Science.gov

Sample records for polymerase accessory subunit

  1. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit.

    PubMed

    Loregian, Arianna; Case, Alessandro; Cancellotti, Enrico; Valente, Carlo; Marsden, Howard S; Palù, Giorgio

    2006-07-01

    We report the expression and characterization of the putative catalytic subunit (pORF30) and accessory protein (pORF18) of equine herpesvirus 1 DNA polymerase, which are encoded by open reading frames 30 and 18 and are homologous to herpes simplex virus type 1 UL30 and UL42, respectively. In vitro transcription-translation of open reading frames 30 and 18 generated proteins of 136 and 45 kDa, respectively. In vitro-expressed pORF30 possessed basal DNA polymerase activity that was stimulated by pORF18, as measured by DNA polymerase assays in vitro. Purified baculovirus-expressed pORF30 exhibited DNA polymerase activity similar to that of the in vitro-expressed protein, and baculovirus-expressed pORF18 could stimulate both nucleotide incorporation and long-chain DNA synthesis by pORF30 in a dose- and time-dependent manner. The salt optima for activity of both pORF30 and the holoenzyme were substantially different from those for other herpesvirus DNA polymerases. As demonstrated by yeast two-hybrid assays, pORF30 and pORF18 could physically interact, most likely with a 1:1 stoichiometry. Finally, by mutational analysis of the 1,220-residue pORF30, we demonstrated that the extreme C terminus of pORF30 is important for physical and functional interaction with the accessory protein, as reported for UL30 and other herpesvirus DNA polymerases. In addition, a C-proximal region of pORF30, corresponding to residues 1114 to 1172, is involved in binding to, and stimulation by, pORF18. Taken together, the results indicate that pORF30 and pORF18 are the equine herpesvirus 1 counterparts of herpes simplex virus type 1 UL30 and UL42 and share many, but not all, of their characteristics.

  2. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    PubMed Central

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system

  3. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    SciTech Connect

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  4. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  5. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass

    PubMed Central

    Lee, Young-Sam; Gregory, Mark T.; Yang, Wei

    2014-01-01

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906

  6. Accessory subunits are integral for assembly and function of human mitochondrial complex I.

    PubMed

    Stroud, David A; Surgenor, Elliot E; Formosa, Luke E; Reljic, Boris; Frazier, Ann E; Dibley, Marris G; Osellame, Laura D; Stait, Tegan; Beilharz, Traude H; Thorburn, David R; Salim, Agus; Ryan, Michael T

    2016-10-06

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.

  7. Interactions between the human RNA polymerase II subunits.

    PubMed

    Acker, J; de Graaff, M; Cheynel, I; Khazak, V; Kedinger, C; Vigneron, M

    1997-07-04

    As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.

  8. A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions.

    PubMed

    Chen, Han; Coseno, Molly; Ficarro, Scott B; Mansueto, My Sam; Komazin-Meredith, Gloria; Boissel, Sandrine; Filman, David J; Marto, Jarrod A; Hogle, James M; Coen, Donald M

    2017-02-10

    Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.

  9. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    PubMed

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  10. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor

    PubMed Central

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung

    2011-01-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function. PMID:21720211

  11. Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity

    PubMed Central

    Funk, Michael A.; Judd, Evan T.; Marsh, E. Neil G.; Elliott, Sean J.; Drennan, Catherine L.

    2014-01-01

    Anaerobic degradation of the environmental pollutant toluene is initiated by the glycyl radical enzyme benzylsuccinate synthase (BSS), which catalyzes the radical addition of toluene to fumarate, forming benzylsuccinate. We have determined crystal structures of the catalytic α-subunit of BSS with its accessory subunits β and γ, which both bind a [4Fe-4S] cluster and are essential for BSS activity in vivo. We find that BSSα has the common glycyl radical enzyme fold, a 10-stranded β/α-barrel that surrounds the glycyl radical cofactor and active site. Both accessory subunits β and γ display folds related to high potential iron–sulfur proteins but differ substantially from each other in how they interact with the α-subunit. BSSγ binds distally to the active site, burying a hydrophobic region of BSSα, whereas BSSβ binds to a hydrophilic surface of BSSα that is proximal to the active site. To further investigate the function of BSSβ, we determined the structure of a BSSαγ complex. Remarkably, we find that the barrel partially opens, allowing the C-terminal region of BSSα that houses the glycyl radical to shift within the barrel toward an exit pathway. The structural changes that we observe in the BSSαγ complex center around the crucial glycyl radical domain, thus suggesting a role for BSSβ in modulating the conformational dynamics required for enzyme activity. Accompanying proteolysis experiments support these structural observations. PMID:24982148

  12. Role of Human DNA Polymerase and Its Accessory Proteins in Breast Cancer

    DTIC Science & Technology

    1997-09-01

    interactions and 2) by directly examining the genes for pol 8 and PCNA to seek for mutational changes that could provide the basis for a molecular...small 50 kDa subunit. In yeast, the gene for the small subunit has been shown to be critical for cell survival, and mutations of the p50 gene lead to...state. C) Mutational analysis of the DNA polymerase 8 promoter using a luciferase reporter gene and investigation of their response to DNA damage

  13. The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus.

    PubMed

    Weiss, Andy; Moore, Brittney D; Tremblay, Miguel H J; Chaput, Dale; Kremer, Astrid; Shaw, Lindsey N

    2017-01-15

    Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α2ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this

  14. Genetic exploration of interactive domains in RNA polymerase II subunits.

    PubMed Central

    Martin, C; Okamura, S; Young, R

    1990-01-01

    The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed. Images PMID:2183012

  15. On the evolution of the single-subunit RNA polymerases.

    PubMed

    Cermakian, N; Ikeda, T M; Miramontes, P; Lang, B F; Gray, M W; Cedergren, R

    1997-12-01

    Many eukaryotic nuclear genomes as well as mitochondrial plasmids contain genes displaying evident sequence similarity to those encoding the single-subunit RNA polymerase (ssRNAP) of bacteriophage T7 and its relatives. We have collected and aligned these ssRNAP sequences and have constructed unrooted phylogenetic trees that demonstrate the separation of ssRNAPs into three well-defined and nonoverlapping clusters (phage-encoded, nucleus-encoded, and plasmid-encoded). Our analyses indicate that these three subfamiles of T7-like RNAPs shared a common ancestor; however, the order in which the groups diverged cannot be inferred from available data. On the basis of structural similarities and mutational data, we suggest that the ancestral ssRNAP gene may have arisen via duplication and divergence of a DNA polymerase or reverse transcriptase gene. Considering the current phylogenetic distribution of ssRNAP sequences, we further suggest that the origin of the ancestral ssRNAP gene closely paralleled in time the introduction of mitochondria into eukaryotic cells through a eubacterial endosymbiosis.

  16. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I

    PubMed Central

    Kmita, Katarzyna; Wirth, Christophe; Warnau, Judith; Guerrero-Castillo, Sergio; Hunte, Carola; Hummer, Gerhard; Kaila, Ville R. I.; Zwicker, Klaus; Brandt, Ulrich; Zickermann, Volker

    2015-01-01

    Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4. PMID:25902503

  17. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits.

    PubMed

    Carey, Lucas B

    2015-12-10

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells.

  18. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits

    PubMed Central

    Carey, Lucas B

    2015-01-01

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells. DOI: http://dx.doi.org/10.7554/eLife.09945.001 PMID:26652005

  19. A scaffold of accessory subunits links the peripheral arm and the distal proton pumping module of mitochondrial complex I

    PubMed Central

    ANGERER, Heike; ZWICKER, Klaus; WUMAIER, Zibiernisha; SOKOLOVA, Lucie; HEIDE, Heinrich; STEGER, Mirco; KAISER, Silke; NÜBEL, Esther; BRUTSCHY, Bernhard; RADERMACHER, Michael; BRANDT, Ulrich; ZICKERMANN, Volker

    2011-01-01

    Synopsis Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I. PMID:21545356

  20. A genetic analysis of Plasmodium falciparum RNA polymerase II subunits in yeast.

    PubMed

    Hazoume, Adonis; Naderi, Kambiz; Candolfi, Ermanno; Kedinger, Claude; Chatton, Bruno; Vigneron, Marc

    2011-04-01

    RNA polymerase II is an essential nuclear multi subunit enzyme that transcribes nearly the whole genome. Its inhibition by the alpha-amanitin toxin leads to cell death. The enzyme of Plasmodium falciparum remains poorly characterized. Using a complementation assay in yeast as a genetic test, we demonstrate that five Plasmodium putative RNA polymerase subunits are indeed functional in vivo. The active site of this enzyme is built from the two largest subunits. Using site directed mutagenesis we were able to modify the active site of the yeast RNA polymerase II so as to introduce Plasmodium or human structural motifs. The resulting strains allow the screening of chemical libraries for potential specific inhibitors.

  1. Functional Diversification of Maize RNA Polymerase IV and V subtypes via Alternative Catalytic Subunits

    SciTech Connect

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; Mcginnis, Karen A.; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.

    2014-10-01

    Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic ana- lyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two sub- types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.

  2. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  3. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene.

    PubMed Central

    Azuma, Y; Yamagishi, M; Ishihama, A

    1993-01-01

    To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed. Images PMID:8367291

  4. Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I.

    PubMed

    Kahlhöfer, Flora; Kmita, Katarzyna; Wittig, Ilka; Zwicker, Klaus; Zickermann, Volker

    2017-02-01

    Mitochondrial complex I is an intricate 1MDa membrane protein complex with a central role in aerobic energy metabolism. The minimal form of complex I consists of fourteen central subunits that are conserved from bacteria to man. In addition, eukaryotic complex I comprises some 30 accessory subunits of largely unknown function. The gene for the accessory NDUFS4 subunit of human complex I is a hot spot for fatal pathogenic mutations in humans. We have deleted the gene for the orthologous NUYM subunit in the aerobic yeast Yarrowia lipolytica, an established model system to study eukaryotic complex I and complex I linked diseases. We observed assembly of complex I which lacked only subunit NUYM and retained weak interaction with assembly factor N7BML (human NDUFAF2). Absence of NUYM caused distortion of iron sulfur clusters of the electron input domain leading to decreased complex I activity and increased release of reactive oxygen species. We conclude that NUYM has an important stabilizing function for the electron input module of complex I and is essential for proper complex I function.

  5. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site

    PubMed Central

    Blanca, Giuseppina; Delagoutte, Emmanuelle; Tanguy le gac, Nicolas; Johnson, Neil P.; Baldacci, Giuseppe; Villani, Giuseppe

    2006-01-01

    Replicative DNA polymerases, such as T4 polymerase, possess both elongation and 3′–5′ exonuclease proofreading catalytic activities. They arrest at the base preceding DNA damage on the coding DNA strand and specialized DNA polymerases have evolved to replicate across the lesion by a process known as TLS (translesion DNA synthesis). TLS is considered to take place in two steps that often require different enzymes, insertion of a nucleotide opposite the damaged template base followed by extension from the inserted nucleotide. We and others have observed that inactivation of the 3′–5′ exonuclease function of T4 polymerase enables TLS across a single site-specific abasic [AP (apurinic/apyrimidinic)] lesion. In the present study we report a role for auxiliary replicative factors in this reaction. When replication is performed with a large excess of DNA template over DNA polymerase in the absence of auxiliary factors, the exo− polymerase (T4 DNA polymerase deficient in the 3′–5′ exonuclease activity) inserts one nucleotide opposite the AP site but does not extend past the lesion. Addition of the clamp processivity factor and the clamp loader complex restores primer extension across an AP lesion on a circular AP-containing DNA substrate by the exo− polymerase, but has no effect on the wild-type enzyme. Hence T4 DNA polymerase exhibits a variety of responses to DNA damage. It can behave as a replicative polymerase or (in the absence of proofreading activity) as a specialized DNA polymerase and carry out TLS. As a specialized polymerase it can function either as an inserter or (with the help of accessory proteins) as an extender. The capacity to separate these distinct functions in a single DNA polymerase provides insight into the biochemical requirements for translesion DNA synthesis. PMID:17064253

  6. Versatile Roles of V-ATPases Accessory Subunit Ac45 in Osteoclast Formation and Function

    PubMed Central

    Lin, Zhen; Pavlos, Nathan J.; Jiang, Qing; Xu, Jiake; Dai, Ke R.; Zheng, Ming H.

    2011-01-01

    Vacuolar-type H+-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-FloxNeo mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function. PMID:22087256

  7. DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome.

    PubMed Central

    Jones, E V; Puckett, C; Moss, B

    1987-01-01

    Antiserum to a multisubunit DNA-dependent RNA polymerase from vaccinia virions was prepared to carry out genetic studies. This antiserum selectively inhibited the activity of the viral polymerase but had no effect on calf thymus RNA polymerase II. The specificity of the antiserum was further demonstrated by immunoprecipitation of RNA polymerase subunits from dissociated virus particles. The presence in vaccinia virus-infected cells of mRNA that encodes the polymerase subunits was determined by in vitro translation. Immunoprecipitable polypeptides with Mrs of about 135,000, 128,000, 36,000, 34,000, 31,000, 23,000, 21,000, 20,000, and 17,000 were made when early mRNA was added to reticulocyte extracts. The subunits were encoded within the vaccinia virus genome, as demonstrated by translation of early mRNA that hybridized to vaccinia virus DNA. The locations of the subunit genes were determined initially by hybridization of RNA to a series of overlapping 40-kilobase-pair DNA fragments that were cloned in a cosmid vector. Further mapping was achieved with cloned HindIII restriction fragments. Results of these studies indicated that RNA polymerase subunit genes are transcribed early in infection and are distributed within the highly conserved central portion of the poxvirus genome in HindIII fragments E, J, H, D, and A. Images PMID:3033308

  8. Purification and Subunit Structure of DNA-dependent RNA Polymerase III from Wheat Germ 1

    PubMed Central

    Jendrisak, Jerry

    1981-01-01

    A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000. Images PMID:16661690

  9. Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly.

    PubMed Central

    Kolodziej, P A; Young, R A

    1991-01-01

    Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II. Images PMID:1715023

  10. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents.

    PubMed Central

    Berghöfer, B; Kröckel, L; Körtner, C; Truss, M; Schallenberg, J; Klein, A

    1988-01-01

    The sequence of the genes encoding the four largest subunits of the RNA polymerase of the archaebacterium Methanobacterium thermoautotrophicum was determined and putative translation signals were identified. The genes are more strongly homologous to eukaryotic than to eubacterial RNA polymerase genes. Analysis of the polypeptide sequences revealed colinearity of two pairs of adjacent archaebacterial genes encoding the B" and B' or A and C genes, respectively, with two eubacterial and two eukaryotic genes each encoding the two largest RNA polymerase subunits. This difference in sequence organization is discussed in terms of gene fusion in the course of evolution. The degree of conservation is much higher between the archaebacterial and the eukaryotic polypeptides than between the archaebacterial and the eubacterial enzyme. Putative functional domains were identified in two of the subunits of the archaebacterial enzyme. PMID:2843811

  11. Characterization and mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in Saccharomyces cerevisiae.

    PubMed Central

    Liljelund, P; Mariotte, S; Buhler, J M; Sentenac, A

    1992-01-01

    The gene encoding the 49-kDa subunit of RNA polymerase A in Saccharomyces cerevisiae has been identified by formation of a hybrid enzyme between the S. cerevisiae A49 subunit and Saccharomyces douglasii subunits based on a polymorphism existing between the subunits of RNA polymerase A in these two species. The sequence of the gene reveals a basic protein with an unusually high lysine content, which may account for the affinity for DNA shown by the subunit. No appreciable homology with any polymerase subunits, enzymes, or transcription factors is found. Complete deletion of the single-copy RPA49 gene leads to viable but slowly growing colonies. Insertion of the HIS3 gene halfway into the RPA49 coding region results in synthesis of a truncated A49 subunit that is incorporated into the polymerase. The truncated and wild-type subunits compete equally for assembly in the heterozygous diploid, although the wild type is phenotypically dominant. Images PMID:1409638

  12. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    PubMed Central

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.; Takeda, Shunichi

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  13. Proteolysis of the proofreading subunit controls the assembly of Escherichia coli DNA polymerase III catalytic core.

    PubMed

    Bressanin, Daniela; Stefan, Alessandra; Piaz, Fabrizio Dal; Cianchetta, Stefano; Reggiani, Luca; Hochkoeppler, Alejandro

    2009-11-01

    The C-terminal region of the proofreading subunit (epsilon) of Escherichia coli DNA polymerase III is shown here to be labile and to contain the residues (identified between F187 and R213) responsible for association with the polymerase subunit (alpha). We also identify two alpha-helices of the polymerase subunit (comprising the residues E311-M335 and G339-D353, respectively) as the determinants of binding to epsilon. The C-terminal region of epsilon is degraded by the ClpP protease assisted by the GroL molecular chaperone, while other factors control the overall concentration in vivo of epsilon. Among these factors, the chaperone DnaK is of primary importance for preserving the integrity of epsilon. Remarkably, inactivation of DnaK confers to Escherichia coli inviable phenotype at 42 degrees C, and viability can be restored over-expressing epsilon. Altogether, our observations indicate that the association between epsilon and alpha subunits of DNA polymerase III depends on small portions of both proteins, the association of which is controlled by proteolysis of epsilon. Accordingly, the factors catalysing (ClpP, GroL) or preventing (DnaK) this proteolysis exert a crucial checkpoint of the assembly of Escherichia coli DNA polymerase III core.

  14. DNA polymerase III accessory proteins. I. holA and holB encoding delta and delta'.

    PubMed

    Dong, Z; Onrust, R; Skangalis, M; O'Donnell, M

    1993-06-05

    The genes encoding the delta and delta' subunits of the 10-subunit Escherichia coli replicase, DNA polymerase III holoenzyme, have been identified and sequenced. The holA gene encoding delta is located downstream of rlpB at 15.2 min and predicts a 38.7 kda protein. The holB gene encoding delta' is located at 24.3 min and predicts a 36.9-kDa protein. Hence the delta and delta' subunits are unrelated proteins encoded by separate genes. The genes have been used to express and purify delta and delta' in quantity. The predicted amino acid sequence of delta' is homologous to the sequences of the tau and gamma subunits revealing a large amount of structural redundancy within the holoenzyme.

  15. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers.

    PubMed

    Mehle, Andrew; Dugan, Vivien G; Taubenberger, Jeffery K; Doudna, Jennifer A

    2012-02-01

    The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.

  16. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits

    PubMed Central

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; McGinnis, Karen; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.

    2014-01-01

    Summary Unlike nuclear multisubunit RNA polymerases I, II and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA Polymerases IV and V are non-essential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their twelve subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits, but differ from each other only in their largest subunits. Use of alternative catalytic second-subunits, which are non-redundant for development and paramutation, yields at least two subtypes of Pol IV, and three subtypes of Pol V in maize. Pol IV/V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis. PMID:25284785

  17. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits

    DOE PAGES

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; ...

    2014-10-02

    Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yieldsmore » at least two sub-types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.« less

  18. Localization of yeast RNA polymerase I core subunits by immunoelectron microscopy.

    PubMed Central

    Klinger, C; Huet, J; Song, D; Petersen, G; Riva, M; Bautz, E K; Sentenac, A; Oudet, P; Schultz, P

    1996-01-01

    Immunoelectron microscopy was used to determine the spatial organization of the yeast RNA polymerase I core subunits on a three-dimensional model of the enzyme. Images of antibody-labeled enzymes were compared with the native enzyme to determine the localization of the antibody binding site on the surface of the model. Monoclonal antibodies were used as probes to identify the two largest subunits homologous to the bacterial beta and beta' subunits. The epitopes for the two monoclonal antibodies were mapped using subunit-specific phage display libraries, thus allowing a direct correlation of the structural data with functional information on conserved sequence elements. An epitope close to conserved region C of the beta-like subunit is located at the base of the finger-like domain, whereas a sequence between conserved regions C and D of the beta'-like subunit is located in the apical region of the enzyme. Polyclonal antibodies outlined the alpha-like subunit AC40 and subunit AC19 which were found co-localized also in the apical region of the enzyme. The spatial location of the subunits is correlated with their biological activity and the inhibitory effect of the antibodies. Images PMID:8887555

  19. The second-largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of procaryotic and eucaryotic RNA polymerases.

    PubMed Central

    Patel, D D; Pickup, D J

    1989-01-01

    We have characterized the poxvirus gene encoding the second-largest subunit of the viral DNA-dependent RNA polymerase. This gene, designated rpo132, is located in the HindIII A fragment of the DNA of the Brighton Red strain of cowpox virus. A similar gene is located in the corresponding position in the HindIII A fragment of the DNA of the Western Reserve strain of vaccinia virus. The rpo132 gene is transcribed throughout the viral multiplication cycle. It has two transcriptional start sites; one is operative at late times only, and the other (80 base pairs downstream) is operative both at early times and at late times. Neither early nor late transcripts originating from the latter RNA start site contain long 5'-terminal poly(A) sequences. The rpo132 gene has the capacity to encode primary gene products of two types. The RNA transcripts whose 5' ends correspond to the early RNA start site can encode a 133-kilodalton (kDa) protein. The RNA transcripts whose 5' ends correspond to the early RNA start site can encode a 132-kDa protein. Transcripts of the latter type are more abundant, suggesting that the 132-kDa protein is the major primary product of this gene. The predicted amino acid sequences of both gene products share extensive similarities with the amino acid sequences of the second-largest subunits of the following enzymes: the RNA polymerase of Escherichia coli, the RNA polymerase II of Saccharomyces cerevisiae, and the RNA polymerase II of Drosophila melanogaster. This result provides further evidence of relatedness between multisubunit DNA-dependent RNA polymerases. Images PMID:2915377

  20. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase.

    PubMed

    Malinen, Anssi M; Nandymazumdar, Monali; Turtola, Matti; Malmi, Henri; Grocholski, Thadee; Artsimovitch, Irina; Belogurov, Georgiy A

    2014-03-06

    Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β' F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit.

  1. Functional Consequences of Subunit Diversity in RNA Polymerases II and V

    SciTech Connect

    Tan, Ek Han; Blevins, Todd; Ream, Thomas S.; Pikaard, Craig S.

    2012-03-01

    Multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved as specialized forms of Pol II that mediate RNA-directed DNA methylation (RdDM) and transcriptional silencing of transposons, viruses, and endogenous repeats in plants. Among the subunits common to Arabidopsis thaliana Pols II, IV, and V are 93% identical alternative ninth subunits, NRP(B/D/E)9a and NRP(B/D/E)9b. The 9a and 9b subunit variants are incompletely redundant with respect to Pol II; whereas double mutants are embryo lethal, single mutants are viable, yet phenotypically distinct. Likewise, 9a or 9b can associate with Pols IV or V but RNA-directed DNA methylation is impaired only in 9b mutants. Based on genetic and molecular tests, we attribute the defect in RdDM to impaired Pol V function. Collectively, our results reveal a role for the ninth subunit in RNA silencing and demonstrate that subunit diversity generates functionally distinct subtypes of RNA polymerases II and V.

  2. Roles of POLD4, smallest subunit of DNA polymerase {delta}, in nuclear structures and genomic stability of human cells

    SciTech Connect

    Huang, Qin Miao; Akashi, Tomohiro; Masuda, Yuji; Kamiya, Kenji; Takahashi, Takashi; Suzuki, Motoshi

    2010-01-01

    Mammalian DNA polymerase {delta} (pol {delta}) is essential for DNA replication, though the functions of this smallest subunit of POLD4 have been elusive. We investigated pol {delta} activities in vitro and found that it was less active in the absence of POLD4, irrespective of the presence of the accessory protein PCNA. shRNA-mediated reduction of POLD4 resulted in a marked decrease in colony formation activity by Calu6, ACC-LC-319, and PC-10 cells. We also found that POLD4 reduction was associated with an increased population of karyomere-like cells, which may be an indication of DNA replication stress and/or DNA damage. The karyomere-like cells retained an ability to progress through the cell cycle, suggesting that POLD4 reduction induces modest genomic instability, while allowing cells to grow until DNA damage reaches an intolerant level. Our results indicate that POLD4 is required for the in vitro pol {delta} activity, and that it functions in cell proliferation and maintenance of genomic stability of human cells.

  3. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits.

    PubMed Central

    Scafe, C; Martin, C; Nonet, M; Podos, S; Okamura, S; Young, R A

    1990-01-01

    Conditional mutations in the Saccharomyces cerevisiae RNA polymerase II large subunit, RPB1, were obtained by introducing a mutagenized RPB1 plasmid into yeast cells, selecting for loss of the wild-type RPB1 gene, and screening the cells for heat or cold sensitivity. Sequence analysis of 10 conditional RPB1 mutations and 10 conditional RPB2 mutations revealed that the amino acid residues altered by these distinct mutations are nearly always invariant among eucaryotic RPB1 and RPB2 homologs. These results suggest that RNA polymerase mutants might be obtained in other eucaryotic organisms by alteration of these invariant residues. Images PMID:2406567

  4. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth.

    PubMed Central

    Woychik, N A; Young, R A

    1989-01-01

    RPB4 encodes the fourth-largest RNA polymerase II subunit in Saccharomyces cerevisiae. The RPB4 gene was cloned and sequenced, and its identity was confirmed by amino acid sequence analysis of tryptic peptides from the purified subunit. The RPB4 DNA sequence predicted a protein of 221 amino acids with a molecular mass of 25,414 daltons. The central 100 amino acids of the RPB4 protein were found to be similar to a segment of the major sigma subunit in Escherichia coli RNA polymerase. Deletion of RPB4 produced cells that were heat and cold sensitive but could grow, albeit slowly, at intermediate temperatures. RNA polymerase II lacking the RPB4 subunit exhibited markedly reduced activity in crude extracts in vitro. The RPB4 subunit, although not essential for mRNA synthesis or enzyme assembly, was essential for normal levels of RNA polymerase II activity and indispensable for cell viability over a wide temperature range. Images PMID:2674672

  5. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

    PubMed

    Dias, Alexandre; Bouvier, Denis; Crépin, Thibaut; McCarthy, Andrew A; Hart, Darren J; Baudin, Florence; Cusack, Stephen; Ruigrok, Rob W H

    2009-04-16

    The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.

  6. Modulation by the BK accessory β4 subunit of phosphorylation-dependent changes in excitability of dentate gyrus granule neurons

    PubMed Central

    Petrik, David; Wang, Bin; Brenner, Robert

    2011-01-01

    BK channels are large conductance calcium- and voltage-activated potassium channels critical for neuronal excitability. Some neurons express so called fast-gated, type I BK channels. Other neurons express BK channels assembled with the accessory β4 subunit conferring slow-gating of type II BK channels. However, it is not clear how protein phosphorylation modulates these two distinct BK channel types. Using β4 knockout mice, we compared fast- or slow-gated BK channels in response to changes in phosphorylation status of hippocampus dentate gyrus granule neurons. We utilized the selective PP2A/PP4 phosphatase inhibitor, Fostriecin, to study changes in action potential shape and firing properties of the neurons. In β4 knockout neurons, Fostriecin increases BK current, speeds BK channel activation, and reduces action potential amplitudes. Fostriecin increases spiking during early components of an action potential train. In contrast, inhibition of BK channels through β4 in wild type neurons or by BK channel inhibitor Paxilline opposes Fostriecin effects. Voltage clamp recordings of neurons reveal that Fostriecin increases both calcium and BK currents. However, Fostriecin does not activate BK α alone channels in transfected HEK293 cells lacking calcium channels. In summary, these results suggest that the fast-gating, type I BK channels lacking β4 can increase neuronal excitability in response to reduced phosphatase activity and activation of calcium channels. By opposing BK channel activation; the β4 subunit plays an important role in moderating firing frequency regardless of changes in phosphorylation status. PMID:21848922

  7. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes

    PubMed Central

    Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas

    2014-01-01

    The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089

  8. MiRP3 acts as an accessory subunit with the BK potassium channel

    PubMed Central

    Levy, Daniel I.; Wanderling, Sherry; Biemesderfer, Daniel; Goldstein, Steve A. N.

