation free energy along with partitioned interaction energies between specific molecular species. The combination of simulations and the analyses indicate that EGL provides a higher solvation free energy than H 2 O due to more energetically favorable hydrophilic interactions as well as favorable hydrophobic interactions between CH element groups. In addition, the phenolic chain structure significantly affects the solvation performance, with OON having limited intermolecular hydrogen-bond formations, while OPN and RES interact more favorably with the solvent molecules. The results suggest that a resole-type phenolic chain with an ortho-para network should have the best solvation performance in EGL, H 2 O, and other similar solvents.

  12. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    NASA Astrophysics Data System (ADS)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  13. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent

    DOE PAGES

    Sapir, Liel; Stanley, Christopher B.; Harries, Daniel

    2016-03-10

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less

  14. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapir, Liel; Stanley, Christopher B.; Harries, Daniel

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less

  15. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  16. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  17. Ultra-high performance size-exclusion chromatography in polar solvents.

    PubMed

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Coordination polymer gels with important environmental and biological applications.

    PubMed

    Jung, Jong Hwa; Lee, Ji Ha; Silverman, Julian R; John, George

    2013-02-07

    Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.

  19. Poly(cyclohexylethylene)- block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE PAGES

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)- block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation producesmore » an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  20. Deterred drug abuse using superabsorbent polymers.

    PubMed

    Mastropietro, David J; Muppalaneni, Srinath; Omidian, Hossein

    2016-11-01

    This study aimed to determine whether selected superabsorbent polymers (SAPs) could be used as a suitable alternative to thwart extraction, filtration, and syringeability attempts for abuse. Many abuse-deterrent formulations (ADFs) rely on high molecular weight polymers such as poly(ethylene oxide) to provide crush and extraction resistance. However, these polymers suffer from slow dissolution kinetics, and are susceptible to a variety of abuse conditions. Several commercially available SAPs were evaluated for swelling behavior in extraction solvents, and tableting properties. Post-compaction abuse properties were evaluated by recoverable volume and syringeability after solvent extraction. Drug release and percent drug extraction were conducted using tramadol HCl as a model drug. Certain SAPs had the ability to rapidly imbibe solvent and effectively stop extraction processes in a variety of solvents, including water and water/alcohol mixtures. Tablets containing SAP and drug showed no effect on drug release in vitro. SAPs possess adequate properties for tableting, and maintain their high and fast swelling properties after compaction. The fast and extensive interactions of SAPs with aqueous medium are a major advantage over non-crosslinked high molecular weight viscosifying agents such as poly(ethylene oxide).

  1. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    PubMed

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  2. Verification of the modified model of drying process of a polymer liquid film on a flat substrate by experiment (3) - using organic solvent

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.

  3. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Method for efficient recovery of high-purity polycarbonates from electronic waste.

    PubMed

    Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda

    2015-02-17

    More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.

  5. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2008-03-13

    We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

  6. Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents;more » membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.« less

  7. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2more » are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.« less

  8. Exploring ways to control the properties of polymer thin films

    NASA Astrophysics Data System (ADS)

    Clough, Andrew R.

    Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the films. Most importantly, swelling with a poor solvent allows us to reduce the degree of inter-chain entanglement, bringing the film further from equilibrium.

  9. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the

  10. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  11. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  12. Acoustic, Thermal and Molecular Interactions of Polyethylene Glycol (2000, 3000, 6000)

    NASA Astrophysics Data System (ADS)

    Venkatramanan, K.; Padmanaban, R.; Arumugam, V.

    Polyethylene Glycol (PEG) is a condensation polymer of ethylene oxide and water. PEG find its application as emulsifying agents, detergents, soaps, plasticizers, ointments, etc. Though the chemical and physical properties of PEG are known, still because of their uses in day to day life, it becomes necessary to study few physical properties like ultrasonic velocity, viscosity and hence adiabatic compressibility, free length, etc. In the present study, an attempt has been made to compute the activation energy and hence to analyse the molecular interactions of aqueous solutions of Polyethylene Glycol of molar mass 2000, 3000 and 6000 at different concentrations (2%, 4%, 6%, 8% and 10%) at different temperatures (303K, 308K, 313K, 318K) by determining relative viscosity, ultrasonic velocity and density. Various parameters like adiabatic compressibility, viscous relaxation time, inter molecular free length, free volume, internal pressure, etc are calculated at 303K and the results are discussed in the light of polymer-solvent interaction. This study helps to understand the behavior of macro-molecules with respect to changing concentration and temperature. Furthermore, viscosity and activation energy results are correlated to understand the increased entanglement of the polymer chains due to the increase in the concentration of a polymer solution that leads to an increase in viscosity and an increase in the activation energy of viscous flow.

  13. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone.

    PubMed

    Muhammad, Turghun; Cui, Liu; Jide, Wang; Piletska, Elena V; Guerreiro, Antonio R; Piletsky, Sergey A

    2012-01-04

    Novel water-compatible molecularly imprinted polymers (MIPs) selective for amiodarone (AD) were designed via a new methodology which relies on screening library of non-imprinted polymers (NIPs). The NIP library consisted of eighteen cross-linked co-polymers synthesized from monomers commonly used in molecular imprinting. The binding capacity of each polymer in the library was analyzed in two different solvents. Binding in water was used to assess non-specific (hydrophobic) interactions and binding in an appropriate organic solvent was used to assess specific interactions. A good correlation was found between the screening tests and modeling of monomer-template interactions performed using computational approach. Additionally, analysis of template-monomer interactions was performed using UV-vis spectroscopy. As the result, 4-vinylpyridine (4-VP) was selected as the best monomer for developing MIP for AD. The 4-VP-based polymers demonstrated imprinting factor equal 3.9. The polymers performance in SPE was evaluated using AD and its structural analogues. The recovery of AD was as high as 96% when extracted from spiked phosphate buffer (pH 4.5) solution and 82.1% from spiked serum samples. The developed MIP shown as a material with specific binding to AD, comparing to its structural analogues, 1-(2-diethylaminoethoxy)-2,6-diiodo-4-nitrobenzene and lidocaine, which shown 9.9% and 25.4% of recovery from the buffer solution, correspondingly. We believe that the screening of NIP library could be proposed as an alternative to commonly used computational and combinatorial approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. From micelle supramolecular assemblies in selective solvents to isoporous membranes.

    PubMed

    Nunes, Suzana P; Karunakaran, Madhavan; Pradeep, Neelakanda; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; He, Haoze; Peinemann, Klaus-Viktor

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values.

  15. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Hawks, Steven A.; Ferreira, Amy S.

    2015-03-18

    Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2-chlorophenol (2-CP), ellipsometry-based swelling experiments are used to investigate different co-solvents for the fullerene-casting solution. By tuning the Flory-Huggins χ parameter of the 2-CP/co-solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)(3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl)]) and PC61BM (phenyl-C61-butyric acid methyl ester) materials combination thatmore » match those of blend-cast films. Both semicrystalline (e.g., P3HT (poly(3-hexylthiophene-2,5-diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8-di(2-butyloxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)-alt-(2,5-bis(4,4'-bis(2-octyl)dithieno[3,2-b:2'3'-d]silole-2,6-diyl)thiazolo[5,4-d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent-blend SqP design rules. Grazing-incidence wide-angle x-ray diffraction experiments confirm that proper choice of the fullerene casting co-solvent yields well-ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.« less

  16. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    PubMed

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  17. Pervaporation of Water-Dye, Alcohol-Dye, and Water-Alcohol Mixtures Using a Polyphosphazene Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, Christopher Joseph; Harrup, Mason Kurt; Mccoy, John Dwane

    A novel phosphazene heteropolymer (HPP) was synthesized that contained three differing pendant groups: 2-(2-methoxyethoxy)ethanol (MEE), 4-methoxyphenol, and 2-allylphenol. The resulting polymer is an amorphous elastomer with good film forming properties where MEE and 4-methoxyphenol pendant groups influenced the hydrophilicity and the solvent compatibility of the polymer. Sorption studies were performed to characterize the polymer in terms of Hansen solubility parameters. Additionally, group contributions were used to predict the Hansen parameters for the polymer and these data compared favorably with the observed solubility behavior with 15 solvents that ranged from hydrocarbons to water. Homopolymers synthesized from MEE and 4-methoxyphenol were alsomore » studied for solubility revealing different behaviors with each representing a limit in hydrophilicity; MEE formed a water-soluble hydrophilic polymer and 4-methoxyphenol yielded a hydrophobic polymer. Membranes formed from HPP were characterized for use as pervaporation membranse using five different feeds: water–dye, methanol–dye, 2-propanol–dye, water–2-propanol, and water–methanol. Fluxes of methanol and isopropanol were greater than for water. For the alcohol–water separations, the alcohol was the favored permeate in all cases with higher fluxes observed for higher alcohol feed concentrations, however, separation factors declined.« less

  18. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  19. Etude de l'effet du gonflement par les solvants sur les proprietes du caoutchouc butyle

    NASA Astrophysics Data System (ADS)

    Nohile, Cedrick

    Polymers and in particular elastomers are widely used for personal protective equipment against chemical and biological hazards. Among them, butyl rubber is one of the most effective elastomers against chemicals. However, if this rubber has a very good resistance to a wide range of them, it is sensitive to non polar solvents. These solvents will easily swell the material and may dramatically affect its properties. This situation may involve a large risk for. butyl rubber protective equipment users. It is thus essential to improve the understanding of the effect of solvents on the properties of butyl rubber. The research that was carried out had two objectives: to identify the parameters controlling the resistance of butyl rubber to solvents and to study the effect of swelling on the properties of butyl rubber. The results show that the resistance of butyl rubber to solvents appears to be controlled by three main parameters: the chemical class of the solvent, its saturation vapor pressure and its molar volume. In addition, swelling affects butyl rubber mechanical properties in a permanent way. The effects can be attributed to the extraction of plasticizers by the solvent and to the degradation of the physico-chemical structure of the polymer network. This chemical degradation was linked to a phenomenon of differential swelling which seems to be controlled by the solvent flow inside the material. These results question some general beliefs within the field of protection against chemical risks. They also open new perspectives for the development of predictive tools relative to the behavior of butyl rubber in the presence of solvents

  20. Electrostatic Interactions and Self-Assembly in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.

  1. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  2. Role of translational entropy in spatially inhomogeneous, coarse-grained models

    NASA Astrophysics Data System (ADS)

    Langenberg, Marcel; Jackson, Nicholas E.; de Pablo, Juan J.; Müller, Marcus

    2018-03-01

    Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or "fluid element." Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

  3. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  4. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties.

    PubMed

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  5. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties

    PubMed Central

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results:The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery. PMID:29159145

  6. Protein-Style Dynamical Transition in a Non-Biological Polymer and a Non-Aqueous Solvent.

    PubMed

    Mamontov, E; Sharma, V K; Borreguero, J M; Tyagi, M

    2016-03-31

    Temperature-dependent onset of apparent anharmonicity in the microscopic dynamics of hydrated proteins and other biomolecules has been known as protein dynamical transition for the last quarter of a century. Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed. We conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.

  7. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  8. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor.

    PubMed

    Efremov, Mikhail Yu; Nealey, Paul F

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  9. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  10. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-06

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.

  11. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.

  12. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage.

    PubMed

    Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2018-06-18

    Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  14. Determination of the parameters controlling swelling of chemically cross-linked pH-sensitive poly(N-vinylimidazole) hydrogels.

    PubMed

    Molina, M Jesús; Gómez-Antón, M Rosa; Piérola, Inés F

    2007-10-25

    The number of variables controlling the behavior of ionic gels is large and very often some of them are unknown. The aim of this work is to interpret quantitatively the swelling behavior of pH sensitive gels, with the minimum number of simplifying assumptions. With this purpose, the equilibrium degree of swelling (S) and protonation (alpha) of chemically cross-linked poly(N-vinylimidazole) (PVI) immersed in aqueous salt solutions were measured as a function of the ionic strength (mu), in the whole range of pH. In acid solutions with pH in the range 0 to 4, imidazole moieties become protonated, and PVI behaves as a polyelectrolyte gel: S decreases upon increasing mu both for NaCl and for CaCl(2), with HCl as protonating acid. In aqueous solutions with larger pH, between 4 and 12, the hydrogel is practically neutral, and S increases as mu rises, showing a salting-in effect. From the quantitative analysis of these results, the following facts emerged. Protonation induces chain stiffness (as measured by the non-Gaussian factor) and worsening of the solvent quality of the aqueous media (as measured by the polymer-solvent interaction parameter). For alpha below 33%, swelling seems to be governed by the excess of mobile counterions inside the gel with respect to the bath, with a minor but still significantly negative contribution of the osmotic swelling pressure due to polymer-solvent mixing. Above 33% protonation, it is necessary to consider Manning counterion condensation to get parameters with physical meaning. The crossover between polyelectrolyte and salting-in effects corresponds to alpha and mu values with the same ionic and mixing contributions to the osmotic swelling pressure. The formation of ionic nonpermanent cross-links, with H(2)SO(4) as the protonating acid, was discarded.

  15. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Modeling the formation of ordered nano-assemblies comprised by dendrimers and linear polyelectrolytes: The role of Coulombic interactions

    NASA Astrophysics Data System (ADS)

    Eleftheriou, E.; Karatasos, K.

    2012-10-01

    Models of mixtures of peripherally charged dendrimers with oppositely charged linear polyelectrolytes in the presence of explicit solvent are studied by means of molecular dynamics simulations. Under the influence of varying strength of electrostatic interactions, these systems appear to form dynamically arrested film-like interconnected structures in the polymer-rich phase. Acting like a pseudo-thermodynamic inverse temperature, the increase of the strength of the Coulombic interactions drive the polymeric constituents of the mixture to a gradual dynamic freezing-in. The timescale of the average density fluctuations of the formed complexes initially increases in the weak electrostatic regime reaching a finite limit as the strength of electrostatic interactions grow. Although the models are overall electrically neutral, during this process the dendrimer/linear complexes develop a polar character with an excess charge mainly close to the periphery of the dendrimers. The morphological characteristics of the resulted pattern are found to depend on the size of the polymer chains on account of the distinct conformational features assumed by the complexed linear polyelectrolytes of different length. In addition, the length of the polymer chain appears to affect the dynamics of the counterions, thus affecting the ionic transport properties of the system. It appears, therefore, that the strength of electrostatic interactions together with the length of the linear polyelectrolytes are parameters to which these systems are particularly responsive, offering thus the possibility for a better control of the resulted structure and the electric properties of these soft-colloidal systems.

  18. Solvent exchange method: a novel microencapsulation technique using dual microdispensers.

    PubMed

    Yeo, Yoon; Chen, Alvin U; Basaran, Osman A; Park, Kinam

    2004-08-01

    A new microencapsulation method called the "solvent exchange method" was developed using a dual microdispenser system. The objective of this research is to demonstrate the new method and understand how the microcapsule size is controlled by different instrumental parameters. The solvent exchange method was carried out using a dual microdispenser system consisting of two ink-jet nozzles. Reservoir-type microcapsules were generated by collision of microdrops of an aqueous and a polymer solution and subsequent formation of polymer films at the interface between the two solutions. The prepared microcapsules were characterized by microscopic methods. The ink-jet nozzles produced drops of different sizes with high accuracy according to orifice size of a nozzle, flow rate of the jetted solutions, and forcing frequency of the piezoelectric transducers. In an individual microcapsule, an aqueous core was surrounded by a thin polymer membrane; thus, the size of the collected microcapsules was equivalent to that of single drops. The solvent exchange method based on a dual microdispenser system produces reservoir-type microcapsules in a homogeneous and predictable manner. Given the unique geometry of the microcapsules and mildness of the encapsulation process, this method is expected to provide a useful alternative to existing techniques in protein microencapsulation.

  19. The Role of Solvent-Solute Interactions on The Behavior of Low Molecular Mass Organo-Gelators

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Feng, Li

    2012-02-01

    Low molecular mass organo-gelators (LMOGs) are a class of small molecules that can self-assemble in organic solvents to form three-dimensional fibrillar networks. This has a profound effect on the viscoelastic properties of the solution causing physical gelation. These gels have uses in a range of industries including cosmetics, foodstuffs, plastics, petroleum and pharmaceuticals. A fundamental question in this field is: What makes a good LMOG? This talk will discuss the relationships between the viscoelastic properties and thermodynamic phase behavior of LMOG/solvent solutions. The regular solution model was used to fit the liquidus line and sol/gel transition temperature vs. concentration in different solvents to determine LMOG-solvent interaction parameters (χ = A/T). This parameter A was found to scale with the solubility parameter of the solvent, especially for non-polar solvents. This demonstrates that gelation is strongly linked to LMOG solubility and indicates that the bulk thermodynamic parameters of the LMOG (solubility parameter and melting temperature) are useful to predict the solution behavior of LMOGs.

  20. Friction between Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2006-03-01

    A polymer brush consists of a surface with a fairly concentrated coating of polymer chains, each one of which has one of its ends tightly bound to the surface. They serve as extremely effective lubricant, producing friction coefficients as low as 0.001 or less! Polymer brushes are a promising way to reduce friction to extremely low values. They have the disadvantage, however, that they must be immersed in a liquid solvent in order to function as a lubricant. The presence of a solvent is believed to result in osmotic pressure which partially supports the load. The density profile of a polymer brush (i.e., the density of monomers as a function of distance from the surface to which the polymers are attached) is well established. What is not understood is how the interaction of polymer brush coated surfaces in contact with each other is able to account for the details of the observed low friction. For example, molecular dynamics studies generally do not predict static friction, whereas surface force apparatus measurements due to Tadmor, et. al., find that there is static friction. This is the topic of the present presentation.

  1. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    PubMed

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  2. Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2013-03-12

    In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Flory-type theories of polymer chains under different external stimuli

    NASA Astrophysics Data System (ADS)

    Budkov, Yu A.; Kiselev, M. G.

    2018-01-01

    In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.

  4. Application of the Solubility Parameter Concept to the Design of Chemiresistor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, M.P.; Hughes, R.C.; Jenkins, M.W.

    1999-01-11

    Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low-power-consumption sensors with simple read-out electronics. We report here results on carbon-loaded polymer composites, as well as polymeric ionic conductors, as chemiresistor sensors. We use the volubility parameter concept to understand and categorize the chemiresistor responses and, in particular, we compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB-coated acoustic wave sensors. One goal is to examine the possibility that a small number of diverse chemiresistors can sense all possible solvents-the "Universal Solvent Sensor Array". keywords: chemiresistor, volubility parameter, chemical sensor

  5. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.

  6. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  7. Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.

    2013-12-01

    In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.

  8. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    NASA Astrophysics Data System (ADS)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  9. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    PubMed

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  10. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  11. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy.

    PubMed

    Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G

    2016-03-07

    This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

  12. Self-consistent field theory of tethered polymers: one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  13. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    PubMed

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  15. Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and vapors.

    PubMed

    Davankov, Vadim A; Pastukhov, Alexander V

    2011-12-29

    An automatic registration of the changing size of a single spherical microbead of a cross-linked polymer was applied for studying the swelling process of the bead by the sorption of vapors and/or liquids. Many representatives of all three basic types of polymeric networks, gel-type, hypercrosslinked, and macroporous, were examined. Only the first two display large volume changes and prove suitable for following the kinetics and extent of swelling by the above dilatometric technique. The results unambiguously prove that swelling of all polymeric networks in liquids is always higher than in corresponding saturated vapors (Schroeder's paradox). The general nature of this phenomenon implies that the absolute activity of any sorbate in its liquid form is always larger than in the form of its saturated vapor. Surprisingly, gels with any solvent contents, which fall into the broad range between the vapor-equilibrated and liquid-equilibrated extreme contents, retain their volumes constant in the saturated vapor atmosphere. This paradox of a wide range of gels swollen to a different extent and, nevertheless, standing in equilibrium with saturated vapor is explained by the specificity of the network polymers, namely, that the energy of the solvent-polymer interactions is easily compensated by the energy of remaining between-chain interactions at any solvent content in the above range. Therefore, the strain-free swollen gels do not generate enhanced vapor pressure, but neither display the ability to take up more sorbate from its vapor. © 2011 American Chemical Society

  16. Development of novel purifiers with appropriate functional groups based on solvent polarities at bulk filtration

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki

    2017-03-01

    Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.

  17. Controlled release from drug microparticles via solventless dry-polymer coating.

    PubMed

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Morphological control in polymer solar cells using low-boiling-point solvent additives

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  19. Structure and rheology of star polymers in confined geometries: a mesoscopic simulation study.

    PubMed

    Zheng, Feiwo; Goujon, Florent; Mendonça, Ana C F; Malfreyt, Patrice; Tildesley, Dominic J

    2015-11-28

    Mesoscopic simulations of star polymer melts adsorbed onto solid surfaces are performed using the dissipative particle dynamics (DPD) method. A set of parameters is developed to study the low functionality star polymers under shear. The use of a new bond-angle potential between the arms of the star creates more rigid chains and discriminates between different functionalities at equilibrium, but still allows the polymers to deform appropriately under shear. The rheology of the polymer melts is studied by calculating the kinetic friction and viscosity and there is good agreement with experimental properties of these systems. The study is completed with predictive simulations of star polymer solutions in an athermal solvent.