    2008-01-01

    MinK-related peptides (MiRPs) are single-span membrane proteins that assemble with specific voltage-gated K+ (Kv) channel α-subunits to establish gating kinetics, unitary conductance, expression level, and pharmacology of the mixed complex. MiRP3 (encoded by the KCNE4 gene) has been shown to alter the behavior of some Kv α-subunits in vitro but its natural partners and physiologic functions are unknown. Seeking in vivo partners for MiRP3, immunohistochemistry was used to localize its expression to a unique subcellular site, the apical membrane of renal intercalated cells, where one potassium channel type has been recorded, the calcium- and voltage-gated channel BK. Overlapping staining of these two proteins was found in rabbit intercalated cells, and MiRP3 and BK subunits expressed in tissue culture cells were found to form detergent-stable complexes. Electrophysiologic and biochemical evaluation showed MiRP3 to act on BK to reduce current density in two fashions: shifting the current-voltage relationship to more depolarized voltages in a calcium-dependent fashion (∼10 mV at normal intracellular calcium levels) and accelerating degradation of MiRP3-BK complexes. The findings suggest a role for MiRP3 modulation of BK-dependent urinary potassium excretion. PMID:18463315

  9. A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors

    PubMed Central

    Zhang, Wei; St-Gelais, Fannie; Grabner, Chad P.; Trinidad, Jonathan C.; Sumioka, Akio; Morimoto-Tomita, Megumi; Kim, Kwang S.; Straub, Christoph; Burlingame, Alma L.; Howe, James R.; Tomita, Susumu

    2009-01-01

    SUMMARY Glutamate receptors play major roles in excitatory transmission in the vertebrate brain. Among ionotropic glutamate receptors (AMPA, kainate, NMDA), AMPA receptors mediate fast synaptic transmission and require TARP auxiliary subunits. NMDA receptors and kainate receptors play roles in synaptic transmission, but it remains uncertain whether these ionotropic glutamate receptors also have essential subunits. Using a proteomic screen, we have identified NETO2, a brain-specific protein of unknown function, as an interactor with kainate-type glutamate receptors. NETO2 modulates the channel properties of recombinant and native kainate receptors without affecting trafficking of the receptors and also modulates kainate-receptor-mediated mEPSCs. Furthermore, we found that kainate receptors regulate the surface expression of NETO2 and that NETO2 protein levels and surface expression are decreased in mice lacking the kainate receptor GluR6. The results show that NETO2 is a kainate receptor subunit with significant effects on glutamate signaling mechanisms in brain. PMID:19217376

  10. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    SciTech Connect

    Wernette, C.M.; Kaguni, L.S.

    1986-11-05

    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase ..gamma.. is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase ..gamma.. as partially purified from several vertebrates.

  11. Cloning, soluble expression, and purification of the RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae.

    PubMed

    Chhetri, Gaurav; Ghosh, Arabinda; Chinta, Ramesh; Akhtar, Sohail; Tripathi, Timir

    2015-01-01

    We report the molecular cloning, expression, and single-step homogeneous purification of RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. RPB5 is a 210 amino acid nuclear protein that functions as the fifth largest subunit of polymerase II and plays a central role in transcription. The gene that codes for RPB5 was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pET28a(+) under the transcriptional control of the bacteriophage T7 promoter and lac operator. BL21(DE3) Escherichia coli strain transformed with the rpb5 expression vector pET28a(+)-rpb5 accumulates large amounts of a soluble protein of about 30 kDa (25 kDa plus 5 kDa double His6-Tag at N and C-terminal). The protein was purified to homogeneity using immobilized metal affinity chromatography. RPB5 recombinant protein was further confirmed by immunoblotting with anti-His antibody. In this study, the expression and purification procedures have provided a simple and efficient method to obtain pure RPB5 in large quantities. This will provide an opportunity to study the role of S. cerevisiae RPB5 in gene expression and transcription regulation. Furthermore, it can provide additional knowledge of the interaction partners of RPB5 during various steps of transcription and gene expression.

  12. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase

    PubMed Central

    Malinen, Anssi M.; NandyMazumdar, Monali; Turtola, Matti; Malmi, Henri; Grocholski, Thadee; Artsimovitch, Irina; Belogurov, Georgiy A

    2014-01-01

    Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β′ bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β′ F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit. PMID:24598909

  13. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair.

    PubMed

    Brocas, Clémentine; Charbonnier, Jean-Baptiste; Dhérin, Claudine; Gangloff, Serge; Maloisel, Laurent

    2010-10-05

    Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.

  14. Positioning of Two Alpha Subunit Carboxy-Terminal Domains of RNA Polymerase at Promoters by Two Transcription Factors

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhiko; Owens, Jeffrey T.; Belyaeva, Tamara A.; Meares, Claude F.; Busby, Stephen J. W.; Ishihama, Akira

    1997-10-01

    Interactions between the cAMP receptor protein (CRP) and the carboxy-terminal regulatory domain (CTD) of Escherichia coli RNA polymerase α subunit were analyzed at promoters carrying tandem DNA sites for CRP binding using a chemical nuclease covalently attached to α . Each CRP dimer was found to direct the positioning of one of the two α subunit CTDs. Thus, the function of RNA polymerase may be subject to regulation through protein-protein interactions between the two α subunits and two different species of transcription factors.

  15. Role of N-Terminal Domain and Accessory Subunits in Controlling Deactivation-Inactivation Coupling of Kv4.2 Channels

    PubMed Central

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-01-01

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2–10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2–10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs. PMID:17981906

  16. V-ATPase-Mediated Granular Acidification Is Regulated by the V-ATPase Accessory Subunit Ac45 in POMC-Producing Cells

    PubMed Central

    Jansen, Eric J. R.; Hafmans, Theo G. M.

    2010-01-01

    The vacuolar (H+)-ATPase (V-ATPase) is an important proton pump, and multiple critical cell-biological processes depend on the proton gradient provided by the pump. Yet, the mechanism underlying the control of the V-ATPase is still elusive but has been hypothesized to involve an accessory subunit of the pump. Here we studied as a candidate V-ATPase regulator the neuroendocrine V-ATPase accessory subunit Ac45. We transgenically manipulated the expression levels of the Ac45 protein specifically in Xenopus intermediate pituitary melanotrope cells and analyzed in detail the functioning of the transgenic cells. We found in the transgenic melanotrope cells the following: i) significantly increased granular acidification; ii) reduced sensitivity for a V-ATPase-specific inhibitor; iii) enhanced early processing of proopiomelanocortin (POMC) by prohormone convertase PC1; iv) reduced, neutral pH–dependent cleavage of the PC2 chaperone 7B2; v) reduced 7B2-proPC2 dissociation and consequently reduced proPC2 maturation; vi) decreased levels of mature PC2 and consequently reduced late POMC processing. Together, our results show that the V-ATPase accessory subunit Ac45 represents the first regulator of the proton pump and controls V-ATPase-mediated granular acidification that is necessary for efficient prohormone processing. PMID:20702583

  17. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae.

    PubMed

    Leffers, H; Gropp, F; Lottspeich, F; Zillig, W; Garrett, R A

    1989-03-05

    The genes for the four largest subunits, A, B', B" and C, of the DNA-dependent RNA polymerase were cloned from the extreme halophile Halobacterium halobium and sequenced and their transcription was analyzed. The downstream half of this gene cluster from another extreme halophile Halococcus morrhuae was also cloned, sequenced and its transcription products characterized. The H. halobium genes were transcribed into a common transcript from an upstream promoter in the order B", B', A and C. They are flanked by, and co-transcribed with, two smaller genes coding for 75 and 139 amino acid residues, respectively. Immediately downstream from these genes were two open reading frames that are homologous to ribosomal proteins S12 and S7 from Escherichia coli. In both extreme halophiles these genes were transcribed from their own promoter, but in Hc. morrhuae there was also considerable read-through from the RNA polymerase genes. Sequence alignment studies showed that the combined B" + B' subunits are equivalent to the B subunits of the eukaryotic polymerases I and II and to the eubacterial beta subunit, while the combined A + C subunits correspond to the A subunits of eukaryotic RNA polymerases I, II and III and to the eubacterial beta' subunit. The sequence similarity to the eukaryotic subunits was always much higher than to the eubacterial subunits. Conserved sequence regions within the individual subunits were located which are likely to constitute functionally important domains; they include sites associated with rifampicin and alpha-amanitin binding and two possible zinc binding fingers. Phylogenetic analyses based on sequence alignments confirmed that the extreme halophiles belong to the archaebacterial kingdom.

  18. Diverse gene-silencing mechanisms with distinct requirements for RNA polymerase subunits in Zea mays.

    PubMed

    Sloan, Amy E; Sidorenko, Lyudmila; McGinnis, Karen M

    2014-11-01

    In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes--mop1-1, Mop2-1, and mop3-1--suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation. Copyright © 2014 by the Genetics Society of America.

  19. Diverse Gene-Silencing Mechanisms with Distinct Requirements for RNA Polymerase Subunits in Zea mays

    PubMed Central

    Sloan, Amy E.; Sidorenko, Lyudmila; McGinnis, Karen M.

    2014-01-01

    In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes—mop1-1, Mop2-1, and mop3-1—suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation. PMID:25164883

  20. Inactivation of the Bacterial RNA Polymerase Due to Acquisition of Secondary Structure by the ω Subunit*

    PubMed Central

    Sarkar, Paramita; Sardesai, Abhijit A.; Murakami, Katsuhiko S.; Chatterji, Dipankar

    2013-01-01

    The widely conserved ω subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of ω is known to be substituted by GroEL in ω-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of ω variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to ω, which is largely unstructured, ω mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, ω6 bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that ω6 binds to β′ subunit in vitro with greater affinity than that of ω. The reconstituted RNAP holoenzyme in the presence of ω6 in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant ω results in death of the cell. Furthermore, lethality of ω6 is relieved in cells expressing the rpoC2112 allele encoding β′2112, a variant β′ bearing Y457S substitution, immediately adjacent to the β′ catalytic center. Our results suggest that the enhanced ω6-β′ interaction may perturb the plasticity of the RNAP active center, implicating a role for ω and its flexible state. PMID:23843456

  1. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development.

    PubMed

    Ertl, Iris; Porta-de-la-Riva, Montserrat; Gómez-Orte, Eva; Rubio-Peña, Karinna; Aristizábal-Corrales, David; Cornes, Eric; Fontrodona, Laura; Osteikoetxea, Xabier; Ayuso, Cristina; Askjaer, Peter; Cabello, Juan; Cerón, Julián

    2016-03-01

    SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.

  2. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development

    PubMed Central

    Ertl, Iris; Porta-de-la-Riva, Montserrat; Gómez-Orte, Eva; Rubio-Peña, Karinna; Aristizábal-Corrales, David; Cornes, Eric; Fontrodona, Laura; Osteikoetxea, Xabier; Ayuso, Cristina; Askjaer, Peter; Cabello, Juan; Cerón, Julián

    2016-01-01

    SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery. PMID:26739451

  3. Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core

    PubMed Central

    Conte, Emanuele; Vincelli, Gabriele; Schaaper, Roel M.; Bressanin, Daniela; Stefan, Alessandra; Dal Piaz, Fabrizio; Hochkoeppler, Alejandro

    2012-01-01

    Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α(polymerase), ε(3′-5′ exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation. PMID:22546509

  4. Subunit Structure Differences in RNA Polymerase II Purified from Ungerminated versus Germinated Wheat Embryos 1

    PubMed Central

    Jendrisak, Jerry; Skuzeski, Jim

    1983-01-01

    DNA-dependent RNA polymerase II (RNAP II) was purified from wheat embryos germinated for 0, 12, 24, and 36 hours and examined with several polyacrylamide gel electrophoretic systems. A changing electrophoretic pattern of RNAP II was observed on nondenaturing polyacrylamide gels. Subunit structure analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that from ungerminated embryos, RNAP IIA was almost exclusively obtained which has a subunit structure identical to that established for wheat germ RNAP II previously (Jendrisak, Burgess 1977 Biochemistry 16: 1959-1964). Twelve polypeptides with molecular weights × 10−3 of 220, 140, 42, 40, 27, 25, 21, 20, 17.8, 17.0, 16.3, and 16.0 were routinely found to be associated with the purified enzyme. From embryos germinated for 36 hours, RNAP IIB was almost exclusively obtained which has a largest subunit of 180,000 mol wt instead of 220,000. From embryos germinated for 24 hours, an approximately equimolar mixture of RNAP IIA and IIB was obtained. Peptide maps of the 220,000 and 180,000 mol wt polypeptides of RNAP IIA and IIB were virtually identical, indicative of a precursor-product relationship for the two polypeptides. In addition to these results, SDS-PAGE indicated that the stoichiometry of the 27,000 mol wt polypeptide increased at the expense of the 25,000 mol wt polypeptide during germination and concomitantly with the appearance of the 180,000 molecular weight polypeptide. No modifications (e.g. gain, loss, or altered mobilities on analytical gels) in any of the other RNAP II subunits were observed in enzyme purified from embryos after various times of germination as determined by a variety of electrophoretic analyses under denaturing conditions. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:16663122

  5. Promoter Structure of the RNA Polymerase II Large Subunit Gene in Caenorhabditis elegans and C. briggsae.

    PubMed

    Bird, D M; Kaloshian, I; Molinari, S

    1997-06-01

    The 5'-end of the Caenorhabditis elegans ama-1 gene transcript, which encodes the largest subunit of RNA polymerase II, was cloned. Sequencing revealed that the message is trans-spliced. To characterize the Ce-ama-1 promoter, DNA sequence spanning 3 kb upstream from the initiation codon was determined. Typical elements, such as TATA and Spl sites, were absent. The homologue of ama-1 in C. briggsae, Cb-ama-1, was isolated and its 5' flanking sequence compared with that of Ce-ama-1, revealing only limited similarity, although both sequences included a potential initiator-class transcriptional regulator and phased repeats of an ATC motif. The latter elements are postulated to facilitate DNA bending and may play a role in transcription regulation.

  6. RNA polymerase II subunit RPB3 is an essential component of the mRNA transcription apparatus.

    PubMed Central

    Kolodziej, P; Young, R A

    1989-01-01

    To improve our understanding of RNA polymerase II, the gene that encodes its third-largest subunit, RPB3, was isolated from a lambda gt11 DNA library by using antibody probes. The RPB3 DNA sequence predicts a 318-amino-acid protein whose sequence was confirmed, in part, by microsequence analysis of the gel-purified RNA polymerase II subunit. RPB3 was found to be an essential single-copy gene that is tightly linked to HIS6 on chromosome IX. An RPB3 temperature-sensitive mutant that arrested growth after three to four generations at the restrictive temperature was isolated. When the mutant was shifted to the restrictive temperature, RNA polymerase II could no longer assemble, previously assembled functional enzyme was depleted, and mRNA levels were consequently reduced. These results demonstrate that RPB3 is an essential component of the mRNA transcription apparatus. Finally, the RPB3 protein is similar in sequence and length to RPC5, a subunit common to RNA polymerases I and III, suggesting that these subunits may play similar roles in RNA polymerases I, II, and III. Images PMID:2685562

  7. The Escherichia coli RNA polymerase alpha subunit and transcriptional activation by bacteriophage lambda CII protein.

    PubMed

    Gabig, M; Obuchowski, M; Ciesielska, A; Latała, B; Wegrzyn, A; Thomas, M S; Wegrzyn, G

    1998-01-01

    Bacteriophage lambda is not able to lysogenise the Escherichia coli rpoA341 mutant. This mutation causes a single amino acid substitution Lys271Glu in the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). Our previous studies indicated that the impaired lysogenisation of the rpoA341 host is due to a defect in transcriptional activation by the phage CII protein and suggested a role for alphaCTD in this process. Here we used a series of truncation and point mutants in the rpoA gene placed on a plasmid to investigate the process of transcriptional activation by the cII gene product. Our results indicate that amino-acid residues 265, 268 and 271 in the a subunit may play an important role in the CII-mediated activation of the pE promoter (most probably residue 271) or may be involved in putative interactions between alphaCTD and an UP-like element near pE (most probably residues 265 and 268). Measurement of the activity of pE-lacZ, pI-lacZ and p(aQ)-lacZ fusions in the rpoA+ and rpoA341 hosts demonstrated that the mechanism of activation of these CII-dependent promoters may be in each case different.

  8. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    PubMed

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae, which finally led to improvement in yeast ethanol tolerance and production.

  9. Identification of Leptospira serovars by RFLP of the RNA polymerase beta subunit gene (rpoB)

    PubMed Central

    Jung, Lenice Roteia Cardoso; Bomfim, Maria Rosa Quaresma; Kroon, Erna Geessien; Nunes, Álvaro Cantini

    2015-01-01

    Leptospires are usually classified by methods based on DNA-DNA hybridization and the conventional cross-agglutination absorption test, which uses polyclonal antibodies against lipopolysaccharides. In this study, the amplification of the rpoB gene, which encodes the beta-subunit of RNA polymerase, was used as an alternative tool to identify Leptospira. DNA extracts from sixty-eight serovars were obtained, and the hypervariable region located between 1990 and 2500-bp in the rpoB gene was amplified by polymerase chain reaction (PCR). The 600-bp amplicons of the rpoB gene were digested with the restriction endonucleases TaqI, Tru1I, Sau3AI and MslI, and the restriction fragments were separated by 6% polyacrylamide gel electrophoresis. Thirty-five fragment patters were obtained from the combined data of restriction fragment length polymorphism (PCR-RFLP) analysis and used to infer the phylogenetic relationships among the Leptospira species and serovars. The species assignments obtained were in full agreement with the established taxonomic classifications. Twenty-two serovars were effectively identified based on differences in their molecular profiles. However, the other 46 serovars remained clustered in groups that included more than one serovar of different species. This study demonstrates the value of RFLP analysis of PCR-amplified rpoB as an initial method for identifying Leptospira species and serovars. PMID:26273261

  10. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J; O'Dwyer, Kathleen; Matthews, Steve J; Paget, Mark S

    2013-06-01

    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria.

  11. Recognition of overlapping nucleotides by AraC and the sigma subunit of RNA polymerase.

    PubMed

    Dhiman, A; Schleif, R

    2000-09-01

    The Escherichia coli promoter p(BAD), under the control of the AraC protein, drives the expression of mRNA encoding the AraB, AraA, and AraD gene products of the arabinose operon. The binding site of AraC at p(BAD) overlaps the RNA polymerase -35 recognition region by 4 bases, leaving 2 bases of the region not contacted by AraC. This overlap raises the question of whether AraC substitutes for the sigma subunit of RNA polymerase in recognition of the -35 region or whether both AraC and sigma make important contacts with the DNA in the -35 region. If sigma does not contact DNA near the -35 region, p(BAD) activity should be independent of the identity of the bases in the hexamer region that are not contacted by AraC. We have examined this issue in the p(BAD) promoter and in a second promoter where the AraC binding site overlaps the -35 region by only 2 bases. In both cases promoter activity is sensitive to changes in bases not contacted by AraC, showing that despite the overlap, sigma does read DNA in the -35 region. Since sigma and AraC are thus closely positioned at p(BAD), it is possible that AraC and sigma contact one another during transcription initiation. DNA migration retardation assays, however, showed that there exists only a slight degree of DNA binding cooperativity between AraC and sigma, thus suggesting either that the normal interactions between AraC and sigma are weak or that the presence of the entire RNA polymerase is necessary for significant interaction.

  12. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota".

    PubMed

    Koonin, Eugene V; Makarova, Kira S; Elkins, James G

    2007-12-14

    Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.

  13. Virus-induced gene silencing of RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    In eukaryotic cells, RNA polymerase III is highly conserved, contains 17 subunits and transcribes housekeeping genes such as ribosomal 50S rRNA, tRNA and other small RNAs. Functional roles of the RPC5 are poorly characterized in the literature. In this work, we report that virus-induced gene silenci...

  14. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  15. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed Central

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-01-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold. PMID:6458041

  16. Molecular Basis of mRNA Cap Recognition by Influenza B Polymerase PB2 Subunit.

    PubMed

    Xie, Lili; Wartchow, Charles; Shia, Steven; Uehara, Kyoko; Steffek, Micah; Warne, Robert; Sutton, James; Muiru, Gladys T; Leonard, Vincent H J; Bussiere, Dirksen E; Ma, Xiaolei

    2016-01-01

    Influenza virus polymerase catalyzes the transcription of viral mRNAs by a process known as "cap-snatching," where the 5'-cap of cellular pre-mRNA is recognized by the PB2 subunit and cleaved 10-13 nucleotides downstream of the cap by the endonuclease PA subunit. Although this mechanism is common to both influenza A (FluA) and influenza B (FluB) viruses, FluB PB2 recognizes a wider range of cap structures including m(7)GpppGm-, m(7)GpppG-, and GpppG-RNA, whereas FluA PB2 utilizes methylated G-capped RNA specifically. Biophysical studies with isolated PB2 cap-binding domain (PB2(cap)) confirm that FluB PB2 has expanded mRNA cap recognition capability, although the affinities toward m(7)GTP are significantly reduced when compared with FluA PB2. The x-ray co-structures of the FluB PB2(cap) with bound cap analogs m(7)GTP and GTP reveal an inverted GTP binding mode that is distinct from the cognate m(7)GTP binding mode shared between FluA and FluB PB2. These results delineate the commonalities and differences in the cap-binding site between FluA and FluB PB2 and will aid structure-guided drug design efforts to identify dual inhibitors of both FluA and FluB PB2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Insights into the Replisome from the Structure of a Ternary Complex of the DNA Polymerase III [alpha]-Subunit

    SciTech Connect

    Wing, R.A.; Bailey, S.; Steitz, T.A.

    2009-03-27

    The crystal structure of the catalytic {alpha}-subunit of the DNA polymerase III (PolIII{alpha}) holoenzyme bound to primer-template DNA and an incoming deoxy-nucleoside 5{prime}-triphosphate has been determined at 4.6-{angstrom} resolution. The polymerase interacts with the sugar-phosphate backbone of the DNA across its minor groove, which is made possible by significant movements of the thumb, finger, and {beta}-binding domains relative to their orientations in the unliganded polymerase structure. Additionally, the DNA and incoming nucleotide are bound to the active site of PolIII{alpha} nearly identically as they are in their complex with DNA polymerase {beta}, thereby proving that the eubacterial replicating polymerase, but not the eukaryotic replicating polymerase, is homologous to DNA polymerase {beta}. Finally, superimposing a recent structure of the clamp bound to DNA on this PolIII{alpha} complex with DNA places a loop of the {beta}-binding domain into the appropriate clamp cleft and supports a mechanism of polymerase switching.

  18. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    SciTech Connect

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-09-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  19. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    PubMed Central

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  20. RNA polymerase II termination involves CTD tyrosine dephosphorylation by CPF subunit Glc7

    PubMed Central

    Etzold, Stefanie; Wiederhold, Katrin; Lidschreiber, Michael; Cramer, Patrick; Passmore, Lori A.

    2014-01-01

    At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation. PMID:24413056

  1. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement.

    PubMed

    Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K

    2016-04-18

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.

  2. Structural Basis for Promoter ;#8722;10 Element Recognition by the Bacterial RNA Polymerase [sigma] Subunit

    SciTech Connect

    Feklistov, Andrey; Darst, Seth A.

    2011-12-15

    The key step in bacterial promoter opening is recognition of the -10 promoter element (T-{sub 12}A-{sub 11}T-{sub 10}A-{sub 9}A-{sub 8}T{sub -7} consensus sequence) by the RNA polymerase {alpha} subunit. We determined crystal structures of {alpha} domain 2 bound to single-stranded DNA bearing -10 element sequences. Extensive interactions occur between the protein and the DNA backbone of every -10 element nucleotide. Base-specific interactions occur primarily with A{sub -11} and T{sub -7}, which are flipped out of the single-stranded DNA base stack and buried deep in protein pockets. The structures, along with biochemical data, support a model where the recognition of the -10 element sequence drives initial promoter opening as the bases of the nontemplate strand are extruded from the DNA double-helix and captured by {alpha}. These results provide a detailed structural basis for the critical roles of A{sub -11} and T{sub -7} in promoter melting and reveal important insights into the initiation of transcription bubble formation.

  3. Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II

    SciTech Connect

    Ream, Thomas S.; Haag, J. R.; Wierzbicki, A. T.; Nicora, Carrie D.; Norbeck, Angela D.; Zhu, J. K.; Hagen, G.; Guilfoyle, T. J.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2009-01-30

    In addition to RNA polymerases I, II and III, which are multi-subunit RNA polymerases found in all eukaryotes, plants have catalytic subunits for two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V (formerly Pol IVa and Pol IVb, respectively). Pol IV and Pol V play non-redundant roles in siRNA-directed DNA methylation and gene silencing pathways.

  4. Primary structure of the catalytic subunit of human DNA polymerase. delta. and chromosomal location of the gene

    SciTech Connect

    Chung, D.W.; Davie, E.W. ); Jian Zhang; Chengkeat Tan; So, A.G.; Downey, K.M. )

    1991-12-15

    The catalytic subunit of human DNA polymerase {delta} has been cloned by PCR using poly (A){sup +}RNA from HepG2 cells and primers designed from the amino acid sequence of regions highly conserved between bovine and yeast DNA polymerase {delta}. The human cDNA was 3,443 nucleotides in length and coded for a polypeptide of 1,107 amino acids. The enzyme was 94% identical to bovine DNA polymerase {delta} and contained the numerous highly conserved regions previously observed in the bovine and yeast enzymes. The human enzyme also contained two putative zinc-finger domains in the carboxyl end of the molecule, as well as a putative nuclear localization signal at the amino-terminal end. The gene coding for human DNA polymerase {delta} was localized to chromosome 19.

  5. Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii.

    PubMed

    Shen, Y; Tang, X-F; Matsui, E; Matsui, I

    2004-04-01

    Family D DNA polymerase (PolD) has recently been found in the Euryarchaeota subdomain of Archaea. Its genes are adjacent to several other genes related to DNA replication, repair and recombination in the genome, suggesting that this enzyme may be the major DNA replicase in Euryarchaeota. We successfully cloned, expressed, and purified the family D DNA polymerase from Pyrococcus horikoshii (PolDPho). By site-directed mutagenesis, we identified amino acid residues Asp-1122 and Asp-1124 of a large subunit as the essential residues responsible for DNA-polymerizing activity. We analysed the domain structure using proteins truncated at the N- and C-termini of both small and large subunits (DP1Pho and DP2Pho), and identified putative regions responsible for subunit interaction, oligomerization and regulation of the 3'-5' exonuclease activity in PolDPho. It was also found that the internal region of the putative zinc finger motif (cysteine cluster II) at the C-terminal of DP2Pho is involved in the 3'-5' exonuclease activity. Using gel filtration analysis, we determined the molecular masses of the recombinant PolDPho and the N-terminal putative dimerization domain of the large subunit, and proposed that PolD from P. horikoshii probably forms a heterotetrameric structure in solution. Based on these results, a model regarding the subunit interaction and regulation of activity of PolDPho is proposed.