  20. Fast Printing and In-Situ Morphology Observation of Organic Photovoltaics using Slot-Die Coating

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ferdous, Sunzida; Wang, Cheng; Hexamer, Alexander; Russell, Thomas; Cheng Wang Collaboration; Thomas Russell Team

    2014-03-01

    The solvent-processibility of polymer semiconductors is a key advantage for the fabrication of large area, organic bulk-heterojunction (BHJ) photovoltaic devices. Most reported power conversion efficiencies (PCE) are based on small active areas, fabricated by spin-coating technique. In general, this does not reflect device fabrication in an industrial setting. To realize commercial viability, devices need to be fabricated in a roll-to-roll fashion. The evolution of the morphology associated with different processing parameters, like solvent choice, concentration and temperature, needs to be understood and controlled. We developed a mini slot-die coater, to fabricate BHJ devices using various low band gap polymers mixed with phenyl-C71-butyric acid methyl ester (PCBM). Solvent choice, processing additives, coating rate and coating temperatures were used to control the final morphology. Efficiencies comparable to lab-setting spin-coated devices are obtained. The evolution of the morphology was monitored by in situ scattering measurements, detecting the onset of the polymer chain packing in solution that led to the formation of a fibrillar network in the film.

  1. Fractionation of Poly(butyl methacrylate) by Molecular Topology Using Multidetector Thermal Field-Flow Fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2015-12-01

    Thermal field-flow fractionation (ThFFF) is an interesting alternative to column-based fractionation being able to address different molecular parameters including size and composition. Until today it has not been shown to be able to fractionate polymers of similar molar masses and chemical compositions by molecular topology. The present study demonstrates that poly(butyl methacrylates) with identical molar masses can be fractionated by ThFFF according to the topology of the butyl group. The influence of the solvent polarity on the thermal diffusion behavior of these polymers is presented and it is shown to have a significant influence on the fractionation of poly(n-butyl methacrylate) and poly(t-butyl methacrylate). Fractionation improves with increasing solvent polarity and solvent polarity may have a greater influence on fractionation than solvent viscosity. It is found that the thermal diffusion coefficient, D(T), as well as the hydrodynamic diameter, D(h), exhibit increasing trends with increasing solvent polarity. The solvent quality has a significant influence on the fractionation. It is found that cyclohexane, being a theta solvent for poly(t-butyl methacrylate) but not for poly(n-butyl methacrylate), significantly improves the fractionation of the samples by decreasing the diffusion rate of the former but not the latter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of intermolecular forces and backbone architecture on the phase behavior of fluorocopolymer-supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Mertdogan, Cynthia Asli

    The impact of polymer backbone architecture on fluorocopolymer solubility in supercritical fluid (SCF) solvents is studied by systematically varying the chemical type of the repeat units in the main chain. The fluorocopolymers investigated include nonpolar copolymers of tetrafluoroethylene with 19 mol% hexafluoropropylene (FEPsb{19}) and 48 mol% hexafluoropropylene (FEPsb{48}) and a polar copolymer of vinylidene fluoride with 22 mol% hexafluoropropylene (Fluorelsp°ler ). The solvents are methodically varied from nonpolar perfluoroalkanes and SFsb6 to polar fluorocarbons and COsb2. Low molecular weight solvents are used to facilitate in interpreting the intermolecular forces that control fluorocopolymer solubility, although pressures in excess of 2,500 bar are sometimes needed to dissolve the fluorocopolymers in these simple solvents. Polarity effects, which vary inversely with temperature, are moderated by operating over a large temperature range from 0 to 300sp° C. A variable-volume view cell, capable of operating to high temperatures and high pressures, was designed and implemented to meet these extreme operating conditions. Increasing the polarizability of nonpolar solvents reduces the pressures required to dissolve FEPsb{19} by as much as 1,500 bar going from perfluoromethane to perfluoropropane. However, in polar solvents, the pressures required for FEPsb{19} solubility rise dramatically as the temperature is decreased due to the increase in polar, solvent-solvent interactions that do not favor the solubility of a nonpolar copolymer. Replacing semi-crystalline FEPsb{19} with amorphous FEPsb{48} yields the same trends in phase behavior. Therefore, crystallinity does not control the shape of these fluorocopolymer-SCF cloud-point curves. Adding a cosolvent to the solution can dramatically lower the pressures needed to dissolve the copolymer. Introducing the "cosolvent" directly into the polymer backbone by changing copolymer architecture is another method of modifying fluorocopolymer solubility as seen with the results for Fluorel-SCF mixtures compared to those for FEPsb{19}-SCF mixtures. A supercritical fractionation of FEPsb{19} provides information on the impact of molecular weight and end-group content on fluorocopolymer solubility. Challenges remain for modeling fluorocopolymer-solvent mixtures. The Sanchez-Lacombe equation cannot capture the characteristics of FEPsb{19}-SCF solvent phase behavior unless two empirical mixture parameters, one of which varies with temperature, are used.

  3. Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements.

    PubMed

    Kirby, Brian J; Reichmuth, David S; Renzi, Ronald F; Shepodd, Timothy J; Wiedenman, Boyd J

    2005-02-01

    This paper presents the first systematic engineering study of the impact of chemical formulation and surface functionalization on the performace of free-standing microfluidic polymer elements used for high-pressure fluid control in glass microsystems. System design, chemical wet-etch processes, and laser-induced polymerization techniques are described, and parametric studies illustrate the effects of polymer formulation, glass surface modification, and geometric constraints on system performance parameters. In particular, this study shows that highly crosslinked and fluorinated polymers can overcome deficiencies in previously-reported microvalve architectures, particularly limited solvent compatibility. Substrate surface modification is shown effective in reducing the friction of the polymer-glass interface and thereby facilitating valve actuation. A microchip one-way valve constructed using this architecture shows a 2 x 10(8) ratio of forward and backward flow rates at 7 MPa. This valve architecture is integrated on chip with minimal dead volumes (70 pl), and should be applicable to systems (including chromatography and chemical synthesis devices) requiring high pressures and solvents of varying polarity.

  4. Star polymers as unit cells for coarse-graining cross-linked networks

    NASA Astrophysics Data System (ADS)

    Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.

    2018-03-01

    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.

  5. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles.

    PubMed

    Pryamitsyn, Victor; Ganesan, Venkat

    2015-10-28

    We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.

  6. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    NASA Astrophysics Data System (ADS)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  7. Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.

    PubMed

    Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R

    2012-11-01

    Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm⁻¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (χ) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation.

  8. Non-covalent nanodiamond-polymer dispersions and electrostatic immobilization of bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Skaltsas, T.; Pispas, S.; Tagmatarchis, N.

    2015-11-01

    Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.

  9. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983

  10. Electrospun cross linked rosin fibers

    NASA Astrophysics Data System (ADS)

    Baek, Woo-il; Nirmala, R.; Barakat, Nasser A. M.; El-Newehy, Mohamed H.; Al-Deyab, Salem S.; Kim, Hak Yong

    2011-12-01

    In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.

  11. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  12. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    PubMed

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  13. Stochastic entangled chain dynamics of dense polymer solutions.

    PubMed

    Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G

    2010-10-14

    We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.

  14. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-05-19

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an arraymore » to distinguish the responses to methanol-water mixtures.« less

  15. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  16. Force Induced Globule-to-Coil Transition of Single Polymer Chains.

    NASA Astrophysics Data System (ADS)

    Gunari, Nikhil; Walker, Gilbert

    2008-03-01

    Force induced structural transitions of individual homopolymer chains have been studied in different solvent conditions using single molecule force spectroscopy. Single molecule mechanics in the ``fly-fishing'' mode showed a first-order like transition for polystyrene (PS) in water exhibiting a characteristic three regime force extension curve. In contrast, poly methylmethacrylate (PMMA) showed a characteristic saw-tooth pattern reminiscent of multidomain disassembly behavior similar to that seen in modular protein mechanics. The plateau force for PS and the saw-tooth pattern for PMMA disappear when measured in aqueous guanidine hydrochloride solution and in other non-solvents showing that the characteristic deformational behavior observed for the two polymers in water may be due to hydrophobic interactions .

  17. Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator

    PubMed Central

    2014-01-01

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry’s law constants (HLC), dipole moments, static relative permittivities (εr), solvatochromic ET(30) parameters, Kamlet–Taft parameters (β, α, and π), Catalan’s solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δi), and Hansen solubility parameters (δp, δd, δh) and the associated Hansen distance (Rij) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δh. It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, Rij, but also by the directionality of Rij: if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δh than does DBS. PMID:24849281

  18. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.

    PubMed

    Lan, Yaqi; Corradini, Maria G; Liu, Xia; May, Tim E; Borondics, Ferenc; Weiss, Richard G; Rogers, Michael A

    2014-12-02

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry's law constants (HLC), dipole moments, static relative permittivities (ε(r)), solvatochromic E(T)(30) parameters, Kamlet-Taft parameters (β, α, and π), Catalan's solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δ(i)), and Hansen solubility parameters (δ(p), δ(d), δ(h)) and the associated Hansen distance (R(ij)) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δ(h). It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, R(ij), but also by the directionality of R(ij): if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δ(h) than does DBS.

  19. Probing coal architecture by magnetic resonance microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botto, R. E.; Clifford, D. J.; Gregory, D. M.

    1999-02-24

    Time-resolved MRM investigations of a well-characterized suite of cross-linked polymers have yielded information on the nature of the solvent transport dynamics and mechanical relaxation of the networks. Network response parameters were then used to assess the macroscopic properties and cross-link densities of polymers with the degree of curing. This new approach is presently being developed to elucidate the complex macromolecular nature of coals and the variation with coal rank.

  20. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    DOEpatents

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  1. The influence of polymer architecture on the assembly of poly(ethylene oxide) grafted C60 fullerene clusters in aqueous solution: a molecular dynamics simulation study.

    PubMed

    Hooper, Justin B; Bedrov, Dmitry; Smith, Grant D

    2009-03-28

    The effect of polymer architecture on the aggregation behavior of C60 fullerenes tethered with a single chain of poly(ethylene oxide) (PEO) in aqueous solution has been investigated using coarse-grained, implicit solvent molecular dynamics simulations. The PEO-grafted fullerenes were comprised of a single tether of 60 repeat units represented as a linear polymer, a three-arm star (20 repeat units/arm) or a six-arm star (10 repeat units/arm). Additionally, the influence of arm length on self-assembly of the PEO-fullerene conjugates was investigated for the three-arm stars. Self-assembly is driven by favorable fullerene-fullerene and fullerene-PEO interactions. Our simulations reveal that it should be possible to control the size and geometry of the self-assembled fullerene aggregates in water through variation of PEO architecture and PEO molecular weight. We found that aggregate size and shape could be understood qualitatively in terms of the packing parameter concept that has been employed for diblock polymer and surfactant self-assembly. Higher molecular weight PEO (longer arms) and more compact PEO (more arms for the same molecular weight) resulted in greater steric repulsion between fullerenes, engendering greater aggregate surface curvature and hence the formation of smaller, more spherically shaped aggregates. Finally, weak attractive interactions between PEO and the fullerenes were found to play an important role in determining aggregate shape, size and the dynamics of self-assembly.

  2. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    NASA Astrophysics Data System (ADS)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  3. Hydrophilization and hydrophobic recovery in polymers obtained by casting of polymer solutions on water surface.

    PubMed

    Bormashenko, Edward; Chaniel, Gilad; Gendelman, Oleg

    2014-12-01

    We demonstrate the possibility of hydrophilization of polymer films in situ under the process of their preparation. The polymer surface is hydrophilized when the polymer solution is spread on the water surface and the solvent is evaporated. Essential hydrophilization of the polymer surface is achieved under this process. We relate the observed hydrophilization of polymer films to the dipole-dipole interaction of the polar moieties of polymer chains with highly polar water molecules. The dipole-dipole interaction between water molecules and polar groups of polymer chains, orienting the polar groups of a polymer, may prevail over the London dispersion forces. The process, reported in the paper, allows to manufacture the films in which the hydrophilic moieties of the polymer molecule are oriented toward the polymer/air interface. It is demonstrated that even such traditionally extremely hydrophobic polymers as polydimethylsiloxane can be markedly hydrophilized. This hydrophilization, however, does not persist forever. After removal from the water surface, hydrophobic recovery was observed, i.e. polymer films restored their hydrophobicity with time. The characteristic time of the hydrophobic recovery is on the order of magnitude of hours. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Solvent empirical scales and their importance for the study of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Babusca, Daniela; Benchea, Andreea Celia; Morosanu, Ana Cezarina; Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2017-01-01

    The solvent empirical scales were developed in order to classify the solvents regarding their influence on the absorption or fluorescence spectra of different spectrally active molecules. The intermolecular interactions in binary solutions of three molecule having an intramolecular charge transfer visible absorption band are studied in this paper: 5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophene-2-carbaldehyde (QTC), 1-cyano-2-{5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophen-2-yl}-vinyl)-phosphonic acid diethyl ester (QTCP) and p-phenyl pyridazinium-p-nitro-phenacylid (PPNP). The solvent empirical scales with a single parameter (Z scale of Kosower, ET (30) or ETN scale of Reichardt and Dimroth) can be used to describe the strength of intermolecular interactions. The contributions of each type of interactions to the total spectral shift are evaluated using the solvent multiple parameters empirical scales defined by Kamlet and Taft and by Catalan et al.

  5. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  6. Preparation of prepreg graphite tape with insoluble polymer

    NASA Technical Reports Server (NTRS)

    Yates, C. I.

    1973-01-01

    Powdered polymer is finely ground. Second polymer, soluble, is mixed with appropriate solvent. Milled polymer and graphite filaments are added to soluble polymer-solvent solution to create slurry. Slurry is dried, and when ready for processing, the soluble, binder-polymer is removed by heat during precure or cure cycle.

  7. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    PubMed

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  8. Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach

    NASA Astrophysics Data System (ADS)

    Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.

    2017-01-01

    Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.

  9. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi, E-mail: thfan@engr.uconn.edu; Tuinier, Remco

    2014-06-07

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamicsmore » as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.« less

  11. Simulation of macromolecule self-assembly in solution: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: fullmore » atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.« less

  12. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  13. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a heterogeneous dielectric solvation model.

    PubMed

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    We have investigated the mechanism of the nucleation of acetaminophen on poly(methyl-methacrylate) and poly(vinyl-acetate) utilizing a combination of quantum mechanical computations and electrostatic models. We have used a heterogeneous dielectric solvation model to determine the stability of different orientations of acetaminophen on polymer surfaces. We find that for the nucleation of acetaminophen on the polymer surfaces in vacuum, the most stable orientation is a flat orientation. For the nucleation process in solution where acetaminophen and the polymer surface are surrounded by a solvent, we find that the heterogeneous dielectric solvation model predicts that a sideways orientation is the most stable orientation.

  14. Polyelectrolyte-Surfactant Complexes: A New Class of Organogelators

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Liu, Yuqing; Guzman, Gustavo

    2011-03-01

    Polyelectrolyte-surfactant complexes (PE-SURFs) are a class of polymers generated by neutralizing a polyelectrolyte with an oppositely charged surfactant. It has been found that PE-SURFs composed of polystyrene sulfonate and long chain alkyl dimethyl amines act as good organogelators for a range of hydrophobic, organic solvents. Thermo-reversible organogels are formed by heating and cooling PE-SURF/solvent solutions. The gel transition temperature is influenced by the degree of polymerization, the length of the alkyl side-chain, the solubility parameter of the solvent, and the concentration of the gelator. Freeze-drying and scanning electron microscopy characterization of the resultant xerogels shows the formation of rod- and plate-like network morphologies depending on the system parameters. This behavior is consistent with gelation driven by the self-assembly of the amphiphilic PE-SURFs into micellar networks.

  15. Head-Tail Asymmetry Determines the Formation of Polymer Cubosomes or Hexasomes in a Rod-Coil Amphiphilic Block Copolymer.

    PubMed

    Lyu, Xiaolin; Xiao, Anqi; Zhang, Wei; Hou, Pingping; Gu, Kehua; Tang, Zhehao; Pan, Hongbing; Wu, Fan; Shen, Zhihao; Fan, Xinghe

    2018-06-08

    In this report, Im-3m and Pn-3m polymer cubosomes and p6mm polymer hexasomes are obtained through the self-assembly of a rod-coil amphiphilic block copolymer (ABCP). This is the first time that these structures are observed in a rod-coil system. By varying the hydrophobic chain length, the initial concentration of the polymer solution, or the solubility parameter of the mixed solvent, head-tail asymmetry is adjusted to control the formation of polymer cubosomes or hexasomes. The formation mechanism of the polymer cubosomes was also studied. This research opens up a new way for further study of the bicontinuous and inverse phases in different ABCP systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development and Modeling of a Novel Self-Assembly Process for Polymer and Polymeric Composite Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumpter, Bobby G.; Carrillo, Jan-Michael Y.; Ahn, Suk-Kyun

    Extensive computational simulations and experiments have been used to investigate the structure, dynamics and resulting photophysical properties of a number para-phenylenevinylene (PPV) based polymers and oligomers. These studies have shown how the morphology and structure are controlled to a large extent by the nature of the solute-solvent interactions in the initial solution phase preparation. A good solvent such as dichloromethane generates non-compact structures with more of a defect-extended chain like morphology while a bad solvent such as toluene leads to compact organized and folded structures with rod-like morphologies. Secondary structural organization is induced by using the solution phase structures tomore » generate solvent-free single molecule nanoparticles. These nanoparticles are very compact and rod shaped, consisting of near-cofacial ordering of the conjugated PPV chain backbones between folds located at tetrahedral defects (sp3 C-C bonds). The resulting photophysical properties exhibit a significant enhancement in the photoluminescence quantum yield, lifetime, and stability. In addition, the single molecule nanoparticles have Gaussian-like emission spectra with discrete center frequencies that are correlated to a conjugation length, allowing the design of nanoparticles which luminesces at a particular frequency. We followed a similar approach and applied a comparable methodology in our recent work on polythiophenes in order to study the effect of polymer architecture on nanoscale assembly. Unlike linear chains of comparable size, we observed aggregation of the bottlebrush architecture of poly(norbornene)-g-poly(3-hexylthiophene) (PNB-g-P3HT) after the freeze-drying and dissolution processes. The behavior can be attributed to a significant enhancement in the number of π-π interactions between grafted P3HT side chains.« less

  17. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    NASA Astrophysics Data System (ADS)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN decreases its utility as a molecular solvent for polymers such as PEO.

  18. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian

    2016-12-01

    The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.

  19. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  20. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    PubMed

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  1. Determination of the solubility parameter of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by inverse gas chromatography.

    PubMed

    Ma, Xiaohong; Wang, Qiang; Li, Xiaoping; Tang, Jun; Zhang, Zhengfang

    2015-11-01

    Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM] BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333 - 373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM] BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM] BF4. In addition, the solubility parameter of [ BMIM] BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids.

  2. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  3. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  4. Shape-designed single-polymer micelles: a proof-of-concept simulation

    NASA Astrophysics Data System (ADS)

    Moths, Brian; Witten, Thomas A.

    Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.

  5. Structural Transformation of Diblock Copolymer/Homopolymer Assemblies by Tuning Cylindrical Confinement and Interfacial Interactions.

    PubMed

    Xu, Jiangping; Wang, Ke; Liang, Ruijing; Yang, Yi; Zhou, Huamin; Xie, Xiaolin; Zhu, Jintao

    2015-11-17

    In this study, we report the controllable structural transformation of block copolymer/homopolymer binary blends in cylindrical nanopores. Polystyrene-b-poly(4-vinylpyridine)/homopolystyrene (SVP/hPS) nanorods (NRs) can be fabricated by pouring the polymers into an anodic aluminum oxide (AAO) channel and isolated by selective removal of the AAO membrane. In this two-dimensional (2D) confinement, SVP self-assembles into NRs with concentric lamellar structure, and the internal structure can be tailored with the addition of hPS. We show that the weight fraction and molecular weight of hPS and the diameter of the channels can significantly affect the internal structure of the NRs. Moreover, mesoporous materials with tunable pore shape, size, and packing style can be prepared by selective solvent swelling of the structured NRs. In addition, these NRs can transform into spherical structures through solvent-absorption annealing, triggering the conversion from 2D to 3D confinement. More importantly, the transformation dynamics can be tuned by varying the preference property of surfactant to the polymers. It is proven that the shape and internal structure of the polymer particles are dominated by the interfacial interactions governed by the surfactants.

  6. Electrospinning of Polyvinylidene Fluoride and Polyetherimide From Mixed Solvents

    NASA Technical Reports Server (NTRS)

    Morgret, Leslie D.; Pawlowski, Kristin J.; Hinkley, Jeffrey A.

    2005-01-01

    Polyvinylidene fluoride and Ultem(TradeMark) polyetherimide were dissolved in 50/50 acetone/N,N dimethylformamide (DMF) and 80/20 tetrahydrofuran/DMF, respectively, and electrospun. Polymer solution concentrations and molecular weights were changed while other spinning parameters (voltage, distance, solution feed rate) were held constant. Fiber diameters in the resulting electrospun mats varied from 0.25 to 4.4 microns, increasing with polymer concentration and molecular weight; trends in diameter were compared with trends in viscosities and surface tensions of the spinning solutions.

  7. Porous inorganic-organic shape memory polymers.

    PubMed

    Zhang, Dawei; Burkes, William L; Schoener, Cody A; Grunlan, Melissa A

    2012-06-21

    Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic-organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(ε-caprolactone) (PCL) segments, diacrylated PCL(40)-block-PDMS(37)-block-PCL(40). To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained.