  6. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    SciTech Connect

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M.

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  7. Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II

    SciTech Connect

    Ream, Thomas S.; Haag, J. R.; Wierzbicki, A. T.; Nicora, Carrie D.; Norbeck, Angela D.; Zhu, Jian-Kang; Hagen, Gretchen; Guilfoyle, Thomas J.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2009-01-30

    In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Pol V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.

  8. Lack of the Delta Subunit of RNA Polymerase Increases Virulence Related Traits of Streptococcus mutans

    PubMed Central

    Xue, Xiaoli; Sztajer, Helena; Buddruhs, Nora; Petersen, Jörn; Rohde, Manfred; Talay, Susanne R.; Wagner-Döbler, Irene

    2011-01-01

    The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased. PMID:21625504

  9. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

    PubMed Central

    Gibbs, Peter E. M.; McGregor, W. Glenn; Maher, Veronica M.; Nisson, Paul; Lawrence, Christopher W.

    1998-01-01

    To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart. PMID:9618506

  10. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology.

    PubMed

    Khazak, V; Sadhale, P P; Woychik, N A; Brent, R; Golemis, E A

    1995-07-01

    Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS.

  11. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology.

    PubMed Central

    Khazak, V; Sadhale, P P; Woychik, N A; Brent, R; Golemis, E A

    1995-01-01

    Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS. Images PMID:7579693

  12. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea.

    PubMed

    Blombach, Fabian; Makarova, Kira S; Marrero, Jeannette; Siebers, Bettina; Koonin, Eugene V; van der Oost, John

    2009-10-14

    One of the hallmarks of eukaryotic information processing is the co-existence of 3 distinct, multi-subunit RNA polymerase complexes that are dedicated to the transcription of specific classes of coding or non-coding RNAs. Archaea encode only one RNA polymerase that resembles the eukaryotic RNA polymerase II with respect to the subunit composition. Here we identify archaeal orthologs of the eukaryotic RNA polymerase III subunit RPC34. Genome context analysis supports a function of this archaeal protein in the transcription of non-coding RNAs. These findings suggest that functional separation of RNA polymerases for protein-coding genes and non-coding RNAs might predate the origin of the Eukaryotes.

  13. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea

    PubMed Central

    Blombach, Fabian; Makarova, Kira S; Marrero, Jeannette; Siebers, Bettina; Koonin, Eugene V; Oost, John van der

    2009-01-01

    One of the hallmarks of eukaryotic information processing is the co-existence of 3 distinct, multi-subunit RNA polymerase complexes that are dedicated to the transcription of specific classes of coding or non-coding RNAs. Archaea encode only one RNA polymerase that resembles the eukaryotic RNA polymerase II with respect to the subunit composition. Here we identify archaeal orthologs of the eukaryotic RNA polymerase III subunit RPC34. Genome context analysis supports a function of this archaeal protein in the transcription of non-coding RNAs. These findings suggest that functional separation of RNA polymerases for protein-coding genes and non-coding RNAs might predate the origin of the Eukaryotes. Reviewers: This article was reviewed by Andrei Osterman and Patrick Forterre (nominated by Purificación López-García) PMID:19828044

  14. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

    PubMed

    Langston, Lance D; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E; Finkelstein, Jeff; Yao, Nina Y; Indiani, Chiara; O'Donnell, Mike E

    2014-10-28

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.

  15. RPAP1, a Novel Human RNA Polymerase II-Associated Protein Affinity Purified with Recombinant Wild-Type and Mutated Polymerase Subunits

    PubMed Central

    Jeronimo, Célia; Langelier, Marie-France; Zeghouf, Mahel; Cojocaru, Marilena; Bergeron, Dominique; Baali, Dania; Forget, Diane; Mnaimneh, Sanie; Davierwala, Armaity P.; Pootoolal, Jeff; Chandy, Mark; Canadien, Veronica; Beattie, Bryan K.; Richards, Dawn P.; Workman, Jerry L.; Hughes, Timothy R.; Greenblatt, Jack; Coulombe, Benoit

    2004-01-01

    We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction. PMID:15282305

  16. Similarity and divergence between the RNA polymerase alpha subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria.

    PubMed

    Braun, Frederique; Marhuenda, Fanny B; Morin, Amelie; Guevel, Laetitia; Fleury, Fabrice; Takahashi, Masayuki; Sakanyan, Vehary

    2006-10-01

    The alpha subunit (alphaTm) of Thermotoga maritima RNA polymerase has been characterized to investigate its role in transcriptional regulation in one of the few known anaerobic hyperthermophilic bacteria. The highly thermostable alphaTm shares 54% similarity with its Escherichia coli analogue (alphaEc). The T. maritima rpoA gene coding the alpha subunit does not complement the thermosensitive rpoA112 mutation of E. coli. However, alphaTm and alphaEc show similar folding patterns as determined by circular dichroism. Purified alphaTm binds to the T. maritima PargGo promoter region (probably to a UP-element) and Arg282 appears to be crucial for DNA binding. The thermostable protein is also able to interact with transcription regulatory proteins, like ArgR from T. neapolitana or CRP from E. coli. These data indicate that the RNA polymerase alpha subunit might play a crucial role in the modulation of gene expression in hyperthermophiles.

  17. A hypothetical hierarchical mechanism of the self-assembly of the Escherichia coli RNA polymerase σ(70) subunit.

    PubMed

    Koroleva, O N; Dubrovin, E V; Tolstova, A P; Kuzmina, N V; Laptinskaya, T V; Yaminsky, I V; Drutsa, V L

    2016-02-21

    Diverse morphology of aggregates of amyloidogenic proteins has been attracting much attention in the last few years, and there is still no complete understanding of the relationships between various types of aggregates. In this work, we propose the model, which universally explains the formation of morphologically different (wormlike and rodlike) aggregates on the example of a σ(70) subunit of RNA polymerase, which has been recently shown to form amyloid fibrils. Aggregates were studied using AFM in solution and depolarized dynamic light scattering. The obtained results demonstrate comparably low Young's moduli of the wormlike structures (7.8-12.3 MPa) indicating less structured aggregation of monomeric proteins than that typical for β-sheet formation. To shed light on the molecular interaction of the protein during the aggregation, early stages of fibrillization of the σ(70) subunit were modeled using all-atom molecular dynamics. Simulations have shown that the σ(70) subunit is able to form quasi-symmetric extended dimers, which may further interact with each other and grow linearly. The proposed general model explains different pathways of σ(70) subunit aggregation and may be valid for other amyloid proteins.

  18. Crystal Structure in the Vivo-Assembled Bacillus subtilis Spx/RNA Polymerase alpha Subunit C-Terminal Domain Complex

    SciTech Connect

    Lamour, V.; Westblade, L; Campbell, E; Darst, S

    2009-01-01

    The Bacillus subtilis Spx protein is a global transcription factor that interacts with the C-terminal domain of the RNA polymerase {alpha} subunit ({alpha}CTD) and regulates transcription of genes involved in thiol-oxidative stress, sporulation, competence, and organosulfur metabolism. Here we determined the X-ray crystal structure of the Spx/{alpha}CTD complex from an entirely new crystal form than previously reported [Newberry, K.J., Nakano, S., Zuber, P., Brennan, R.G., 2005. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc. Natl. Acad. Sci. USA 102, 15839-15844]. Comparison of the previously reported sulfate-bound complex and our sulfate-free complex reveals subtle conformational changes that may be important for the role of Spx in regulating organosulfur metabolism.

  19. The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit.

    PubMed

    Ovchinnikov YuA; Monastyrskaya, G S; Gubanov, V V; Guryev, S O; Salomatina, I S; Shuvaeva, T M; Lipkin, V M; Sverdlov, E D

    1982-07-10

    The primary structure of the E. coli rpoC gene (5321 base pairs) coding the beta'-subunit of RNA polymerase as well as its adjacent segment have been determined. The structure analysis of the peptides obtained by cleavage of the protein with cyanogen bromide and trypsin has confirmed the amino acid sequence of the beta'-subunit deduced from the nucleotide sequence analysis. The beta'-subunit of E. coli RNA polymerase contains 1407 amino acid residues. Its translation is initiated by codon GUG and terminated by codon TAA. It has been detected that the sequence following the terminating codon is strikingly homologous to known sequences of rho-independent terminators.

  20. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    SciTech Connect

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.

  1. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    DOE PAGES

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; ...

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less

  2. Topology of yeast RNA polymerase II subunits in transcription elongation complexes studied by photoaffinity cross-linking.

    PubMed

    Wooddell, C I; Burgess, R R

    2000-11-07

    The subunits of Saccharomyces cerevisiae RNA polymerase II (RNAP II) in proximity to the DNA during transcription elongation have been identified by photoaffinity cross-linking. In the absence of transcription factors, RNAP II will transcribe a double-stranded DNA fragment containing a 3'-extension of deoxycytidines, a "tailed template". We designed a DNA template allowing the RNAP to transcribe 76 bases before it was stalled by omission of CTP in the transcription reaction. This stall site oriented the RNAP on the DNA template and allowed us to map the RNAP subunits along the DNA. The DNA analogue 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUTP (N(3)RdUTP) [Bartholomew, B., Kassavetis, G. A., Braun, B. R., and Geiduschek, E. P. (1990) EMBO J. 9, 2197-205] was synthesized and enzymatically incorporated into the DNA at specified positions upstream or downstream of the stall site, in either the template or nontemplate strand of the DNA. Radioactive nucleotides were positioned beside the photoactivatable nucleotides, and cross-linking by brief ultraviolet irradiation transferred the radioactive tag from the DNA onto the RNAP subunits. In addition to N(3)RdUTP, which has a photoreactive azido group 9 A from the uridine base, we used the photoaffinity cross-linker 5N(3)dUTP with an azido group directly on the uridine ring to identify the RNAP II subunits closest to the DNA at positions where multiple subunits cross-linked. In cross-linking reactions dependent on transcription, RPB1, RPB2, and RPB5 were cross-linked with N(3)RdUTP. With 5N(3)dUTP, only RPB1 and RPB2 were cross-linked. Under certain circumstances, RPB3, RPB4, and RPB7 were cross-linked. From the information obtained in this topological study, we developed a model of yeast RNAP II in a transcription elongation complex.

  3. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication

    PubMed Central

    Langston, Lance D.; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E.; Finkelstein, Jeff; Yao, Nina Y.; Indiani, Chiara; O’Donnell, Mike E.

    2014-01-01

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG–Pol ε complex and showed that it is a functional polymerase–helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes. PMID:25313033

  4. Quantitative Proteomics Demonstrates That the RNA Polymerase II Subunits Rpb4 and Rpb7 Dissociate during Transcriptional Elongation*

    PubMed Central

    Mosley, Amber L.; Hunter, Gerald O.; Sardiu, Mihaela E.; Smolle, Michaela; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2013-01-01

    Eukaryotic RNA polymerase II (RNAPII) is a 12-subunit enzyme that is responsible for the transcription of messenger RNA. Two of the subunits of RNA polymerase II, Rpb4 and Rpb7, have been shown to dissociate from the enzyme under a number of specific laboratory conditions. However, a biological context for the dissociation of Rpb4 and Rpb7 has not been identified. We have found that Rpb4/7 dissociate from RNAPII upon interaction with specific transcriptional elongation-associated proteins that are recruited to the hyperphosphorylated form of the C-terminal domain. However, the dissociation of Rpb4/7 is likely short lived because a significant level of free Rpb4/7 was not detected by quantitative proteomic analyses. In addition, we have found that RNAPII that is isolated through Rpb7 is depleted in serine 2 C-terminal domain phosphorylation. In contrast to previous reports, these data indicate that Rpb4/7 are dispensable during specific stages of transcriptional elongation in Saccharomyces cerevisiae. PMID:23418395

  5. The catalytic subunit of DNA polymerase δ inhibits γTuRC activity and regulates Golgi-derived microtubules.

    PubMed

    Shen, Yuehong; Liu, Pengfei; Jiang, Taolue; Hu, Yu; Au, Franco K C; Qi, Robert Z

    2017-09-15

    γ-Tubulin ring complexes (γTuRCs) initiate microtubule growth and mediate microtubule attachment at microtubule-organizing centers, such as centrosomes and the Golgi complex. However, the mechanisms that control γTuRC-mediated microtubule nucleation have remained mostly unknown. Here, we show that the DNA polymerase δ catalytic subunit (PolD1) binds directly to γTuRCs and potently inhibits γTuRC-mediated microtubule nucleation. Whereas PolD1 depletion through RNA interference does not influence centrosome-based microtubule growth, the depletion augments microtubule nucleation at the Golgi complex. Conversely, PolD1 overexpression inhibits Golgi-based microtubule nucleation. Golgi-derived microtubules are required for the assembly and maintenance of the proper Golgi structure, and we found that alteration of PolD1 levels affects Golgi structural organization. Moreover, suppression of PolD1 expression impairs Golgi reassembly after nocodazole-induced disassembly and causes defects in Golgi reorientation and directional cell migration. Collectively, these results reveal a mechanism that controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.Microtubule organization requires γ-tubulin ring complexes (γTuRCs), but the mechanisms that control γTuRC-mediated microtubule nucleation are unclear. Here the authors show that the DNA polymerase δ catalytic subunit controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.

  6. Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II.

    PubMed

    Petermann, R; Mossier, B M; Aryee, D N; Khazak, V; Golemis, E A; Kovar, H

    1998-08-06

    As a result of the t(11;22)(q24;q12) chromosomal translocation characterizing the Ewing family of tumors (ET), the amino terminal portion of EWS, an RNA binding protein of unknown function, is fused to the DNA-binding domain of the ets transcription factor Fli1. The hybrid EWS-Fli1 protein acts as a strong transcriptional activator and, in contrast to wildtype Fli1, is a potent transforming agent. Similar rearrangements involving EWS or the highly homologous TLS with various transcription factors have been found in several types of human tumors. Employing yeast two-hybrid cloning we isolated the seventh largest subunit of human RNA polymerase II (hsRPB7) as a protein that specifically interacts with the amino terminus of EWS. This association was confirmed by in vitro immunocoprecipitation. In nuclear extracts, hsRPB7 was found to copurify with EWS-Fli1 but not with Fli1. Overexpression of recombinant hsRPB7 specifically increased gene activation by EWS-chimeric transcription factors. Replacement of the EWS portion by hsRPB7 in the oncogenic fusion protein restored the transactivating potential of the chimera. Our results suggest that the interaction of the amino terminus of EWS with hsRPB7 contributes to the transactivation function of EWS-Fli1 and, since hsRPB7 has characteristics of a regulatory subunit of RNA polymerase II, may influence promoter selectivity.

  7. The epsilon subunit of DNA polymerase III Is involved in the nalidixic acid-induced SOS response in Escherichia coli.

    PubMed

    Pohlhaus, Jennifer Reineke; Long, David T; O'Reilly, Erin; Kreuzer, Kenneth N

    2008-08-01

    Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.

  8. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and Phage T7 single-subunit RNA polymerases.

    PubMed

    Sultana, Shemaila; Solotchi, Mihai; Ramachandran, Aparna; Patel, Smita S

    2017-09-07

    Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rate of T7 RNAP (2×10-6), yeast mitochondrial Rpo41 (6×10-6), and human mitochondrial POLRMT (2×10-5) indicates high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A to G errors in RNA with rates of ~10-4. The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine to purine mismatches were relatively frequent (10-5 to10-6), whereas C→G, U→A, G→C, and C→A errors from purine to purine and pyrimidine to pyrimidine mismatches were rare (10-7 to10-10). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (~10-4). Strikingly, POLRMT shows high mutagenic bypass rate, which is exacerbated by TEFM. The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM that allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in case of T7 RNAP, to assess the quality of in vitro transcribed RNAs. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  9. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly

    PubMed Central

    Markov, Dmitriy; Naryshkina, Tatyana; Mustaev, Arkady; Severinov, Konstantin

    1999-01-01

    All multisubunit DNA-dependent RNA polymerases (RNAP) are zinc metalloenzymes, and at least two zinc atoms are present per enzyme molecule. RNAP residues involved in zinc binding and the functional role of zinc ions in the transcription mechanism or RNAP structure are unknown. Here, we locate four cysteine residues in the Escherichia coli RNAP largest subunit, β′, that coordinate one of the two zinc ions tightly associated with the enzyme. In the absence of zinc, or when zinc binding is prevented by mutation, the in vitro-assembled RNAP retains the proper subunit stoichiometry but is not functional. We demonstrate that zinc acts as a molecular chaperone, converting denatured β′ into a compact conformation that productively associates with other RNAP subunits. The β′ residues coordinating zinc are conserved throughout eubacteria and chloroplasts, but are absent from homologs from eukaryotes and archaea. Thus, the involvement of zinc in the RNAP assembly may be a unique feature of eubacterial-type enzymes. PMID:10500100

  10. Transcription-Independent Functions of an RNA Polymerase II Subunit, Rpb2, During Genome Rearrangement in the Ciliate, Oxytricha trifallax

    PubMed Central

    Khurana, Jaspreet S.; Wang, Xing; Chen, Xiao; Perlman, David H.; Landweber, Laura F.

    2014-01-01

    The RNA polymerase II (Pol-II) holoenzyme, responsible for messenger RNA production, typically consists of 10–12 subunits. Our laboratory previously demonstrated that maternally deposited, long, noncoding, template RNAs are essential for programmed genome rearrangements in the ciliate Oxytricha trifallax. Here we show that such RNAs are bidirectionally transcribed and transported to the zygotic nucleus. The gene encoding the second-largest subunit of Pol-II, Rpb2, has undergone gene duplication, and the two paralogs, Rpb2-a and -b, display different expression patterns. Immunoprecipitation of double-stranded RNAs identified an association with Rpb2-a. Through immunoprecipitation and mass spectrometry, we show that Rpb2-a in early zygotes appears surprisingly unassociated with other Pol II subunits. A partial loss of function of Rpb2-a leads to an increase in expression of transposons and other germline-limited satellite repeats. We propose that evolutionary divergence of the Rpb2 paralogs has led to acquisition of transcription-independent functions during sexual reproduction that may contribute to the negative regulation of germline gene expression. PMID:24793090

  11. Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    PubMed Central

    Nemchinov, Lev G.; Boutanaev, Alexander M.; Postnikova, Olga A.

    2016-01-01

    In eukaryotic cells, RNA polymerase III is highly conserved and transcribes housekeeping genes such as ribosomal 5S rRNA, tRNA and other small RNAs. The RPC5-like subunit is one of the 17 subunits forming RNAPIII and its exact functional roles in the transcription are poorly understood. In this work, we report that virus-induced gene silencing of transcripts encoding a putative RPC5-like subunit of the RNA Polymerase III in a model species Nicotiana benthamiana had pleiotropic effects, including but not limited to severe dwarfing appearance, chlorosis, nearly complete reduction of internodes and abnormal leaf shape. Using transcriptomic analysis, we identified genes and pathways affected by RPC5 silencing and thus presumably related to the cellular roles of the subunit as well as to the downstream cascade of reactions in response to partial loss of RNA Polymerase III function. Our results suggest that silencing of the RPC5L in N. benthamiana disrupted not only functions commonly associated with the core RNA Polymerase III transcripts, but also more diverse cellular processes, including responses to stress. We believe this is the first demonstration that activity of the RPC5 subunit is critical for proper functionality of RNA Polymerase III and normal plant development. PMID:27282827

  12. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    PubMed Central

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  13. Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II.

    PubMed Central

    Bartolomei, M S; Corden, J L

    1987-01-01

    RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene. Images PMID:3821724

  14. Identification of a novel compound with antiviral activity against influenza A virus depending on PA subunit of viral RNA polymerase.

    PubMed

    Yamada, Kazunori; Koyama, Hiroko; Hagiwara, Kyoji; Ueda, Atsushi; Sasaki, Yutaka; Kanesashi, Shin-Nosuke; Ueno, Ryuki; Nakamura, Hironori K; Kuwata, Kazuo; Shimizu, Kazufumi; Suzuki, Masaaki; Aida, Yoko

    2012-08-01

    Influenza viruses have developed resistance to current drugs, creating a need for new antiviral targets and new drugs to treat influenza virus infections. In this study, computational and experimental screening of an extensive compound library identified THC19, which was able to suppress influenza virus replication. This compound had no cytotoxic effects and did not disrupt cell cycle progression or induce apoptosis in MDCK cells as confirmed by WST-1 assays, flow cytometry analysis, and caspase-3 assays. Time-of-addition experiments showed that THC19 acts at a relatively early stage of the viral lifecycle. Subsequent mini-genome assays revealed that THC19 inhibited viral genome replication and/or transcription, suggesting that it interferes with one or more of the viral components that form the ribonucleoprotein complexes, namely polymerase basic 2 (PB2), polymerase basic 1 (PB1), polymerase acidic (PA), nucleoprotein (NP) and viral RNA. Finally, mini-genome assays where PB2, PB1, PA or NP from A/WSN/33 (H1N1) virus were replaced with those from A/Udorn/307/1972 (H3N2) virus effectively demonstrated that THC19 inhibited viral multiplication in a manner dependent upon the PA subunit. Taken together, these results suggest that influenza virus PA protein is a potential target for, and may aid the development of, novel compounds that inhibit influenza A virus replication. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG

    PubMed Central

    Sevostyanova, Anastasia; Belogurov, Georgiy A.; Mooney, Rachel A.; Landick, Robert; Artsimovitch, Irina

    2011-01-01

    SUMMARY In all organisms, RNA polymerase (RNAP) relies on accessory factors to complete synthesis of long RNAs. These factors increase RNAP processivity by reducing pausing and termination, but their molecular mechanisms remain incompletely understood. We identify the β gate loop as an RNAP element required for antipausing activity of a bacterial virulence factor RfaH, a member of the universally conserved NusG family. Interactions with the gate loop are necessary for suppression of pausing and termination by RfaH, but are dispensable for RfaH binding to RNAP mediated by the β′ clamp helices. We hypothesize that, upon binding to the clamp helices and the gate loop, RfaH bridges the gap across the DNA channel, stabilizing RNAP/nucleic acid contacts and disfavoring isomerization into a paused state. We show that contacts with the gate loop are also required for antipausing by NusG and propose that most NusG homologs use similar mechanisms to increase RNAP processivity. PMID:21777814

  16. DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations.

    PubMed

    Chan, Sherine S L; Copeland, William C

    2009-05-01

    DNA polymerase gamma is the only known DNA polymerase in human mitochondria and is essential for mitochondrial DNA replication and repair. It is well established that defects in mtDNA replication lead to mitochondrial dysfunction and disease. Over 160 coding variations in the gene encoding the catalytic subunit of DNA polymerase gamma (POLG) have been identified. Our group and others have characterized a number of the more common and interesting mutations, as well as those disease mutations in the DNA polymerase gamma accessory subunit. We review the results of these studies, which provide clues to the mechanisms leading to the disease state.

  17. Microsporidia are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins

    PubMed Central

    Hirt, Robert P.; Logsdon, John M.; Healy, Bryan; Dorey, Michael W.; Doolittle, W. Ford; Embley, T. Martin

    1999-01-01

    We have determined complete gene sequences encoding the largest subunit of the RNA polymerase II (RBP1) from two Microsporidia, Vairimorpha necatrix and Nosema locustae. Phylogenetic analyses of these and other RPB1 sequences strongly support the notion that Microsporidia are not early-diverging eukaryotes but instead are specifically related to Fungi. Our reexamination of elongation factors EF-1α and EF-2 sequence data that had previously been taken as support for an early (Archezoan) divergence of these amitochondriate protists show such support to be weak and likely caused by artifacts in phylogenetic analyses. These EF data sets are, in fact, not inconsistent with a Microsporidia + Fungi relationship. In addition, we show that none of these proteins strongly support a deep divergence of Parabasalia and Metamonada, the other amitochondriate protist groups currently thought to compose early branches. Thus, the phylogenetic placement among eukaryotes for these protist taxa is in need of further critical examination. PMID:9892676

  18. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.

    PubMed

    Chen, Liang; Guan, Liping; Qian, Pingping; Xu, Fan; Wu, Zhongliang; Wu, Yujun; He, Kai; Gou, Xiaoping; Li, Jia; Hou, Suiwen

    2016-05-01

    Stomata are highly specialized epidermal structures that control transpiration and gas exchange between plants and the environment. Signal networks underlying stomatal development have been previously uncovered but much less is known about how signals involved in stomatal development are transmitted to RNA polymerase II (Pol II or RPB), which plays a central role in the transcription of mRNA coding genes. Here, we identify a partial loss-of-function mutation of the third largest subunit of nuclear DNA-dependent Pol II (NRPB3) that exhibits an increased number of stomatal lineage cells and paired stomata. Phenotypic and genetic analyses indicated that NRPB3 is not only required for correct stomatal patterning, but is also essential for stomatal differentiation. Protein-protein interaction assays showed that NRPB3 directly interacts with two basic helix-loop-helix (bHLH) transcription factors, FAMA and INDUCER OF CBF EXPRESSION1 (ICE1), indicating that NRPB3 serves as an acceptor for signals from transcription factors involved in stomatal development. Our findings highlight the surprisingly conserved activating mechanisms mediated by the third largest subunit of Pol II in eukaryotes. © 2016. Published by The Company of Biologists Ltd.

  19. Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit

    PubMed Central

    Moen, Spencer O.; Smith, Eric; Raymond, Amy C.; Fairman, James W.; Stewart, Lance J.; Staker, Bart L.; Begley, Darren W.; Edwards, Thomas E.; Lorimer, Donald D.

    2013-01-01

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains. PMID:23851357

  20. Underproduction of the largest subunit of RNA polymerase II causes temperature sensitivity, slow growth, and inositol auxotropy in Saccharomyces cerevisiae

    SciTech Connect

    Archambault, J.; Jansma, D.B.; Friesen, J.D.

    1996-03-01

    In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery. 70 refs., 7 figs., 1 tab.

  1. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape

    PubMed Central

    Pupov, Danil; Kuzin, Ivan; Bass, Irina; Kulbachinskiy, Andrey

    2014-01-01

    The σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path. Analysis of the transcription effects of substitutions and deletions in this region in Escherichia coli σ70 subunit, performed in this work, suggests that (i) individual residues in the σ3.2 finger collectively contribute to RNA priming by RNAP, likely by the positioning of the template DNA strand in the active centre, but are not critical to promoter escape; (ii) the physical presence of σ3.2 in the RNA exit channel is important for promoter escape; (iii) σ3.2 promotes σ dissociation during initiation and suppresses σ-dependent promoter-proximal pausing; (iv) σ3.2 contributes to allosteric inhibition of the initiating NTP binding by rifamycins. Thus, region σ3.2 performs distinct functions in transcription initiation and its inhibition by antibiotics. The B-reader element of eukaryotic factor TFIIB likely plays similar roles in RNAPII transcription, revealing common principles in transcription initiation in various domains of life. PMID:24452800

  2. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.