  8. Brownian cluster dynamics with short range patchy interactions: Its application to polymers and step-growth polymerization

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Babu, S. B.; Dolado, J. S.; Gimel, J.-C.

    2014-07-01

    We present a novel simulation technique derived from Brownian cluster dynamics used so far to study the isotropic colloidal aggregation. It now implements the classical Kern-Frenkel potential to describe patchy interactions between particles. This technique gives access to static properties, dynamics and kinetics of the system, even far from the equilibrium. Particle thermal motions are modeled using billions of independent small random translations and rotations, constrained by the excluded volume and the connectivity. This algorithm, applied to a single polymer chain leads to correct static and dynamic properties, in the framework where hydrodynamic interactions are ignored. By varying patch angles, various local chain flexibilities can be obtained. We have used this new algorithm to model step-growth polymerization under various solvent qualities. The polymerization reaction is modeled by an irreversible aggregation between patches while an isotropic finite square-well potential is superimposed to mimic the solvent quality. In bad solvent conditions, a competition between a phase separation (due to the isotropic interaction) and polymerization (due to patches) occurs. Surprisingly, an arrested network with a very peculiar structure appears. It is made of strands and nodes. Strands gather few stretched chains that dip into entangled globular nodes. These nodes act as reticulation points between the strands. The system is kinetically driven and we observe a trapped arrested structure. That demonstrates one of the strengths of this new simulation technique. It can give valuable insights about mechanisms that could be involved in the formation of stranded gels.

  9. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  10. Numerical methods for multi-scale modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios

    This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic simulations assume bead-spring representations of polymer chains and investigate different integrating schemes of the DPD equations and different intra-polymer force combinations. (1) A novel family of time-staggered integrators is presented, taking advantage of the time-scale disparity between polymer-solvent and solvent-solvent interactions. Convergence tests for relaxation parameters for the velocity-Verlet and Lowe's schemes are presented. (2) Wormlike chains simulating lambda- DNA molecules subject to constant shear are studied, and direct comparison with Brownian Dynamics and experimental results is made. The effect of the number of beads per chain is examined through the extension autocorrelation function. (3) The Schmidt number (Sc) for each numerical scheme is investigated and the dependence on the scheme's parameters is shown. Re-visiting the wormlike chain problem under shear, we recover a better agreement with the experimental data through proper adjustment of Sc.

  11. Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient

    NASA Astrophysics Data System (ADS)

    Semenov, Semen; Schimpf, Martin

    2004-01-01

    The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.

  12. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol. Copyright © 2012 Wiley Periodicals, Inc.

  13. Study of molecular interactions in binary mixtures of 2-chloro-4'methoxy benzoin with various solvents through ultrasonic speed measurements

    NASA Astrophysics Data System (ADS)

    Thanuja, B.; Kanakam, C.; Nithya, G.

    2013-12-01

    Density ( ρ) and ultrasonic velocity ( U), for binary mixtures of 2-chloro-4'-methoxy benzoin with ethanol, chloroform, acetonitrile, benzene and 1,4-dioxane of different compositions have been measured at 298 K and explanation of solute solvent interactions and effect of polarity of the solvent on type of interactions are presented in this paper. From the above data, adiabatic compressibility ( β), intermolecular free length ( L f ) and relative association ( R A ) have been calculated. Other useful parameters such as excess density, excess velocity, excess intermolecular freelength and excess adiabatic compressibility have also been calculated. These parameters have been used to study the nature and extent of intermolecular interactions between component molecules in present binary mixtures.

  14. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a gravity column. The second part of this thesis is focused on the liquid chromatography analysis and fractionation of RAFT-polymerized PS-b -PMMA diblock copolymers and AFM studies. In this study, PS- b-PMMA block copolymers were synthesized by a RAFT free radical polymerization process---the PMMA block with a phenyldithiobenzoate end group was synthesized first. The contents of unreacted PS and PMMA homopolymers in as-synthesized PS-b-PMMA block copolymers were quantitatively analyzed by solvent gradient interaction chromatography (SGIC) technique employing bare silica and C18-bonded silica columns, respectively. In addition, by 2-dimensional large-scale IC fractionation method, atomic force microscopy (AFM) study of these fractionated samples revealed various morphologies with respect to the chemical composition of each fraction. The third part of this thesis is to analyze random copolymers with tunable monomer sequence distributions using interaction chromatography. Here, IC was used for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrS copolymers were synthesized by the bromination of monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution were adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns were used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution. The fourth part of this thesis is to analyze and fractionate highly branched polymers such as dendronized polymers and star-shaped homo and copolymers. I have developed an interaction chromatography technique to separate polymers with nonlinear chain architecture. Specifically, the IC technique has been used to separate dendronized polymers and PS-based highly branched copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.

  15. Multicomponent Solvated Triblock Copolymer Network Systems: Fundamental Insights and Emerging Applications

    NASA Astrophysics Data System (ADS)

    Krishnan, Arjun Sitaraman

    Block copolymers have received significant research attention in recent times due to their ability to spontaneously self-assemble into a variety of nanostructures. Thermoplastic elastomers composed of styrenic triblock copolymers are of great importance in applications such as adhesives and vibration dampening due to their shape memory, resilience and facile processing. The swelling of these polymers by adding midblock selective solvents or oligomers provides an easy route by which to modify the morphology and mechanical behavior of these systems. We first consider a ternary blend of a poly[styrene- b-(ethylene-co-butylene)-b-styrene] triblock copolymer (SEBS) and mixtures of two midblock selective co-solvents, with significantly different physical states. We use dynamic rheology to study the viscoelastic response of a wide variety of systems under oscillatory shear. Frequency spectra acquired at ambient temperature display viscoelastic behavior that shifts in the frequency domain depending on the co-solvent composition. For each copolymer concentration, all the frequency data can be shifted by time-composition superpositioning (tCS) to yield a single master-curve. tCS fails at low frequencies due to presence of endblock pullout, which is a fundamentally different relaxation process from segmental relaxation of the midblock. As an emerging technology, we examine SEBS-oil gels as dielectric elastomers. Dielectric elastomers constitute one class of electroactive polymers (EAPs), polymeric materials that respond to an electric stimulus by changing their macroscopic dimensions, thereby converting electrical energy into mechanical work. We use standard configuration of EAP devices involving stretching, or "prestraining," the elastomer film biaxially. The effect of experimental parameters such as film thickness and amount of prestrain on the (electro)mechanical properties of the material become apparent by recasting as-obtained electroactuation data into compressive electromechanical stress-strain curves. The ultimate dielectric properties of the specimen are strongly correlated with specimen composition and experimental conditions. We shed light on the effect of biaxial prestrain on copolymer morphology. We use small-angle X-ray scattering (SAXS) to probe the nanostructure of SEBS-oil gels by systematically changing the concentration of polymer and the biaxial prestrain. Azimuthally integrated intensity profiles are used to ascertain the extent of deformation of polystyrene microdomains. The structure factor data correlates with prestrain, and is fitted using the Percus-Yevick approximation for interacting spheres. While a hard sphere interaction model is sufficient for unstrained gels, the additional attractive potentials observed in stretched samples are indicative of soft coronal interactions due to interpenetration brought about by strain.

  16. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    PubMed

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  17. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  18. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  19. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  20. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE PAGES

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  1. Tuning Structural Properties of Biocompatible Block Copolymer Micelles by Varying Solvent Composition

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan

    The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.

  2. TiO2 as conductivity enhancer in PVdF-HFP polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shreya; Manojkumar Ubarhande, Radha; Usha Rani, M.; Shanker Babu, Ravi; Arunkumar, R.

    2017-11-01

    Composite polymer electrolytes were prepared by incorporating inorganic filler TiO2 into PVdF-HFP-PMMA-EC-LiClO4 system. The electrolyte films were prepared by solvent casting technique. The effect of inorganic filler on the conductivity of the blended polymer electrolyte was studied and it is found that there is a considerable increase in ionic conductivity 1.296 × 10-3 S/cm-1 on the addition of TiO2. X-ray diffraction (XRD) study elucidate the increase in amorphous nature of the polymer electrolyte. This tendency of the polymer electrolyte could be the reason behind the increase in ionic conductivity. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components.

  3. Self-Assembled Pyridine-Dipyrrolate Cages.

    PubMed

    Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L

    2016-04-06

    An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.

  4. Thermoplastic composite matrices with improved solvent resistance

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    In order to improve solvent resistance of aromatic thermoplastic polymers, ethynyl-terminated aromatic sulfone polymers (ETS), sulfone/ester polymers (SEPE) containing pendent ethynyl groups, and phenoxy resin containing pendent ethynyl groups are synthesized. Cured polysulfones and phenoxy resins containing ethynyl groups on the ends or pendent on the molecules exhibited systematic behavior in solvent resistance, film flexibility, and toughness as a function of crosslink density. The film and composite properties of a cured solvent-resistant ETS were better than those of a commercially available solvent sensitive polysulfone. The study was part of a NASA program to better understand the trade-offs between solvent resistance, processability and mechanical properties which may be useful in designing composite structures for aerospace vehicles.

  5. Probing effect of solvent concentration on glass transition and sub-T{sub g} structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierleoni, Davide; Minelli, Matteo; Doghieri, Ferruccio

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermalmore » second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.« less

  6. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    DOE PAGES

    Yeager, J. D.; Chellappa, R.; Singh, S.; ...

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less

  7. Effects of humidity and solution viscosity on electrospun fiber morphology.

    PubMed

    Nezarati, Roya M; Eifert, Michelle B; Cosgriff-Hernandez, Elizabeth

    2013-10-01

    Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH = 5%-75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (< 50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (> 50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties.

  8. Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology

    PubMed Central

    Nezarati, Roya M.; Eifert, Michelle B.

    2013-01-01

    Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH=5%–75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (<50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (>50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties. PMID:23469941

  9. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  10. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.

    PubMed

    Sen, Swati; Kundagrami, Arindam

    2015-12-14

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  11. The Effect of Fluorine Substitution on the Molecular Interactions and Performance in Polymer Solar Cells.

    PubMed

    Kim, In-Bok; Jang, Soo-Young; Kim, Yeong-A; Kang, Rira; Kim, In-Sik; Ko, Do-Kyeong; Kim, Dong-Yu

    2017-07-19

    Fluorine (F) substitution on conjugated polymers in polymer solar cells (PSCs) has a diverse effect on molecular properties and device performance. We present a series of three D-A type conjugated polymers (PBT, PFBT, and PDFBT) based on dithienothiophene and benzothiadiazole units with different numbers of F atoms to explain the influence of F substitution by comparing the molecular interactions of the polymers and the recombination kinetics in PSCs. The preaggregation behavior of PFBT and PDFBT in o-DCB at the UV-vis absorption spectra proves that both polymers have strong intermolecular interactions. Besides, more closely packed structures and change into face-on orientation of fluorinated polymers are observed in polymer:PC 71 BM blends by GIXD which is beneficial for charge transport and, ultimately, for current density in PSCs (4.3, 13.0, and 14.5 mA cm -2 for PBT, PFBT, and PDFBT, respectively). Also, the introduction of F atoms on conjugated backbones affects the recombination kinetics by suppressing bimolecular recombination, thereby improving the fill factor (0.41, 0.68, and 0.69 for PBT, PFBT, and PDFBT, respectively). Consequently, the PCE of PSCs reached 7.3% without any additional treatment (annealing, solvent additive, etc.) in the polymer containing difluorinated BT (PDFBT) that is much higher than nonfluorinated BT (PBT ∼ 1%) and monofluorinated BT (PFBT ∼ 6%).

  12. Polymeric blend nanocomposite membranes for ethanol dehydration-effect of morphology and membrane-solvent interactions

    EPA Science Inventory

    Nanocomposite membranes (NCMs) of sodium alginate/poly(vinyl pyrrolidone) blend polymers incorporated with varying concentrations of phosphotungstic acid (H3PW12O40) (PWA) nanoparticles have been prepared and used in ethanol dehydration by the pervaporation (PV) technique. Effe...

  13. Modeling polymer-induced interactions between two grafted surfaces: comparison between interfacial statistical associating fluid theory and self-consistent field theory.

    PubMed

    Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G

    2009-07-28

    The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.

  14. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGES

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  15. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  16. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  17. Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation.

    PubMed

    Quintanar-Guerrero, D; Allémann, E; Fessi, H; Doelker, E

    1999-10-25

    Pseudolatexes were obtained by a new process based on an emulsification-diffusion technique involving partially water-miscible solvents. The preparation method consisted of emulsifying an organic solution of polymer (saturated with water) in an aqueous solution of a stabilizing agent (saturated with solvent) using conventional stirrers, followed by direct solvent distillation. The technique relies on the rapid displacement of the solvent from the internal into the external phase which thereby provokes polymer aggregation. Nanoparticle formation is believed to occur because rapid solvent diffusion produces regions of local supersaturation near the interface, and nanoparticles are formed due to the ensuing interfacial phase transformations and polymer aggregation that occur in these interfacial domains. Using this method, it was possible to prepare pseudolatexes of biodegradable and non-biodegradable polymers such as poly(D,L-lactic acid) and poly(epsilon-caprolactone), Eudragit E, cellulose acetate phthalate, cellulose acetate trimellitate using ethyl acetate or 2-butanone as partially water-miscible solvents and poly(vinyl alcohol) or poloxamer 407 as stabilizing agent. A transition from nano- to microparticles was observed at high polymer concentrations. At concentrations above 30% w/v of Eudragit E in ethyl acetate or cellulose acetate phthalate in 2-butanone only microparticles were obtained. This behaviour was attributed to decreased transport of polymer molecules into the aqueous phase.

  18. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  19. Solubilization and spore recovery from silicone polymers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsiao, Y. C.

    1974-01-01

    A non-sporicidal technique for solvent degradation of cured silicone polymers was developed which involves chemical degradation of cured silicone polymers by amine solvents at room temperature. Substantial improvements were obtained in the recovery of seeded spores from room temperature cured polymers as compared to the standard recovery procedures, which indicates that the curing process is not sufficiently exothermic to reduce spore viability. The dissolution reaction of cured silicone polymers whith amine solvents is proposed to occur by bimolecular nucleophilic displacement. The chemical structure of silicone polymers was determined by spectroscopic methods. The phenyl to methyl ratio, R/Si ratio, molecular weight, and hydroxyl content of the silicone resins were determined.

  20. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  1. Effect of Variation in Viscosity Grade of Ethycellulose on Theophylline Microcapsule Properties Prepared by Emulsion Solvent Evaporation.

    PubMed

    Garekani, Hadi Afrasiabi; Ahmadi, Behzad; Sadeghi, Fatemeh

    2017-01-01

    There are conflicting reports regarding the effect of polymer viscosity grade on microcapsule properties. The aim of the present study was to investigate the effect of just viscosity grade of ethylcellulose (EC) (not polymeric solution) on properties of theophylline microcapsules prepared by emulsion solvent evaporation. The effect of EC viscosity grade and drug:polymer ratio was investigated on microcapsule properties (yield, particle size, morphology, surface characteristics and drug release). Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were implemented to study the interaction and solid state of drug. The microcapsules were compressed in the presence of excipients and drug release was evaluated. The yield of microencapsulation and encapsulation efficiency at 1:1 drug:polymer ratio was dependent on EC viscosity. Microcapsules were spherical with some pores on their surfaces. The number of pores was more and their size was bigger for EC 100 cP microcapsules. Theophylline remained in crystalline form after encapsulation. DSC studies confirmed lack of interaction between drug and polymer. The drug release was rapid at 2:1 drug:polymer whilst it was slowed down at 1:1 drug:polymer ratio. Microcapsules obtained from EC 100 cP showed slightly faster drug release at latter ratio. Marginal changes in release rate were observed after compression of microcapsules. All viscosity grades of EC were able to sustain the release of the drug from microcapsules. Considering the similar release profiles for microcapsules prepared from different viscosities of EC, the use of lower viscosity grade of EC is recommended due to the ease of production and also less processing time. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  3. Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges.

    PubMed

    Li, Jinjiang; Patel, Dhaval; Wang, George

    2017-03-01

    Spray-dried dispersions (SDDs) have become an important formulation technology for the pharmaceutical product development of poorly water-soluble (PWS) compounds. Although this technology is now widely used in the industry, especially in the early-phase development, the lack of mechanistic understanding still causes difficulty in selecting excipients and predicting stability of SDD-based drug products. In this review, the authors aim to discuss several principles of polymer science pertaining to the development of SDDs, in terms of selecting polymers and solvents, optimizing drug loading, as well as assessing physical stability on storage and supersaturation maintenance after dissolution, from both thermodynamic and kinetic considerations. In order to choose compatible solvents with both polymers and active pharmaceutical ingredients (APIs), a symmetric Flory-Huggins interaction (Δχ ∼0) approach was introduced. Regarding spray drying of polymer-API solutions, low critical solution temperature (LCST) was discussed for setting the inlet temperature for drying. In addition, after being exposed to moisture, SDDs are practically converted to ternary systems with asymmetric Flory-Huggins interactions, which are thermodynamically not favored. In this case, the kinetics of phase separation plays a significant role during the storage and dissolution of SDD-based drug products. The impact of polymers on the supersaturation maintenance of APIs in dissolution media was also discussed. Moreover, the nature of SDDs, with reference to solid solution and the notion of solid solubility, was examined in the context of pharmaceutical application. Finally, the importance of robust analytical techniques to characterize the SDD-based drug products was emphasized, considering their complexity.

  4. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  5. Binary Polymer Brushes of Strongly Immiscible Polymers.

    PubMed

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  6. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.

    PubMed

    Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.

  7. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization

    PubMed Central

    Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239

  8. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    PubMed

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mixing of immiscible polymers using nanoporous coordination templates

    NASA Astrophysics Data System (ADS)

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-07-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  10. Photo-induced locomotion of chemo-responsive polymer gels

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna C.

    2009-03-01

    The need to translate chemical energy into a mechanical response, a characteristic of many biological processes, has motivated the study of stimuli-responsive polymer gels. Recently, it has been shown experimentally that by coupling the mechanical properties of the gel with the Belousov-Zhabotinsky (BZ) reaction it is possible to induce self-sustained oscillations in the gel. One of the means for controlling these chemical oscillations is using light as an external stimulus. To study the effect of light on the mechanical behavior of the gel, we use our recently developed a 3D gel lattice spring model (gLSM) which couples the BZ reaction kinetics to the gel dynamics. In this model, the polymer-solvent interactions were taken into account by adding a coupling term to the Flory-Huggins free energy. By virtue of this coupling term, the swelling---de-swelling behavior of the gel was captured in 3D. In order to include the effect of the polymer on the reaction kinetics, the Oregonator model for the photo-sensitive BZ reaction was also modified. Using gLSM model, we probed the effect of non-uniform light irradiation on the gel dynamics. We were able to manipulate the direction and velocity of locomotion of the gel using light as a control parameter. This ability to control the movement of the gel can be utilized in a variety of applications, ranging from bio-actuators to controlled drug release systems.

  11. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  12. Discrete-to-continuum simulation approach to polymer chain systems: Subdiffusion, segregation, and chain folding

    NASA Astrophysics Data System (ADS)

    Foo, Grace M.; Pandey, R. B.

    1998-05-01

    A discrete-to-continuum approach is introduced to study the static and dynamic properties of polymer chain systems with a bead-spring chain model in two dimensions. A finitely extensible nonlinear elastic potential is used for the bond between the consecutive beads with the Lennard-Jones (LJ) potential with smaller (Rc=21/6σ=0.95) and larger (Rc=2.5σ=2.1) values of the upper cutoff for the nonbonding interaction among the neighboring beads. We find that chains segregate at temperature T=1.0 with Rc=2.1 and remain desegregated with Rc=0.95. At low temperature (T=0.2), chains become folded, in a ribbonlike conformation, unlike random and self-avoiding walk conformations at T=1.0. The power-law dependence of the rms displacements of the center of mass (Rc.m.) of the chains and their center node (Rcn) with time are nonuniversal, with the range of exponents ν1~=0.45-0.25 and ν2~=0.30-0.10, respectively. Both radius of gyration (Rg) and average bond length () decrease on increasing the range of interaction (Rc), consistent with the extended state in good solvent to collapsed state in poor solvent description of the polymer chains. Analysis of the radial distribution function supports these observations.

  13. Azobenzene-based supramolecular polymers for processing MWCNTs.

    PubMed

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  14. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    DOEpatents

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  15. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    PubMed

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  16. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  17. Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment.

    PubMed

    Ouyang, Jianying; Ding, Jianfu; Lefebvre, Jacques; Li, Zhao; Guo, Chang; Kell, Arnold J; Malenfant, Patrick R L

    2018-02-27

    Conjugated polymer extraction (CPE) has been shown to be a highly effective method to isolate high-purity semiconducting single-walled carbon nanotubes (sc-SWCNTs). In both literature reports and industrial manufacturing, this method has enabled enrichment of sc-SWCNTs with high purity (≥99.9%). High selectivity is typically obtained in nonpolar aromatic solvents, yet polar solvents may provide process improvements in terms of yield, purity and efficiency. Using an amphiphilic fluorene-alt-pyridine conjugated copolymer with hydrophilic side chains, we have investigated the enrichment of sc-SWCNTs in polar solvents. Various conditions such as polymer/SWCNT ratio, solvent polarity, solvent dielectric constant as well as polymer solubility and SWCNT dispersibility were explored in order to optimize the purity and yield of the enriched product. Herein, we provide insights on CPE by demonstrating that a conjugated polymer having a hydrophobic backbone and hydrophilic oligo(ethylene oxide) side chains provides near full recovery (95%) of sc-SWCNTs using a multiextraction protocol. High purity is also obtained, and differences in chiral selectivity compared to analogous hydrophobic systems were confirmed by optical absorption and Raman spectroscopy as well as photoluminescence excitation mapping. Taking into consideration the solvent dielectric constant, polarity index as well as polymer solubility and SWCNT dispersibility provides a better understanding of structure-property effects on sc-SWCNT enrichment. The resulting hydrophilic SWCNT dispersions demonstrate long-term colloidal stability, making them suitable for ink formulation and high-performance thin-film transistors fabrication.