    PubMed

    Naryshkina, Tatyana; Kuznedelov, Konstantin; Severinov, Konstantin

    2006-08-25

    Analysis of multi-subunit RNA polymerase (RNAP) structures revealed several distinct elements that may perform partial functions of the enzyme. One such element, the "lid", is formed by an evolutionarily conserved segment of the RNAP largest subunit (beta' in bacterial RNAP). The beta' lid contacts the nascent RNA at the upstream edge of the RNA-DNA hybrid, where the RNA gets separated from the DNA template-strand and double-stranded upstream DNA is formed. To test the beta' lid functions, we generated bacterial RNAP lacking the lid and studied the mutant enzyme's properties in vitro. Our results demonstrate that removal of the lid has minimal consequences on transcription elongation from double-stranded DNA. On single-stranded DNA, the mutant RNAP generates full-sized transcripts that remain annealed to the DNA throughout their length. In contrast, the wild-type enzyme produces short, 18-22 nucleotide transcripts that remain part of the transcription complex but cannot be further elongated. The cessation of transcription is apparently triggered by a clash between the lid and the nascent RNA 5' end. The results show that the lid's function is redundant in the presence of the non-template DNA strand, which alone can control the proper geometry of nucleic acids at the upstream edge of the transcription complex. Structural considerations suggest that in the absence of the non-template strand and the lid, a new channel opens within the RNAP molecule that allows continuous DNA-RNA hybrid to exit RNAP.

  3. Multi-target parallel processing approach for gene-to-structure determination of the influenza polymerase PB2 subunit.

    PubMed

    Armour, Brianna L; Barnes, Steve R; Moen, Spencer O; Smith, Eric; Raymond, Amy C; Fairman, James W; Stewart, Lance J; Staker, Bart L; Begley, Darren W; Edwards, Thomas E; Lorimer, Donald D

    2013-06-28

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1). Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans (2). Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.

  4. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase

    PubMed Central

    Shimada, Tomohiro; Tanaka, Kan

    2017-01-01

    The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by the sigma subunit. The model prokaryote Escherichia coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. For identification of the “constitutive promoters” that are recognized by each RNAP holoenzyme alone in the absence of other supporting factors, we have performed the genomic SELEX screening in vitro for their binding sites along the E. coli K-12 W3110 genome using each of the reconstituted RNAP holoenzymes and a collection of genome DNA segments of E. coli K-12. The whole set of constitutive promoters for each RNAP holoenzyme was then estimated based on the location of RNAP-binding sites. The first successful screening of the constitutive promoters was achieved for RpoD (σ70), the principal sigma for transcription of growth-related genes. As an extension, we performed in this study the screening of constitutive promoters for four minor sigma subunits, stationary-phase specific RpoS (σ38), heat-shock specific RpoH (σ32), flagellar-chemotaxis specific RpoF (σ28) and extra-cytoplasmic stress-response RpoE (σ24). The total number of constitutive promoters were: 129~179 for RpoS; 101~142 for RpoH; 34~41 for RpoF; and 77~106 for RpoE. The list of constitutive promoters were compared with that of known promoters identified in vivo under various conditions and using varieties of E. coli strains, altogether allowing the estimation of “inducible promoters” in the presence of additional supporting factors. PMID:28666008

  5. Human CDC45 protein binds to minichromosome maintenance 7 protein and the p70 subunit of DNA polymerase alpha.

    PubMed

    Kukimoto, I; Igaki, H; Kanda, T

    1999-11-01

    Budding yeast CDC45 encodes Cdc45p, an essential protein required to trigger initiation of DNA replication in late G1 phase. We cloned four and one species of the human Cdc45p homolog cDNA, resulting from different splicing patterns, from HeLa cell and human placenta cDNA libraries, respectively. A comparison of the cDNAs and the genomic sequence showed that the longest encoding a 610-amino acid protein was comprised of 20 exons. One species, which lacks exon 7 and contains the shorter of two exons 18, was identical with the previously reported CDC45L cDNA and constituted 24 out of 28 clones from HeLa cells. Splicing was different in HeLa cells and TIG-1 cells, a human diploid cell line. Human CDC45 protein was found to bind directly in vitro to human minichromosome maintenance 7 protein (hMCM7) and to the p70 subunit of DNA polymerase alpha. The data support a thesis that human CDC45 acts as a molecular tether to mediate loading of the DNA polymerase alpha on to the DNA replication complex through binding to hMCM7.

  6. Ligand-free RAR can interact with the RNA polymerase II subunit hsRPB7 and repress transcription.

    PubMed

    Shen, X Q; Bubulya, A; Zhou, X F; Khazak, V; Golemis, E A; Shemshedini, L

    1999-06-01

    Upon binding retinoic acid (RA), the retinoic acid receptors (RARs) are able to positively and negatively regulate transcription. It has been shown that the DNA-binding domain and carboxy terminus of RARs are necessary for the ligand-dependent ability of the receptor to repress AP-1 transcriptional activity. A fusion of these two regions, shown to constitutively inhibit AP-1 activity, was used in a yeast two-hybrid screen to identify a novel hRARalpha-interacting protein. This protein, hsRPB7, a subunit of RNA polymerase II, interacts with hRARalpha in the absence of RA and addition of RA disrupts the interaction. Truncation analysis indicates that hsRPB7 specifically interacts with the hRARalpha DNA-binding domain. This interaction appears to compromise transcription, since overexpressed hRARalpha, in the absence of RA, is able to repress the activity of several RNA polymerase II-dependent activators, including AP-1 and the glucocorticoid receptor. This repression is relieved by transfected hsRPB7, strongly suggesting that ligand-free hRARalpha can block AP-1 activity by sequestering hsRPB7. The repression is dependent on the integrity of the hRARalpha DBD, since a mutation within the DBD blocks both the hRARalpha-hsRPB7 interaction and ligand-free hRARalpha repression of AP-1. These results provide evidence that non-liganded hRARalpha can regulate transcription by directly interacting with RNA polymerase II, and thus suggest a novel pathway by which hRARalpha can cross-talk with AP-1 and perhaps other families of transcriptional activators.

  7. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly

    PubMed Central

    Wawrzycka, Aleksandra; Gross, Marta; Wasaznik, Anna; Konieczny, Igor

    2015-01-01

    Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. PMID:26195759

  8. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.

    PubMed

    Wawrzycka, Aleksandra; Gross, Marta; Wasaznik, Anna; Konieczny, Igor

    2015-08-04

    Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.

  9. The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix

    PubMed Central

    Long, Joshua C. D.

    2016-01-01

    ABSTRACT The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria. IMPORTANCE The PB2 subunit of the influenza virus RNA polymerase is a major determinant of viral pathogenicity. However, the molecular mechanisms of how PB2 determines pathogenicity remain poorly understood. PB2 associates with mitochondria and inhibits the function of the mitochondrial

  10. Identification of Domains within the V-ATPase Accessory Subunit Ac45 Involved in V-ATPase Transport and Ca2+-dependent Exocytosis

    PubMed Central

    Jansen, Eric J. R.; van Bakel, Nick. H. M.; Loohuis, Nikkie F. M. Olde; Hafmans, Theo G. M.; Arentsen, Tim; Coenen, Anthon J. M.; Scheenen, Wim J. J. M.; Martens, Gerard J. M.

    2012-01-01

    The vacuolar (H+)-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V0-sector is involved in Ca2+-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V0-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca2+-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca2+-dependent-regulated exocytosis. PMID:22736765

  11. Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis.

    PubMed

    Jansen, Eric J R; van Bakel, Nick H M; Olde Loohuis, Nikkie F M; Hafmans, Theo G M; Arentsen, Tim; Coenen, Anthon J M; Scheenen, Wim J J M; Martens, Gerard J M

    2012-08-10

    The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.

  12. Binding of the sigma 70 protein to the core subunits of Escherichia coli RNA polymerase, studied by iron-EDTA protein footprinting.

    PubMed Central

    Greiner, D P; Hughes, K A; Gunasekera, A H; Meares, C F

    1996-01-01

    We have used a nonspecific protein cleaving reagent to map the interactions between subunits of the multisubunit enzyme RNA polymerase (Escherichia coli). We developed suitable conditions for using an untethered Fe-EDTA reagent, which does not bind significantly to proteins. Comparison of the cleaved fragments of the subunits from the core enzyme (alpha 2 beta beta') and the holoenzyme (core+sigma 70) shows that absence of the sigma 70 subunit is associated with the appearance of several cleavage sites on the subunits beta (within 10 residues of sequence positions 745, 764, 795, and 812) and beta' (within 10 residues of sequence positions 581, 613, and 728). A cleavage site near beta residue 604 is present in the holoenzyme but absent in the core, demonstrating that a conformational change occurs when sigma 70 binds. No differences are observed for the alpha subunit. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8552678

  13. Ada protein-RNA polymerase sigma subunit interaction and alpha subunit-promoter DNA interaction are necessary at different steps in transcription initiation at the Escherichia coli Ada and aidB promoters.

    PubMed

    Landini, P; Bown, J A; Volkert, M R; Busby, S J

    1998-05-22

    The methylated form of the Ada protein (meAda) binds the ada and aidB promoters between 60 and 40 base pairs upstream from the transcription start and activates transcription of the Escherichia coli ada and aidB genes. This region is also a binding site for the alpha subunit of RNA polymerase and resembles the rrnB P1 UP element in A/T content and location relative to the core promoter. In this report, we show that deletion of the C-terminal domain of the alpha subunit severely decreases meAda-independent binding of RNA polymerase to ada and aidB, affecting transcription initiation at these promoters. We provide evidence that meAda activates transcription by direct interaction with the C-terminal domain of RNA polymerase sigma70 subunit (amino acids 574-613). Several negatively charged residues in the sigma70 C-terminal domain are important for transcription activation by meAda; in particular, a glutamic acid to valine substitution at position 575 has a dramatic effect on meAda-dependent transcription. Based on these observations, we propose that the role of the alpha subunit at ada and aidB is to allow initial binding of RNA polymerase to the promoters. However, transcription initiation is dependent on meAda-sigma70 interaction.

  14. Amino Acid Substitutions in the Caenorhabditis elegans RNA Polymerase II Large Subunit AMA-1/RPB-1 that Result in α-Amanitin Resistance and/or Reduced Function.

    PubMed

    Bowman, Elizabeth Anne; Riddle, Donald L; Kelly, William

    2011-11-01

    Mutations in the Caenorhabditis elegans RNA polymerase II AMA-1/RPB-1 subunit that cause α-amanitin resistance and/or developmental defects were isolated previously. We identified 12 of these mutations and mapped them onto the Saccharomyces cerevisiae RPB1 structure to provide insight into AMA-1 regions that are essential for development in a multicellular organism.

  15. Amino Acid Substitutions in the Caenorhabditis elegans RNA Polymerase II Large Subunit AMA-1/RPB-1 that Result in α-Amanitin Resistance and/or Reduced Function

    PubMed Central

    Bowman, Elizabeth Anne; Riddle, Donald L.; Kelly, William

    2011-01-01

    Mutations in the Caenorhabditis elegans RNA polymerase II AMA-1/RPB-1 subunit that cause α-amanitin resistance and/or developmental defects were isolated previously. We identified 12 of these mutations and mapped them onto the Saccharomyces cerevisiae RPB1 structure to provide insight into AMA-1 regions that are essential for development in a multicellular organism. PMID:22384351

  16. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  17. Critical Function of a Chlamydomonas reinhardtii Putative Polyphosphate Polymerase Subunit during Nutrient Deprivation[C][W

    PubMed Central

    Aksoy, Munevver; Pootakham, Wirulda; Grossman, Arthur R.

    2014-01-01

    Forward genetics was used to isolate Chlamydomonas reinhardtii mutants with altered abilities to acclimate to sulfur (S) deficiency. The ars76 mutant has a deletion that eliminates several genes, including VACUOLAR TRANSPORTER CHAPERONE1 (VTC1), which encodes a component of a polyphosphate polymerase complex. The ars76 mutant cannot accumulate arylsulfatase protein or mRNA and shows marked alterations in levels of many transcripts encoded by genes induced during S deprivation. The mutant also shows little acidocalcisome formation compared with wild-type, S-deprived cells and dies more rapidly than wild-type cells following exposure to S-, phosphorus-, or nitrogen (N)-deficient conditions. Furthermore, the mutant does not accumulate periplasmic l-amino acid oxidase during N deprivation. Introduction of the VTC1 gene specifically complements the ars76 phenotypes, suggesting that normal acidocalcisome formation in cells deprived of S requires VTC1. Our data also indicate that a deficiency in acidocalcisome function impacts trafficking of periplasmic proteins, which can then feed back on the transcription of the genes encoding these proteins. These results and the reported function of vacuoles in degradation processes suggest a major role of the acidocalcisome in reshaping the cell during acclimation to changing environmental conditions. PMID:25281687

  18. Structure-Based Drug Design Targeting a Subunit Interaction of Influenza Virus RNA Polymerase

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kanako; Obayashi, Eiji; Yoshida, Hisashi; Park, Sam-Yong

    Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. Influenza virus reproduces rapidly, mutates frequently, and occasionally crosses species barriers. The recent emergence of swine-origin influenza H1N1 and avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here, we describe two crystal structures of complexes made by fragments of PA and PB1, and PB1 and PB2. These novel interfaces are surprisingly small, yet they play a crucial role in regulating the 250 kDa polymerase complex, and are completely conserved among swine, avian and human influenza viruses. Given their importance to viral replication and strict conservation, the PA/PB1 and PB1/PB2 interfaces appear to be promising targets for novel anti-influenza drugs of use against all strains of influenza A virus. It is hoped that the structures presented here will assist the search for such compounds.

  19. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  20. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  1. The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit.

    PubMed Central

    Ovchinnikov YuA; Monastyrskaya, G S; Gubanov, V V; Guryev, S O; Salomatina, I S; Shuvaeva, T M; Lipkin, V M; Sverdlov, E D

    1982-01-01

    The primary structure of the E. coli rpoC gene (5321 base pairs) coding the beta'-subunit of RNA polymerase as well as its adjacent segment have been determined. The structure analysis of the peptides obtained by cleavage of the protein with cyanogen bromide and trypsin has confirmed the amino acid sequence of the beta'-subunit deduced from the nucleotide sequence analysis. The beta'-subunit of E. coli RNA polymerase contains 1407 amino acid residues. Its translation is initiated by codon GUG and terminated by codon TAA. It has been detected that the sequence following the terminating codon is strikingly homologous to known sequences of rho-independent terminators. PMID:6287430

  2. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans.

    PubMed

    Randall, Eva; Young, Vanessa; Sierotzki, Helge; Scalliet, Gabriel; Birch, Paul R J; Cooke, David E L; Csukai, Michael; Whisson, Stephen C

    2014-09-01

    Phenylamide fungicides have been widely used for the control of oomycete-incited plant diseases for over 30 years. Insensitivity to this chemical class of fungicide was recorded early in its usage history, but the precise protein(s) conditioning insensitivity has proven difficult to determine. To determine the genetic basis of insensitivity and to inform strategies for the cloning of the gene(s) responsible, genetic crosses were established between Mefenoxam sensitive and intermediate insensitive isolates of Phytophthora infestans, the potato late blight pathogen. F1 progeny showed the expected semi-dominant phenotypes for Mefenoxam insensitivity and suggested the involvement of multiple loci, complicating the positional cloning of the gene(s) conditioning insensitivity to Mefenoxam. Instead, a candidate gene strategy was used, based on previous observations that the primary effect of phenylamide compounds is to inhibit ribosomal RNA synthesis. The subunits of RNA polymerase I (RNApolI) were sequenced from sensitive and insensitive isolates and F1 progeny. Single nucleotide polymorphisms (SNPs) specific to insensitive field isolates were identified in the gene encoding the large subunit of RNApolI. In a survey of field isolates, SNP T1145A (Y382F) showed an 86% association with Mefenoxam insensitivity. Isolates not showing this association belonged predominantly to one P. infestans genotype. The transfer of the 'insensitive' allele of RPA190 to a sensitive isolate yielded transgenic lines that were insensitive to Mefenoxam. These results demonstrate that sequence variation in RPA190 contributes to insensitivity to Mefenoxam in P. infestans.

  3. Mediator of RNA polymerase II transcription subunit 19 promotes osteosarcoma growth and metastasis and associates with prognosis.

    PubMed

    Yu, Wenxi; Zhang, Zhichang; Min, Daliu; Yang, Qingcheng; Du, Xuefei; Tang, Lina; Lin, Feng; Sun, Yuanjue; Zhao, Hui; Zheng, Shuier; He, Aina; Li, Hongtao; Yao, Yang; Shen, Zan

    2014-04-01

    Osteosarcoma (OS) is the most common primary malignant tumour of bone. Nearly 30-40% of OS patients have a poor prognosis despite multimodal treatments. Because the carcinogenesis of OS remains unclear, the identification of new oncogenes that control the tumourigenesis and progression of OS is crucial for developing new therapies. Here, we found that the expression of Mediator of RNA polymerase II transcription subunit 19 (Med19) was increased in OS samples from patients compared to normal bone tissues. Cyclin D1 and cyclin B1 are upregulated in Med19 positive OS tissues. Importantly, among 97 OS patients of Enneking stage IIB or IIIB, Med19 expression was correlated with metastasis (P<0.05) and poor prognosis (P<0.01). Med19 knockdown significantly induced growth inhibition, reduced colony-forming ability and suppressed migration in the OS cell lines Saos-2 and U2OS, along with the downregulated expression of cyclin D1 and cyclin B1. Med19 knockdown also induced apoptosis in Saos-2 cells via induction of caspase-3 and poly ADP-ribose polymerase (PARP). In addition, Med19 knockdown significantly suppressed tumour growth in an OS xenograft nude mouse model via suppression of cyclin D1 and cyclin B1. Simultaneously, Med19 downregulation decreased the expression of Ki67 and proliferating cell nuclear antigen (PCNA) in tumour samples from OS xenograft nude mice. Med19 depletion remarkably reduced tumour metastasis in a model of OS metastatic spreading. Taken together, our data suggest that Med19 acts as an oncogene in OS via a possible cyclin D1/cyclin B1 modulation pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Identification of a small-molecule inhibitor of influenza virus via disrupting the subunits interaction of the viral polymerase.

    PubMed

    Yuan, Shuofeng; Chu, Hin; Zhao, Hanjun; Zhang, Ke; Singh, Kailash; Chow, Billy K C; Kao, Richard Y T; Zhou, Jie; Zheng, Bo-Jian

    2016-01-01

    Assembly of the heterotrimeric influenza virus polymerase complex from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the C terminal of PA (PAC) and the N-terminal of PB1 (PB1N) may be a desired target for antiviral development. In this study, we compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors that blocked PAC and PB1N interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of viral polymerase activity and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which might cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Delta Subunit of RNA Polymerase, RpoE, Is a Global Modulator of Streptococcus mutans Environmental Adaptation▿ †

    PubMed Central

    Xue, Xiaoli; Tomasch, Jürgen; Sztajer, Helena; Wagner-Döbler, Irene

    2010-01-01

    The delta subunit of RNA polymerase, RpoE, is widespread in low-G+C Gram-positive bacteria and is thought to play a role in enhancing transcriptional specificity by blocking RNA polymerase binding at weak promoter sites and stimulating RNA synthesis by accelerating core enzyme recycling. Despite the well-studied biochemical properties of RpoE, a role for this protein in vivo has not been defined in depth. In this study, we show that inactivation of rpoE in the human dental caries pathogen Streptococcus mutans causes impaired growth and loss of important virulence traits, including biofilm formation, resistance to antibiotics, and tolerance to environmental stresses. Complementation of the mutant with rpoE expressed in trans restored its phenotype to wild type. The luciferase fusion reporter showed that rpoE was highly transcribed throughout growth and that acid and hydrogen peroxide stresses repressed rpoE expression. Transcriptome profiling of wild-type and ΔrpoE cells in the exponential and early stationary phase of growth, under acid and hydrogen peroxide stress and under both stresses combined, revealed that genes involved in histidine synthesis, malolactic fermentation, biofilm formation, and antibiotic resistance were downregulated in the ΔrpoE mutant under all conditions. Moreover, the loss of RpoE resulted in dramatic changes in transport and metabolism of carbohydrates and amino acids. Interestingly, differential expression, mostly upregulation, of 330 noncoding regions was found. In conclusion, this study demonstrates that RpoE is an important global modulator of gene expression in S. mutans which is required for optimal growth and environmental adaptation. PMID:20675470

  6. Structural organization and splice variants of the POLE1 gene encoding the catalytic subunit of human DNA polymerase epsilon.

    PubMed Central

    Huang, D; Pospiech, H; Kesti, T; Syväoja, J E

    1999-01-01

    The catalytic subunit of human DNA polymerase epsilon, an enzyme involved in nuclear DNA replication and repair, is encoded by the POLE1 gene. This gene is composed of 51 exons spanning at least 97 kb of genomic DNA. It was found to encode three alternative mRNA splice variants that differ in their 5'-terminal sequences and in the N-termini of the predicted proteins. A CpG island covers the promoter region for the major transcript in HeLa cells. This promoter is TATA-less and contains several putative binding sites for transcription factors typical of S-phase-up-regulated and serum-responsive promoters. Potential promoter regions were also identified for the two other alternative transcripts. Interestingly, no nuclear polyadenylation signal sequence was detected in the 3'-untranslated region, although a poly(A) tail was present. These results suggest a complicated regulatory machinery for the expression of the human POLE1 gene, including three alternative transcripts expressed from three promoters. PMID:10215605

  7. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny.

    PubMed

    Nickerson, Jennifer; Drouin, Guy

    2004-05-01

    We used RT-PCR to sequence approximately 3 kb of the gene coding for the largest subunit of RNA polymerase II (rpb1) from nine land plants. Our results show that plant rpb1 genes all have a similar GC-content and that their amino acid sequences evolve at a similar rate in most species we examined, except for the Arabidopsis thaliana and rice sequences which evolve faster. This gene also exists as a single copy in most species and contains enough phylogenetically informative sites to resolve the evolutionary relationships among seed plants. Protein maximum parsimony, as well as neighbor-joining and maximum likelihood analyses of DNA and protein sequences, all generated identical tree topologies with similar strong support values at each node. The angiosperms are a clade comprising Amborella as a sister group to all other angiosperms, followed by Nymphaea, Magnolia, Arabidopsis, and a monocot clade containing maize and rice. The gymnosperms also form a monophyletic clade with Welwitschia and pine grouped together and sister to a Cycas and Zamia clade. These findings concur with recent studies that refute the Anthophyte Hypothesis and place Amborella at the base of the angiosperm tree. These rpb1 sequences also give a more consistent picture of seed plant relationships than similar analyses performed on data sets made of 18S rDNA, atpB, and rbcL sequences from the same species. These sequences therefore show great promise to help further resolve the phylogenetic relationships of seed plants.

  8. X-ray vs. NMR structure of N-terminal domain of δ-subunit of RNA polymerase.

    PubMed

    Demo, Gabriel; Papoušková, Veronika; Komárek, Jan; Kadeřávek, Pavel; Otrusinová, Olga; Srb, Pavel; Rabatinová, Alžbeta; Krásný, Libor; Zídek, Lukáš; Sklenář, Vladimír; Wimmerová, Michaela

    2014-08-01

    The crystal structure of the N-terminal domain of the RNA polymerase δ subunit (Nδ) from Bacillus subtilis solved at a resolution of 2.0Å is compared with the NMR structure determined previously. The molecule crystallizes in the space group C222(1) with a dimer in the asymmetric unit. Importantly, the X-ray structure exhibits significant differences from the lowest energy NMR structure. In addition to the overall structure differences, structurally important β sheets found in the NMR structure are not present in the crystal structure. We systematically investigated the cause of the discrepancies between the NMR and X-ray structures of Nδ, addressing the pH dependence, presence of metal ions, and crystal packing forces. We convincingly showed that the crystal packing forces, together with the presence of Ni(2+) ions, are the main reason for such a difference. In summary, the study illustrates that the two structural approaches may give unequal results, which need to be interpreted with care to obtain reliable structural information in terms of biological relevance. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Immunochemical detection of a primase activity related subunit of DNA polymerase. cap alpha. from human and mouse cells using the monoclonal antibody

    SciTech Connect

    Yagura, T.; Kozu, T.; Seno, T.; Tanaka, S.

    1987-12-01

    A hybrid cell line (HDR-854-Er) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase ..cap alpha.. was established by immunizing mice with DNA replicase complex (DNA polymerase ..cap alpha..-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralized the primase activity as assessed either by the direct primase assay (incorporation of (..cap alpha..-/sup 32/P)AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase ..cap alpha.. activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase ..cap alpha... The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDA) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3 S DNA polymerase ..cap alpha.. which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase ..cap alpha... Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDA polypeptide is associated with DNA polymerase ..cap alpha.., and not with the primase. These results indicate that the 77-kDa polypeptide detected with the E4 antibody is not the primase but is a subunit firmly bound to DNA polymerase ..cap alpha.. catalytic polypeptide and yet influences the activity of the associated DNA primase.

  10. Helicobacter pylori RNA polymerase α-subunit C-terminal domain shows features unique to ɛ-proteobacteria and binds NikR/DNA complexes.

    PubMed

    Borin, Brendan N; Tang, Wei; Krezel, Andrzej M

    2014-04-01

    Bacterial RNA polymerase is a large, multi-subunit enzyme responsible for transcription of genomic information. The C-terminal domain of the α subunit of RNA polymerase (αCTD) functions as a DNA and protein recognition element localizing the polymerase on certain promoter sequences and is essential in all bacteria. Although αCTD is part of RNA polymerase, it is thought to have once been a separate transcription factor, and its primary role is the recruitment of RNA polymerase to various promoters. Despite the conservation of the subunits of RNA polymerase among bacteria, the mechanisms of regulation of transcription vary significantly. We have determined the tertiary structure of Helicobacter pylori αCTD. It is larger than other structurally determined αCTDs due to an extra, highly amphipathic helix near the C-terminal end. Residues within this helix are highly conserved among ɛ-proteobacteria. The surface of the domain that binds A/T rich DNA sequences is conserved and showed binding to DNA similar to αCTDs of other bacteria. Using several NikR dependent promoter sequences, we observed cooperative binding of H. pylori αCTD to NikR:DNA complexes. We also produced αCTD lacking the 19 C-terminal residues, which showed greatly decreased stability, but maintained the core domain structure and binding affinity to NikR:DNA at low temperatures. The modeling of H. pylori αCTD into the context of transcriptional complexes suggests that the additional amphipathic helix mediates interactions with transcriptional regulators.

  11. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon.