  18. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release.

    PubMed

    Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy

    2017-04-03

    This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.

  19. On the microenvironment of polymers in solution. Pt. 2. Polarity of the polymer microenvironment in binary solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strop, P.; Mikes, F.; Kalal, J.

    1976-03-25

    In Pt. 1 of this work, solvatochromic compounds embedded in polymer chains were used for measuring the polarity of their microenvironment. The semiempirical expression of the polarity of solvents by means of the energy of the charge-transfer (C-T) absorption band of 1-ethyl-4-carbomethylpyridinium iodide, as proposed by Kosower, was shown to be applicable in principle for measuring the polarity of the polymer microenvironment. In this present work, this approach was employed to measure the polarity of microenvironments of the synthetic polymers polymethacrylamide (PMA), poly(2-hydroxethyl methacrylate) (PHEMA), poly(2-vinylpyridine) (P-2VP), poly(4-vinylpyridine) (P-4VP), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and polystyrene (PS) in binarymore » solvents and to compare them with the polarities of these solvents. It is concluded that comparisons with a solution with the same polarity expressed by the semi-empirical scale represents only the first approximation for characterizing the polymer microenvironment. (12 refs.)« less

  20. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  1. The production of ultrathin polyimide films for the solar sail program and Large Space Structures Technology (LSST): A feasibility study

    NASA Technical Reports Server (NTRS)

    Forester, R. H.

    1978-01-01

    Polyimide membranes of a thickness range from under 0.01 micron m to greater than 1 micron m can be produced at an estimated cost of 50 cents per sq m (plus the cost of the polymer). The polymer of interest is dissolved in a solvent which is solube in water. The polymer or casting solution is allowed to flow down an inclined ramp onto a water surface where a pool of floating polymer develops. The solvent dissolves into the water lowering the surface tension of the water on equently, the contact angle of the polymer pool is very low and the edge of the pool is very thin. The solvent dissolves from this thin region too rapidly to be replenished from the bulk of the pool and a solid polymer film forms. Firm formation is rapid and spontaneous and the film spreads out unaided, many feet from the leading edge of the pool. The driving force for this process is the exothermic solution of the organic solvent from the polymer solution into the water.

  2. Electrospraying of polymer solutions: Study of formulation and process parameters.

    PubMed

    Smeets, Annelies; Clasen, Christian; Van den Mooter, Guy

    2017-10-01

    Over the past decade, electrospraying has proven to be a promising method for the preparation of amorphous solid dispersions, an established formulation strategy to improve the oral bioavailability of poorly soluble drug compounds. Due to the lack of fundamental knowledge concerning adequate single nozzle electrospraying conditions, a trial-and-error approach is currently the only option. The objective of this paper is to study/investigate the influence of the different formulation and process parameters, as well as their interplay, on the formation of a stable cone-jet mode as a prerequisite for a reproducible production of monodisperse micro- and nanoparticles. To this purpose, different polymers commonly used in the formulation of solid dispersions were electrosprayed to map out the workable parameter ranges of the process. The experiments evaluate the importance of the experimental parameters as flow rate, electric potential difference and the distance between the tip of the nozzle and collector. Based on this, the type of solvent and the concentration of the polymer solutions, along with their viscosity and conductivity, were identified as determinative formulation parameters. This information is of utmost importance to rationally design further electrospraying methods for the preparation of amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polymer optical fiber tapering using chemical solvent and polishing

    NASA Astrophysics Data System (ADS)

    Supian, L. S.; Syuhaimi Ab-Rahman, Mohd; Arsad, Norhana

    2017-11-01

    A method for developing polymer optical fiber (POF) directional coupler is introduced where the initial procedure includes using chemical solvent to remove the cladding, and bare out the core in order to align the unclad center of the fiber with other similar fiber to develop a coupler. The process is safe, simple, inexpensive and require low operation skill. The etched fiber offers improvement to the performance of various POF devices, i.e, couplers and sensors. Instead of relying only on silica or glass fiber, POF now can be used as an alternative to improve the network performance in short distance communication system. The measurement parameters laid out offer great outcomes. However, the couplers intended to be developed is yet to be realized, where deeper research and various experiments are needed in order to develop a simple but optimum performance coupler that can be used for various applications.

  4. Semipermeable polymers and method for producing same

    DOEpatents

    Buschmann, Wayne E [Boulder, CO

    2012-04-03

    A polyamide membrane comprising reaction product of an anhydrous solution comprising an anhydrous solvent, at least one polyfunctional secondary amine and a pre-polymer deposition catalyst; and an anhydrous, organic solvent solution comprising a polyfunctional aromatic amine-reactive reactant comprising one ring. A composite semipermeable membrane comprising the polyamide membrane on a porous support. A method of making a composite semipermeable membrane by coating a porous support with an anhydrous solution comprising an anhydrous solvent, a polyfunctional secondary amine and a pre-polymer deposition catalyst, to form an activated pre-polymer layer on the porous support and contacting the activated pre-polymer layer with an anhydrous, organic solvent solution comprising a polyfunctional amine-reactive reactant to interfacially condense the amine-reactive reactant with the polyfunctional secondary amine, thereby forming a cross-linked, interfacial polyamide layer on the porous support. A method of impregnating a composite semipermeable membrane with nanoparticles selected from heavy metals and/or oxides of heavy metals.

  5. Microwave Assisted Grafting of Gums and Extraction of Natural Materials.

    PubMed

    Singh, Inderbir; Rani, Priya; Kumar, Pradeep

    2017-01-01

    Microwave assisted modification of polymers has become an established technique for modifying the functionality of polymers. Microwave irradiation reduces reaction time as well as the use of toxic solvents with enhanced sensitivity and yields of quality products. In this review article instrumentation and basic principles of microwave activation have been discussed. Microwave assisted grafting of natural gums, characterization of grafted polymers and their toxicological parameters have also been listed. Pharmaceutical applications viz. drug release retardant, mucoahesion and tablet superdisintegrant potential of microwave assisted gums has also been discussed. An overview of microwave assisted extraction of plant based natural materials has also been presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Conformational features of cepacian: the exopolysaccharide produced by clinical strains of Burkholderia cepacia.

    PubMed

    Nogueira, Carlos E Sampaio; Ruggiero, Jose R; Sist, Paola; Cescutti, Paola; Urbani, Ranieri; Rizzo, Roberto

    2005-04-11

    Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, The investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains.

  7. Enhancing gelation ability of a dendritic gelator through complexation with a polyelectrolyte.

    PubMed

    Zhang, Zijian; Yang, Miao; Zhang, Xinjun; Zhang, Lichu; Liu, Bo; Zheng, Ping; Wang, Wei

    2009-01-01

    A poly(urethane amide) (PUA) dendron with long alkyl chains on its periphery was synthesized and then attached to the backbone of a polyelectrolyte, in which each unit contained a positive charge, by ionizing the carboxyl groups on the apexes of the dendrons to form a dendronized polymer. We found that both the PUA dendron and the dendronized polymer could form organogels in toluene. Interestingly, both the minimum gelation concentration and the gelation time of the dendronized polymer gelator were greatly reduced compared with the dendron alone. Our investigations showed that in the gel phase the intermolecular hydrogen bonding between adjacent dendrons creates similar supramolecular structures in both the dendron and the dendronized polymer gelator, which immobilize solvent molecules by means of interactions between dendrons and solvent molecules. Further studies on the gelation kinetics indicated that the polyelectrolyte backbone plays an important role in prearranging the attached dendritic gelators orderly and quickly into the supramolecular structures through a nucleation-elongation mechanism. Therefore, the gel-forming ability of the dendritic PUA gelator is enhanced by being complexed with the polyelectrolyte. In this work, this positive macromolecular effect is discussed in detail.

  8. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    PubMed

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  9. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    PubMed

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  10. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds For Tissue Regeneration

    PubMed Central

    Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.

    2009-01-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819

  11. Polymeric compositions and their method of manufacture. [forming filled polymer systems using cryogenics

    NASA Technical Reports Server (NTRS)

    Moser, B. G.; Landel, R. F. (Inventor)

    1972-01-01

    Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.

  12. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  13. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  14. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  15. 40 CFR 60.603 - Performance test and compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for... Solvent Contained in the Solvent Feed Holding Tank. (ii) Measure and record the amount of polymer introduced into the affected facility and the solvent-to-polymer ratio of the spinning solutions, and use the...

  16. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    NASA Astrophysics Data System (ADS)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was prepared, La0.85Sr0.15MnO 3 (LSM) was selected as the cathode. Cells were tested at 800°C using humidified H2 as fuel. Cell with anode prepared by using pure water as non-solvent shows a maximum power density up to 437mW/cm 2. By comparing the anode geometry and electrochemical performance, it indicated that microstructure with longer finger-like pores and thinner macrovoid free layer close to the inner side of the tube is benefit to cell performance. Another factor that can affect the microstructure of anode support is the ratio of solvent and polymer binder. In this research, anode-supported MT-SOFCs have been fabricated by phase inversion method. The effect of the viscosity of the casting slurry on the microstructure of YSZ-NiO anode support has been investigated. The microstructure of the YSZ-NiO support can be effectively controlled by varying the slurry composition with different solvent and polymer binder content. Gas permeation and mechanical strength of the YSZ-NiO support have been measured and four YSZ-NiO anode supports have been chosen for subsequent cell fabrication. The effective conductivity of the different anode supports has been measured at room temperature after reduced. Anode-supported single cells with YSZ electrolyte and LSM/YSZ cathode are fabricated and tested. Maximum cell power densities of 606 mWcm-2, 449 mWcm -2, 339 mWcm-2 and 253 mWcm-2 have been obtained respectively at 750 °C with humidified hydrogen as fuel and ambient air as oxidant. The correlation between the cell electrochemical performance and anode microstructures has been discussed. Adjusting the slurry composition by introducing additive is also an effective approach to tailor the microstructure of the anode support. Poly(ethylene glycol) (PEG), which is a common applied polymer additive, was selected to fabricate the YSZ-NiO anode supports. The effect of molecular weight and amount of PEG additive on the thermodynamics of the casting solutions was characterized by measuring the coagulation value. Viscosity of the casting slurries was also measured and the influence of PEG additive on viscosity was studied and discussed. The presence of PEG in the casting slurry can greatly influence the final anode support microstructure. Based on the microstructure result and the measured gas permeation value, two anode supports were selected for cell fabrication. For cell with the anode support fabricated using slurry with PEG additive, a maximum cell power density of 704 mWcm-2 is obtained at 750 oC with humidified hydrogen as fuel and ambient air as oxidant; cell fabricated without any PEG additive shows the peak cell power density of 331 mWcm-2. The relationship between anode microstructure and cell performance was discussed. Anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) based on BaZr0.1Ce0.7Y0.1Yb0.1O 3-delta (BZCYYb) proton-conducting electrolyte have been prepared using a phase inversion method. Three sulfur-free polymer binder candidates ethyl cellulose (EC), polyvinylidene fluoride (PVDF), polyetherimide (PEI) and sulfur-containing polythersulfone (PESf) were used as polymer binders to fabricate NiO-BZCYYb anode. The overall influence of polymer binder on the anode supports was evaluated. Sulfide impurity generated from PESf was revealed by XRD and X-ray photoelectron spectroscopy (XPS). The difference in the anode microstructure for samples fabricated by different polymer binders was examined by scanning electron microscope (SEM) and analyzed by measuring the gas permeation data of the reduced samples. Single cells based on different anode supports were characterized in anode-supported MT-SOFCs with the cell configuration of Ni-BZCYYb anode, BZCYYb electrolyte and La0.6Sr 0.4Co0.2Fe0.8O3-delta (LSCF)-BZCYYb cathode at 650 °C using hydrogen as fuel and ambient air as oxidant. MT-SOFCs of the anode fabricated using PEI show maximum power density of 0.45 Wcm -2 compared with 0.35 Wcm-2 for cells fabricated with PESf. The difference in cell performance was attributed to the phase purity of the anode fabricated by different polymer binders. Sulfur-free polymer binder PEI exhibits advantages over the commonly applied PESf and other sulfur-free polymer binder candidates. To eliminate the skin layer formed close to the inner side of the tubular sample when using the phase inversion method. Polyethersulfone (PESf)-polyethylenimine (PEI) blend was employed as the polymer binder to fabricate the micro-tubular solid oxide fuel cells (MT-SOFCs). The potential impurity introduced in the anode support by the polymer binder was examined by XPS and the resulting novel microstructure was analyzed based on the backscattered electron (BSE) images. Cells fabricated with blend polymer binder showed significantly enhanced power output compared with those cells only fabricated with PEI or PESf. The improved cell performance demonstrated that using blend polymer as binder is a promising and versatile approach for MT-SOFC fabrication via phase inversion method. Finally, to investigate the effect of the anode microstructure on the total cell performance, two types of anode support with different microstructure were prepared via the phase inversion method at different temperature. Cells fabricated based on these two anode supports were tested at 750 °C with hydrogen or hydrogen mixture with fuel gas. The measured current density-voltage (I-V) curves were fitted by a polarization model, and several parameters were archived through the modeling process. The influence of the anode support on the total cell performance was discussed based on the calculated result.

  17. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    PubMed

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  18. Theory of nematic order with aggregate dehydration for reversibly assembling proteins in concentrated solutions: Application to sickle-cell hemoglobin polymers

    NASA Astrophysics Data System (ADS)

    Hentschke, Reinhard; Herzfeld, Judith

    1991-06-01

    The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.

  19. Smoothing Polymer Surfaces by Solvent-Vapor Exposure

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell

    2003-03-01

    Ultra-smooth polymer surfaces are of great importance in a large body of technical applications such as optical coatings, supermirrors, waveguides, paints, and fusion targets. We are investigating a simple approach to controlling surface roughness: by temporarily swelling the polymer with solvent molecules. As the solvent penetrates into the polymer, its viscosity is lowered, and surface tension forces drive surface flattening. To investigate sorption kinetics and surface-smoothing phenomena, a series of vapor-deposited poly(amic acid) films were exposed to dimethyl sulfoxide vapors. During solvent exposure, the surface topology was continuously monitored using light interference microscopy. The resulting power spectra indicate that high-frequency defects smooth faster than low-frequency defects. This frequency dependence was studied by depositing polymer films onto a series of 2D sinusoidal surfaces and performing smoothing experiments. Results show that the amplitudes of the sinusoidal surfaces decay exponentially with solvent exposure time, and the exponential decay constants are proportional to surface frequency. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  20. New RTM/RI Resins for the HSCT

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    In the first portion of this work, 1,2,3,3,4,4-hexafluoro-1,2-bis[4-(dimethylhydroxysilyl)phenoxy]cyclobutane and 1,2,3,3,4,4-hexafluoro-1,2-bis[3-(dimethylhydroxysilyl)phenoxy]cyclobutane were prepared and homopolymerized to afford polymers with excellent thermal stability and Tgs of 27 C and -12 C, respectively. Despite the moderately high wt% of fluorin in the polymer structure (23.8%), these polymers had poor fuel resistance. In fact, swelling measurements indicate that these polymers had apparent solubility parameters of about 18.2 J (exp 1/2) m (exp -3/2) (toluene). Copolymerization of the disilanol monomers with fluorosilicone monomers afforded copolymers containing 20-30 wt% of the perfluorocyclobutane-containing structure displayed adequate fuel resistance, enhanced thermal stability, and a Tg low enough to meet the requirements of a High Speed Civil Transport (HSCT) fuel tank sealant. In the second part of this work, trifluorovinylether-terminated oligomers were prepared and polymerized via cyclodimerization. Initially, an alpha, omega-silanol-terminated fluorosilicone was endcapped with trifluorovinylether end groups via a two-step synthetic sequence. The oligomer was thermally cyclodimerized to a polymer that displayed thermal stability similar to that of a fluorosilicone homopolymer. Second, 1,3-bis[4-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane and 1,3-bis{3-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane were prepared and cyclodimerized to afford polymers that contained pendant trifluoropropyl groups. The pendant trifluoropropyl groups did enhance solvent resistance in aliphatic hydrocarbon solvents, however, no improvement was observed in aromatic hydrocarbon solvents. These polymers also displayed excellent thermal stability. In the last part of this work, a series of monomers was prepared by the DCC-promoted esterification of 4-[trifluorovinyl(oxy)benzoic acid with alpha, omega-functionalized hydrogenated and partially fluorinated alcohols. The monomers were cyclodimerized to the corresponding polymers. The polymers that did not contain beta hydrogens displayed significantly higher thermal stability than the fully hydrogenated polymers. A commercially-available alpha,omega-hydroxy-terminated perfluoropolyether was then functionalized with 4-[trifluorovinyl(oxy)benzoylchloride. An attempt was made to polymerize the resulting oligomer via the cyclodimerization of the terminal trifluorovinylether moieties. Although the viscosity of the oligomer increased significantly during polymerization, Gel Permeation Chromatography (GPC) analysis revealed that the Tetrahydrofuran (THF) soluble portion of the polymer did not have high molecular weight.

  1. Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-03-06

    We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.

  2. Solvent extraction employing a static micromixer: a simple, robust and versatile technology for the microencapsulation of proteins.

    PubMed

    Freitas, S; Walz, A; Merkle, H P; Gander, B

    2003-01-01

    The potential of a static micromixer for the production of protein-loaded biodegradable polymeric microspheres by a modified solvent extraction process was examined. The mixer consists of an array of microchannels and features a simple set-up, consumes only very small space, lacks moving parts and offers simple control of the microsphere size. Scale-up from lab bench to industrial production is easily feasible through parallel installation of a sufficient number of micromixers ('number-up'). Poly(lactic-co-glycolic acid) microspheres loaded with a model protein, bovine serum albumin (BSA), were prepared. The influence of various process and formulation parameters on the characteristics of the microspheres was examined with special focus on particle size distribution. Microspheres with monomodal size distributions having mean diameters of 5-30 micro m were produced with excellent reproducibility. Particle size distributions were largely unaffected by polymer solution concentration, polymer type and nominal BSA load, but depended on the polymer solvent. Moreover, particle mean diameters could be varied in a considerable range by modulating the flow rates of the mixed fluids. BSA encapsulation efficiencies were mostly in the region of 75-85% and product yields ranged from 90-100%. Because of its simple set-up and its suitability for continuous production, static micromixing is suggested for the automated and aseptic production of protein-loaded microspheres.

  3. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  4. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  5. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host-Guest Recognition or Hydrophilic-Hydrophobic Interaction?

    PubMed

    Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei

    2015-09-03

    Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.

  6. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    PubMed

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  7. Unfolding of globular polymers by external force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Samuel; Terentjev, Eugene M., E-mail: emt1000@cam.ac.uk

    2015-11-14

    We examine the problem of a polymer chain, folded into a globule in poor solvent, subjected to a constant tensile force. Such a situation represents a Gibbs thermodynamic ensemble and is useful for analysing force-clamp atomic force microscopy measurements, now very common in molecular biophysics. Using a basic Flory mean-field theory, we account for surface interactions of monomers with solvent. Under an increasing tensile force, a first-order phase transition occurs from a compact globule to a fully extended chain, in an “all-or-nothing” unfolding event. This contrasts with the regime of imposed extension, first studied by Halperin and Zhulina [Europhys. Lett.more » 15, 417 (1991)], where there is a regime of coexistence of a partial globule with an extended chain segment. We relate the transition forces in this problem to the solvent quality and degree of polymerisation, and also find analytical expressions for the energy barriers present in the problem. Using these expressions, we analyse the kinetic problem of a force-ramp experiment and show that the force at which a globule ruptures depends on the rate of loading.« less

  8. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  9. Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lianwei; Hadt, Ryan G.; Yao, Shiyu

    Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated polymers. Four conjugated polymers chelated with earth abundant cobalt ions were synthesized and found to evolve hydrogen photocatalytically from water. These polymers are designed to combine functions of the conjugated backbone as light-harvesting antenna and electron transfer conduit with the in-chain bipyridyl chelated transition metal centers as catalytic active sites. In addition, these polymers are soluble in organic solvents,more » enabling effective interactions with the substrates as well as detailed characterization. We also found a polymer-dependent optimal cobalt chelating concentration at which the highest photocatalytic hydrogen production (PHP) activity can be achieved.« less

  10. Formalism for calculation of polymer-solvent-mediated potential

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2006-07-01

    A simple theoretical approach is proposed for calculation of a solvent-mediated potential (SMP) between two colloid particles immersed in a polymer solvent bath in which the polymer is modeled as a chain with intramolecular degrees of freedom. The present recipe is only concerned with the estimation of the density profile of a polymer site around a single solute colloid particle instead of two solute colloid particles separated by a varying distance as done in existing calculational methods for polymer-SMP. Therefore the present recipe is far simpler for numerical implementation than the existing methods. The resultant predictions for the polymer-SMP and polymer solvent-mediated mean force (polymer-SMMF) are in very good agreement with available simulation data. With the present recipe, change tendencies of the contact value and second virial coefficiency of the SMP as a function of size ratio between the colloid particle and polymer site, the number of sites per chain, and the polymer concentration are investigated in detail. The metastable critical polymer concentration as a function of size ratio and the number of sites per chain is also reported for the first time. To yield the numerical solution of the present recipe at less than 1min on a personal computer, a rapid and accurate algorithm for the numerical solution of the classical density functional theory is proposed to supply rapid and accurate estimation of the density profile of the polymer site as an input into the present formalism.

  11. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  12. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  13. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  14. Nanocellular foam with solid flame retardant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less

  15. Polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  16. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  17. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  18. Improved electron transport properties of n-type naphthalenediimide polymers through refined molecular ordering and orientation induced by processing solvents.

    PubMed

    An, Yujin; Long, Dang Xuan; Kim, Yiho; Noh, Yong-Young; Yang, Changduk

    2016-05-14

    To determine the role played by the choice of processing solvents in governing the photophysics, microstructure, and charge carrier transport in naphthalenediimide (NDI)-based polymers, we have prepared two new NDI-bithiophene (T2)- and NDI-thienothiophene (TTh)-containing polymers with hybrid siloxane pentyl chains (SiC5) (P(NDI2SiC5-T2) and P(NDI2SiC5-TTh)). Among the various processing solvents studied here, the films prepared using chloroform exhibited far better electron mobilities (0.16 ± 0.1-0.21 ± 0.05 cm(2) V(-1) s(-1)) than the corresponding samples prepared from different solvents, exceeding one order of magnitude higher, indicating the significant influence of the processing solvent on the charge transport. Upon thin-film analysis using atomic force microscopy and grazing incidence X-ray diffraction, we discovered that molecular ordering and orientation are affected by the choice of the processing solvent, which is responsible for the change in the transport characteristics of this class of polymers.

  19. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  20. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition.

    PubMed

    Park, Min Soo; Joo, Wonchul; Kim, Jin Kon

    2006-05-09

    We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.

  1. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    PubMed

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can be successful for controlling rifampicin delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit.

    PubMed

    Turiel, E; Tadeo, J L; Cormack, P A G; Martin-Esteban, A

    2005-12-01

    A molecularly imprinted polymer (MIP) tailored for the HPLC determination of the fungicide thiabendazole (TBZ) has been synthesised in one single preparative step by precipitation polymerisation in an acetonitrile/toluene co-solvent, using TBZ as template molecule, methacrylic acid as functional monomer and divinylbenzene-80 as crosslinker. The imprinted polymer particulates obtained were characterised by scanning electron microscopy and nitrogen sorption porosimetry. These analyses showed clearly that spherical polymer particulates (polymer microspheres) with narrow size distributions (average particle diameter approximately 3.5 microm) and well-developed pore structures had been produced. The imprinted microspheres were packed into a stainless steel HPLC column (50 x 4.6 mm id) and evaluated as an imprinted stationary phase. The imprinting effect was demonstrated clearly, i.e., the column was observed to bind TBZ selectively, and the effect of different chromatographic parameters (e.g., temperature, flow-rate and elution solvents) on TBZ retention/elution studied. Under optimised conditions, the TBZ-imprinted column was used for the HPLC-fluorescence (HPLC-F) determination of TBZ directly from orange (both whole fruit and juice), lemon, grape and strawberry extracts at low concentration levels in less than 15 min, without any need for a clean-up step in the analytical protocol.

  3. Principles that Govern the Performance of Molecular Motors

    NASA Astrophysics Data System (ADS)

    Eide, Jon; Chakraborty, Arup; Oster, George

    2003-03-01

    We have created a two dimensional polymeric coarse-grained model to simulate the power stroke from the F0F1 ATP synthase class of molecular motors. There has been much work to understand the structure and dynamics of this type of molecular motor using both constrained molecular dynamics and general Markov models but neither of them have been able to elucidate in a qualitative manner how a constant force is created and transferred in the motor at a nearly 100efficiency. Our model is a modified Rouse system using Brownian and Monte Carlo (with solvent) Dynamics, concentrating only on the catalytic site and protein structures that we think are important for motor motion and energy transfer. While modeling the real system as closely as possible, we have determined the optimum characteristics for maximum efficiency. The efficiency depends on the load against the polymer, the polymer flexibility, polymer and surface matching, and solvent interactions. Insight into the basic principles behind the mechanical motion of this system may have implications for many other molecular motors driven by nucleotide hydrolysis and help design synthetic devices that can carry out biomimetic tasks.

  4. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    PubMed

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  5. How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution.

    PubMed

    Marcon, Valentina; van der Vegt, Nico F A

    2014-12-07

    By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.

  6. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    NASA Astrophysics Data System (ADS)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  7. Translocation time of a polymer chain through an energy gradient nanopore

    NASA Astrophysics Data System (ADS)

    Luo, Meng-Bo; Zhang, Shuang; Wu, Fan; Sun, Li-Zhen

    2017-06-01

    The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker-Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.

  8. Processes for preparing carbon fibers using gaseous sulfur trioxide

    DOEpatents

    Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.

    2016-01-05

    Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.

  9. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization.

    PubMed

    Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh

    2015-03-17

    Ultrathin (<100 nm) unstable polymer films exposed to a solvent vapor dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with the same hf.

  10. Critical Casimir effect in a polymer chain in supercritical solvents.

    PubMed

    Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo

    2009-03-01

    Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.

  11. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs.

    PubMed

    Penny, William M; Palmer, Christopher P

    2018-03-01

    Styrene-maleic acid polymer-bound lipid bilayer nanodiscs have been investigated and characterized by electrokinetic chromatography. Linear solvation energy relationship analysis was employed to characterize the changes in solvation environment of nanodiscs of varied belt to lipid ratio, belt polymer chemistry and molecular weight, and lipid composition. Increases in the lipid to belt polymer ratio resulted in smaller, more cohesive nanodiscs with greater electrophoretic mobility. Nanodisc structures with belt polymers of different chemistry and molecular weight were compared and showed only minor changes in solvent characteristics and selectivity consistent with changes in structure of the lipid bilayer. Seven phospholipid and sphingomyelin nanodiscs of different lipid composition were characterized. Changes in lipid head group structure had a significant effect on bilayer-solute interactions. In most cases, changes in alkyl tail structure had no discernible effect on solvation environment aside from those explained by changes in the gel-liquid transition temperature. Comparison to vesicles of similar lipid composition show only minor differences in solvation environment, likely due to differences in lipid composition and bilayer curvature. Together these results provide evidence that the dominant solute-nanodisc interactions are with the lipid bilayer and that head group chemistry has a greater impact on bilayer-solute interactions than alkyl tail or belt polymer structure. Nanodisc electrokinetic chromatography is demonstrated to allow characterization of solute interactions with lipid bilayers of varied composition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  13. Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    DOE PAGES

    Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.; ...

    2017-10-25

    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less

  14. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, alpha, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device for measuring the phase separation kinetics of membrane dopes are presented. We have used this device to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK may increase with increase in particles surface area due to surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic properties of the dope based on the hydrophilicity and porosity of the particle.

  15. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  16. Dendritic brushes under theta and poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  17. Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(N-isopropylacrylamide).

    PubMed

    Umapathi, Reddicherla; Reddy, P Madhusudhana; Rani, Anjeeta; Venkatesu, Pannuru

    2018-04-18

    Thermoresponsive polymers (TRPs) in different solvent media have been studied over a long period and are important from both scientific and technical points of view. Despite numerous studies on the behavior of TRPs with various additives, the interactions of additives with TRPs are still poorly understood. Moreover, despite the vast available literature regarding the biomolecular interactions between various TRPs and naturally occurring additives, it is not possible to provide a unifying declaration about the behavior of different additives, in particular at the phase transition temperature of the polymer. However, potential reviews that describe the behavior of additives as stimuli upon the phase transition of TRPs are also absent. A lack of sufficient knowledge regarding the responses of TRPs to additives as stimuli has hindered the expansion of the wide spectrum of applications of these polymers. Therefore, it was proposed to review the responses of TRPs in the presence of various additives in aqueous media. In-depth knowledge acquired via a literature survey has drawn our attention towards filling this gap by analyzing the interactions of TRPs with different additives. In this perspective, we have systematically examined the stability, aggregation, and phase transition behaviours of various polymers in the presence of different additives. The perspective on the influence of additives as stimuli on the behavior of TRPs in an aqueous medium will provide new reliable information about intramolecular interactions between interior polymer segments as well as intermolecular interactions between TRPs and additive molecules, which will be helpful for industrialists in the preparation of new polymeric materials for drug-delivery systems.

  18. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  19. The rheology and processing of “edge sheared” colloidal polymer opals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Hon Sum; Mackley, Malcolm, E-mail: mrm5@cam.ac.uk; Butler, Simon

    This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures.more » A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.« less

  20. Interactions between drugs and polymers influencing hot melt extrusion.

    PubMed

    Li, Yongcheng; Pang, Huishi; Guo, Zhefei; Lin, Ling; Dong, Yixuan; Li, Ge; Lu, Ming; Wu, Chuangbin

    2014-02-01

    Hot melt extrusion (HME) as a technique for producing amorphous solid dispersion (ASD) has been widely used in pharmaceutical research. The biggest challenge for the application of HME is the thermal degradation of drug, poor physical stability of ASD and precipitation of drug during dissolution. Interactions between drugs and polymers may play an important role in overcoming these barriers. In this review, influence of drug-polymer interactions on HME and the methods for characterizing the drug-polymer interactions were reviewed. Strong drug-polymer interactions, especially ionic interactions and hydrogen bonds, are helpful to improving the thermal stability of drug during HME, enhancing the physical stability of ASD during storage and maintaining supersaturated solution after dissolution in gastrointestinal tract. The interactions can be quantitatively and qualitatively characterized by many analysing methods. As many factors collectively determine the properties of HME products, drug-polymer interactions play an extremely important role. However, the action mechanisms of drug-polymer interactions need intensive investigation to provide more useful information for optimizing the formulation and the process parameters of HME. © 2013 Royal Pharmaceutical Society.

  1. Environmental stress cracking of polymers

    NASA Technical Reports Server (NTRS)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  2. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  3. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  4. Critical conditions of polymer adsorption and chromatography on non-porous substrates.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-07-15

    We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    PubMed

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  7. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.

    PubMed

    Sedlák, Marián

    2012-03-01

    A new approach to polymer self-assembly was presented recently [M. Sedlák, Č. Koňák, J. Dybal, Macromolecules 2009, 2, 7430-7438 and 7439-7446.] (1, 2) where stable polymeric nanoparticles were formed from poly(ethylacrylic acid) homopolymers without any assembly triggering additives, simply by heating polymer solution under conditions of thermosensitivity to certain temperature. In the current Article, we present successful results on poly(propylacrylic acid), which is a more hydrophobic polymer. We also present results on a less hydrophobic polymer from this series, poly(methacrylic acid), from which nanoparticles cannot be formed. Comparison of results on all three polymers gives a solid physicochemical insight and supports the molecular mechanism of the self-assembly previously suggested: The solvent quality gradually worsens upon heating of a thermosensitive polymer solution, and polymer-polymer contacts are preferred over polymer-solvent contacts, which leads to the formation of polymer assemblies. The presence of a significant amount of charge on chains prevents macroscopic phase separation. Upon subsequent cooling to laboratory temperature, the assemblies (nanoparticles) should eventually dissolve; however, this is not the case due to the fact that polymer chains brought to a close proximity at elevated temperatures become hydrogen-bonded. In addition, hydrogen bonds strengthen upon cooling. Mainly carboxylic-carboxylate hydrogen bonds (COOH····COO(-)) are responsible for the irreversibility of the process and the stability of nanoparticles. Conclusions are supported by results from static and dynamic light scattering, FTIR spectroscopy, and cryo-TEM microscopy. Size of nanoparticles can be monitored during the growth and custom-tailored by tuning critical parameters, especially the degree of ionization, temperature, and time of heating. Nanoparticles are stable over long periods of time. They are stable in a broad range of salt concentrations, including physiological conditions, and possess a mild acceptable degree of polydispersity.

  8. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    NASA Astrophysics Data System (ADS)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  9. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    PubMed

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds.

    PubMed

    Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng

    2010-06-25

    The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  12. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.

    PubMed

    Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall

    2017-11-01

    Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.

  13. Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.

    PubMed

    Dredán, J; Zelkó, R; Dávid, A Z; Antal, I

    2006-03-09

    Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.

  14. Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.

    PubMed

    Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk

    2013-12-01

    Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Stabilization of Proteins by Polymer Conjugation via ATRP

    DTIC Science & Technology

    2008-08-31

    to increase their solubility and utility in organic solvents and to increase their stability in body. Protein-initiated ATRP would enable us to... Solvent solubilization, therapeutic proteins, hydrophilic polymers, protein stabilization Lance Mabus, Jason Berberich, Bhalchandra Lele, Virginia Depp... solvents and to increase their stability in body. Protein-initiated ATRP would enable us to overcome many problems in conventional technology that

  16. Comparison of retention models for polymers 1. Poly(ethylene glycol)s.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2006-10-27

    The suitability of three different retention models to predict the retention times of poly(ethylene glycol)s (PEGs) in gradient and isocratic chromatography was investigated. The models investigated were the linear (LSSM) and the quadratic solvent strength model (QSSM). In addition, a model describing the retention behaviour of polymers was extended to account for gradient elution (PM). It was found that all models are suited to properly predict gradient retention volumes provided the extraction of the analyte specific parameters is performed from gradient experiments as well. The LSSM and QSSM on principle cannot describe retention behaviour under critical or SEC conditions. Since the PM is designed to cover all three modes of polymer chromatography, it is therefore superior to the other models. However, the determination of the analyte specific parameters, which are needed to calibrate the retention behaviour, strongly depend on the suitable selection of initial experiments. A useful strategy for a purposeful selection of these calibration experiments is proposed.

  17. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  18. Silylene-diethynyl-arylene polymers having liquid crystalline properties

    DOEpatents

    Barton, Thomas J.; Ding, Yiwei

    1993-09-07

    The present invention provides linear organosilicon polymers including diethynyl-(substituted)arylene units, and a process for their preparation. These novel polymers possess useful properties including electrical conductivity, liquid crystallinity, and/or photoluminescence. These polymers possess good solubility in organic solvents. A preferred example is produced according to the following reaction scheme. ##STR1## These polymers can be solvent-cast to yield excellent films and can also be pulled into fibers from concentrated solutions. All possess substantial crystallinity as revealed by DSC analysis and observation through a polarizing microscope, and possess liquid crystalline properties.

  19. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less

  20. Unbinding transition from fluid membranes with associated polymers.

    PubMed

    Benhamou, M; Kaidi, H

    2013-10-01

    We consider two neighboring fluid membranes that are associated with long flexible polymers (proteins or other macromolecules). We are interested in two physical systems consisting of i) two adjacent membranes with end-grafted (or adsorbed) polymers (system I), or ii) two membranes confining a polymer solution (system II). In addition to the pure interactions between membranes, the presence of polymers gives rise to new induced mediated interactions, which are repulsive, for system I, and attractive, for system II. In fact, repulsive induced interactions are caused by the excluded-volume forces between grafted polymers, while attractive ones, by entropy loss, due to free motion of polymers between membranes. The main goal is a quantitative study of the unbinding transition thermodynamics that is drastically affected by the associated polymers. For system I, the repulsive polymer-mediated force delays this transition that can happen at low temperature. To investigate the unbinding phenomenon, we first present an exact mathematical analysis of the total potential that is the sum of the primitive and induced potentials. This mathematical study enables us to classify the total interaction potentials, in terms of all parameters of the problem. Second, use is made of the standard variational method to calculate the first moments of the membrane separation. Special attention is paid to the determination of the unbinding temperature. In particular, we discuss its dependence on the extra parameters related to the associated polymers, which are the surface coverage and the polymer layer thickness on each membrane (for system I) or the polymer density and the gyration radius of coils (for system II). Third, we compute the disjoining pressure upon membrane separation. Finally, we emphasize that the presence of polymers may be a mechanism to delay or to accentuate the appearance of the unbinding transition between fluid membranes.

  1. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  2. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.

    PubMed

    Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P

    2013-01-07

    Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.

  3. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    PubMed

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of solvents on the enzyme mediated degradation of copolymers

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

  5. [Determination of solubility parameters of high density polyethylene by inverse gas chromatography].

    PubMed

    Wang, Qiang; Chen, Yali; Liu, Ruiting; Shi, Yuge; Zhang, Zhengfang; Tang, Jun

    2011-11-01

    Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of high density polyethylene (HDPE) at the absolute temperatures from 303.15 to 343.15 K. Six solvents were applied as test probes including hexane (n-C6), heptane (n-C7), octane (n-C8), nonane (n-C9), chloroform (CHCl3) and ethyl acetate (EtAc). Some thermodynamic parameters were obtained by IGC data analysis such as the specific retention volumes of the solvents (V(0)(g)), the molar enthalpy of sorption (delta H(S)(1)), the partial molar enthalpy of mixing at infinite dilution (delta H(1)(infinity)), the molar enthalpy of vaporization (delta H(v)), the activity coefficients at infinite dilution (omega (1)(infinity)), and Flow-Huggins interaction parameters (X(1,2)(infinity)) between HDPE and probe solvents. The results showed that the above six probes are poor solvents for HDPE. The solubility parameter of HDPE at room temperature (298.15 K) was also derived as 19.00 (J/cm3)(0.5).

  6. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-10-01

    Amorphous solid dispersions (ASDs) have the potential to offer higher apparent solubility and bioavailability of BCS class II drugs. Knowledge of the solid state drug-polymer solubility/miscibility and their mutual interaction are fundamental requirements for the effective design and development of such systems. To this end, we have carried out a comprehensive investigation of various ASD systems of dipyridamole and cinnarizine in polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) at different drug loadings. Theoretical and experimental examinations (by implementing binary and ternary Flory-Huggins (F-H) theory) related to drug-polymer interaction/miscibility including solubility parameter approach, melting point depression method, phase diagram, drug-polymer interaction in the presence of moisture and the effect of drug loading on interaction parameter were performed. The information obtained from this study was used to predict the stability of ASDs at different drug loadings and under different thermal and moisture conditions. Thermal and moisture sorption analysis not only provided the composition-dependent interaction parameter but also predicted the composition dependent miscibility. DPM-PVP, DPM-PAA and CNZ-PAA systems have shown molecular level mixing over the complete range of drug loading. For CNZ-PVP, the presence of a single Tg at lower drug loadings (10, 20 and 35%w/w) indicates the formation of solid solution. However, drug recrystallization was observed for samples with higher drug weight fractions (50 and 65%w/w). Finally, the role of polymer in maintaining drug supersaturation has also been explored. It has been found that drug-polymer combinations capable of hydrogen-bonding in the solution state (DPM-PVP, DPM-PAA and CNZ-PAA) are more effective in preventing drug crystallization compared to the drug-polymer systems without such interaction (CNZ-PVP). The DPM-PAA system outperformed all other ASDs in various stability conditions (dry-state, in the presence of moisture and in solution state), which was attributed to the drug's low crystallization tendency, the strong DPM-PAA interaction, the robustness of this interaction against moisture or water and the ability of PAA in maintaining DPM supersaturation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  8. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.

    2018-05-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.

  9. Achieving over 9.8% Efficiency in Nonfullerene Polymer Solar Cells by Environmentally Friendly Solvent Processing.

    PubMed

    Wu, Yue; Zou, Yan; Yang, Hang; Li, Yaowen; Li, Hongkun; Cui, Chaohua; Li, Yongfang

    2017-10-25

    Nowadays, most of the solution-processed high-efficiency polymer solar cell (PSC) devices are fabricated by halogenated solvents (such as chlorobenzene, 1,2-dichlorobenzene, chloroform, etc.) which are harmful to people and the environment. Therefore, it is essential to develop high-efficiency PSC devices processed by environmentally friendly solvent processing for their industrialization. In this regard, we report a new alkylthio chain-based conjugated polymer PBDB-TS as donor material for environmentally friendly solvent-processed PSCs. PBDB-TS possesses a low-lying HOMO energy level at -5.42 eV and a good solubility in toluene and o-xylene. By using o-xylene and 1% N-methylpyrrolidone as processing solvent, following by the thermal annealing treatment for PBDB-TS:ITIC blend films, well-developed morphological features, and balanced charge transport properties are observed, leading to a high power conversion efficiency (PCE) of 9.85%, higher than that of the device cast from halogenated solvent (PCE = 9.65%). The results suggest that PBDB-TS is an attractive donor material for nonhalogen solvents-processing PSCs.

  10. Kamlet-Taft solvent parameters, NMR spectroscopic analysis and thermoelectrochemistry of lithium-glyme solvate ionic liquids and their dilute solutions.

    PubMed

    Black, Jeffrey J; Dolan, Andrew; Harper, Jason B; Aldous, Leigh

    2018-06-06

    Solvate ionic liquids are a relatively new class of liquids produced by combining a coordinating solvent with a salt. They have a variety of uses and their suitability for such depends upon the ratio of salt to coordinating solvent. This work investigates the Kamlet-Taft solvent parameters of, NMR chemical shifts of nuclei in, and thermoelectrochemistry of a selected set of solvate ionic liquids produced from glymes (methyl terminated oligomers of ethylene glycol) and lithium bis(trifluoromethylsulfonyl)imide at two different compositions. The aim is to improve the understanding of the interactions occurring in these ionic liquids to help select suitable solvate ionic liquids for future applications.