    PubMed Central

    Yepiz-Plascencia, G M; Radebaugh, C A; Hallick, R B

    1990-01-01

    The rpoB gene coding for a beta-like subunit of the chloroplast DNA-dependent RNA polymerase has been located on the chloroplast genome of Euglena gracilis distal to the rrnC ribosomal RNA operon. We have determined 5760 base-pairs of DNA sequence, including 97 bp of the 5S rRNA gene, an intergenic spacer of 1264 bp, the rpoB gene of 4249 bp, 84 bp spacer and 67 bp of the rpoC1 gene. The rpoB gene is of the same polarity as the rRNA operons. The organization of the rpoB and rpoC genes resembles the E. coli rpoB-rpoC and higher plant chloroplast rpoB-rpoC1-rpoC2 operons. The Euglena rpoB gene (1082 codons) encodes a polypeptide with a predicted molecular weight of 124,288. The rpoB gene is interrupted by seven Group III introns of 93, 95, 94, 99, 101, 110 and 99 bp respectively and a Group II intron of 309 bp. All other known rpoB genes lack introns. All the exon-exon junctions were experimentally determined by cDNA cloning and sequencing or direct primer extension RNA sequencing. Transcripts from the rpoB locus were characterized by Northern hybridization. Fully-spliced, monocistronic rpoB mRNA, as well as rpoB-rpoC1 and rpoB1-rpoC1-rpoC2 mRNAs were identified. Images PMID:2110656

  12. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon.

    PubMed

    Yepiz-Plascencia, G M; Radebaugh, C A; Hallick, R B

    1990-04-11

    The rpoB gene coding for a beta-like subunit of the chloroplast DNA-dependent RNA polymerase has been located on the chloroplast genome of Euglena gracilis distal to the rrnC ribosomal RNA operon. We have determined 5760 base-pairs of DNA sequence, including 97 bp of the 5S rRNA gene, an intergenic spacer of 1264 bp, the rpoB gene of 4249 bp, 84 bp spacer and 67 bp of the rpoC1 gene. The rpoB gene is of the same polarity as the rRNA operons. The organization of the rpoB and rpoC genes resembles the E. coli rpoB-rpoC and higher plant chloroplast rpoB-rpoC1-rpoC2 operons. The Euglena rpoB gene (1082 codons) encodes a polypeptide with a predicted molecular weight of 124,288. The rpoB gene is interrupted by seven Group III introns of 93, 95, 94, 99, 101, 110 and 99 bp respectively and a Group II intron of 309 bp. All other known rpoB genes lack introns. All the exon-exon junctions were experimentally determined by cDNA cloning and sequencing or direct primer extension RNA sequencing. Transcripts from the rpoB locus were characterized by Northern hybridization. Fully-spliced, monocistronic rpoB mRNA, as well as rpoB-rpoC1 and rpoB1-rpoC1-rpoC2 mRNAs were identified.

  13. Trichomonas vaginalis initiator binding protein (IBP39) and RNA polymerase II large subunit carboxy terminal domain interaction.

    PubMed

    Lau, Audrey O T; Smith, Alias J; Brown, Mark T; Johnson, Patricia J

    2006-11-01

    The core promoter that directs RNA polymerase to the start of transcription in the protist Trichomonas vaginalis is an initiator (Inr) element recognized by the Inr Binding Protein, IBP39. This nuclear protein is composed of two domains: a 14.5 kDa amino (N-terminal) and a 25 kDa carboxy terminal domain (C-domain). Here we describe the identification of an IBP39-interacting protein by screening a T. vaginalis expression library using a two-hybrid system with the IBP39 C-domain as bait. The CTD of the large subunit of RNAP II was found to specifically interact with the C-domain. The specificity and nature of the interaction between the CTD of RNAP II and the C-domain of IBP39 was validated by three independent biochemical methods: co-immunoprecipitation with epitope-tagged proteins, affinity chromatography and enzyme linked ligand sorbent (ELLSA) assays. Binding was shown to involve hydrophobic bonds and to have a disassociation constant (K(d)) of 690 nM (+/-55). These results confirm and extend our previous binding studies using a peptide composed of the last nine amino acids of RNAP II CTD [Schumacher MA, Lau AOT, Johnson PJ. Structural basis of core promoter recognition in a primitive eukaryote. Cell 2003;115:413-24] that predicted an interaction between the CTD and IBP39. These data further demonstrate that IBP39 minimally possesses two functional domains: a N-terminal DNA binding domain (that recognizes the Inr) [Liston DR, Johnson PJ. Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol Cell Biol 1999;19:2380-8] and a C-terminal protein binding domain that recognizes the RNAP II CTD, an interaction that may be critical for recruiting RNAP II for initiation of transcription.

  14. Structure and expression of the gene coding for the alpha-subunit of DNA-dependent RNA polymerase from the chloroplast genome of Zea mays.

    PubMed Central

    Ruf, M; Kössel, H

    1988-01-01

    The rpoA gene coding for the alpha-subunit of DNA-dependent RNA polymerase located on the DNA of Zea mays chloroplasts has been characterized with respect to its position on the chloroplast genome and its nucleotide sequence. The amino acid sequence derived for a 39 Kd polypeptide shows strong homology with sequences derived from the rpoA genes of other chloroplast species and with the amino acid sequence of the alpha-subunit from E. coli RNA polymerase. Transcripts of the rpoA gene were identified by Northern hybridization and characterized by S1 mapping using total RNA isolated from maize chloroplasts. Antibodies raised against a synthetic C-terminal heptapeptide show cross reactivity with a 39 Kd polypeptide contained in the stroma fraction of maize chloroplasts. It is concluded that the rpoA gene is a functional gene and that therefore, at least the alpha-subunit of plastidic RNA polymerase, is expressed in chloroplasts. Images PMID:3399379

  15. The model of amyloid aggregation of Escherichia coli RNA polymerase σ70 subunit based on AFM data and in vitro assays.

    PubMed

    Koroleva, Olga N; Dubrovin, Evgeniy V; Khodak, Yu A; Kuzmina, Natalia V; Yaminsky, Igor V; Drutsa, Valeriy L

    2013-07-01

    To propose a model for recently described amyloid aggregation of E.coli RNA polymerase σ(70) subunit, we have investigated the role of its N-terminal region. For this purpose, three mutant variants of protein with deletions Δ1-73, Δ1-100 and Δ74-100 were constructed and studied in a series of in vitro assays and using atomic force microscopy (AFM). Specifically, all RNA polymerase holoenzymes, reconstituted with the use of mutant σ subunits, have shown reduced affinity for promoter-containing DNA and reduced activity in run-off transcription experiments (compared to that of WT species), thus substantiating the modern concept on the modulatory role of N-terminus in formation of open complex and transcription initiation. The ability of mutant proteins to form amyloid-like structures has been investigated using AFM, which revealed the increased propensity of mutant proteins to form rodlike aggregates with the effect being more pronounced for the mutant with the deletion Δ1-73 (10 fold increase). σ(70) subunit aggregation ability has shown complex dependence on the ionic surrounding, which we explain by Debye screening effect and the change of the internal state of the protein. Basing on the obtained data, we propose the model of amyloid fibril formation by σ(70) subunit, implying the involvement of N-terminal region according to the domain swapping mechanism.

  16. Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii.

    PubMed

    Matsui, Ikuo; Urushibata, Yuji; Shen, Yulong; Matsui, Eriko; Yokoyama, Hideshi

    2011-02-04

    Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. The N-terminal (1-300) domain structure of the large subunit was determined by X-ray crystallography, although ∼50 N-terminal residues were disordered. The determined structure consists of nine alpha helices and three beta strands. We also identified the DNA-binding ability of the domain by SPR measurement. The N-terminal (1-100) region plays crucial roles in the folding of the large subunit dimer by connecting the ∼50 N-terminal residues with their own catalytic region (792-1163).

  17. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi

    PubMed Central

    Stinnett, DeAnna B.; Wells, Whitney K.; Peterson, Megan A.; Hare, Janelle M.

    2016-01-01

    In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes’ repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuDˊ2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes. PMID:27010837

  18. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi.

    PubMed

    Witkowski, Travis A; Grice, Alison N; Stinnett, DeAnna B; Wells, Whitney K; Peterson, Megan A; Hare, Janelle M

    2016-01-01

    In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes' repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuD'2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes.

  19. Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase

    PubMed Central

    Hengge-Aronis, Regine

    2002-01-01

    The σS (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little σS, exposure to many different stress conditions results in rapid and strong σS induction. Consequently, transcription of numerous σS-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular σS level is achieved by rpoS transcriptional and translational control as well as by regulated σS proteolysis, with various stress conditions differentially affecting these levels of σS control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of σS, which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of σS regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For σS proteolysis, the response regulator RssB is essential. RssB is a specific direct σS recognition factor, whose affinity for σS is modulated by phosphorylation of its receiver domain. RssB delivers σS to the ClpXP protease, where σS is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system. PMID:12208995

  20. Association Between Germline Mutations in BRF1, a subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer.

    PubMed

    Bellido, Fernando; Sowada, Nadine; Mur, Pilar; Lázaro, Conxi; Pons, Tirso; Valdés-Mas, Rafael; Pineda, Marta; Aiza, Gemma; Iglesias, Silvia; Soto, José Luís; Urioste, Miguel; Caldés, Trinidad; Balbín, Milagros; Blay, Pilar; Rueda, Daniel; Durán, Mercedes; Valencia, Alfonso; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Navarro, Matilde; Calin, George A; Borck, Guntram; Puente, Xose S; Capellá, Gabriel; Valle, Laura

    2017-09-11

    Although there is a genetic predisposition to colorectal cancer (CRC), few of the genes that affect risk have been identified. We performed whole-exome sequence analysis of individuals in a high-risk family without mutations in genes previously associated with CRC risk to identify variants associated with inherited CRC. We collected blood samples from 3 relatives with CRC in Spain (65, 62 and 40 years old at diagnosis) and perfomed whole-exome sequence analyses. Rare missense, truncating or splice-site variants shared by the 3 relatives were selected. We used targeted pooled DNA amplification followed by next-generation sequencing to screen for mutations in candidate genes in 547 additional hereditary and/or early-onset CRC cases. We carried out protein-dependent yeast-growth assays and transfection studies in the HT29 human CRC cell line to test the effects of the identified variants. A total of 42 unique or rare (population minor allele frequency below 1%) non-synonymous genetic variants in 38 genes were shared by all 3 relatives. We selected the BRF1 gene, which encodes an RNA polymerase III transcription initiation factor subunit for further analysis, based on the predicted effect of the identified variant and previous association of BRF1 with cancer. Previously unreported or rare germline variants in BRF1 were identified in 11/503 individuals in families with a history of CRC or early-onset CRC,- a significantly greater proportion than in control population (34/4,300). Seven of the identified variants (1 detected in 2 families) affected BRF1 mRNA splicing, protein stability or expression and/or function. In an analysis of families with a history of CRC, we associated germline mutations in BRF1 with predisposition to CRC. We associated deleterious BRF1 variants with 1.4% of familial CRC cases, in individuals without mutations in high-penetrance genes previously associated with CRC. Our findings add additional evidence to the link between defects in genes that

  1. Basic amino acids in the N-terminal half of the PB2 subunit of influenza virus RNA polymerase are involved in both transcription and replication.

    PubMed

    Hara, Koyu; Kashiwagi, Takahito; Hamada, Nobuyuki; Watanabe, Hiroshi

    2017-05-01

    The PB2 subunit of influenza virus RNA polymerase is known to be involved in the initiation of transcription of the virus genome via cap binding. However, other specific roles of PB2 for viral RNA synthesis are not well understood. Here, we demonstrate that basic residues, 124R, 142R, 143R, 268R and 331K/332R, in the N-terminal half of PB2 are important for the polymerase activity. Notably, R124A mutation remarkably reduced the synthesis of mRNA, cRNA and vRNA in vivo, which was in good agreement with the data obtained in vitro. Cross-linking studies suggested that a reduction of the polymerase activity in the R124A mutant was due to a significant decrease in binding to the viral RNA promoter. In the three-dimensional structure of the polymerase, 124R is visible through the NTP tunnel and is located close to the polymerase active site. We propose that 124R plays a key role in promoter binding during RNA synthesis.

  2. Kv4.2 and accessory dipeptidyl peptidase-like protein 10 (DPP10) subunit preferentially form a 4:2 (Kv4.2:DPP10) channel complex.

    PubMed

    Kitazawa, Masahiro; Kubo, Yoshihiro; Nakajo, Koichi

    2015-09-11

    Kv4 is a member of the voltage-gated K(+) channel family and forms a complex with various accessory subunits. Dipeptidyl aminopeptidase-like protein (DPP) is one of the auxiliary subunits for the Kv4 channel. Although DPP has been well characterized and is known to increase the current amplitude and accelerate the inactivation and recovery from inactivation of Kv4 current, it remains to be determined how many DPPs bind to one Kv4 channel. To examine whether the expression level of DPP changes the biophysical properties of Kv4, we expressed Kv4.2 and DPP10 in different ratios in Xenopus oocytes and analyzed the currents under two-electrode voltage clamp. The current amplitude and the speed of recovery from inactivation of Kv4.2 changed depending on the co-expression level of DPP10. This raised the possibility that the stoichiometry of the Kv4.2-DPP10 complex is variable and affects the biophysical properties of Kv4.2. We next determined the stoichiometry of DPP10 alone by subunit counting using single-molecule imaging. Approximately 70% of the DPP10 formed dimers in the plasma membrane, and the rest existed as monomers in the absence of Kv4.2. We next determined the stoichiometry of the Kv4.2-DPP10 complex; Kv4.2-mCherry and mEGFP-DPP10 were co-expressed in different ratios and the stoichiometries of Kv4.2-DPP10 complexes were evaluated by the subunit counting method. The stoichiometry of the Kv4.2-DPP10 complex was variable depending on the relative expression level of each subunit, with a preference for 4:2 stoichiometry. This preference may come from the bulky dimeric structure of the extracellular domain of DPP10.

  3. Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly.

    PubMed Central

    Kelman, Z; Yuzhakov, A; Andjelkovic, J; O'Donnell, M

    1998-01-01

    Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function of the psi subunit of the gamma complex clamp loader. Omission of psi from the holoenzyme prevents contact with single-stranded DNA-binding protein (SSB) and lowers the efficiency of clamp loading and chain elongation under conditions of elevated salt. We also show that the product of a classic point mutant of SSB, SSB-113, lacks strong affinity for psi and is defective in promoting clamp loading and processive replication at elevated ionic strength. SSB-113 carries a single amino acid replacement at the penultimate residue of the C-terminus, indicating the C-terminus as a site of interaction with psi. Indeed, a peptide of the 15 C-terminal residues of SSB is sufficient to bind to psi. These results establish a role for the psi subunit in contacting SSB, thus enhancing the clamp loading and processivity of synthesis of the holoenzyme, presumably by helping to localize the holoenzyme to sites of SSB-coated ssDNA. PMID:9545254

  4. Structural Basis for the Interaction of a Hexameric Replicative Helicase with the Regulatory Subunit of Human DNA Polymerase α-Primase*

    PubMed Central

    Zhou, Bo; Arnett, Diana R.; Yu, Xian; Brewster, Aaron; Sowd, Gregory A.; Xie, Charlies L.; Vila, Stefan; Gai, Dahai; Fanning, Ellen; Chen, Xiaojiang S.

    2012-01-01

    DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo. PMID:22700977

  5. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27.

    PubMed Central

    MacNeill, S A; Moreno, S; Reynolds, N; Nurse, P; Fantes, P A

    1996-01-01

    cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase. Images PMID:8887553

  6. Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit

    SciTech Connect

    Guu, Tom S.Y.; Dong Liping; Wittung-Stafshede, Pernilla; Tao, Yizhi J.

    2008-09-15

    The influenza A virus polymerase consists of three subunits (PA, PB1, and PB2) necessary for viral RNA synthesis. The heterotrimeric polymerase complex forms through PA interacting with PB1 and PB1 interacting with PB2. PA has been shown to play critical roles in the assembly, catalysis, and nuclear localization of the polymerase. To probe the structure of PA, we isolated recombinant PA from insect cells. Limited proteolysis revealed that PA contained two domains connected by a 20-residue linker (residues 257-276). Far-UV circular dichroism established that the two domains folded into a mixed {alpha}/{beta} structure when separately expressed. In vitro pull-down assays showed that neither individually nor cooperatively expressed PA domains, without the linker, could assure PA-PB1 interaction. Protease treatment of PA-PB1 complex indicated that its PA subunit was significantly more stable than free PA, suggesting that the linker is protected and it constitutes an essential component of the PA-PB1 interface.

  7. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26.

    PubMed

    Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2015-04-24

    The trimethylguanosine (TMG) caps of small nuclear (sn) RNAs are synthesized by the enzyme Tgs1 via sequential methyl additions to the N2 atom of the m(7)G cap. Whereas TMG caps are inessential for Saccharomyces cerevisiae vegetative growth at 25° to 37°, tgs1∆ cells that lack TMG caps fail to thrive at 18°. The cold-sensitive defect correlates with ectopic stoichiometric association of nuclear cap-binding complex (CBC) with the residual m(7)G cap of the U1 snRNA and is suppressed fully by Cbc2 mutations that weaken cap binding. Here, we show that normal growth of tgs1∆ cells at 18° is also restored by a C-terminal deletion of 77 amino acids from the Snp1 subunit of yeast U1 snRNP. These results underscore the U1 snRNP as a focal point for TMG cap function in vivo. Casting a broader net, we conducted a dosage suppressor screen for genes that allowed survival of tgs1∆ cells at 18°. We thereby recovered RPO26 (encoding a shared subunit of all three nuclear RNA polymerases) and RPO31 (encoding the largest subunit of RNA polymerase III) as moderate and weak suppressors of tgs1∆ cold sensitivity, respectively. A structure-guided mutagenesis of Rpo26, using rpo26∆ complementation and tgs1∆ suppression as activity readouts, defined Rpo26-(78-155) as a minimized functional domain. Alanine scanning identified Glu89, Glu124, Arg135, and Arg136 as essential for rpo26∆ complementation. The E124A and R135A alleles retained tgs1∆ suppressor activity, thereby establishing a separation-of-function. These results illuminate the structure activity profile of an essential RNA polymerase component.

  8. Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the β subunit of RNA polymerase

    PubMed Central

    Ganesan, Ann K.; Smith, Abigail J.; Savery, Nigel J.; Zamos, Portia; Hanawalt, Philip C.

    2008-01-01

    The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between RNAP and Mfd depends upon amino acids 117, 118, and 119 of the β subunit of RNAP; changing any one of these to alanine diminishes the interaction [1]. Using direct assays for TCR, and the lac operon of Escherichia coli containing UV induced cyclobutane pyrimidine dimers (CPDs) as substrate, we have found that a change from arginine to cysteine at amino acid 529 of the β subunit of the RNAP inactivates TCR, but does not prevent the interaction of RNAP with Mfd. Our results suggest that this interaction may be necessary but not sufficient to facilitate TCR. PMID:17532270

  9. Distinct Functions of Regions 1.1 and 1.2 of RNA Polymerase σ Subunits from Escherichia coli and Thermus aquaticus in Transcription Initiation*

    PubMed Central

    Miropolskaya, Nataliya; Ignatov, Artem; Bass, Irina; Zhilina, Ekaterina; Pupov, Danil; Kulbachinskiy, Andrey

    2012-01-01

    RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ70 and T. aquaticus σA subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ70 subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the −10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation. PMID:22605342

  10. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.

    PubMed

    Burton, Zachary F

    2014-01-01

    I relate a story of genesis told from the point of view of multi-subunit RNA polymerases (RNAPs) including an Old Testament (core RNAP motifs in all cellular life) and a New Testament (the RNAP II heptad repeat carboxy terminal domain (CTD) and CTD interactome in eukarya). The Old Testament: at their active site, one class of eukaryotic interfering RNAP and ubiquitous multi-subunit RNAPs each have two-double psi β barrel (DPBB) motifs (a distinct pattern for compact 6-β sheet barrels). Between β sheets 2 and 3 of the β subunit type DPBB of all multi-subunit RNAPs is a sandwich barrel hybrid motif (SBHM) that interacts with conserved initiation and elongation factors required to utilize a DNA template. Analysis of RNAP core protein motifs, therefore, indicates that RNAP evolution can be traced from the RNA-protein world to LUCA (the last universal common ancestor) branching to LECA (the last eukaryotic common ancestor) and to the present day, spanning about 4 billion years. The New Testament: in the eukaryotic lineage, I posit that splitting RNAP functions into RNAPs I, II and III and innovations developed around the CTD heptad repeat of RNAP II and the extensive CTD interactome helps to describe how greater structural, cell cycle, epigenetic and signaling complexity co-evolved in eukaryotes relative to eubacteria and archaea.

  11. Abundant Intergenic TAACTGA Direct Repeats and Putative Alternate RNA Polymerase β′ Subunits in Marine Beggiatoaceae Genomes: Possible Regulatory Roles and Origins

    PubMed Central

    MacGregor, Barbara J.

    2015-01-01

    The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. “Maribeggiatoa” filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. “Maribeggiatoa” Orange Guaymas (BOGUAY) genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein), and Csr (carbon storage regulator) families. No pattern was evident in the predicted functions of the open reading frames (ORFs) downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in

  12. Beta*, a UV-inducible smaller form of the beta subunit sliding clamp of DNA polymerase III of Escherichia coli. I. Gene expression and regulation.

    PubMed

    Paz-Elizur, T; Skaliter, R; Blumenstein, S; Livneh, Z

    1996-02-02

    The 40.6-kDa beta subunit of DNA polymerase III of Escherichia coli is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity (Stukenberg, P. T., Studwell-Vaughan, P. S., and O'Donnell, M. (1991) J. Biol. Chem. 266, 11328-11334). UV irradiation of E. coli induces a smaller 26-kDa form of the beta subunit, termed beta*, that, when overproduced from a plasmid, increases UV resistance of E. coli (Skaliter, R., Paz-Elizur, T., and Livneh, Z. (1996) J. Biol. Chem. 271, 2478-2481). Here we show that this protein is synthesized from a UV-inducible internal gene, termed dnaN*, that is located in-frame inside the coding region of dnaN, encoding the beta subunit. The initiation codon and the Shine-Dalgarno sequence of dnaN* were identified by site-directed mutagenesis. The dnaN* transcript was shown to be induced upon treatment with nalidixic acid, and transcriptional dnaN*-cat gene fusions were UV inducible, suggesting induction of dnaN* at the transcriptional level. Analysis of translational dnaN*-lacZ gene fusions revealed that UV induction was abolished in strains carrying the recA56, lexA3, or delta rpoH mutations, indicating involvement of both SOS and heat shock stress responses in the induction process. Expression of dnaN* represents a strategy of producing several proteins with related functional domains from a single gene.

  13. Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II.

    PubMed

    Sakurai, H; Ishihama, A

    2001-01-01

    The RNA polymerase II (Pol II) of eukaryotes is composed of 12 subunits, of which five are shared among Pol I, Pol II and Pol III. At present, however, little is known about the regulation of synthesis and assembly of the 12 Pol II subunits. To obtain an insight into the regulation of synthesis of these 12 Pol II subunits, Rpb1 to Rpb12, in the fission yeast Schizosaccharomyces pombe, we analysed the transcriptional organization of the rpb genes by use of the oligo capping method, and determined mRNA levels by quantitative competitive PCR assay. The intracellular concentrations of the 12 Rpb subunits in growing S. pombe cells are different, within a range of 15-fold difference between the least abundant Rpb3 and the most abundant Rpb12. The transcription of one group of genes including rpb3, rpb4, rpb5, rpb6, rpb7 and rpb10 is mainly initiated at a single site, while that of the other group of genes for rpb1, rpb2, rpb8, rpb9, rpb11 and rpb12 is initiated at multiple sites. The promoters of the first group of genes contain the TATA box sequence between -26 and -62, while the second group of genes carry TATA-less promoters. Several common sequence segments, tentatively designated 'Rpb motifs', were identified in the promoter regions of the rpb genes. Competitive PCR analysis indicated that mRNAs for Rpb1, Rpb3, Rpb7 and Rpb9 were among the group which had a low abundance, while the levels of Rpb6 and Rpb10 mRNAs were about fivefold, and that of Rpb2 mRNA was about 40-fold higher than the Rpb3 mRNA level. The levels of rpb mRNAs do not correlate with those of Rpb proteins. The protein-to-mRNA ratio or the translation efficiency is low for the rpb1, rpb2, rpb3 and rpb11 genes, encoding the homologues of subunits beta', beta, alpha and alpha, respectively, of the prokaryotic RNA polymerase core enzyme.

  14. The bacteriophage P1 hot gene, encoding a homolog of the E. coli DNA polymerase III theta subunit, is expressed during both lysogenic and lytic growth stages.

    PubMed

    Chikova, Anna K; Schaaper, Roel M

    2007-11-01

    The bacteriophage P1 hot gene product is a homolog of the theta subunit of E. coli DNA polymerase III. Previous studies with hot cloned on a plasmid have shown that Hot protein can substitute for theta, as evidenced by its stabilizing effect on certain dnaQ mutator mutants carrying an unstable pol III proofreading subunit (epsilon subunit). These results are consistent with Hot, like theta, being a replication protein involved in stabilizing the intrinsically unstable epsilon proofreading function. However, the function of hot for the viral life cycle is less clear. In the present study, we show that the hot gene is not essential. Based on its promoter structure, hot has been previously classified as a "late" phage gene, a property that is not easily reconciled with a presumed replication function. Here, we clarify this issue by demonstrating that P1 hot is actively expressed both during the lysogenic state and in the early stages of a lytic induction, in addition to its expression in the late stage of phage development. The results indicate that P1 hot has a complex expression pattern, compatible with a model in which Hot may affect the host replication machinery to benefit overall phage replication.

  15. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.

    PubMed

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-09-05

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m(7)GTP)) and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m(7)GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m(7)GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II.

    PubMed

    Khazak, V; Estojak, J; Cho, H; Majors, J; Sonoda, G; Testa, J R; Golemis, E A

    1998-04-01

    Under conditions of environmental stress, prokaryotes and lower eukaryotes such as the yeast Saccharomyces cerevisiae selectively utilize particular subunits of RNA polymerase II (pol II) to alter transcription to patterns favoring survival. In S. cerevisiae, a complex of two such subunits, RPB4 and RPB7, preferentially associates with pol II during stationary phase; of these two subunits, RPB4 is specifically required for survival under nonoptimal growth conditions. Previously, we have shown that RPB7 possesses an evolutionarily conserved human homolog, hsRPB7, which was capable of partially interacting with RPB4 and the yeast transcriptional apparatus. Using this as a probe in a two-hybrid screen, we have now established that hsRPB4 is also conserved in higher eukaryotes. In contrast to hsRPB7, hsRPB4 has diverged so that it no longer interacts with yeast RPB7, although it partially complements rpb4- phenotypes in yeast. However, hsRPB4 associates strongly and specifically with hsRPB7 when expressed in yeast or in mammalian cells and copurifies with intact pol II. hsRPB4 expression in humans parallels that of hsRPB7, supporting the idea that the two proteins may possess associated functions. Structure-function studies of hsRPB4-hsRPB7 are used to establish the interaction interface between the two proteins. This identification completes the set of human homologs for RNA pol II subunits defined in yeast and should provide the basis for subsequent structural and functional characterization of the pol II holoenzyme.

  17. Analysis of the Interaction of the Novel RNA Polymerase II (pol II) Subunit hsRPB4 with Its Partner hsRPB7 and with pol II

    PubMed Central

    Khazak, Vladimir; Estojak, Joanne; Cho, Helen; Majors, Jenifer; Sonoda, Gonosuke; Testa, Joseph R.; Golemis, Erica A.

    1998-01-01

    Under conditions of environmental stress, prokaryotes and lower eukaryotes such as the yeast Saccharomyces cerevisiae selectively utilize particular subunits of RNA polymerase II (pol II) to alter transcription to patterns favoring survival. In S. cerevisiae, a complex of two such subunits, RPB4 and RPB7, preferentially associates with pol II during stationary phase; of these two subunits, RPB4 is specifically required for survival under nonoptimal growth conditions. Previously, we have shown that RPB7 possesses an evolutionarily conserved human homolog, hsRPB7, which was capable of partially interacting with RPB4 and the yeast transcriptional apparatus. Using this as a probe in a two-hybrid screen, we have now established that hsRPB4 is also conserved in higher eukaryotes. In contrast to hsRPB7, hsRPB4 has diverged so that it no longer interacts with yeast RPB7, although it partially complements rpb4− phenotypes in yeast. However, hsRPB4 associates strongly and specifically with hsRPB7 when expressed in yeast or in mammalian cells and copurifies with intact pol II. hsRPB4 expression in humans parallels that of hsRPB7, supporting the idea that the two proteins may possess associated functions. Structure-function studies of hsRPB4-hsRPB7 are used to establish the interaction interface between the two proteins. This identification completes the set of human homologs for RNA pol II subunits defined in yeast and should provide the basis for subsequent structural and functional characterization of the pol II holoenzyme. PMID:9528765

  18. Proteolysis of the Human DNA Polymerase Delta Smallest Subunit p12 by μ-Calpain in Calcium-Triggered Apoptotic HeLa Cells

    PubMed Central

    You, Chao; Qian, Yuanxia; Gao, Jing; Liu, Peng; Chen, Huiqing; Song, Huifang; Chen, Yan; Chen, Keping; Zhou, Yajing

    2014-01-01

    Degradation of p12 subunit of human DNA polymerase delta (Pol δ) that results in an interconversion between Pol δ4 and Pol δ3 forms plays a significant role in response to replication stress or genotoxic agents triggered DNA damage. Also, the p12 is readily degraded by human calpain in vitro. However, little has been done for the investigation of its degree of participation in any of the more common apoptosis. Here, we first report that the p12 subunit is a substrate of μ-calpain. In calcium-triggered apoptotic HeLa cells, the p12 is degraded at 12 hours post-induction (hpi), restored thereafter by 24 hpi, and then depleted again after 36 hpi in a time-dependent manner while the other three subunits are not affected. It suggests a dual function of Pol δ by its interconversion between Pol δ4 and Pol δ3 that is involved in a novel unknown apoptosis mechanism. The proteolysis of p12 could be efficiently blocked by both calpain inhibitor ALLN and proteasome inhibitor MG132. In vitro pull down and co-immunoprecipitation assays show that the μ-calpain binds to p12 through the interaction of μ-calpain with Pol δ other three subunits, not p12 itself, and PCNA, implying that the proteolysis of p12 by μ-calpain might be through a Pol δ4/PCNA complex. The p12 cleavage sites by μ-calpain are further determined as the location within a 16-amino acids peptide 28-43 by in vitro cleavage assays. Thus, the p12/Pol δ is a target as a nuclear substrate of μ-calpain in a calcium-triggered apoptosis and appears to be a potential marker in the study of the chemotherapy of cancer therapies. PMID:24691096

  19. TATA-box DNA binding activity and subunit composition for RNA polymerase III transcription factor IIIB from Xenopus laevis.

    PubMed Central

    McBryant, S J; Meier, E; Leresche, A; Sharp, S J; Wolf, V J; Gottesfeld, J M

    1996-01-01

    The RNA polymerase III transcription initiation factor TFIIIB contains the TATA-box-binding protein (TBP) and polymerase III-specific TBP-associated factors (TAFs). Previous studies have shown that DNA oligonucleotides containing the consensus TATA-box sequence inhibit polymerase III transcription, implying that the DNA binding domain of TBP is exposed in TFIIIB. We have investigated the TATA-box DNA binding activity of Xenopus TFIIIB, using transcription inhibition assays and a gel mobility shift assay. Gel shift competition assays with mutant and nonspecific DNAs demonstrate the specificity of the TFIIIB-TATA box DNA complex. The apparent dissociation constant for this protein-DNA interaction is approximately 0.4 nM, similar to the affinity of yeast TBP for the same sequence. TFIIIB transcriptional activity and TATA-box binding activity cofractionate during a series of four ion-exchange chromatographic steps, and reconstituted transcription reactions demonstrate that the TATA-box DNA-protein complex contains TFIIIB TAF activity. Polypeptides with apparent molecular masses of 75 and 92 kDa are associated with TBP in this complex. These polypeptides were renatured after elution from sodium dodecyl sulfate-gels and tested individually and in combination for TFIIIB TAF activity. Recombinant TBP along with protein fractions containing the 75- and 92-kDa polypeptides were sufficient to reconstitute TFIIIB transcriptional activity and DNA binding activity, suggesting that Xenopus TFIIIB is composed of TBP along with these polypeptides. PMID:8756620

  20. RPC53 encodes a subunit of Saccharomyces cerevisiae RNA polymerase C (III) whose inactivation leads to a predominantly G1 arrest.

    PubMed Central

    Mann, C; Micouin, J Y; Chiannilkulchai, N; Treich, I; Buhler, J M; Sentenac, A

    1992-01-01

    RPC53 is shown to be an essential gene encoding the C53 subunit specifically associated with yeast RNA polymerase C (III). Temperature-sensitive rpc53 mutants were generated and showed a rapid inhibition of tRNA synthesis after transfer to the restrictive temperature. Unexpectedly, the rpc53 mutants preferentially arrested their cell division in the G1 phase as large, round, unbudded cells. The RPC53 DNA sequence is predicted to code for a hydrophilic M(r)-46,916 protein enriched in charged amino acid residues. The carboxy-terminal 136 amino acids of C53 are significantly similar (25% identical amino acid residues) to the same region of the human BN51 protein. The BN51 cDNA was originally isolated by its ability to complement a temperature-sensitive hamster cell mutant that undergoes a G1 cell division arrest, as is true for the rpc53 mutants. Images PMID:1406624

  1. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome

    PubMed Central

    Achilleos, Annita; Neben, Cynthia L.; Merrill, Amy E.; Trainor, Paul A.

    2016-01-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281

  2. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit.

    PubMed

    Byrn, Randal A; Jones, Steven M; Bennett, Hamilton B; Bral, Chris; Clark, Michael P; Jacobs, Marc D; Kwong, Ann D; Ledeboer, Mark W; Leeman, Joshua R; McNeil, Colleen F; Murcko, Mark A; Nezami, Azin; Perola, Emanuele; Rijnbrand, Rene; Saxena, Kumkum; Tsai, Alice W; Zhou, Yi; Charifson, Paul S

    2015-03-01

    VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.

  3. Preclinical Activity of VX-787, a First-in-Class, Orally Bioavailable Inhibitor of the Influenza Virus Polymerase PB2 Subunit

    PubMed Central

    Byrn, Randal A.; Jones, Steven M.; Bennett, Hamilton B.; Bral, Chris; Clark, Michael P.; Jacobs, Marc D.; Kwong, Ann D.; Ledeboer, Mark W.; Leeman, Joshua R.; McNeil, Colleen F.; Murcko, Mark A.; Nezami, Azin; Perola, Emanuele; Rijnbrand, Rene; Saxena, Kumkum; Tsai, Alice W.; Zhou, Yi

    2014-01-01

    VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m7GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection. PMID:25547360

  4. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    PubMed

    Noack Watt, Kristin E; Achilleos, Annita; Neben, Cynthia L; Merrill, Amy E; Trainor, Paul A

    2016-07-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention.

  5. [Involvement of sigma S and sigma 70 subunits of RNA polymerase and the CRP protein in the regulation of microcin C51 operon expression].

    PubMed

    Veselovskiĭ, A M; Bass, I A; Zolotukhina, M A; Mironov, A S; Metlitskaia, A Z; Khmel', I A

    2004-11-01

    Expression of the microcin C51 operon in Escherichia coli cells is activated during cell entry into the stationary growth phase and depends on the sigmaS subunit of RNA polymerase (RpoS). The null rpoS mutations retained the residual expression level of the transcriptional P(mcc)-lac fusion, which indicates that other sigma subunit can participate in the regulation of transcription of the microcin C51 operon. Data presented in this work show that the overproduction of sigma70 in rpoS- cells diminished the level of P(mcc)-lac expression, as in wild-type cells, which seems to be the consequence of competition between sigma factors for a limited number of core RNA polymerase molecules. In the presence of the rpoD800 mutation that renders sigma70 temperature-sensitive, expression of P(mcc)-lac was not induced in the phase of delayed culture growth at nonpermissive temperature, which indicates that sigma70 is indispensable for microcin operon expression. Point substitutions in the -10 P(mcc) region, leading to the formation of 5'-TGaTATAAT-3' site, enhanced promoter activity but did not affect the relationship between P(mcc)-lac transcription and growth phase, sigmaS, and the activator protein CRP. The activator protein CRP was shown to bind a DNA fragment containing the TGTGA(AATGAA)TCTAT site in the -59.5 bp position relative to the start site of transcription. Mutation in the ssrI gene encoding 6S RNA did not disturb P9mcc)-lac expression; these results indicate that 6S RNA does not participate in the regulation of microcin C51 operon expression.

  6. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase [alpha

    SciTech Connect

    Sun, Jia; Yang, Yuting; Wan, Ke; Mao, Ninghui; Yu, Tai-Yuan; Lin, Yi-Chien; DeZwaan, Diane C.; Freeman, Brian C.; Lin, Jing-Jer; Lue, Neal F.; Lei, Ming

    2011-08-24

    Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase {alpha} (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.

  7. Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice

    PubMed Central

    Qu, Xiao; Ding, Longfei; Qin, Zhenqiao; Wu, Jianguo; Pan, Zishu

    2015-01-01

    Genetically similar H5N1 viruses circulating in the avian reservoir exhibit different levels of pathogenicity in mice. In this study, we characterized two highly pathogenic H5N1 avian isolates—A/Hunan/316/2005 (HN05), which is highly pathogenic in mice, and A/Hubei/489/2004 (HB04), which is nonpathogenic. In mammalian cells, HN05 replicates more efficiently than HB04, although both viruses have similar growth kinetics in avian cells. We used reverse genetics to generate recombinant H5N1 strains containing genes from HN05 and HB04 and examined their virulence. HN05 genes encoding the polymerase complex determine pathogenicity and viral replication ability both in vitro and in vivo. The PB2 subunit plays an important role in enhancing viral replication, and the PB1 and PA subunits contribute mainly to pathogenicity in mice. These results can be used to elucidate host-range expansion and the molecular basis of the high virulence of H5N1 viruses in mammalian species. PMID:25938456

  8. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction.

    PubMed Central

    Guyon, T; Levasseur, P; Truffault, F; Cottin, C; Gaud, C; Berrih-Aknin, S

    1994-01-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by auto-antibodies that attack the nicotinic acetylcholine receptor (AChR). To elucidate the molecular mechanisms underlying the decrease in AChR levels at the neuromuscular junction, we investigated the regulation of AChR expression by analyzing mRNA of the two AChR alpha subunit isoforms (P3A+ and P3A-) in muscle samples from myasthenic patients relative to controls. We applied a quantitative method based on reverse transcription of total RNA followed by polymerase chain reaction (PCR), using an internal standard we constructed by site-directed mutagenesis. An increased expression of mRNA coding for the alpha subunit of the AChR isoforms was observed in severely affected patients (P < 0.003 versus controls) but not in moderately affected patients, independently of the anti-AChR antibody titer. Study of mRNA precursor levels indicates a higher expression in severely affected patients compared to controls, suggesting an enhanced rate of transcription of the message coding for the alpha subunit isoforms in these patients. We have also reported that mRNA encoding both isoforms are expressed at an approximate 1:1 ratio in controls and in patients. We have thus identified a new biological parameter correlated with disease severity, and provide evidence of a compensatory mechanism to balance the loss of AChR in human myasthenia gravis, which is probably triggered only above a certain degree of AChR loss. Images PMID:8040257

  9. Pivotal Role for a Tail Subunit of the RNA Polymerase II Mediator Complex CgMed2 in Azole Tolerance and Adherence in Candida glabrata

    PubMed Central

    Borah, Sapan; Shivarathri, Raju; Srivastava, Vivek Kumar; Ferrari, Sélène; Sanglard, Dominique

    2014-01-01

    Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals. PMID:25070095

  10. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis.

    PubMed

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-09-06

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis

    PubMed Central

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-01-01

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. PMID:27193996

  12. MUSCLE-SPECIFIC OVEREXPRESSION OF THE CATALYTIC SUBUNIT OF DNA POLYMERASE γ INDUCES PUPAL LETHALITY IN Drosophila melanogaster

    PubMed Central

    Martínez-Azorín, Francisco; Calleja, Manuel; Hernández-Sierra, Rosana; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2015-01-01

    We show the physiological effects and molecular characterization of overexpression of the catalytic core of mitochondrial DNA (mtDNA) polymerase (pol γ-α) in muscle of Drosophila melanogaster. Muscle-specific overexpression of pol γ-α using the UAS/GAL4 (where UAS is upstream activation sequence) system produced more than 90% of lethality at the end of pupal stage at 25°C, and the survivor adult flies showed a significant reduction in life span. The survivor flies displayed a decreased mtDNA level that is accompanied by a corresponding decrease in the levels of the nucleoid-binding protein mitochondrial transcription factor A (mtTFA). Furthermore, an increase in apoptosis is detected in larvae and adults overexpressing pol γ-α. We suggest that the pupal lethality and reduced life span of survivor adult flies are both caused mainly by massive apoptosis of muscle cells induced by mtDNA depletion. PMID:23729397

  13. Characterization of the low pH solution structure and dynamics of the region 4 of Escherichia coli RNA polymerase sigma70 subunit.

    PubMed

    Poznański, Jarosław; Bolewska, Krystyna; Zhukov, Igor; Wierzchowski, Kazimierz L

    2003-11-25

    Solution structure of the region 4 of sigma(70) subunit of Escherichia coli RNA polymerase, whose 4.2 subregion is involved in specific recognition of the -35 element of cognate promoters, has not been yet studied. Using multinuclear NMR spectroscopy, we have assigned recently all the backbone and aliphatic side-chain (13)C resonances for a recombinant His(6)-tagged protein containing the whole region 4 and a part of region 3.2 of sigma(70) in aqueous solution at pH 2.8 (Poznański, J., Zhukov, I., Bolewska, K., and Wierzchowski, K. L. (2001) J. Biomol. NMR 20, 181-2). The protein proved to be sufficiently soluble and did not aggregate only in the protonated state. In this paper, the structure and dynamics of this state at pH 2.8 have been extensively examined using CD and NMR spectroscopy. Both analysis of CD spectra and NMR observables (secondary chemical shifts of the (13)Calpha, (13)CO, and (1)Halpha nuclei and of vicinal (3)J(HNH)(alpha) coupling constants) indicated that a significant amount of helical structure remained in the protonated protein. The amount of this structure increased upon deprotonation of carboxylic amino acids, as shown by pH titration CD experiments. 2,2,2-Trifluoroethanol induced an even more extensive build up of this structure. Distribution along the protein sequence of the secondary shifts and (3)J(HNH)(alpha) couplings demonstrated partition of the helical secondary structure into three helices located similarly as in the crystal structures of the homologous region 4 of the sigma(A) subunit of Thermus aquaticus RNA polymerase (Campbell, E. A., Muzzin, O., Chlenov, M., Sun, J. L., Olson, A., Weinman, O., Trester-Zedlitz, M. L., and Darst, S. A. (2002) Mol. Cell 9, 527-39) and sigma(70) of the Thermus thermophilus RNA polymerase (Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S., and Yokoyama, S. (2002) Nature 417, 712-9.). Spectral density analysis of NMR relaxation parameters, R(1) and R(2), and [(1

  14. NRPD4, a Protein Related to the RPB4 Subunit of RNA Polymerase II, is a Component of RNA Polymerases IV and V and is Required for RNA-directed DNA methylation

    SciTech Connect

    He, Xin-Jian; Hsu, Yi-Feng; Pontes, Olga; Zhu, Jianhua; Lu, Jian; Bressan, Ray A.; Pikaard, Craig S.; Wang, Co-Shine; Zhu, Jian-Kang

    2009-01-01

    RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V.

  15. RNA Polymerase II Second Largest Subunit Molecular Identification of Boletus griseipurpureus Corner From Thailand and Antibacterial Activity of Basidiocarp Extracts.

    PubMed

    Aung-Aud-Chariya, Amornrat; Bangrak, Phuwadol; Lumyong, Saisamorn; Phupong, Worrapong; Aggangan, Nelly Siababa; Kamlangdee, Niyom

    2015-03-01

    Boletus griseipurpureus Corner, an edible mushroom, is a putative ectomycorrhizal fungus. Currently, the taxonomic boundary of this mushroom is unclear and its bitter taste makes it interesting for evaluating its antibacterial properties. The purpose of this study was to identify the genetic variation of this mushroom and also to evaluate any antibacterial activities. Basidiocarps were collected from 2 north-eastern provinces, Roi Et and Ubon Ratchathani, and from 2 southern provinces, Songkhla and Surat Thani, in Thailand. Genomic DNA was extracted and molecular structure was examined using the RNA polymerase II (RPB2) analysis. Antibacterial activities of basidiocarp extracts were conducted with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29523 and methicillin-resistant Staphylococcus aureus (MRSA) 189 using the agar-well diffusion method. All the samples collected for this study constituted a monophyletic clade, which was closely related with the Boletus group of polypore fungi. For the antibacterial study, it was found that the crude methanol extract of basidiomes inhibited the growth of all bacteria in vitro more than the crude ethyl acetate extract. Basidomes collected from four locations in Thailand had low genetic variation and their extracts inhibited the growth of all tested bacteria. The health benefits of this edible species should be evaluated further.

  16. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II.

    PubMed

    Akhrymuk, Ivan; Kulemzin, Sergey V; Frolova, Elena I

    2012-07-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response.

  17. Evasion of the Innate Immune Response: the Old World Alphavirus nsP2 Protein Induces Rapid Degradation of Rpb1, a Catalytic Subunit of RNA Polymerase II

    PubMed Central

    Akhrymuk, Ivan; Kulemzin, Sergey V.

    2012-01-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response. PMID:22514352

  18. Drosophila melanogaster Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19

    PubMed Central

    Boube, Muriel; Hudry, Bruno; Immarigeon, Clément; Carrier, Yannick; Bernat-Fabre, Sandra; Merabet, Samir; Graba, Yacine; Bourbon, Henri-Marc; Cribbs, David L.

    2014-01-01

    Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded “co-factor” that acts together with Hox proteins through their homeodomains in regulated developmental transcription. PMID:24786462

  19. Molecular basis of the interaction for an essential subunit PA-PB1 in influenza virus RNA polymerase: insights from molecular dynamics simulation and free energy calculation.

    PubMed

    Liu, Huanxiang; Yao, Xiaojun

    2010-02-01

    The emergence of the extremely aggressive influenza recently has highlighted the urgent need for new effective treatments. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer including PA, PB1 and PB2 has crucial roles in viral RNA replication and transcription. The highly conserved PB1 binding site on PA can be considered as a novel potential drug target site. The interaction between PB1 binding site and PA is crucial to many functions of the virus. In this study, to understand the detailed interaction profile and to characterize the binding hot spots in the interactions of the PA-PB1 complex, an 8 ns molecular dynamics simulation of the subunit PA-PB1 combined with MM-PBSA (molecular mechanics Poisson-Boltzmann surface area), MM-GBSA (molecular mechanics generalized Born surface area) computations and virtual alanine scanning were performed. The results from the free energy decomposition indicate that the intermolecular van der Waals interaction and the nonpolar solvation term provide the driving force for binding process. Through the pair interaction analysis and virtual alanine scanning, we identified the binding hot spots of PA and the basic binding motif of PB1. This information can provide some insights for the structure-based RNA-dependent RNA polymerase inhibitors design. The identified binding motif can be used as the starting point for the rational design of small molecules or peptide mimics. This study will also lead to new opportunities toward the development of new generation therapeutic agents exhibiting specificity and low resistance to influenza virus.

  20. The 25 kDa Subunit of Cleavage Factor Im Is a RNA-Binding Protein That Interacts with the Poly(A) Polymerase in Entamoeba histolytica

    PubMed Central

    Pezet-Valdez, Marisol; Fernández-Retana, Jorge; Ospina-Villa, Juan David; Ramírez-Moreno, María Esther; Orozco, Esther; Charcas-López, Socorro; Soto-Sánchez, Jacqueline; Mendoza-Hernández, Guillermo; López-Casamicha, Mavil; López-Camarillo, César; Marchat, Laurence A.

    2013-01-01

    In eukaryotes, polyadenylation of pre-mRNA 3´ end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25) from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X) domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25) was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A) polymerase (EhPAP) that is responsible for the synthesis of the poly(A) tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A) polymerase, another member of the pre-mRNA 3´ end processing machinery in this protozoan parasite. PMID:23840799

  1. Activation of Antibiotic Biosynthesis by Specified Mutations in the rpoB Gene (Encoding the RNA Polymerase β Subunit) of Streptomyces lividans

    PubMed Central

    Hu, Haifeng; Zhang, Qin; Ochi, Kozo

    2002-01-01

    We found that the biosynthesis of actinorhodin (Act), undecylprodigiosin (Red), and calcium-dependent antibiotic (CDA) are dramatically activated by introducing certain mutations into the rpoB gene that confer resistance to rifampin to Streptomyces lividans 66, which produces less or no antibiotics under normal growth conditions. Activation of Act and/or Red biosynthesis by inducing mutations in the rpoB gene was shown to be dependent on the mutation's position and the amino acid species substituted in the β-subunit of the RNA polymerase. Mutation analysis identified 15 different kinds of point mutations, which are located in region I, II, or III of the rpoB gene and, in addition, two novel mutations (deletion of nucleotides 1287 to 1289 and a double substitution at nucleotides 1309 and 1310) were also found. Western blot analyses and S1 mapping analyses demonstrated that the expression of actII-ORF4 and redD, which are pathway-specific regulatory genes for Act and Red, respectively, was activated in the mutants able to produce Act and Red. The ActIV-ORF1 protein (an enzyme for Act biosynthesis) and the RedD protein were produced just after the upregulation of ActII-ORF4 and RedZ, respectively. These results indicate that the mutation in the rpoB gene of S. lividans, resulting in the activation of Act and/or Red biosynthesis, functions at the transcription level by activating directly or indirectly the key regulatory genes, actII-ORF4 and redD. We propose that the mutated RNA polymerase may function by mimicking the ppGpp-bound form in activating the onset of secondary metabolism in Streptomyces. PMID:12081971

  2. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold.

    PubMed

    Mühlbacher, Wolfgang; Mayer, Andreas; Sun, Mai; Remmert, Michael; Cheung, Alan C M; Niesser, Jürgen; Soeding, Johannes; Cramer, Patrick

    2015-10-01

    CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.

  3. Amebic colitis in an antigenically and serologically negative patient: usefulness of a small-subunit ribosomal RNA gene-based polymerase chain reaction in diagnosis.

    PubMed

    Solaymani-Mohammadi, Shahram; Coyle, Christina M; Factor, Stephen M; Petri, William A

    2008-11-01

    Specific identification of Entamoeba histolytica in clinical specimens is an essential confirmatory diagnostic step in the management of amebiasis. Here, we report an unusual case of amebic colitis in a 20-year-old female immigrant from South China. The patient had experienced diarrhea, crampy abdominal pain, and fever for approximately 3 weeks prior to admission to hospital and had treated herself at home with metronidazole. On admission, stool microscopy and serology for E. histolytica were negative. Because the clinical findings raised the suspicion of Clostridium difficile fulminant colitis, she underwent a subtotal colectomy. Histopathology revealed flask-shaped ulcers characteristic of amebic colitis. Consequently, E. histolytica DNA was detected by a sensitive small-subunit rRNA polymerase chain reaction (PCR) from feces, and the patient was successfully treated for amebiasis with metronidazole. This case exemplifies the relative insensitivity of serologic tests for the diagnosis of intestinal amebiasis and the difficulties encountered in detecting the parasite antigen in a patient partially treated with metronidazole. We conclude that when the possibility of invasive intestinal amebiasis is suspected, detecting the parasite DNA directly in the stool sample by PCR using E. histolytica-specific primers may be an alternative, noninvasive, and reliable tool for the specific diagnosis of the disease.

  4. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint

    PubMed Central

    Rudzka, Justyna; Campbell, Judith L.; Jonczyk, Piotr; Fijałkowska, Iwona J.

    2017-01-01

    To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. PMID:28107343

  5. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  6. The fission yeast protein Ker1p is an ortholog of RNA polymerase I subunit A14 in Saccharomyces cerevisiae and is required for stable association of Rrn3p and RPA21 in RNA polymerase I.

    PubMed

    Imazawa, Yukiko; Hisatake, Koji; Mitsuzawa, Hiroshi; Matsumoto, Masahito; Tsukui, Tohru; Nakagawa, Kaori; Nakadai, Tomoyoshi; Shimada, Miho; Ishihama, Akira; Nogi, Yasuhisa

    2005-03-25

    A heterodimer formed by the A14 and A43 subunits of RNA polymerase (pol) I in Saccharomyces cerevisiae is proposed to correspond to the Rpb4/Rpb7 and C17/C25 heterodimers in pol II and pol III, respectively, and to play a role(s) in the recruitment of pol I to the promoter. However, the question of whether the A14/A43 heterodimer is conserved in eukaryotes other than S. cerevisiae remains unanswered, although both Rpb4/Rpb7 and C17/C25 are conserved from yeast to human. To address this question, we have isolated a Schizosaccharomyces pombe gene named ker1+ using a yeast two-hybrid system, including rpa21+, which encodes an ortholog of A43, as bait. Although no homolog of A14 has previously been found in the S. pombe genome, functional characterization of Ker1p and alignment of Ker1p and A14 showed that Ker1p is an ortholog of A14. Disruption of ker1+ resulted in temperature-sensitive growth, and the temperature-sensitive deficit of ker1delta was suppressed by overexpression of either rpa21+ or rrn3+, which encodes the rDNA transcription factor Rrn3p, suggesting that Ker1p is involved in stabilizing the association of RPA21 and Rrn3p in pol I. We also found that Ker1p dissociated from pol I in post-log-phase cells, suggesting that Ker1p is involved in growth-dependent regulation of rDNA transcription.