  11. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  12. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions

    NASA Astrophysics Data System (ADS)

    Ahuja, V. R.; van der Gucht, J.; Briels, W. J.

    2018-01-01

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  13. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.

    PubMed

    Ahuja, V R; van der Gucht, J; Briels, W J

    2018-01-21

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  14. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  15. Measurements of Attractive Forces between Proteins and End-Grafted Poly(Ethylene Glycol) Chains

    NASA Astrophysics Data System (ADS)

    Sheth, S. R.; Leckband, D.

    1997-08-01

    The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.

  16. Physicochemical Evaluations of Selected Solvents for Use in Decontaminating Agent: Multipurpose (DAM) Formulation

    DTIC Science & Technology

    1994-03-01

    PARAMETER FOR K-125 POLYMER Molar p, volume, Polymer g/co cc 8d 5p 8• PMMA 1.17 86.5 16.5 5.7 9.0 19.7 PnPrMA 1.08 118.7 16.6 4.1 7.7 18.8 PnBuMA 1.05 135.2...with an usable fluid range. The limited toxicological data (Ref. 2) shows that the compounds have low acute toxicity and are only mildly irritating...expected from the similarity in structure and the similarity in physical properties that its toxicological properties will be quite like those of sulfolane

  17. The impact of fullerenes on the ordering of polyacrylonitrile during nanocomposites formation

    DOE PAGES

    Imel, Adam E.; Dadmun, Mark D.

    2015-08-18

    The production of polymer nanocomposites from solution consists of the mixing of the polymer and nanoparticle in solution and subsequent evaporation of the solvent. Here, we examine the formation of polyacrylonitrile and C60 fullerene nanocomposites, with a focus on monitoring these two steps.This study indicates that the nanoparticles are individually dispersed with the polymer chains in solution prior to deposition and in the final film. As the solution becomes more concentrated, the nanoparticles are sequestered to the outer edges of the polymer crystals, altering the detected crystal structure. The self-assembled structure of the crystalline polymer is directed by the additionmore » of C 60 and manifests itself as a peak in small-angle X-ray scattering on a length scale of ~150 . Moreover, our results suggest that the non-covalent molecular interactions between C60 and polyacrylonitrile matrix are sufficiently strong to alter the self-assembled morphology of the polymer and the meso- and nanoscale structures in the nanocomposite.« less

  18. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    DOEpatents

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  19. Electrophoretic mobilities of counterions and a polymer in cylindrical pores

    PubMed Central

    Singh, Sunil P.; Muthukumar, M.

    2014-01-01

    We have simulated the transport properties of a uniformly charged flexible polymer chain and its counterions confined inside cylindrical nanopores under an external electric field. The hydrodynamic interaction is treated by describing the solvent molecules explicitly with the multiparticle collision dynamics method. The chain consisting of charged monomers and the counterions interact electrostatically with themselves and with the external electric field. We find rich behavior of the counterions around the polymer under confinement in the presence of the external electric field. The mobility of the counterions is heterogeneous depending on their location relative to the polymer. The adsorption isotherm of the counterions on the polymer depends nonlinearly on the electric field. As a result, the effective charge of the polymer exhibits a sigmoidal dependence on the electric field. This in turn leads to a nascent nonlinearity in the chain stretching and electrophoretic mobility of the polymer in terms of their dependence on the electric field. The product of the electric field and the effective polymer charge is found to be the key variable to unify our simulation data for various polymer lengths. Chain extension and the electrophoretic mobility show sigmoidal dependence on the electric field, with crossovers from the linear response regime to the nonlinear regime and then to the saturation regime. The mobility of adsorbed counterions is nonmonotonic with the electric field. For weaker and moderate fields, the adsorbed counterions move with the polymer and at higher fields they move opposite to the polymer's direction. We find that the effective charge and the mobility of the polymer decrease with a decrease in the pore radius. PMID:25240366

  20. Computational Optimization and Characterization of Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Terracina, Jacob J.

    Molecularly imprinted polymers (MIPs) are a class of materials containing sites capable of selectively binding to the imprinted target molecule. Computational chemistry techniques were used to study the effect of different fabrication parameters (the monomer-to-target ratios, pre-polymerization solvent, temperature, and pH) on the formation of the MIP binding sites. Imprinted binding sites were built in silico for the purposes of better characterizing the receptor - ligand interactions. Chiefly, the sites were characterized with respect to their selectivities and the heterogeneity between sites. First, a series of two-step molecular mechanics (MM) and quantum mechanics (QM) computational optimizations of monomer -- target systems was used to determine optimal monomer-to-target ratios for the MIPs. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (one-target) and larger scale models (five-targets). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to evaluate the heterogeneity of the sites. The more fully surrounded sites had greater binding energies. Molecular docking was then used to measure the selectivities of the QM-optimized binding sites by comparing the binding energies of the imprinted target to that of a structural analogue. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. This represented a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Next, we sought to computationally construct and investigate binding sites for their enantioselectivity. Again, a two-step MM [special characters removed] QM optimization scheme was used to "computationally imprint" chiral molecules. Using docking techniques, the imprinted binding sites were shown to exhibit an enantioselective preference for the imprinted molecule over its enantiomer. Docking of structurally similar chiral molecules showed that the sites computationally imprinted with R- or S-tBOC-tyrosine were able to differentiate between R- and S-forms of other tyrosine derivatives. The cross-enantioselectivity did not hold for chiral molecules that did not share the tyrosine H-bonding functional group orientations. Further analysis of the individual monomer - target interactions within the binding site led us to conclude that H-bonding functional groups that are located immediately next to the target's chiral center, and therefore spatially fixed relative to the chiral center, will have a stronger contribution to the enantioselectivity of the site than those groups separated from the chiral center by two or more rotatable bonds. These models were the first computationally imprinted binding sites to exhibit this enantioselective preference for the imprinted target molecules. Finally, molecular dynamics (MD) was used to quantify H-bonding interactions between target molecules, monomers, and solvents representative of the pre-polymerization matrix. It was found that both target dimerization and solvent interference decrease the number of monomer - target H-bonds present. Systems were optimized via simulated annealing to create binding sites that were then subjected to molecular docking analysis. Docking showed that the presence of solvent had a detrimental effect on the sensitivity and selectivity of the sites, and that solvents with more H-bonding capabilities were more disruptive to the binding properties of the site. Dynamic simulations also showed that increasing the temperature of the solution can significantly decrease the number of H-bonds formed between the targets and monomers. It is believed that the monomer - target complexes formed within the pre-polymerization matrix are translated into the selective binding cavities formed during polymerization. Elucidating the nature of these interactions in silico improves our understanding of MIPs, ultimately allowing for more optimized sensing materials.

  1. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, James H.

    1995-01-01

    A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.

  2. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  3. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension

    NASA Astrophysics Data System (ADS)

    Maiti, Amitesh; McGrother, Simon

    2004-01-01

    Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

  4. Polymer nano-particle hybrid micelles: Encapsulation of POSS into semi-fluorinated polymer micelles

    NASA Astrophysics Data System (ADS)

    Ratnaweera, Dilru; Perahia, Dvora; Iacono, Scott; Mabry, Joseph; Smith, Dennis

    2012-02-01

    Self-assembly of block copolymers in selective solvents was used to form a nanoparticle (NP)/polymer hybrid micelles. These micelles can be used as a cargo vehicle for other substances such as drug delivery, and as building blocks for polymer-nanocomposites with controlled NP distribution. Association of NPs into specific blocks of the copolymer depends on the compatibility between the NPs and the block as well as their preference to the solvent that micellization takes place. The current work introduces a small angle neutron scattering study of association of Polyhedral Oligomeric Silsesquioxane (POSS) NPs into micelles of a highly segregating random copolymer, Biphenyl Perfluorocyclobutane (BPh-PFCB), in toluene, which is a good solvent for BPh. Incompatibility between the blocks drives copolymer into micelles with PFCB in the core and BPh in swollen corona. Modification of NPs with polymer chains drives POSS cages into the micelle core and prevents the micelle dissociation at higher temperatures.

  5. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  6. Safe battery solvents

    DOEpatents

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  7. Interpenetrating and non-interpenetrating 3-dimensional coordination polymer frameworks from multiple building blocks

    NASA Astrophysics Data System (ADS)

    Bradshaw, Darren; Rosseinsky, Matthew J.

    2005-12-01

    Reaction of Co(NO3)2ṡ6H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2]ṡ(guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2]ṡ(bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.

  8. Solventless visible light-curable coating: I. Critical formulation and processing parameters.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2010-06-30

    Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity x exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8-3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent. 2010 Elsevier B.V. All rights reserved.

  9. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    PubMed

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  10. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    PubMed

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-07

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  11. Direct characterization of hydrophobic hydration during cold and pressure denaturation.

    PubMed

    Das, Payel; Matysiak, Silvina

    2012-05-10

    Cold and pressure denaturation are believed to have their molecular origin in hydrophobic interactions between nonpolar groups and water. However, the direct characterization of the temperature- and pressure-dependent variations of those interactions with atomistic simulations remains challenging. We investigated the role of solvent in the cold and pressure denaturation of a model hydrophobic 32-mer polymer by performing extensive coarse-grained molecular dynamics simulations including explicit solvation. Our simulations showed that the water-excluded folded state of this polymer is marginally stable and can be unfolded by heating or cooling, as well as by applying pressure, similar to globular proteins. We further detected essential population of a hairpin-like configuration prior to the collapse, which is consistently accompanied by a vapor bubble at the elbow of the kink. Increasing pressure suppresses formation of this vapor bubble by reducing water fluctuations in the hydration shell of the polymer, thus promoting unfolding. Further analysis revealed a slight reduction of water tetrahedrality in the polymer hydration shell compared to the bulk. Cold denaturation is driven by an enhanced tetrahedral ordering of hydration shell water than bulk water. At elevated pressures, the strikingly reduced fluctuations combined with the increase in interstitial water molecules in the polymer hydration shell contribute to weakening of hydrophobic interactions, thereby promoting pressure unfolding. These findings provide critical molecular insights into the changes in hydrophobic hydration during cold and pressure unfolding of a hydrophobic polymer, which is strongly related to the cold and pressure denaturation of globular proteins.

  12. The competition of hydrogen-like and isotropic interactions on polymer collapse

    NASA Astrophysics Data System (ADS)

    Krawczyk, J.; Owczarek, A. L.; Prellberg, T.

    2007-09-01

    We investigate a lattice model of polymers where the nearest neighbour monomer monomer interaction strengths differ according to whether the local configurations have so-called 'hydrogen-like' formations or not. If the interaction strengths are all the same then the classical θ-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions gives rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters, two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions.

  13. Effect of crosslinking concentration on properties of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone gels.

    PubMed

    Mohammed, Ameen Hadi; Ahmad, Mansor B; Ibrahim, Nor Azowa; Zainuddin, Norhazlin

    2018-02-13

    The incorporation of two different monomers, having different properties, in the same polymer molecule leads to the formation of new materials with great scientific and commercial importance. The basic requirements for polymeric materials in some areas of biomedical applications are that they are hydrophilic, having good mechanical and thermal properties, soft, and oxygen-permeable. A series of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone (TMSPM/NVP) xerogels containing different concentration of ethylene glycol dimethacrylate (EGDMA) as crosslinking agent were prepared by bulk polymerization to high conversion using BPO as initiator. The copolymers were characterized by FTIR. The corresponding hydrogels were obtained by swelling the xerogels in deionized water to equilibrium. Addition of EGDMA increases the transparency of xerogels and hydrogels. The minimum amount of EGDMA required to produce a transparent xerogel is 1%. All the Swelling parameters, including water content (EWC), volume fraction of polymer (ϕ 2 ) and weight loss during swelling decrease with increasing EGDMA. Young's and shear modulus (E and G) increase as EGDMA increases. The hydrogels were characterized in terms of modulus cross-linking density (v e and v t ) and polymer-solvent interaction parameters (χ). Thermal properties include TGA and glass transition temperature (T g ) enhance by adding EGDMA whereas the oxygen permeability (P) of hydrogels decreases as water content decrease. This study prepared and studied the properties for new copolymer (TMSPM-co-NVP) contains different amounts of (EGDMA). These copolymers possess new properties with potential use in different biomedical applications. The properties of the prepared hydrogels are fit with the standard properties of materials which should be used for contact lenses.

  14. Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems.

    PubMed

    Urbanek, Olga; Sajkiewicz, Paweł; Pierini, Filippo; Czerkies, Maciej; Kołbuk, Dorota

    2017-02-03

    Electrospinning of chitosan blends is a reasonable idea to prepare fibre mats for biomedical applications. Synthetic and natural components provide, for example, appropriate mechanical strength and biocompatibility, respectively. However, solvent characteristics and the polyelectrolyte nature of chitosan influence the spinnability of these blends. In order to compare the effect of solvent on polycaprolactone/chitosan fibres, two types of the most commonly used solvent systems were chosen, namely 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and acetic acid (AA)/formic acid (FA). Results obtained by various experimental methods clearly indicated the effect of the solvent system on the structure and properties of electrospun polycaprolactone/chitosan fibres. Viscosity measurements confirmed different polymer-solvent interactions. Various molecular interactions resulting in different macromolecular conformations of chitosan influenced its spinnability and properties. HFIP enabled fibres to be obtained whose average diameter was less than 250 nm while maintaining the brittle and hydrophilic character of the nonwoven, typical for the chitosan component. Spectroscopy studies revealed the formation of chitosan salts in the case of the AA/FA solvent system. Chitosan salts visibly influenced the structure and properties of the prepared fibre mats. The use of AA/FA caused a reduction of Young's modulus and wettability of the proposed blends. It was confirmed that wettability, mechanical properties and the antibacterial effect of polycaprolactone/chitosan fibres may be tailored by selecting an appropriate solvent system. The MTT cell proliferation assay revealed an increase of cytotoxicity to mouse fibroblasts in the case of 25% w/w of chitosan in electrospun nonwovens.

  15. Distinguishing the importance of fullerene phase separation from polymer ordering in the performance of low band gap polymer: Bis-fullerene heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu -Che; Chen, Jihua

    2014-09-16

    It is known, one way to improve power conversion efficiency (PCE) of polymer based bulk-heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis-adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3-hexyl thiophene) (P3HT). However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA results in poor short-circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as-cast LBP/bis-fullerene BHJ photovoltaics is attempted by adding a co-solvent to the polymer/fullerene solution prior tomore » film deposition. Varying the solubility of polymer and fullerene in the co-solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as-cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co-solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co-solvent is selective to ICBA. Furthermore, the resultant morphology improves PCE by up to 246%. Finally, a quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.« less

  16. Electrospinning biopolymers from ionic liquids requires control of different solution properties than volatile organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavgorodnya, Oleksandra; Shamshina, Julia L.; Bonner, Jonathan R.

    Here, we report the correlation between key solution properties and spinability of chitin from the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C 2mim][OAc]), and the similarities and differences to electrospinning solutions of non-ionic polymers in volatile organic compounds (VOCs). We found that when electrospinning is conducted from ILs, conductivity and surface tension are not the key parameters regulating spinability, while solution viscosity and polymer concentration are. Contrarily, for electrospinning of polymers from VOCs, solution conductivity and viscosity have been reported to be among some of the most important factors controlling fiber formation. For chitin electrospun from [C 2mim][OAc], we found bothmore » a critical chitin concentration required for continuous fiber formation (> 0.20 wt%) and a required viscosity for the spinning solution (between ca. 450 – 1500 cP). The high viscosities of the biopolymer-IL solutions made it possible to electrospin solutions with low, less than 1 wt% of polymer concentration and produce thin fibers without the need to adjust the electrospinning parameters. These results suggest new prospects for the control of fiber architecture in non-woven mats, which is crucial for materials performance.« less

  17. Electrospinning biopolymers from ionic liquids requires control of different solution properties than volatile organic solvents

    DOE PAGES

    Zavgorodnya, Oleksandra; Shamshina, Julia L.; Bonner, Jonathan R.; ...

    2017-04-27

    Here, we report the correlation between key solution properties and spinability of chitin from the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C 2mim][OAc]), and the similarities and differences to electrospinning solutions of non-ionic polymers in volatile organic compounds (VOCs). We found that when electrospinning is conducted from ILs, conductivity and surface tension are not the key parameters regulating spinability, while solution viscosity and polymer concentration are. Contrarily, for electrospinning of polymers from VOCs, solution conductivity and viscosity have been reported to be among some of the most important factors controlling fiber formation. For chitin electrospun from [C 2mim][OAc], we found bothmore » a critical chitin concentration required for continuous fiber formation (> 0.20 wt%) and a required viscosity for the spinning solution (between ca. 450 – 1500 cP). The high viscosities of the biopolymer-IL solutions made it possible to electrospin solutions with low, less than 1 wt% of polymer concentration and produce thin fibers without the need to adjust the electrospinning parameters. These results suggest new prospects for the control of fiber architecture in non-woven mats, which is crucial for materials performance.« less

  18. Dilute and Semidilute Solutions of a Nonionic, Rigid, Water-soluble Polymer

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Huberty, Wayne; Zhang, Donghui; Water-Soluble Rodlike Polymer Team Collaboration

    2014-03-01

    The solution physics of random polymer chains was established largely on the behavior of commercial polymers such as polystyrene for organic solvents or nonionic poly(ethyleneoxide) for aqueous solvents. Not only are these materials widely available for industrial use, they can be synthesized to be essentially monodisperse. When it comes to stiff polymers, good choices are few and less prone to be used in industrial applications. Much was learned from polypeptides such as poly(benzylglutamate) or poly(stearylglutamate) in polar organic solvents and nonpolar organic solvents, respectively, but aqueous systems generally require charge. Poly(Nɛ-2-[2-(2-Methoxyethoxy) ethoxy]acetyl-L-Lysine) a.k.a. PEGL was pioneered by Deming and coworkers. In principle, PEGL provides a convenient platform from which to study stiff polymer behavior--phase relations, dynamics, liquid crystal formation and gelation--all with good molecular weight control and uniformity and without electrical charge. Still, a large gap in knowledge exists between PEGL and traditional rodlike polymer systems. To narrow this gap, dynamic and static scattering, circular dichroism, and viscosity measurements have been made in dilute and semidilute solutions as necessary preliminaries for lyotropic liquid crystalline and gel phases. Supported by NSF DMR 1306262. Department of Chemistry and Macromolecular Studies Group. Current address: Georgia Institute of Technology, School of Materials Science and Engineering.

  19. Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)

    NASA Astrophysics Data System (ADS)

    Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.

    2017-09-01

    In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.

  20. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  1. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  2. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. Electronic supplementary information (ESI) available: SEM, and TEM images. See DOI: 10.1039/c2nr30743j

  3. Photo-triggered solvent-free metamorphosis of polymeric materials.

    PubMed

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  4. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  5. Synthesis and patterning of polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    He, Wei

    The goal of this dissertation is to synthesize and characterize novel polymers, as well as to explore alternative techniques for biomedical applications. Although significant progress has been achieved in the design and preparation of new biomaterials over the past years, much remains to be accomplished. The interactions between biomaterials and cells are very important, especially in the emerging field of tissue engineering. The focus of this research is to improve such interactions via several different approaches. One way to engineer cellular interaction is by modifying surface topography through micro-patterning. Although photolithography is widely used for patterning, it is not suitable for direct cell and protein patterning because of the usage of organic solvent for feature development. To address this issue, a biocompatible chemically amplified resist derived from N-vinyl-2-pyrrolidone (NVP) was prepared. The results have shown that no organic solvent development was required to reveal the patterns and cells can be cultured on these patterned surfaces directly. Strong cell alignment was observed. The other issue addressed in this research is to develop a technique that can modify surface morphology and surface chemistry simultaneously. Such a technique is called masked ion beam lithography (MIBL). By implanting phosphorous ions on polymeric substrates through masks, not only micron/nano size patterns were generated on the surface, but also the phosphorous ions were incorporated. Incubation of bone forming osteoblast cells on these ion beam processed samples has shown that osteoblast cell attachment to the substrate was enhanced, as a consequence of the increased surface roughness as well as the implanted phosphorous ions. This indicates that MIBL can not only generate micro/nanostructures on the surface of a biocompatible polymer, but can also selectively modify the surface chemistry by implanting with specific ions. These factors can contribute to an osteogenic environment.

  6. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  7. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption.

    PubMed

    Zhao, Qiang; Dunlop, John W C; Qiu, Xunlin; Huang, Feihe; Zhang, Zibin; Heyda, Jan; Dzubiella, Joachim; Antonietti, Markus; Yuan, Jiayin

    2014-07-01

    Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 °C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.

  8. Mechanism of protein precipitation and stabilization by co-solvents

    NASA Astrophysics Data System (ADS)

    Timasheff, Serge N.; Arakawa, Tsutomu

    1988-07-01

    The interactions between proteins and a number of substances which, when present at high concentration, stabilize or precipitate proteins, have been analyzed in terms of the preferential interactions of these co-solvents with proteins. In all cases, stabilization or precipitation was accompanied by preferential exclusion of the co-solvent from the immediate domain of the protein, i.e., preferential hydration of the protein. This means that addition of the co-solvent to the aqueous protein solution increased the chemical potentials of both components. The thermodynamic interaction parameters derived from such data make it possible to calculate the salting out constant, Ks, as well as to construct a phase isotherm for any given solvent mixture which indicates the limiting protein solubility. The salting-out effect can be decomposed into contributions from non-specific preferential exclusion and specific binding of the ligand to the protein, the balance leading to solubilization or precipitation. In reactions, such as denaturation, the effect of co-solvent on the reaction depends on the difference in the preferential interactions of the two end states of the protein. Principal sources of preferential exclusion have been identified as steric exclusion, increase of the surface tension of water by the co-solvent, repulsion by charged loci on the protein and solvophobicity.

  9. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers

    NASA Astrophysics Data System (ADS)

    Yang, Guang-Zhi; Li, Hai-Peng; Yang, Jun-He; Wan, Jia; Yu, Deng-Guang

    2017-01-01

    Temperature is an important parameter during electrospinning, and virtually, all solution electrospinning processes are conducted at ambient temperature. Nanofiber diameters presumably decrease with the elevation of working fluid temperature. The present study investigated the influence of temperature variations on the formation of polymeric nanofibers during single-fluid electrospinning. The surface tension and viscosity of the fluid decreased with increasing working temperature, which led to the formation of high-quality nanofibers. However, the increase in temperature accelerated the evaporation of the solvent and thus terminated the drawing processes prematurely. A balance can be found between the positive and negative influences of temperature elevation. With polyacrylonitrile (PAN, with N, N-dimethylacetamide as the solvent) and polyvinylpyrrolidone (PVP, with ethanol as the solvent) as the polymeric models, relationships between the working temperature ( T, K) and nanofiber diameter ( D, nm) were established, with D = 12598.6 - 72.9 T + 0.11 T 2 ( R = 0.9988) for PAN fibers and D = 107003.4 - 682.4 T + 1.1 T 2 ( R = 0.9997) for PVP nanofibers. Given the fact that numerous polymers are sensitive to temperature and numerous functional ingredients exhibit temperature-dependent solubility, the present work serves as a valuable reference for creating novel functional nanoproducts by using the elevated temperature electrospinning process.

  11. Tension Amplification in Molecular Brushes in Solutions and on Substrates

    PubMed Central

    Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael

    2009-01-01

    Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133

  12. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics.

    PubMed

    Wang, Huiliang; Hsieh, Bing; Jiménez-Osés, Gonzalo; Liu, Peng; Tassone, Christopher J; Diao, Ying; Lei, Ting; Houk, Kendall N; Bao, Zhenan

    2015-01-07

    Regioregular poly(3-alkylthiophene) (P3AT) polymers have been previously reported for the selective, high-yield dispersion of semiconducting single-walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m-xylene, and o-xylene, for the dispersion of SWCNTs by poly(3-dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o-xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet-printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: Positron lifetime study

    NASA Astrophysics Data System (ADS)

    Dinesh, Meghala; Chikkakuntappa, Ranganathaiah

    2013-09-01

    Ternary polymer blends of poly(styrene-co-acrylonitrile)/poly(ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and poly(vinyl acetate)/bisphenol A/polyvinylpyrrolidone (PVAc/BPA/PVP) with different compositions have been prepared by solvent casting method and characterized by positron lifetime spectroscopy and differential scanning calorimetry DSC. Phase modifications have been induced by irradiating the blends with microwave radiation. These changes have been monitored by measuring the free-volume content in the blends. The results clearly show improved interactions between the constituent polymers of the blends upon microwave irradiation. However, the free-volume data and DSC measurements are found to be inadequate to reveal the changes at the interfaces and the interfaces determine the final properties of the blend. For this we have used hydrodynamic interaction (αij) approach developed by us to measure strength of hydrodynamic interaction at the interfaces. These results show that microwave irradiation stabilizes the interfaces if the blend contains strong polar groups. SAN/EVA/PVC blend shows an increased effective hydrodynamic interaction from -3.18 to -4.85 at composition 50/35/15 upon microwave irradiation and PVAc/BPA/PVP blend shows an increased effective hydrodynamic interaction from -3.81 to -7.57 at composition 20/50/30 after irradiation.

  14. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  15. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Nanocomposites Based on Biodegradable Polymers.

    PubMed

    Armentano, Ilaria; Puglia, Debora; Luzi, Francesca; Arciola, Carla Renata; Morena, Francesco; Martino, Sabata; Torre, Luigi

    2018-05-15

    In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  17. Control of morphology and function of low band gap polymer–bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin

    2014-05-07

    We reported how by replacing PCBM with a bis-adduct fullerene (i.e. ICBA) we significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. But, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. Our results showmore » that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Furthermore, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.« less

  18. The Concept of Solid Solvent as Processing Aid.

    DTIC Science & Technology

    1984-09-20

    3 presents the DSC results of acetanilide . Acetanilide shows a sharp melting peak at 116C, very close to the melting point (Tm) reported by Fisher...should become compatible with a polymer and act as a solvent in the liquid state above its melting point , significantly reducing the viscosity of the...polymer, but should become incompatible and crystallize out of the polymer as discrete domains below its melting point without adversely affecting

  19. Encapsulation of ionic electroactive polymers: reducing the interaction with environment

    NASA Astrophysics Data System (ADS)

    Jaakson, P.; Aabloo, A.; Tamm, T.

    2016-04-01

    Ionic electro-active polymer (iEAP) actuators are composite materials that change their mechanical properties in response to external electrical stimulus. The interest in these devices is mainly driven by their capability to generate biomimetic movements, and their potential use in soft robotics. The driving voltage of an iEAP-actuator (0.5… 3 V) is at least an order of magnitude lower than that needed for other types of electroactive polymers. To apply iEAP-actuators in potential real-world applications, the capability of operating in different environments (open air, different solvents) must be available. In their natural form, the iEAP-actuators are capable of interacting with the surrounding environment (evaporation of solvent from the electrolyte solution, ion or solvent exchange, humidity effects), therefore, for prevention of unpredictable behavior of the actuator and the contamination of the environment, encapsulation of the actuator is needed. The environmental contamination aspect of the encapsulation material is substantial when selecting an applicable encapsulant. The suitable encapsulant should form thin films, be light in weight, elastic, fit tightly, low cost, and easily reproducible. The main goal of the present study is to identify and evaluate the best potential encapsulation techniques for iEAPactuators. Various techniques like thin film on liquid coating, dip coating, hot pressing, hot rolling; and several materials like polydimethylsiloxane, polyurethane, nitrocellulose, paraffin-composite-films were investigated. The advantages and disadvantages of the combinations of the above mentioned techniques and materials are discussed. Successfully encapsulated iEAP-actuators gained durability and were stably operable for long periods of time under ambient conditions. The encapsulation process also increased the stability of the iEAP-actuator by minimizing the environment effects. This makes controlling iEAP-actuators more straight-forward and reliable since there is no need to take the environmental factors like relative humidity and/or gas circulation into account.

  20. Disentangled solid state and metastable polymer melt; a solvent free route to high-modulus high-strength tapes and films of UHMWPE

    NASA Astrophysics Data System (ADS)

    Rastogi, Sanjay

    2013-03-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.

  1. Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids.

    PubMed

    Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen

    2014-10-02

    An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.

  2. Phase Behavior of a Single Structured Ionomer Chain in Solution

    DOE PAGES

    Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; ...

    2014-08-14

    Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less

  3. Harnessing Poly(ionic liquid)s for Sensing Applications.

    PubMed

    Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin

    2016-07-01

    The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Method of preparation of removable syntactic foam

    DOEpatents

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  5. Method of preparation of removable syntactic foam

    DOEpatents

    Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.

    1995-01-01

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  6. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less

  7. Radiation-grafted fluoropolymers soaked with imidazolium-based ionic liquids for high-performance ionic polymer-metal composite actuators.

    PubMed

    Lee, Jang Yeol; Wang, Hyuck Sik; Yoon, Bye Ri; Han, Man Jae; Jho, Jae Young

    2010-11-01

    On purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h. Investigating the material parameters and morphology of the IPMCs, high ion exchange capacity of the ionomers resulted in high ion conductivity and robust electrode of IPMC, which synergistically contributed to the high bending performance. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Razavian, M. H.; Mollaamin, F.; Naderi, F.; Honarparvar, B.

    2008-12-01

    Quantum-chemical solvent effect theories describe the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The solvation of biomolecules is important in molecular biology, since numerous processes involve proteins interacting in changing solvent-solute systems. In this theoretical study, we focus on mRNA-tRNA base pairs as a fundamental step in protein synthesis influenced by hydrogen bonding between two antiparallel trinucleotides, namely, the mRNA codon and tRNA anticodon. We use the mean reaction field theories, which describe electrostatic and polarization interactions between solute and solvent in the AAA, UUU, AAG, and UUC triplex sequences optimized in various solvent media such as water, dimethylsulfoxide, methanol, ethanol, and cyclopean using the self-consistent reaction field model. This process depends on either the reaction potential function of the solvent or charge transfer operators that appear in solute-solvent interaction. Because of codon and anticodon biological criteria, we performed nonempirical quantum-mechanical calculations at the BLYP and B3LYP/3-21G, 6-31G, and 6-31G* levels of theory in the gas phase and five solvents at three temperatures. Finally, to obtain more information, we calculated thermochemical parameters to find that the dielectric constant of solvents plays an important role in the displacement of amino acid sequences on codon-anticodon residues in proteins, which can cause some mutations in humans.

  9. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    NASA Astrophysics Data System (ADS)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  10. Conjugated polymers: Watching polymers dance

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    2011-06-01

    Single-molecule spectroscopy allows fluctuations of conjugated polymer conformation to be monitored during solvent vapour annealing. Dramatic changes in fluorescence behaviour are observed and interpreted in terms of transformations between extended and collapsed polymer geometries.

  11. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Maria Teresa; Gracia, Ignacio; Duque, Gema

    2009-06-15

    Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined. Experimental results have shown that to develop a 'green process' the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at differentmore » temperatures has been investigated. The solvent can be easily recycled by distillation.« less

  12. Production of lignin based insoluble polymers (anionic hydrogels) by C. versicolor.

    PubMed

    Brzonova, Ivana; Kozliak, Evguenii I; Andrianova, Anastasia A; LaVallie, Audrey; Kubátová, Alena; Ji, Yun

    2017-12-13

    Unlike previous lignin biodegradation studies, white rot fungi were used to produce functional biopolymers from Kraft lignin. Lignin-based polymers (hydrogel precursors) partially soluble in both aqueous and organic solvents were produced employing a relatively fast (6 days) enzymation of Kraft lignin with basidiomycetes, primarily Coriolus versicolor, pre-grown on kenaf/lignin agar followed by either vacuum evaporation or acid precipitation. After drying followed by a treatment with alkaline water, this intermediate polymer became a pH-sensitive anionic hydrogel insoluble in either aqueous or organic solvents. The yield of this polymer increased from 20 to 72 wt% with the addition of 2% dimethylsulfoxide to distilled water used as a medium. The mechanical stability and buffering capacity of this hydrogel can be adjusted by washing the intermediate polymer/hydrogel precursor prior to drying with solvents of different polarity (water, methanol or ethanol). Any of these polymers featured a significant thermal resilience assessed as a high thermostable "coked" fraction in thermal carbon analysis, apparently resulting from significant covalent cross-linking that occurs during the treatment of their intermediate precursors.

  13. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  14. The Denaturation Transition of DNA in Mixed Solvents

    PubMed Central

    Hammouda, Boualem; Worcester, David

    2006-01-01

    The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902

  15. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    NASA Astrophysics Data System (ADS)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in powder form. TEM analysis additionally revealed the encapsulation of pigment particles by the domains, which helped explain the interaction between phase separation and pigment materials. The knowledge gained from fundamental characterization could be used to enable future generations of durable powder coatings with dead matte finishes.

  16. Method of altering the effective bulk density of solid material and the resulting product

    DOEpatents

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  17. Energy transfer and drag reduction in elasto-inertial turbulence laden with elongated contravariant and covariant polymers

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi

    2015-11-01

    We study elongation and energy-transfer process of polymers released in the homogeneous isotropic turbulence by connecting mesoscopic Brownian description of elastic dumbbells to macroscopic description for the solvent (DNS). The dumbbells are allowed to be advected either affinely with the macroscopically-imposed deformation (contravariant) or completely non-affinely (covariant). We consider the elasto-inertial regime in which the relaxation time of polymer is in the order of the eddy turnover time. Highly-elongated contravariant polymers remove more energy from the large scales than they can dissipate and transfer the excess energy back into the solvent as in P.C. Valente et al. (2014). By deriving the approximate solution of the constitutive equation for the polymer stress (Horiuti et al. 2013), we identified the term responsible for causing this transfer. The skewness of the strain-rate tensor (SikSklSli) in the elastic energy production term transfer the elastic energy back into the smallest scale of the solvent and increase the dissipation. In the covariant polymers, this trend is reversed and leads to enhancement of drag reduction, in accordance with the hypothesis that stretched polymers may behave like rods and exhibit rigidity (de Gennes 1986).

  18. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    NASA Astrophysics Data System (ADS)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  19. Controlling morphology and chain aggregation in semiconducting conjugated polymers: the role of solvent on optical gain in MEH-PPV.

    PubMed

    Lampert, Zach E; Reynolds, C Lewis; Papanikolas, John M; Aboelfotoh, M Osama

    2012-10-25

    We report the results of a detailed investigation that addresses the influence of polymer morphology and chain aggregation, as controlled by the chemical nature of the solvent, on the optical gain properties of the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). Using the variable stripe length technique in the picosecond regime, we have extensively studied the optical gain performance of asymmetric planar waveguides formed with thin MEH-PPV films spin-cast from concentrated chlorobenzene (CB) and tetrahydrofuran (THF) solutions onto thermally oxidized silicon substrates. CB and THF solvents were chosen based on their known ability to promote and effectively limit aggregate formation, respectively. Very large net gain coefficients are demonstrated, reaching values of 330 and 365 cm(-1), respectively, when optically pumping the waveguides with a maximum energy density of 85 μJ/cm(2). Our results clearly demonstrate that polymer morphology, and hence, the chain conformation dependence of the degree of aggregation in the films as controlled by the solvent, has minimal impact on the net gain. Moreover, the waveguides exhibit low loss coefficients of 10-20 cm(-1) at the ASE wavelength. These results question the importance of polymer morphology and aggregate formation in polymer-based optical devices operating at high excitation densities in the stimulated emission regime as would be characteristic of lasers and optical amplifiers.

  20. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-10-06

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h swollen /h dry ) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  1. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  2. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits themore » potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.« less

  3. A homogeneous, recyclable polymer support for Rh(I)-catalyzed C-C bond formation.

    PubMed

    Jana, Ranjan; Tunge, Jon A

    2011-10-21

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration.

  4. Synthesis and characterization of poly (benzyl trimethyl ammonium chloride) ionic polymer

    NASA Astrophysics Data System (ADS)

    Mathew, Manjusha Elizabeth; Ahmad, Ishak; Thomas, Sabu; Daik, Rusli; Kassim, Muhammad

    2018-04-01

    Poly vinyl benzyl chloride (PVBC) was synthesized by free radical polymerization of 4-vinyl benzyl chloride (VBC) using benzoyl peroxide initiator at 80°C. Amine functionalised polymer prepared by treatment of PVBC with trimethyl amine in different solvents such as water, ethanol, tetra hydro furan(THF) and dimethyl formamide(DMF). The polymers characterized structurally by nuclear magnetic resonance and infrared spectroscopic techniques. The thermal decomposition of the polymer is studied by Thermo Gravimetric Analysis(TGA) and found that the polymer has stability up to 230°C. The nitrogen content of the aminated polymer determined by elemental analysis. The nitrogen content obtained from tetra hydro furan and dimethyl formamide solvents are 20.1% and 19.9% respectively.

  5. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  6. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography.

    PubMed

    Yang, Beibei; Cai, Tianpei; Li, Zhan; Guan, Ming; Qiu, Hongdeng

    2017-12-01

    In this paper, deep eutectic solvents (DESs) were firstly used as new and green solvents for the preparation of polymer-grafted silica stationary phases. 1-Vinylimidazole and acrylic acid were homopolymerized and copolymerized on silica via surface radical chain-transfer reaction in the DESs. Three stationary phases including poly(1-vinylimidazole)-, poly(acrylic acid)-, poly(1-vinylimidazole-co-acrylic acid)-grafted silica were obtained and characterized by elemental analysis and Fourier transform infrared spectroscopy. Their hydrophilic interaction chromatographic properties were investigated for separation of nucleosides, nucleobases, saccharides and amino acids. The retention changes of nucleosides and nucleobases on these columns were investigated under different chromatographic conditions including acetonitrile content, salt concentration, pH of mobile phase and column temperature. The repeatability of these columns was also investigated. The results demonstrate that DESs can be used as new media for the synthesis of silica-based stationary phases by homopolymerization and copolymerization on the surface of porous silica particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan, E-mail: suotc@physics.umanitoba.ca; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the othermore » limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.« less

  8. Exciton–exciton annihilation as a probe of interchain interactions in PPV–oligomer aggregates

    DOE PAGES

    Peteanu, Linda A.; Chowdhury, Sanchari; Wildeman, Jurjen; ...

    2017-01-20

    One measure of exciton mobility in an aggregate is the efficiency of exciton–exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH–PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed frommore » the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. Furthermore, the wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.« less

  9. Exciton-Exciton Annihilation as a Probe of Interchain Interactions in PPV-Oligomer Aggregates.

    PubMed

    Peteanu, Linda A; Chowdhury, Sanchari; Wildeman, Jurjen; Sfeir, Matthew Y

    2017-02-23

    One measure of exciton mobility in an aggregate is the efficiency of exciton-exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH-PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed from the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. The wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.

  10. Liquid Chromatography at Critical Conditions: Balancing size exclusion and adsorption in nanopores

    NASA Astrophysics Data System (ADS)

    Abdulahad, Asem; Amos, Jeffrey; Ryu, Chang

    2009-03-01

    Liquid chromatography at critical condition (LCCC) is a measure to identify thermodynamic conditions, in which polymers elute independently of molar mass during high performance liquid chromatography. Under these critical conditions the entropic exclusions that dominate size exclusion chromatography (SEC) and the enthalpic adsorption that governs adsorption-based interaction chromatography (IC) are said to negate one another resulting in simultaneous elution of the polymer of different molecular weights. Using multiple C18-bonded silica columns with different average nanopore sizes (from 5 nm to 30 nm), we will study the LCCC conditions of PS in methylene chloride/acetonitrile solvent mixture at different temperature. In addition, we will show that the separation of polystyrene can be fine tuned using a refined temperature gradient interaction chromatography (TGIC) that employs multiple columns of varying pore size in sequence.

  11. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.

    PubMed

    Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan

    2007-03-01

    Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).

  12. Absorption spectral analysis of 4f-4f transitions for the complexation of Pr(III) and Nd(III) with thiosemicarbazide in absence and presence of Zn(II) in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Anita, K.; Rajmuhon Singh, N.

    2011-10-01

    The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.

  13. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  14. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.

    PubMed

    Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo

    2011-05-01

    We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.

  15. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  16. Application of mass spectrometer-inverse gas chromatography to study polymer-solvent diffusivity and solubility.

    PubMed

    Galdámez, J Román; Danner, Ronald P; Duda, J Larry

    2007-07-20

    The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.

  17. Solvent-free, supersoft and superelastic bottlebrush melts and networks

    NASA Astrophysics Data System (ADS)

    Daniel, William F. M.; Burdyńska, Joanna; Vatankhah-Varnoosfaderani, Mohammad; Matyjaszewski, Krzysztof; Paturej, Jarosław; Rubinstein, Michael; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2016-02-01

    Polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules. The brush-like architecture expands the diameter of the polymer chains, diluting their entanglements without markedly increasing stiffness. This adjustable interplay between chain diameter and stiffness makes it possible to tailor the network's elastic modulus and extensibility without the complications associated with a swollen gel. The bottlebrush melts and elastomers exhibit an unprecedented combination of low modulus (~100 Pa), high strain at break (~1,000%), and extraordinary elasticity, properties that are on par with those of designer gels.

  18. Liquid filament instability due to stretch-induced phase separation in polymer solutions

    NASA Astrophysics Data System (ADS)

    Arinstein, Arkadii; Kulichikhin, Valery; Malkin, Alexander; Technion-Israel Institute of Technology Collaboration; Institute of Petrochemical Synthesis, Russian Academy of Sciences Team

    2015-03-01

    The instability in a jet of a viscoelastic semi-dilute entangled polymer solution under high stretching is discussed. Initially, the variation in osmotic pressure can compensate for decrease in the capillary force, and the jet is stable. The further evolution of the polymer solution along the jet results in formation of a filament in the jet center and of a near-surface solvent layer. Such a redistribution of polymer seems like a ``phase separation'', but it is related to stretching of the jet. The viscous liquid shell demonstrates Raleigh-type instability resulting in the formation of individual droplets on the oriented filament. Experimental observations showed that this separation is starting during few first seconds, and continues of about 10 -15 seconds. The modeling shows that a jet stretching results in a radial gradient in the polymer distribution: the polymer is concentrated in the jet center, whereas the solvent is remaining near the surface. The key point of this model is that a large longitudinal stretching of a polymer network results in its lateral contraction, so a solvent is pressed out of this polymer network because of the decrease in its volume. V.K. and A.M. acknowledge the financial support of the Russian Scientific Foundation (Grant 4-23-00003).