  7. The rpoZ Gene, Encoding the RNA Polymerase Omega Subunit, Is Required for Antibiotic Production and Morphological Differentiation in Streptomyces kasugaensis

    PubMed Central

    Kojima, Ikuo; Kasuga, Kano; Kobayashi, Masayuki; Fukasawa, Akira; Mizuno, Satoshi; Arisawa, Akira; Akagawa, Hisayoshi

    2002-01-01

    The occurrence of pleiotropic mutants that are defective in both antibiotic production and aerial mycelium formation is peculiar to streptomycetes. Pleiotropic mutant KSB was isolated from wild-type Streptomyces kasugaensis A1R6, which produces kasugamycin, an antifungal aminoglycoside antibiotic. A 9.3-kb DNA fragment was cloned from the chromosomal DNA of strain A1R6 by complementary restoration of kasugamycin production and aerial hypha formation to mutant KSB. Complementation experiments with deletion plasmids and subsequent DNA analysis indicated that orf5, encoding 90 amino acids, was responsible for the restoration. A protein homology search revealed that orf5 was a homolog of rpoZ, the gene that is known to encode RNA polymerase subunit omega (ω), thus leading to the conclusion that orf5 was rpoZ in S. kasugaensis. The pleiotropy of mutant KSB was attributed to a 2-bp frameshift deletion in the rpoZ region of mutant KSB, which probably resulted in a truncated, incomplete ω of 47 amino acids. Furthermore, rpoZ-disrupted mutant R6D4 obtained from strain A1R6 by insertion of Tn5 aphII into the middle of the rpoZ-coding region produced neither kasugamycin nor aerial mycelia, similar to mutant KSB. When rpoZ of S. kasugaensis and Streptomyces coelicolor, whose deduced products differed in the sixth amino acid residue, were introduced into mutant R6D4 via a plasmid, both transformants produced kasugamycin and aerial hyphae without significant differences. This study established that rpoZ is required for kasugamycin production and aerial mycelium formation in S. kasugaensis and responsible for pleiotropy. PMID:12426327

  8. Exo1 phosphorylation status controls the hydroxyurea sensitivity of cells lacking the Pol32 subunit of DNA polymerases delta and zeta.

    PubMed

    Doerfler, Lillian; Schmidt, Kristina H

    2014-12-01

    Exo1 belongs to the Rad2 family of structure-specific nucleases and possesses 5'-3' exonuclease activity on double-stranded DNA substrates. Exo1 interacts physically with the DNA mismatch repair (MMR) proteins Msh2 and Mlh1 and is involved in the excision of the mispaired nucleotide. Independent of its role in MMR, Exo1 contributes to long-range resection of DNA double-strand break (DSB) ends to facilitate their repair by homologous recombination (HR), and was recently identified as a component of error-free DNA damage tolerance pathways. Here, we show that Exo1 activity increases the hydroxyurea sensitivity of cells lacking Pol32, a subunit of DNA polymerases δ and ζ. Both, phospho-mimicking and dephospho-mimicking exo1 mutants act as hypermorphs, as evidenced by an increase in HU sensitivity of pol32Δ cells, suggesting that they are trapped in an active form and that phosphorylation of Exo1 at residues S372, S567, S587, S692 is necessary, but insufficient, for the accurate regulation of Exo1 activity at stalled replication forks. In contrast, neither phosphorylation status is important for Exo1's role in MMR or in the suppression of genome instability in cells lacking Sgs1 helicase. This ability of an EXO1 deletion to suppress the HU hypersensitivity of pol32Δ cells is in contrast to the negative genetic interaction between deletions of EXO1 and POL32 in MMS-treated cells as well as the role of EXO1 in DNA-damage treated rad53 and mec1 mutants.

  9. Cloning and characterization of the 5'-upstream sequence governing the cell cycle-dependent transcription of mouse DNA polymerase alpha 68 kDa subunit gene.

    PubMed

    Nishikawa, N S; Izumi, M; Uchida, H; Yokoi, M; Miyazawa, H; Hanaoka, F

    2000-04-01

    We have isolated the genomic DNA fragment spanning the 5-end and the first four exons encoding the 68 kDa subunit (p68) of the mouse DNA polymerase alpha-primase complex [corrected]. The p68 promoter region lacks TATA and CAAT boxes, but contains a GC-rich sequence, two palindrome sequences and two putative E2F-binding sites [corrected]. A series of transient expression assays using a luciferase reporter gene indicated that a region from nucleotide position -89 to -30 (-89/-30) with respect to the transcription initiation site is crucial for basal transcription of the p68 gene in proliferating NIH 3T3 cells. In particular, part of the GC-rich sequence (-57/-46) and the palindrome (-81/-62) elements were necessary for promoter activity, both of which share homology with the E-box sequence. Gel mobility shift assays using NIH 3T3 nuclear extracts revealed that the upstream stimulatory factor, known as an E-box-binding protein, binds to these sites. Moreover, we observed binding of E2F to two sites near the transcription initiation site (-11/-3 and +9/+16). A transient luciferase expression assay using synchronized NIH 3T3 cells in G(0)phase revealed that these E2F sites are essential for transcription induction of the p68 gene after serum stimulation, but are dispensable for basal transcription. These results indicate that growth-dependent regulation of transcription of the mouse p68 and p180 genes is mediated by a common factor, E2F; however, basal transcription of the genes, interestingly, is regulated by different transcription factors.

  10. Cloning and characterization of the 5′-upstream sequence governing the cell cycle-dependent transcription of mouse DNA polymerase α 68 kDa subunit gene

    PubMed Central

    Nishikawa, Naoko S.; Izumi, Masako; Uchida, Hiroshi; Yokoi, Masayuki; Miyazawa, Hiroshi; Hanaoka, Fumio

    2000-01-01

    We have isolated and determined the structure of the gene encoding the 68 kDa subunit (p68) of the mouse DNA polymerase α–primase complex. The p68 gene consists of four exons and the p68 promoter region lacks TATA and CAAT boxes, but contains a GC-rich sequence, two palindrome sequences and two putative E2F-binding sites. A series of transient expression assays using a luciferase reporter gene indicated that a region from nucleotide position –89 to –30 (–89/–30) with respect to the transcription initiation site is crucial for basal transcription of the p68 gene in proliferating NIH 3T3 cells. In particular, part of the GC-rich sequence (–57/–46) and the palindrome (–81/–62) elements were necessary for promoter activity, both of which share homology with the E-box sequence. Gel mobility shift assays using NIH 3T3 nuclear extracts revealed that the upstream stimulatory factor, known as an E-box-binding protein, binds to these sites. Moreover, we observed binding of E2F to two sites near the transcription initiation site (–11/–3 and +9/+16). A transient luciferase expression assay using synchronized NIH 3T3 cells in G0 phase revealed that these E2F sites are essential for transcription induction of the p68 gene after serum stimulation, but are dispensable for basal transcription. These results indicate that growth-dependent regulation of transcription of the mouse p68 and p180 genes is mediated by a common factor, E2F; however, basal transcription of the genes, interestingly, is regulated by different transcription factors. PMID:10710418

  11. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    PubMed Central

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  12. An allele of the yeast RPB7 gene, encoding an essential subunit of RNA polymerase II, reduces cellular resistance to the antitumor drug bleomycin.

    PubMed

    He, C H; Ramotar, D

    1999-01-01

    Bleomycin is an antitumor drug that kills cells by introducing lesions in DNA. Thus, normal cells exposed to bleomycin must rely on efficient DNA repair mechanisms to survive. In the yeast Saccharomyces cerevisiae, the transcriptional activator Imp2 is required to fend off the toxic effects of bleomycin. However, it remains unclear whether Imp2 controls the expression of a protein that either repairs bleomycin-induced DNA lesions, or detoxifies the drug, and or both. To gain further insight into the mechanisms by which yeast cells mount a response towards bleomycin, we began to sequentially characterize the genetic defect in a collection of bleomycin-sensitive mutants that were previously isolated by mini-Tn3 transposon mutagenesis. A rescue plasmid designed to integrate at the site of the mini-Tn3 insertion was used to identify the defective gene in one of the mutant strains, HCY53, which was not allelic to IMP2. We showed that in strain HCY53, the mini-Tn3 was inserted at the distal end of an essential gene RPB7, which encodes one of the two subunits, Rpb4-Rbp7, that forms a subcomplex with RNA polymerase II. Since rpb7 null mutants are nonviable, it would appear that the rpb7::mini-Tn3 allele produces a protein that retains partial biological function thus permitting cell viability, but which is unable to provide bleomycin resistance to strain HCY53. The defective phenotype of strain HCY53 could be corrected by a plasmid bearing the entire RPB7 gene. Two dimensional gel analysis revealed that the expression of several proteins were diminished or absent in the rpb7::mini-Tn3 mutant when challenged with bleomycin. These results are in accord with our previous report that bleomycin resistance in yeast is controlled at the transcriptional level.

  13. The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues.

    PubMed

    Kawamura, K; O-Wang, J; Bahar, R; Koshikawa, N; Shishikura, T; Nakagawara, A; Sakiyama, S; Kajiwara, K; Kimura, M; Tagawa, M

    2001-01-01

    Mutagenesis induced by UV light and chemical agents in yeast is largely dependent on the function of Rev3, the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. Human and mouse homologues of the yeast Rev3 gene have recently been identified, and inhibition of Rev3 expression in cultured human fibroblasts by Rev3 anti-sense was shown to reduce UV-induced mutagenesis, indicating that Rev3 also plays a crucial role in mutagenesis in mammalian cells. A common variant transcript with an insertion of 128-bp between nucleotides +139 and +140 is found in both human and mouse Rev3 cDNAs, but its biological significance has not been defined. We show here that the insertion variant is not translatable either under in vitro or in vivo conditions. We also found that the translational efficiency of Rev3 gene is enhanced by the 5' untranslated region that contains a putative stem-loop structure postulated to inhibit the translation. Since the human Rev3 gene is localized to chromosome 6q21, a region previously shown to contain genes involved in tumor suppression and cellular senescence, we examined its expression in various normal and malignant tissues. Rev3 and its insertion variant transcripts were ubiquitously detected in all 27 normal human tissues studied, with an additional variant species found in tissues with relatively high levels of Rev3 expression. Levels of Rev3 transcripts were similar in lung, gastric, colon and renal tumors compared to normal tissue counterparts. The data indicate that Rev3 expression is ubiquitous and is not dysregulated in malignancies.

  14. Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses.

    PubMed

    Li, Chengjun; Hatta, Masato; Watanabe, Shinji; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-12-01

    Reassortment is an important driving force for influenza virus evolution, and a better understanding of the factors that affect this process could improve our ability to respond to future influenza pandemics and epidemics. To identify factors that restrict the generation of reassortant viruses, we cotransfected human embryonic kidney cells with plasmids for the synthesis of viral RNAs of both A/equine/Prague/1/56 (Prague; H7N7) and A/Yokohama/2017/03 (Yokohama; H3N2) viruses together with the supporting protein expression plasmids. Of the possible 256 genotypes, we identified 29 genotypes in 120 randomly plaque-picked reassortants examined. Analyses of these reassortants suggested that the formation of functional ribonucleoprotein (RNP) complexes was a restricting factor, a finding that correlated with the activities of RNP complexes composed of different combinations of the proteins from the two viruses, as measured in a minigenome assay. For at least one nonfunctional RNP complex (i.e., Prague PB2, Prague PB1, Yokohama PA, and Prague NP), the lack of activity was due to the inability of the three polymerase subunit proteins to form a heterotrimer. Adaptation of viruses possessing a gene encoding a chimera of the PA proteins of the two viruses and the remaining genes from Prague virus resulted in compensatory mutations in the PB2 and/or PA protein. These results indicate substantial incompatibility among the gene products of the two test viruses, a critical role for the RNP complex in the generation of reassortant viruses, and a functional interaction of PB2 and PA.

  15. Accessory proteins for heterotrimeric G-proteins in the kidney

    PubMed Central

    Park, Frank

    2015-01-01

    Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney. PMID:26300785

  16. Interaction between the Rev1 C-terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis

    PubMed Central

    Pustovalova, Yulia; Magalhães, Mariana T. Q.; D’Souza, Sanjay; Rizzo, Alessandro A.; Korza, George; Walker, Graham C.; Korzhnev, Dmitry M.

    2016-01-01

    Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι or Polκ, inserts a nucleotide across DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of 'inserter' to 'extender' DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the 'inserter' Polη, Polι or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit 'extender' Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits. PMID:26982350

  17. A Dominant Mutation in mediator of paramutation2, One of Three Second-Largest Subunits of a Plant-Specific RNA Polymerase, Disrupts Multiple siRNA Silencing Processes

    PubMed Central

    Sidorenko, Lyudmila; Dorweiler, Jane E.; Cigan, A. Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L.

    2009-01-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA–mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V–like complexes could provide maize with a greater diversification of RNA–mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state—a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV–like) and potentially processes downstream (Pol-V–like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2

  18. Simultaneous Gain and Loss of Functions Caused by a Single Amino Acid Substitution in the β Subunit of Escherichia Coli RNA Polymerase: Suppression of Nusa and Rho Mutations and Conditional Lethality

    PubMed Central

    Sparkowski, J.; Das, A.

    1992-01-01

    Transcript elongation and termination in Escherichia coli is modulated, in part, by the nusA gene product, an acidic protein that interacts not only with RNA polymerase itself but also with ancillary factors, namely the host termination protein Rho and phage λ antitermination protein, N. The E. coli nusA1 mutant fails to support λ development due to a specific defect in N-mediated antitermination. Certain rifampicin-resistant (rif(R)) variants of the nusA1 host support λ growth. We report here the isolation and pleiotropic properties of one such rif(R) mutant, ts8, resulting from a single amino acid substitution mutation in rpoB, the structural gene for polymerase β subunit. ts8 is a recessive lethal mutation that blocks cell growth at 42°. Pulse-labeling and analysis of newly synthesized proteins indicate that the mutant cell is proficient in RNA synthesis at high temperature. Apparently, ts8 causes a loss of some specialized function of RNA polymerase without a gross defect in general transcription activities. ts8 is an allele-specific suppressor of nusA1. It does not suppress nusAsal, nusB5 and nusE71 mutations nor does it bypass the requirement for a functional N gene and the nut site for antitermination and λ growth. A mutation in the N gene, punA1, that restores λ growth in the nusA1 mutant host but not in the nusAsal host, compensates for the nusAsal allele in the ts8 mutant. This combined effect of two allele-specific suppressors suggests that they enhance some aspect of polymerase-NusA-N interaction and function. ts8 suppresses the rho15 mutation, but not the rho112 mutation, indicating that it might render RNA polymerase susceptible to the action of a defective Rho protein. Marker rescue analysis has localized ts8 to a 910-bp internal segment of rpoB that encodes the Rif domain. By amplification, cloning and sequencing of this segment of the mutant chromosome we have determined that ts8 contains Phe in place of Ser522, caused by a C to T transition

  19. Activation of Bacteriophage Mu mom Transcription by C Protein Does Not Require Specific Interaction with the Carboxyl-Terminal Region of the α or ς70 Subunit of Escherichia coli RNA Polymerase

    PubMed Central

    Sun, Weiyong; Hattman, Stanley; Fujita, Noboyuki; Ishihama, Akira

    1998-01-01

    Late in its growth cycle, transcription of the phage Mu mom promoter (Pmom) is activated by the phage gene product, C, a site-specific DNA binding protein. In vitro transcription analyses showed that this activation does not require specific contacts between C and the carboxyl-terminal region of the α or ς70 subunit of Escherichia coli RNA polymerase. Unexpectedly, these results are in contrast to those known for another Mu-encoded transcriptional activator, Mor, which has a high degree of sequence identity with C and appears to interact with the carboxyl termini of both α and ς70. PMID:9620983

  20. Accessory mental foramen

    PubMed Central

    Balcioglu, Huseyin Avni; Kocaelli, Humeyra

    2009-01-01

    Context: Accessory mental foramen is a rare anatomical variation. Even so, in order to avoid neurovascular complications, particular attention should be paid to the possible occurrence of one or more accessory mental foramen during surgical procedures involving the mandible. Case report: A 3-dimensional computed tomography (3D-CT) scan of a female patient revealed an accessory mental foramen on the right side of her mandible. Conclusion: A 3D-CT scan should be obtained prior to mandibular surgeries so that the presence of accessory mental foramen can be detected, and so that the occurrence of a neurosensory disturbance or hemorrhage can be avoided. Although this anatomical variation is rare, it should be kept in mind that an accessory mental foramen may exist. PMID:22666714

  1. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, ε, θ and β reveals a highly flexible arrangement of the proofreading domain

    PubMed Central

    Ozawa, Kiyoshi; Horan, Nicholas P.; Robinson, Andrew; Yagi, Hiromasa; Hill, Flynn R.; Jergic, Slobodan; Xu, Zhi-Qiang; Loscha, Karin V.; Li, Nan; Tehei, Moeava; Oakley, Aaron J.; Otting, Gottfried; Huber, Thomas; Dixon, Nicholas E.

    2013-01-01

    A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data. PMID:23580545

  2. Accessory Breast Carcinoma

    PubMed Central

    Youn, Hyun Jo; Jung, Sung Hoo

    2009-01-01

    Summary Background Ectopic breast tissue usually develops along the mammary ridges, and the incidence has been reported to be 2–6% of the general population. Occurrence of primary carcinoma in ectopic breast tissue is rare. Case Report We report the case of 59-year-old woman with accessory breast carcinoma in her left axilla. Conclusion Because an accessory areola or nipple is often missing and awareness of physicians and patients about these unsuspicious masses is lacking, clinical diagnosis of accessory breast carcinoma is frequently delayed. Therefore, a mass along the ‘milk line’ should be examined carefully, and any suspicious lesions should be evaluated. PMID:20847887

  3. The three subunits of the polymerase and the nucleoprotein of influenza B virus are the minimum set of viral proteins required for expression of a model RNA template.

    PubMed

    Jambrina, E; Bárcena, J; Uez, O; Portela, A

    1997-09-01

    The genes encoding the nucleoprotein, PB1, PB2, and PA proteins of the influenza virus strain B/Panamá/45/90 have been cloned under control of the T7 RNA polymerase promoter of plasmid pGEM-3. Transfection of the recombinant plasmids obtained into mammalian cells, which had been infected with a vaccinia virus encoding the T7 RNA polymerase, resulted in expression of the expected influenza B virus polypeptides. Moreover, it is shown that coexpression of the four recombinant core proteins in COS-1 cells reconstituted a functional polymerase capable of expressing a synthetic influenza B virus-like CAT RNA. By using the influenza B virus recombinant plasmids and a set of pGEM-derived plasmids encoding the homologous core proteins of the influenza A virus A/Victoria/3/75 (I. Mena et al. (1994). J. Gen. Virol. 75, 2109-2114), the capabilities of homo- and heterotypic mixtures of the four core proteins to express synthetic type A and B CAT RNAs were analyzed. Both the influenza A and B virus polymerases were active in expressing, albeit with reduced efficiencies, the heterotypic model CAT RNAs. However, none of all possible heterotypic mixtures of the core proteins reconstituted a functional polymerase. In order to fully characterize the recombinant plasmids obtained, the nucleotide sequences of the cloned genes were determined and compared to sequences of other type B virus isolates. The results obtained from these latter analyses are discussed in terms of the conservation and evolution of the influenza B virus core genes.

  4. The accessory navicular synchondrosis.

    PubMed

    Sella, E J; Lawson, J P; Ogden, J A

    1986-08-01

    The accessory navicular, which is considered an anatomic variant, may be the source of pain in athletes. There are three types of accessory naviculars: Type I is an ossicle in the substance of the posterior tibial tendon; Type II forms a synchondrosis with the navicular; and Type III, "the cornuate navicular," represents the possible end stage of Type II. Nine feet had Type II accessory naviculars. The pull of the posterior tibial tendon, the degree of foot pronation, and the location of the accessory navicular in relation to the undersurface of the navicular are factors that produce tension, shear, and/or compression forces on the synchondrosis of Type II accessory naviculars and cause microscopic changes of injury and repair similar to those observed with a physeal fracture. Such alterations are not always visible on roentgenograms but are usually detected by 99mTc methylene diphosphonate (99mTcMDP) scans. Initially, nonsurgical treatment with orthotics or casts should be attempted, but if this is unsuccessful, surgical treatment is recommended. Surgical treatment consists of excision of the accessory navicular with its synchondrosis, without transposition of the posterior tibial tendon.

  5. The N terminus of PA polymerase of swine-origin influenza virus H1N1 determines its compatibility with PB2 and PB1 subunits through a strain-specific amino acid serine 186.

    PubMed

    Wanitchang, Asawin; Jengarn, Juggragarn; Jongkaewwattana, Anan

    2011-01-01

    Despite several lines of evidence suggesting possible mechanisms by which the influenza virus polymerase complex, comprising PB2, PB1 and PA, work in concert during virus replication, exactly how they function is not entirely understood. The N terminal region of the PA subunit has been shown to play a key role in various functions through a number of conserved amino acid residues. However, little is known about the role of amino acids reported to be unique for a virus strain. Here, we investigated the functional implication of an amino acid (S186) present uniquely in the N terminus of the PA subunit of the pandemic H1N1 influenza virus and determined the effect of its mutation in terms of polymerase activity as well as virus growth. Using chimeric constructs of PA derived from A/PR/8/34 (H1N1) (PR8) and the swine-origin influenza virus (S-OIV) H1N1, we found that, when complexed with PB2 and PB1 of PR8, the chimeric PA protein containing the N terminus of S-OIV (1-213) with the remaining region from PR8 showed significantly reduced polymerase activity. Recombinant viruses harboring the chimeric PA also grew poorly in MDCK cells and embryonated eggs. Likewise, the chimeric PA in which the N terminus of PA of PR8 (1-213) was assembled with the remaining region of PA of S-OIV showed a similar phenotype when complexed with PB2 and PB1 of S-OIV. Interestingly, when S186 in the N terminus was altered to the residue common in most strains of influenza virus (G186), the chimeric as well as wild-type PA of S-OIV showed severely impaired polymerase activity when assayed with PB2 and PB1 of S-OIV. Collectively, this finding suggests that S186 at the N terminal region of PA of S-OIV is necessary for the protein to function optimally.

  6. Crystallographic analysis of an RNA polymerase σ-­subunit fragment complexed with −10 promoter element ssDNA: quadruplex formation as a possible tool for engineering crystal contacts in protein–ssDNA complexes

    PubMed Central

    Feklistov, Andrey; Darst, Seth A.

    2013-01-01

    Structural studies of −10 promoter element recognition by domain 2 of the RNA polymerase σ subunit [Feklistov & Darst (2011 ▶), Cell, 147, 1257–1269] reveal an unusual crystal-packing arrangement dominated by G-quartets. The 3′-terminal GGG motif of the oligonucleotide used in crystallization participates in G-quadruplex formation with GGG motifs from symmetry-related complexes. Stacking between neighboring G-quadruplexes results in the formation of pseudo-continuous four-stranded columns running throughout the length of the crystal (G-columns). Here, a new crystal form is presented with a different arrangement of G-columns and it is proposed that the fortuitous finding of G-­quartet packing could be useful in engineering crystal contacts in protein–ssDNA complexes. PMID:23989139

  7. Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain

    PubMed Central

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Betzi, Stéphane; Morelli, Xavier; Burmeister, Wim P.; Iseni, Frédéric

    2014-01-01

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface. PMID:24603707

  8. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations.

    PubMed Central

    Berroteran, R W; Ware, D E; Hampsey, M

    1994-01-01

    Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins. Images PMID:8264591

  9. Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase {epsilon} is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8.

    PubMed

    Murakami, Takeshi; Takano, Ryuji; Takeo, Satoshi; Taniguchi, Rina; Ogawa, Kaori; Ohashi, Eiji; Tsurimoto, Toshiki

    2010-11-05

    One of the proliferating cell nuclear antigen loader complexes, Ctf18-replication factor C (RFC), is involved in sister chromatid cohesion. To examine its relationship with factors involved in DNA replication, we performed a proteomics analysis of Ctf18-interacting proteins. We found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with pol ε. The C-terminal 23-amino acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion.

  10. The painful accessory navicular.

    PubMed

    Lawson, J P; Ogden, J A; Sella, E; Barwick, K W

    1984-01-01

    The accessory navicular is usually considered a normal anatomic and roentgenographic variant. The term may refer to two distinct patterns. First, a sesamoid bone may be present within the posterior tibial tendon (Type 1); this is anatomically separate from the navicular. Second, an accessory ossification center may be medial to the navicular (Type 2). During postnatal development this is within a cartilaginous mass that is continuous with the cartilage of the navicular. At skeletal maturity the accessory center usually fuses with the navicular to form a curvilinear bone. The Type 2 pattern may be associated with a painful foot, particularly in the athletic adolescent, and should not be arbitrarily dismissed as a roentgenologic variant in the symptomatic patient. The clinical, radiologic, pathologic, and surgical findings in ten cases are reviewed. Roentgenographically the ossicle is triangular or heart-shaped. 99mTc MDP imaging may be of value when the significance of the ossicle is uncertain. Even when the roentgenographic variant is bilateral, increased radionuclide activity occurs only on the symptomatic side. Histologic examination of surgically excised specimens reveals inflammatory chondro-osseous changes in the navicular-accessory navicular synchondrosis compatible with chronic trauma and stress fracture. Nonsurgical treatment with orthotics or cast immobilization produces variable results and resection of the accessory navicular may be the treatment of choice.

  11. Molecular characterization of a gene POLR2H encoded an essential subunit for RNA polymerase II from the Giant Panda (Ailuropoda Melanoleuca).

    PubMed

    Du, Yu-Jie; Hou, Yi-Ling; Hou, Wan-Ru

    2013-02-01

    The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance.

  12. The accessory navicular.

    PubMed

    Ugolini, Peter A; Raikin, Steven M

    2004-03-01

    The accessory navicular is a common presence in the human foot and must be included in the differential diagnosis of medial foot pain in patients who are of appropriate age. Imaging modalities aid in diagnosis of a symptomatic ossicle and guide classification and treatment. Often, a combination of studies is needed to establish an accessory navicular as the source of foot pathology. Although conservative measures always are the first line of treatment, the benefits of surgical management are well-defined in the literature. Most foot surgeons rely on resection procedures with varied handling of the PTT insertion, although newer modifications that use bony fusion techniques are being investigated. As with any musculoskeletal condition, proper diagnosis and individually-tailored treatment plans are of the utmost importance to a satisfactory outcome. With meticulous patient selection and a thorough understanding of the condition, management of the painful accessory navicular often is successful in alleviating the disability it causes.