  19. Impact of swelling characteristics on the permselective ...

    EPA Pesticide Factsheets

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicating the separation of water/solvent mixtures. The use of water-selective membranes in a pervaporation or vapor permeation process enables the removal of water from the solvents, even when an azeotrope is present. Common hydrophilic polymer membranes often swell in water, resulting in permeabilities and selectivities that are dependent on the water content of the feed mixture. Recent work has shown the benefit of overcoating a hydrophilic water-permselective membrane with a non-swelling perfluoropolymer film [1,2]. The perfluoropolymer layer reduces the activity of water the hydrophilic polymer layer experiences, thereby reducing swelling in that layer and increasing the water selectivity of the multi-layer membrane relative to the selectivity of the base hydrophilic polymer, usually at the expense of permeability. In this work, the effect of overcoating the hydrophilic layer with polymer films of various swelling characteristics was modelled. Top layers that swell in the solvent offer some advantages, particularly with regard to the water permeance of the multi-layer composite. 1. Huang, Y.; Baker, R. W.; Wijmans, J. G. Perfluoro-coated hydrophilic membranes with improved selectivity. In

  20. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry

    PubMed Central

    Reiner, Joseph E.; Kasianowicz, John J.; Nablo, Brian J.; Robertson, Joseph W. F.

    2010-01-01

    Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single α-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K+-PEG inside the nanopore (≈-49.7 meV) and the free energy of PEG partitioning into the nanopore (≈0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications. PMID:20566890

  1. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  2. Stainless Steel Corrosion Studies Final Report: FY17 End of-Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Daniel; Milenski, Helen Marie; Martinez, Destiny

    Two materials are being considered in applications requiring their contact against stainless steel surfaces. These materials include the solvent methyl ethyl ketone (MEK), and the polymer neoprene (polychloroprene). There is concern that contact of these materials with stainless steel substrates may lead to corrosion. To address these concerns we have undertaken corrosion studies under conditions expected to be more aggressive than in intended applications. These conditions include elevated temperature and humidity, and submersion and suspension in solvent vapors, in an attempt to accelerate any potential deleterious interactions. Corrosion rates below 0.1 mpy have historically been deemed INSIGNIFICANT from a WRmore » Production standpoint; corresponding guidelines for non-production applications are lacking.« less

  3. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.

    PubMed

    Nelson, Tammie R; Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2011-05-12

    We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of the CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsystems. In all cases, the CNT-solvent energy transfer is mediated by slow motions in the frequency range of CNT radial breathing modes.

  4. A review: fabrication of porous polyurethane scaffolds.

    PubMed

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  5. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    PubMed Central

    Chambon, Sylvain; Derue, Lionel; Lahaye, Michel; Pavageau, Bertrand; Hirsch, Lionel; Wantz, Guillaume

    2012-01-01

    Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8%) and that increasing the thickness up to 15 nm does not change the device performance.

  6. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    PubMed

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  7. A solvent-based intelligence ink for oxygen.

    PubMed

    Mills, Andrew; Hazafy, David

    2008-02-01

    A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film -- made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein -- loses its colour rapidly (<30 s) upon exposure to UVA light and remains colourless in an oxygen-free atmosphere, returning to its original blue colour upon exposure to air. In the latter step the rate of colour recovery is proportional to the level of ambient oxygen and the same film can be UV-activated repeatedly. The mechanism of this novel, UV-activated, solvent-based, colorimetric oxygen indicator is discussed, along with its possible applications.

  8. New developments using carbon dioxide as a solvent: Monolayers and nanocomposites. 1. Reactions of organosilanes with oxidized silicon surfaces in carbon dioxide. 2. Polymer/polymer nanocomposites synthesized in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cao, Chuntao

    The aim of this research was to explore new directions for carbon dioxide. The first project emphasized silyl monolayer synthesis. Silylation reactions were performed in both liquid and supercritical carbon dioxide. Different monofunctional organosilanes reacted with silica surfaces, forming covalently attached monolayers. These monolayers were characterized using contact angle measurements, X-ray photoelectron spectroscopy, and ellipsometry. Reaction kinetics were established, and compared with silylations in organic solvents. The reaction rate in CO2 is higher than that in conventional solvents while the final coverage is slightly lower than the optimized conditions for conventional solvents. Other multi-functional silanes were also studied. The silylation of nanoporous silica surfaces showed bonding densities almost as high as the maximum value reported in literature for small-pore substrates. Overall, CO2 is a good solvent for silylations on silica surfaces. The second project was to synthesize polymer/polymer nanocomposites using a CO2-assisted templating method. Semicrystalline polymers are composed of tens-of-nanometer thick crystalline lamellae and an amorphous matrix. CO2 normally swells only the amorphous and interlamellar regions. The goal of this research was to selectively bring monomers to the amorphous and interlamellar regions with the help of CO2. In situ polymerization and precipitation fixes the structure, replicating the nano-structure of the semicrystalline polymer substrate. Ring-opening metathesis polymerization was performed inside of CO2-swollen poly(4-methyl-1-pentene) (PMP) of high crystallinity. Several polymer/polymer nanocomposites were successfully produced using this method. They were characterized by a variety of techniques, such as transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and wide angle X-ray diffraction (WAXD). Infrared studies and TEM indicated that one type of composite, polynorbomene/PMP, had a gradient distribution of polynorbornene inside of the PMP matrix. Another composite, polyoctenamer/PMP prepared by cis-cyclooctene polymerization, exhibited very interesting mechanical properties. The poly(dicyclopentadiene)/PMP composites are unique nanometer-scale blends of a highly crosslinked thermoset with a thermoplastic polymer.

  9. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-07-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  10. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-04-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  11. Nanoporous thermosetting polymers.

    PubMed

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  12. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  13. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    NASA Astrophysics Data System (ADS)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.

  14. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.

    PubMed

    Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C

    2017-08-21

    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.

  15. Manipulating interfacial polymer structures through mixed surfactant adsorption and complexation.

    PubMed

    Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Prescott, Stuart W

    2012-04-17

    The effects of a nonionic alcohol ethoxylate surfactant, C(13)E(7), on the interactions between PVP and SDS both in the bulk and at the silica nanoparticle interface are studied by photon correlation spectroscopy, solvent relaxation NMR, SANS, and optical reflectometry. Our results confirmed that, in the absence of SDS, C(13)E(7) and PVP are noninteracting, while SDS interacts strongly both with PVP and C(13)E(7) . Studying interfacial interactions showed that the interfacial interactions of PVP with silica can be manipulated by varying the amounts of SDS and C(13)E(7) present. Upon SDS addition, the adsorbed layer thickness of PVP on silica increases due to Coulombic repulsion between micelles in the polymer layer. When C(13)E(7) is progressively added to the system, it forms mixed micelles with the complexed SDS, reducing the total charge per micelle and thus reducing the repulsion between micelle and the silica surface that would otherwise cause the PVP to desorb. This causes the amount of adsorbed polymer to increase with C(13)E(7) addition for the systems containing SDS, demonstrating that addition of C(13)E(7) hinders the SDS-mediated desorption of an adsorbed PVP layer. © 2012 American Chemical Society

  16. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer.

    PubMed

    Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W

    2016-05-01

    The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by Mahalanobis distance plots for all polymers. © The Author(s) 2016.

  17. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  18. Method of preparation of removable syntactic foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.

    1995-07-11

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced bymore » this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.« less

  19. Investigating polarized fluorescence emission of Napthalene Diimide polymer films via Stokes Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven; Sutch, Thabita; Schweizer, Matthias; Szulczewski, Greg; Barbosa Neto, Newton; Araujo, Paulo; Szulczewski's Group. Collaboration; Nanolab@UA Collaboration

    Structural studies of materials, especially polymers, has been an area of growing interest in the past decades. This is due to the wide variety of physical, optical and chemical properties which can be tuned to obtain desired outcomes. Such polymers include P(NDI2OD-T2) an organic n-type, donor-acceptor polymer. Techniques to measure the structure, chemical and optical properties of these materials include XRD, time resolved spectroscopy and other timely and expensive methods. This work seeks to implement Stokes parameter analysis to create a new spectroscopic method, which can be implemented at a fraction of the cost and with relative ease. This technique, when used to probe P(NDI2OD-T2), has been able to discern information about polymer aggregate formation, energy transfer and out of plane stacking on the basis of solvent choice and sample thickness. Additionally, this technique gives information regarding the polarized emission from excited sources, which could provide insight for increased device performance. College of Arts and Sciences and Center for Information Technology, University of Alabama. CNPq Brazil Grant number 401453/2014-6.

  20. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    NASA Astrophysics Data System (ADS)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  1. Effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure.

    PubMed

    Yu, Wancheng; Luo, Kaifu

    2015-03-28

    Using 3D Langevin dynamics simulations, we investigate the effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure. We show that the chain closure in good solvents is a purely diffusive process. By extrapolation to zero solvent viscosity, we find that the internal friction of a chain plays a non-ignorable role in the dynamics of the chain closure. When the solvent quality changes from good to poor, the mean closure time τc decreases by about 1 order of magnitude for the chain length 20 ≤ N ≤ 100. Furthermore, τc has a minimum as a function of the solvent quality. With increasing the chain length N, the minimum of τc occurs at a better solvent. Finally, the single exponential distributions of the closure time in poor solvents suggest that the negative excluded volume of segments does not alter the nearly Poisson statistical characteristics of the process of the chain closure.

  2. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction.

    PubMed

    Mosca Angelucci, Domenica; Tomei, M Concetta

    2015-08-15

    In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Porous double-layer polymer tubing for the potential use in heterogeneous continuous flow reactions.

    PubMed

    Herwig, Gordon; Hornung, Christian H; Peeters, Gary; Ebdon, Nicholas; Savage, G Paul

    2014-12-24

    Functional polymer tubing with an OD of 1/16 or 1/8 in. was fabricated by a simple polymer coextrusion process. The tubing was made of an outer impervious polypropylene layer and an inner layer, consisting of a blend of a functional polymer, polyethylene-co-methacrylic acid, and a sacrificial polymer, polystyrene. After a simple solvent leaching step using common organic solvents, the polystyrene was removed, leaving behind a porous inner layer that contains functional carboxylic acid groups, which could then be used for the immobilization of target molecules. Solution-phase reactions using amines or isocyanates have proven successful for the immobilization of a series of small molecules and polymers. This flexible multilayered functional tubing can be easily cut to the desired length and connected via standard microfluidic fittings.

  4. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  5. Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery

    PubMed Central

    Lu, Ying; Sturek, Michael; Park, Kinam

    2014-01-01

    Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles. PMID:24333903

  6. Rapid and Facile Formation of P3HT Organogels via Spin Coating: Tuning Functional Properties of Organic Electronic Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cameron S.; Yin, Wen; Holt, Adam P.

    Poly(3-hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self-assemble via stacking of its backbone, leading to an assembly and growth of P3HT fi brils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin-coating process from various solvents. The development of organogel formation is detected by in situ static lightmore » scattering, which measures both the thinning rate by refl ectance and structural development in the fi lm via off-specular scattering during fi lm formation. Optical microscopy and thermal annealing experiments provide ex situ confi rmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel-onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density-of-states measured by impedance spectroscopy.« less

  7. Assessment of the Thermodynamic Properties of DL-p-Mentha-1,8-diene, 4-Isopropyl-1-Methylcyclohexene (DL-limonene) by Inverse Gas Chromatography (IGC).

    PubMed

    Farshchi, Negin; Abbasian, Ali; Larijani, Kambiz

    2018-05-10

    Limonene is a colorless liquid hydrocarbon and had been investigated as a plasticizer for many plastics. Prediction of solubility between different materials is an advantage in many ways, one of the most convenient ways to know the compatibility of materials is to determine the degree of solubility of them in each other. The concept of "solubility parameter" can help practitioners in this way.In this study, inverse gas chromatography (IGC) method at infinite dilution was used for determination of the thermodynamic properties of DL-p-mentha-1,8-diene, 4-Isopropyl-1-methylcyclohexene (DL-limonene). The interaction between DL-limonene and 13 solvents were examined in the temperature range of 63-123°C through the assessment of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficient and the Flory-Huggins interaction parameters. Additionally, the solubility parameter for DL-limonene and the temperature dependence of these parameters was investigated as well.Results show that there is a temperature dependence in solubility parameter, which increases by decreasing temperature. However, there were no specific dependence between interaction parameters and temperature, but chemical structure appeared to have a significant effect on them as well as on the type and strength of intermolecular interactions between DL-limonene and investigated solvents. The solubility parameter δ2 of DL-limonene determined to be 19.20 (J/cm3)0.5 at 25°C.

  8. Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography

    NASA Astrophysics Data System (ADS)

    Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  9. Bond rupture between colloidal particles with a depletion interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measuredmore » force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.« less

  10. Bis-urea-based supramolecular polymer: the first self-assembled drag reducer for hydrocarbon solvents.

    PubMed

    Sabadini, Edvaldo; Francisco, Kelly R; Bouteiller, Laurent

    2010-02-02

    The hydrodynamic drag reduction phenomenon, also termed the Toms effect, is an unusual case involving macromolecules in solution in which the resistance to flow is reduced comparatively to that of the pure solvent. Although the effect is relatively well characterized, it is still unclear from the molecular viewpoint. The presence of some amount of a polymer with high molecular weight can produce large levels of drag reduction in turbulent flow as a result of the interactions of the long structures with the small vortices developed during the flow. For this reason, the effect is very attractive in the pumping process because a significant amount of energy can be saved. In aqueous systems, giant micelles can be spontaneously formed, driven by the hydrophobic effect, and are effective drag reducers. Giant micelles are interesting in promoting drag reduction because the noncovalent and reversible aggregation of the surfactant molecules avoids mechanical degradation, which typically occurs with classical polymers, due to irreversible scission of the backbone. In this letter, we present the first hydrodynamic drag reducer for hydrocarbons based on a self-assembled polymer formed from the reversible aggregation of bis-urea monomers. This system forms two competitive polymeric structures--the tube (T) and the filament (F) forms--which are in equilibrium with each other. Our rheology results in octane and toluene are fully consistent with calorimetry data and show that only the longest form, T, is able to promote the drag reduction effect.

  11. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  12. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  13. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  14. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties

    NASA Astrophysics Data System (ADS)

    Tillmann, S. D.; Isken, P.; Lex-Balducci, A.

    2014-12-01

    A polymer system based on oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and cyclic carbonate methacrylate (CCMA) was chosen as matrix to realize high-performance gel polymer electrolytes due to the fact that both monomers are able to interact with the liquid electrolyte, thus, retaining it inside the matrix. Additionally, OEGMA enables high flexibility, while CCMA provides mechanical stability. The polymer displays a high thermal stability up to 200 °C and a glass transition temperature below room temperature (5 °C) allowing an easy handling of the obtained films. By immobilizing the liquid electrolyte 1 M LiPF6 in EC:DMC 1:1 w:w in the polymer host a gel polymer electrolyte with a high conductivity of 2.3 mS cm-1 at 25 °C and a stable cycling behavior with high capacities and efficiencies in Li(Ni1/3Co1/3Mn1/3)O2 (NCM)/graphite full cells is obtained. The investigated gel polymer electrolyte is identified as promising electrolyte for lithium-ion batteries, because it combines good electrochemical properties comparable to that of liquid electrolytes with the safety advantage that no leakage of the flammable electrolyte solvents can occur.

  15. Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xinyi; Kestell, John; Kisslinger, Kim

    Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less

  16. Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer

    DOE PAGES

    Ye, Xinyi; Kestell, John; Kisslinger, Kim; ...

    2017-05-04

    Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less

  17. Effect of solvent quality on aggregate structures of common surfactants.

    PubMed

    Hollamby, Martin J; Tabor, Rico; Mutch, Kevin J; Trickett, Kieran; Eastoe, Julian; Heenan, Richard K; Grillo, Isabelle

    2008-11-04

    Aggregate structures of two model surfactants, AOT and C12E5 are studied in pure solvents D2O, dioxane-d8 (d-diox) and cyclohexane-d12 (C6D12) as well as in formulated D2O/d-diox and d-diox/C6D12 mixtures. As such these solvents and mixtures span a wide and continuous range of polarities. Small-angle neutron scattering (SANS) has been employed to follow an evolution of the preferred aggregate curvature, from normal micelles in high polarity solvents, through to reversed micelles in low polarity media. SANS has also been used to elucidate the micellar size, shape as well as to highlight intermicellar interactions. The results shed new light on the nature of aggregation structures in intermediate polarity solvents, and point to a region of solvent quality (as characterized by Hildebrand Solubility Parameter, Snyder polarity parameter or dielectric constant) in which aggregation is not favored. Finally these observed trends in aggregation as a function of solvent quality are successfully used to predict the self-assembly behavior of C12E5 in a different solvent, hexane-d14 (C6D14).

  18. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination.

    PubMed

    Khodadadian, Mehdi; Ahmadi, Farhad

    2010-06-15

    Molecularly imprinted polymers (MIPs) were computationally designed and synthesized for the selective extraction of a carbonic anhydrase inhibitor, i.e. acetazolamide (ACZ), from human plasma. Density functional theory (DFT) calculations were performed to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation. The interaction energies were corrected for the basis set superposition error (BSSE) using the counterpoise (CP) correction. The polymerization solvent was simulated by means of polarizable continuum model (PCM). It was found that acrylamide (AAM) is the best candidate to prepare MIPs. To confirm the results of theoretical calculations, three MIPs were synthesized with different functional monomers and evaluated using Langmuir-Freundlich (LF) isotherm. The results indicated that the most homogeneous MIP with the highest number of binding sites is the MIP prepared by AAM. This polymer was then used as a selective adsorbent to develop a molecularly imprinted solid-phase extraction procedure followed by differential pulse voltammetry (MISPE-DPV) for clean-up and determination of ACZ in human plasma.

  19. Maintaining Supersaturation of Nimodipine by PVP with or without the Presence of Sodium Lauryl Sulfate and Sodium Taurocholate.

    PubMed

    Pui, Yipshu; Chen, Yuejie; Chen, Huijun; Wang, Shan; Liu, Chengyu; Tonnis, Wouter; Chen, Linc; Serno, Peter; Bracht, Stefan; Qian, Feng

    2018-05-30

    Amorphous solid dispersion (ASD) is one of the most versatile supersaturating drug delivery systems to improve the dissolution rate and oral bioavailability of poorly water-soluble drugs. PVP based ASD formulation of nimodipine (NMD) has been marketed and effectively used in clinic for nearly 30 years, yet the mechanism by which PVP maintains the supersaturation and subsequently improves the bioavailability of NMD was rarely investigated. In this research, we first studied the molecular interactions between NMD and PVP by solution NMR, using CDCl 3 as the solvent, and the drug-polymer Flory-Huggins interaction parameter. No strong specific interaction between PVP and NMD was detected in the nonaqueous state. However, we observed that aqueous supersaturation of NMD could be significantly maintained by PVP, presumably due to the hydrophobic interactions between the hydrophobic moieties of PVP and NMD in aqueous medium. This hypothesis was supported by dynamic light scattering (DLS) and supersaturation experiments in the presence of different surfactants. DLS revealed the formation of NMD/PVP aggregates when NMD was supersaturated, suggesting the formation of hydrophobic interactions between the drug and polymer. The addition of surfactants, sodium lauryl sulfate (SLS) or sodium taurocholate (NaTC), into PVP maintained that NMD supersaturation demonstrated different effects: SLS could only improve NMD supersaturation with concentration above its critical aggregation concentration (CAC) value while not with lower concentration. Nevertheless, NaTC could prolong NMD supersaturation independent of concentration, with lower concentration outperformed higher concentration. We attribute these observations to PVP-surfactant interactions and the formation of PVP/surfactant complexes. In summary, despite the lack of specific interactions in the nonaqueous state, NMD aqueous supersaturation in the presence of PVP was attained by hydrophobic interactions between the hydrophobic moieties of NMD and PVP. This hydrophobic interaction could be disrupted by surfactants, which interact with PVP competitively, thus hindering the capability of PVP to maintain NMD supersaturation. Therefore, caution is needed when evaluating such ASDs in vitro and in vivo when various surfactants are present either in the formulation or in the surrounding medium.

  20. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility.

    PubMed

    Hashimoto, Michinao; Langer, Robert; Kohane, Daniel S

    2013-01-21

    This paper describes a general scheme to fabricate microchannels from curable polymers on a laboratory benchtop. Using the scheme described here, benchtop fabrication of SU-8 microfluidic systems was demonstrated for the first time, and their compatibility with organic solvents was demonstrated. The fabrication process has three major stages: 1) transferring patterns of microchannels to polymer films by molding, 2) releasing the patterned film and creating inlets and outlets for fluids, and 3) sealing two films together to create a closed channel system. Addition of a PDMS slab supporting the polymer film provided structural integrity during and after fabrication, allowing manipulation of the polymer films without fracturing or deformation. SU-8 channels fabricated according to this scheme exhibited solvent compatibility against continuous exposure to acetone and ethylacetate, which are incompatible with native PDMS. Using the SU-8 channels, continuous generation of droplets of ethylacetate, and templated synthesis of poly (lactic-co-glycolic acid) (PLGA) microparticles, both with stable size, were demonstrated continuously over 24 h, and at intervals over 75 days.

Top