  13. Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the ς70 Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa

    PubMed Central

    Dove, Simon L.; Hochschild, Ann

    2001-01-01

    A number of transcriptional regulators mediate their effects through direct contact with the ς70 subunit of Escherichia coli RNA polymerase (RNAP). In particular, several regulators have been shown to contact a C-terminal portion of ς70 that harbors conserved region 4. This region of ς contains a putative helix-turn-helix DNA-binding motif that contacts the −35 element of ς70-dependent promoters directly. Here we report the use of a recently developed bacterial two-hybrid system to study the interaction between the putative anti-ς factor Rsd and the ς70 subunit of E. coli RNAP. Using this system, we found that Rsd can interact with an 86-amino-acid C-terminal fragment of ς70 and also that amino acid substitution R596H, within region 4 of ς70, weakens this interaction. We demonstrated the specificity of this effect by showing that substitution R596H does not weaken the interaction between ς and two other regulators shown previously to contact region 4 of ς70. We also demonstrated that AlgQ, a homolog of Rsd that positively regulates virulence gene expression in Pseudomonas aeruginosa, can contact the C-terminal region of the ς70 subunit of RNAP from this organism. We found that amino acid substitution R600H in ς70 from P. aeruginosa, corresponding to the R596H substitution in E. coli ς70, specifically weakens the interaction between AlgQ and ς70. Taken together, our findings suggest that Rsd and AlgQ contact similar surfaces of RNAP present in region 4 of ς70 and probably regulate gene expression through this contact. PMID:11591686

  14. Tagetitoxin Inhibits RNA Polymerase through Trapping of the Trigger Loop*

    PubMed Central

    Artsimovitch, Irina; Svetlov, Vladimir; Nemetski, Sondra Maureen; Epshtein, Vitaly; Cardozo, Timothy; Nudler, Evgeny

    2011-01-01

    Tagetitoxin (Tgt) inhibits multisubunit chloroplast, bacterial, and some eukaryotic RNA polymerases (RNAPs). A crystallographic structure of Tgt bound to bacterial RNAP apoenzyme shows that Tgt binds near the active site but does not explain why Tgt acts only at certain sites. To understand the Tgt mechanism, we constructed a structural model of Tgt bound to the transcription elongation complex. In this model, Tgt interacts with the β′ subunit trigger loop (TL), stabilizing it in an inactive conformation. We show that (i) substitutions of the Arg residue of TL contacted by Tgt confer resistance to inhibitor; (ii) Tgt inhibits RNAP translocation, which requires TL movements; and (iii) paused complexes and a “slow” enzyme, in which the TL likely folds into an altered conformation, are resistant to Tgt. Our studies highlight the role of TL as a target through which accessory proteins and antibiotics can alter the elongation complex dynamics. PMID:21976682

  15. Male accessory gland infection.

    PubMed

    Krause, W

    2008-04-01

    Male accessory gland infection (MAGI) is a consequence of canalicular spreading of agents via urethra, prostate gland, seminal vesicles, deferent duct, epididymis and testis. Haematogenous infections are rare. The main infectious agents are Neisseria gonorrhoeae and Chlamydia trachomatis, and also enterobacteriae at a lesser frequency. Characteristic symptoms of MAGI are leukocytospermia, enhanced concentration of cytokines and reactive oxygen species. As complications, obstruction of the ductus epididymidis and/or another duct section, impairment of spermatogenesis in orchitis, impairment of sperm function, and dysfunctions of the male accessory glands may occur. Reduction of male fertility is a rare consequence. The treatment has to consider specific antibiotics.

  16. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    PubMed Central

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  17. Accessory parotid gland tumors.

    PubMed

    Ramachar, Sreevathsa M; Huliyappa, Harsha A

    2012-01-01

    Tumors of accessory parotid gland are considered in the differential diagnosis of a mid cheek mass. Parotidectomy is the procedure of choice. All pathological types of parotid main gland tumors occur in the accessory parotid gland also. Presenting as a mid cheek or infrazygomatic mass, the tumors of this accessory parotid gland are notorious for recurrences, if adequate margins are not achieved. We describe two such cases of such a tumor. 40-year-old male with a slowly progressive mid cheek mass was operated by a mid cheek incision. Histopathology of the tumor was pleomorphic adenoma. Facial nerve paresis recovered complelety in 6 months. A 52-year-old female with progressive mid cheek mass who underwent parotidectomy and neck dissection by a modified Blair's incision was diagnosed with extranodal marginal zone lymphoma with focal transformation to a diffuse large B-cell lymphoma. Chemotherapy with CHOP regime was initiated. There was no recurrence at 6 months of follow-up. Lymphoma of accessory parotid gland is a very rare tumor. Standard parotidectomy incision is advocated to prevent damage to facial nerve branches.

  18. Accessory parotid gland tumors

    PubMed Central

    Ramachar, Sreevathsa M.; Huliyappa, Harsha A.

    2012-01-01

    Tumors of accessory parotid gland are considered in the differential diagnosis of a mid cheek mass. Parotidectomy is the procedure of choice. All pathological types of parotid main gland tumors occur in the accessory parotid gland also. Presenting as a mid cheek or infrazygomatic mass, the tumors of this accessory parotid gland are notorious for recurrences, if adequate margins are not achieved. We describe two such cases of such a tumor. 40-year-old male with a slowly progressive mid cheek mass was operated by a mid cheek incision. Histopathology of the tumor was pleomorphic adenoma. Facial nerve paresis recovered complelety in 6 months. A 52-year-old female with progressive mid cheek mass who underwent parotidectomy and neck dissection by a modified Blair's incision was diagnosed with extranodal marginal zone lymphoma with focal transformation to a diffuse large B-cell lymphoma. Chemotherapy with CHOP regime was initiated. There was no recurrence at 6 months of follow-up. Lymphoma of accessory parotid gland is a very rare tumor. Standard parotidectomy incision is advocated to prevent damage to facial nerve branches. PMID:23483721

  19. Ureteroscopy: accessory devices.

    PubMed

    Yong, Courtney; Knudsen, Bodo E

    2016-12-01

    The incidence of stone disease continues to rise. Surgical management options including shockwave laser lithotripsy, percutaneous nephrolithotomy, and ureteroscopy with stone extraction and/or lithotripsy. The technology associated with the ureteroscopic treatment of stones has advanced significantly over the past decade and this review focuses on many of the accessory devices that can be employed to aid in the procedure.

  20. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ: Novel Mechanisms of Function and Pathogenesis.

    PubMed

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz; Vattulainen, Ilpo; Suomalainen, Anu; Sharma, Vivek

    2017-03-07

    DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.

  1. Cadmium treatment suppresses DNA polymerase δ catalytic subunit gene expression by acting on the p53 and Sp1 regulatory axis.

    PubMed

    Antoniali, Giulia; Marcuzzi, Federica; Casarano, Elena; Tell, Gianluca

    2015-11-01

    Cadmium (Cd) is a carcinogenic and neurotoxic environmental pollutant. Among the proposed mechanisms for Cd toxic effects, its ability to promote oxidative stress and to inhibit, in vitro, the activities of some Base Excision DNA Repair (BER) enzymes, such as hOGG1, XRCC1 and APE1, have been already established. However, the molecular mechanisms at the basis of these processes are largely unknown especially at sub-lethal doses of Cd and no information is available on the effect of Cd on the expression levels of BER enzymes. Here, we show that non-toxic treatment of neuronal cell lines, with pro-mitogenic doses of Cd, promotes a significant time- and dose-dependent down-regulation of DNA polymerase δ (POLD1) expression through a transcriptional mechanism with a modest effect on Polβ, XRCC1 and APE1. We further elucidated that the observed transcriptional repression on Polδ is acted by through competition by activated p53 on Sp1 at POLD1 promoter and by a squelching effect. We further proved the positive effect of Sp1 not only on POLD1 expression but also on Polβ, XRCC1 and APE1 expression, suggesting that Sp1 has pleiotropic effects on the whole BER pathway. Our results indicated that Cd-mediated impairment of BER pathway, besides acting on the enzymatic functions of some key proteins, is also exerted at the gene expression level of Polδ by acting on the p53-Sp1 regulatory axis. These data may explain not only the Cd-induced neurotoxic effects but also the potential carcinogenicity of this heavy metal.

  2. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  3. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao

    2015-01-01

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433

  4. The tail that wags the dog: p12, the smallest subunit of DNA polymerase δ, is degraded by ubiquitin ligases in response to DNA damage and during cell cycle progression.

    PubMed

    Lee, Marietta Y W T; Zhang, Sufang; Lin, Szu Hua Sharon; Wang, Xiaoxiao; Darzynkiewicz, Zbigniew; Zhang, Zhongtao; Lee, Ernest Y C

    2014-01-01

    DNA polymerase δ (Pol δ) is a key enzyme in eukaryotic DNA replication. Human Pol δ is a heterotetramer whose p12 subunit is degraded in response to DNA damage, leading to the in vivo conversion of Pol δ4 to Pol δ3. Two E3 ubiquitin ligases, RNF8 and CRL4(Cdt2), participate in the DNA damage-induced degradation of p12. We discuss how these E3 ligases integrate the formation of Pol δ3 and ubiquitinated PCNA for DNA repair processes. CRL4(Cdt2) partially degrades p12 during normal cell cycle progression, thereby generating Pol δ3 during S phase. This novel finding extends the current view of the role of Pol δ3 in DNA repair and leads to the hypothesis that it participates in DNA replication. The coordinated regulation of licensing factors and Pol δ3 by CRL4(Cdt2) now opens new avenues for control of DNA replication. A parallel study of Pol δ4 and Pol δ3 in Okazaki fragment processing provides evidence for a role of Pol δ3 in DNA replication. We discuss several new perspectives of the role of the 2 forms of Pol δ in DNA replication and repair, as well the significance of the integration of p12 regulation in DNA repair and cell cycle progression.

  5. Assessment of a quantitative 5' nuclease real-time polymerase chain reaction using the nicotinamide adenine dinucleotide dehydrogenase gamma subunit (nuoG) for Bartonella species in domiciled and stray cats in Brazil.

    PubMed

    André, Marcos Rogério; Dumler, John Stephen; Herrera, Heitor M; Gonçalves, Luiz R; de Sousa, Keyla Cm; Scorpio, Diana Gerardi; de Santis, Ana Cláudia Gabriela Alexandre; Domingos, Iara Helena; de Macedo, Gabriel Carvalho; Machado, Rosangela Zacarias

    2016-10-01

    The objective of this study was to develop a quantitative 5' nuclease real-time polymerase chain reaction (PCR) assay to diagnose infections caused by Bartonella species. Between January and April 2013 whole blood samples were collected by convenience from 151 cats (86 domiciled and 65 stray cats). The feline blood samples were subjected to a novel quantitative 5' nuclease real-time PCR (qPCR) for Bartonella species targeting the nictonamide adenine dinucleotide dehydrogenase gamma subunit (nuoG) and conventional PCR assays targeting intergenic transcribed spacer, ribC, gltA, pap31 and rpoB, followed by sequencing and basic local alignment search tool analysis. The qPCR assay detected as few as 10 copies of plasmid per reaction. Forty-six (54.4% domiciled and 45.6% stray cats) of 151 sampled cats showed positive results in nuoG qPCR for Bartonella species. The absolute quantification of nuoG Bartonella DNA in sampled cats ranged from 1.1 × 10(4) to 1.3 × 10(4). Eighteen (39.1%) of 46 positive samples in the qPCR were also positive in conventional PCR assays. The sequencing confirmed that Bartonella henselae and Bartonella clarridgeiae circulate in cats in midwestern Brazil. The present work provides details of a novel qPCR assay to diagnose infections caused by Bartonella species. © The Author(s) 2015.

  6. Prevalence of microsporidiosis due to Enterocytozoon bieneusi and Encephalitozoon (Septata) intestinalis among patients with AIDS-related diarrhea: determination by polymerase chain reaction to the microsporidian small-subunit rRNA gene.

    PubMed

    Coyle, C M; Wittner, M; Kotler, D P; Noyer, C; Orenstein, J M; Tanowitz, H B; Weiss, L M

    1996-11-01

    Microsporidia are emerging as opportunistic pathogens in patients with AIDS. Enterocytozoon bieneusi and Encephalitozoon (Septata) intestinalis have been implicated in enteric infections in AIDS patients with chronic diarrhea, a wasting syndrome, and malabsorption. We used the polymerase chain reaction (PCR) and primers that amplify the conserved regions of the small-subunit rRNA (SSU-rRNA) gene of E. bieneusi and E. intestinalis in tissue specimens from HIV-infected patients with and without diarrhea to examine the association between microsporidia and diarrhea in patients with AIDS. Tissue specimens were obtained from 68 patients with AIDS and diarrhea (mean CD4 lymphocyte count, 21/mm3) and 43 AIDS patients without diarrhea (mean CD4 lymphocyte count, 60/mm3). By means of PCR with use of the SSU-rRNA primers specific for E. bieneusi and E. intestinalis, we found that 44% of patients with diarrhea were infected with microsporidia, whereas only 2.3% of the patients without diarrhea were infected with microsporidia (P < .001). There was a clear association between the presence of microsporidia and diarrhea. In addition, the SSU-rRNA primers proved to be sensitive and specific when used in this clinical setting.

  7. Immunization of nonautoimmune mice with DNA binding domains of the largest subunit of RNA polymerase I results in production of anti-dsDNA and anti-Sm/RNP antibodies.

    PubMed

    Sciascia, Sandra A; Robson, Kristina; Zhu, Liangjin; Garland, Michael; Grabosch, Shannon; Kelamis, Joseph; Messamore, Will; Bradley, Todd; Sourk, Allison; Westberg, Lindsey; Goodnight, Waco; Tongson, Krystina; Holloway, Naomi; Wardak, Zabi; Sudyka, Michelle; Masrani, Shriti; Chintalapati, Sanket; Cagaanan, Manuel; Brown, John C; Stetler, Dean A

    2007-02-01

    Antibodies against the N-terminal (NT) but not the basic domain (BD), DNA binding regions of the largest subunit (S1) of RNA polymerase I (RNAPI) were detected in the sera of MRL-lpr/lpr lupus mice. Antibodies against both RNAPI(S1)-NT and -BD, as well as other systemic lupus erythematosus (SLE) autoantigens (La, ribosomal P proteins and Sm/RNP) were produced by rabbits immunized with anti-DNA antibodies that had been affinity purified from SLE patients. Immunization of nonautoimmune mice (Balb/c) with RNAPI(S1)-NT, RNAPI(S1)-BD, or La in the form of GST fusion proteins, induced production of anti-double-stranded (ds) DNA and anti-Sm/RNP. GST-P1 did not induce an anti-dsDNA response in these mice. These results demonstrate that RNAPI(S1)-NT, RNAPI(S1)-BD and La can participate in an anti-autoantigen/anti-DNA antibody loop during an SLE-like autoimmune response.

  8. Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase alpha is controlled by E2F, an Ets-related transcription factor, and Sp1.

    PubMed

    Izumi, M; Yokoi, M; Nishikawa, N S; Miyazawa, H; Sugino, A; Yamagishi, M; Yamaguchi, M; Matsukage, A; Yatagai, F; Hanaoka, F

    2000-07-24

    We have isolated a genomic DNA fragment spanning the 5'-end of the gene encoding the catalytic subunit of mouse DNA polymerase alpha. The nucleotide sequence of the upstream region was G/C-rich and lacked a TATA box. Transient expression assays in cycling NIH 3T3 cells demonstrated that the GC box of 20 bp (at nucleotides -112/-93 with respect to the transcription initiation site) and the palindromic sequence of 14 bp (at nucleotides -71/-58) were essential for basal promoter activity. Electrophoretic mobility shift assays showed that Sp1 binds to the GC box. We also purified a protein capable of binding to the palindrome and identified it as GA-binding protein (GABP), an Ets- and Notch-related transcription factor. Transient expression assays in synchronized NIH 3T3 cells revealed that three variant E2F sites near the transcription initiation site (at nucleotides -23/-16, -1/+7 and +17/+29) had no basal promoter activity by themselves, but were essential for growth-dependent stimulation of the gene expression. These data indicate that E2F, GABP and Sp1 regulate the gene expression of this principal replication enzyme.

  9. Accessory nerve palsy.

    PubMed

    Olarte, M; Adams, D

    1977-11-01

    After apparently uncomplicated excision of benign lesions in the posterior cervical triangle, two patients had shoulder pain. In one, neck pain and trapezius weakness were not prominent until one month after surgery. Inability to elevate the arm above the horizontal without externally rotating it, and prominent scapular displacement on arm abduction, but not on forward pushing movements, highlighted the trapezius dysfunction and differentiated it from serratus anterior weakness. Spinal accessory nerve lesions should be considered when minor surgical procedures, lymphadenitis, minor trauma, or tumours involved the posterior triangle of the neck.

  10. Adolescent accessory navicular.

    PubMed

    Leonard, Zachary C; Fortin, Paul T

    2010-06-01

    Accessory tarsal navicular is a common anomaly in the human foot. It should be in the differential of medial foot pain. A proper history and physical, along with imaging modalities, can lead to the diagnosis. Often, classification of the ossicle and amount of morbidity guide treatment. Nonsurgical measures can provide relief. A variety of surgical procedures have been used with good results. Our preferred method is excision for small ossicles and segmental fusion after removal of the synchondrosis for large ossicles. In addition, pes planovalgus deformities need to be addressed concomitantly. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Rhabdovirus accessory genes.

    PubMed

    Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R

    2011-12-01

    The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Torsion of Accessory Hepatic Lobe

    PubMed Central

    Natarajan, Saravanan; Jayasudha; Periasamy, Manikandhan; Rangasamy, Saminathan

    2017-01-01

    An accessory hepatic lobe is a rare congenital anomaly that can undergo torsion and present as an acute surgical emergency. A 5-year-old child admitted as acute abdomen, on laparotomy found to have torsion of accessory lobe of liver, is being reported. PMID:28082782

  13. Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1*

    PubMed Central

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N.; Sif, Saïd

    2012-01-01

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. PMID:22761421

  14. Alternative Splicing of Toll-Like Receptor 9 Transcript in Teleost Fish Grouper Is Regulated by NF-κB Signaling via Phosphorylation of the C-Terminal Domain of the RPB1 Subunit of RNA Polymerase II

    PubMed Central

    Lee, Frank Fang-Yao; Hui, Cho-Fat; Chang, Tien-Hsien; Chiou, Pinwen Peter

    2016-01-01

    Similar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown. Here we show that the gTlr9 alternative splicing is regulated through ligand-induced phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). We first observed that ligand-activated NF- κB pathway biased the production of the gTlr9B isoform. Because NF- κB is known to recruit p-TEFb kinase, which phosphorylates the Pol II CTD at Ser2 residues, we examined p-TEFb’s role in alternative splicing. We found that promoting p-TEFb kinase activity significantly favored the production of the gTlr9B isoform, whereas inhibiting p-TEFb yielded an opposite result. We further showed that p-TEFb-mediated production of the gTlr9B isoform down-regulates its own immune responses, suggesting a self-limiting mechanism. Taken together, our data indicate a feedback mechanism of the gTLR9 signaling pathway to regulate the alternative splicing machinery, which in turn produces an inhibitor to the pathway. PMID:27658294

  15. Production and characterization of a highly pure RNA polymerase holoenzyme from Mycobacterium tuberculosis.

    PubMed

    Herrera-Asmat, Omar; Lubkowska, Lucyna; Kashlev, Mikhail; Bustamante, Carlos J; Guerra, Daniel G; Kireeva, Maria L

    2017-03-18

    Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α2ββ'ω·σ(A) can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD.

  16. Accessories or necessities? Exploring consensus on usage of stoma accessories.

    PubMed

    Rudoni, Caroline; Dennis, Heather

    Usage and opinion of accessory products in stoma care vary enormously. The aim of this study was to identify what constitutes an accessory product and to find out whether there is any standardization regarding their recommendation. Views of both patients and stoma nurses were examined. Patients identify accessory products as being necessary both physically and psychologically in improving their quality of life. While stoma nurses identify that the psychological effects of having a stoma should never be underestimated, there is still concern regarding the cost of recommending these products and their clinical necessity. It would appear that clinical necessity is based on nurses' opinions and is not always evidence or research based. Since accessory products have been shown to be essential to many patients with a stoma, should stoma nurses be more empathetic when considering their recommendation?

  17. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved and use the provisions on the engines for mounting; or (2... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b...

  18. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved and use the provisions on the engines for mounting; or (2... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b...

  19. Expression of the p12 subunit of human DNA polymerase δ (Pol δ), CDK inhibitor p21(WAF1), Cdt1, cyclin A, PCNA and Ki-67 in relation to DNA replication in individual cells.

    PubMed

    Zhao, Hong; Zhang, Sufang; Xu, Dazhong; Lee, Marietta Ywt; Zhang, Zhongtao; Lee, Ernest Yc; Darzynkiewicz, Zbigniew

    2014-01-01

    We recently reported that the p12 subunit of human DNA polymerase δ (Pol δ4) is degraded by CRL4(Cdt2) which regulates the licensing factor Cdt1 and p21(WAF1) during the G1 to S transition. Presently, we performed multiparameter laser scanning cytometric analyses of changes in levels of p12, Cdt1 and p21(WAF1), detected immunocytochemically in individual cells, vis-à-vis the initiation and completion of DNA replication. The latter was assessed by pulse-labeling A549 cells with the DNA precursor ethynyl-2'-deoxyribose (EdU). The loss of p12 preceded the initiation of DNA replication and essentially all cells incorporating EdU were p12 negative. Completion of DNA replication and transition to G2 phase coincided with the re-appearance and rapid rise of p12 levels. Similar to p12 a decline of p21(WAF1) and Cdt1 was seen at the end of G1 phase and all DNA replicating cells were p21(WAF1) and Cdt1 negative. The loss of p21(WAF1) preceded that of Cdt1 and p12 and the disappearance of the latter coincided with the onset of DNA replication. Loss of p12 leads to conversion of Pol δ4 to its trimeric form, Pol δ3, so that the results provide strong support to the notion that Pol δ3 is engaged in DNA replication during unperturbed progression through the S phase of cell cycle. Also assessed was a correlation between EdU incorporation, likely reflecting the rate of DNA replication in individual cells, and the level of expression of positive biomarkers of replication cyclin A, PCNA and Ki-67 in these cells. Of interest was the observation of stronger correlation between EdU incorporation and expression of PCNA (r = 0.73) than expression of cyclin A (r = 0.47) or Ki-67 (r = 0.47).

  20. Endoscopic Accessory Navicular Synchondrosis Fusion.

    PubMed

    Lui, Tun Hing

    2016-12-01

    The accessory navicular bone is one of the most common accessory ossicles of the foot. Fewer than 1% of accessory navicular bones are symptomatic, and most of these are type II accessory navicular bones. A separation of the synchondrosis is considered one of the main causes of pain. After an injury to the synchondrosis has resulted in a chondro-osseous disruption, the combined forces of tension and shear from the posterior tibial tendon and the foot aggravate the injury and prevent it from healing. Fusion of the synchondrosis is a logical surgical treatment option if the pain is recalcitrant to conservative measures. The purpose of this technical note is to report an endoscopic approach to achieve fusion. It has the advantages of better cosmesis, less scar pain, less risk of nonunion, and potential to examine the tibialis posterior tendon and the talonavicular joint.

  1. Accessory drive for a turbine engine

    SciTech Connect

    Brogdon, J.W.; Allen, K.D.; Barton, J.S.; Hicks, R.J.

    1987-02-03

    This patent describes, in combination: a radial flow turbine engine having a main shaft and a casing with air inlets open radially at one end, and an accessory drive comprising: an accessory housing positioned axially adjacent the one end of the turbine engine casing, a gear ring rotatably mounted within the accessory housing, means for mechanically drivingly connecting the gear ring to the turbine main shaft, the connecting means comprising a planetary gear arrangement contained in the accessory housing, the accessory housing having apertures open to the gear ring and circumferentially spaced from each other, at least one accessory having a driven gear, and means for mounting the at least one accessory to the accessory housing so that the accessory registers with one of the plurality of apertures and so that the gear ring meshes with the driven gear, wherein each aperture is adapted for connection with a separate accessory.

  2. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  3. Automobile accessories: Assessment and improvement

    SciTech Connect

    Jackson, M.

    1995-11-01

    With mandates and regulatory policies to meet both the California Air Resources Board (CARB) and the Partnership for a New Generation of Vehicles (PNGV), designing vehicles of the future will become a difficult task. As we look into the use of electric and hybrid vehicles, reduction of the required power demand by influential automobile components is necessary in order to obtain performance and range goals. Among those automobile components are accessories. Accessories have a profound impact on the range and mileage of future vehicles with limited amounts of energy or without power generating capabilities such as conventional vehicles. Careful assessment of major power consuming accessories helps us focus on those that need improvement and contributes to attainment of mileage and range goals for electric and hybrid vehicles.

  4. Teaching Techniques for Accessory Percussion

    ERIC Educational Resources Information Center

    Micallef, Ken

    2007-01-01

    Everyone is familiar with the main percussion instruments of the contemporary orchestra: bass drum, snare drum, suspended cymbal, vibraphone, and timpani. But as source material broadens, so do the demands placed on the percussion section. Accessory, or auxiliary percussion, can make the difference between a typical rendition of a well-known piece…

  5. Teaching Techniques for Accessory Percussion

    ERIC Educational Resources Information Center

    Micallef, Ken

    2007-01-01

    Everyone is familiar with the main percussion instruments of the contemporary orchestra: bass drum, snare drum, suspended cymbal, vibraphone, and timpani. But as source material broadens, so do the demands placed on the percussion section. Accessory, or auxiliary percussion, can make the difference between a typical rendition of a well-known piece…

  6. Cyst of accessory lacrimal gland.

    PubMed Central

    Durán, J. A.; Cuevas, J.

    1983-01-01

    We present a case of an epithelial cyst of the conjunctiva caused by the dilatation of an accessory lacrimal gland. The case is peculiar in regard to the size of the cyst and the absence of traumatic or inflammatory factors to explain the retention of fluid. Images PMID:6860616

  7. Intrahepatic accessory spleen: imaging features.

    PubMed

    Izzo, Luciano; Caputo, Maria; Galati, Gaspare

    2004-06-01

    The authors present a case report of a 60-year-old man with a hepatic unknown mass. For diagnosis, they used ECO, CT (with and without contrast), MR (with and without contrast) and an ultrasound-assisted percutaneous lesion biopsy. Thus the mass-lesion in the liver appeared to be an intrahepatic accessory spleen in a patient afflicted with chronic hepatitis.

  8. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...

  9. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking...

  10. 14 CFR 29.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...

  11. 14 CFR 29.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...

  12. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking...

  13. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking...

  14. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking...

  15. Evidence that sigma factors are components of chloroplast RNA polymerase.

    PubMed Central

    Troxler, R F; Zhang, F; Hu, J; Bogorad, L

    1994-01-01

    Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae. PMID:8159791

  16. Locally vascularized pelvic accessory spleen.

    PubMed

    Iorio, F; Frantellizzi, V; Drudi, Francesco M; Maghella, F; Liberatore, M

    2016-01-01

    Polysplenism and accessory spleen are congenital, usually asymptomatic anomalies. A rare case of polysplenism with ectopic spleen in pelvis of a 67-year-old, Caucasian female is reported here. A transvaginal ultrasound found a soft well-defined homogeneous and vascularized mass in the left pelvis. Patient underwent MRI evaluation and contrast-CT abdominal scan: images with parenchymal aspect, similar to spleen were obtained. Abdominal scintigraphy with 99mTc-albumin nanocolloid was performed and pelvic region was studied with planar scans and SPECT. The results showed the presence of an uptake area of the radiopharmaceutical in the pelvis, while the spleen was normally visualized. These findings confirmed the presence of an accessory spleen with an artery originated from the aorta and a vein that joined with the superior mesenteric vein. To our knowledge, in the literature, there is just only one case of a true ectopic, locally vascularized spleen in the pelvis.

  17. Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica.

    PubMed

    Abdrakhmanova, Albina; Zickermann, Volker; Bostina, Mihnea; Radermacher, Michael; Schägger, Hermann; Kerscher, Stefan; Brandt, Ulrich

    2004-07-23

    Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.

  18. Engine starter and accessory drive system

    SciTech Connect

    Stockton, T.R.

    1986-10-07

    An engine starter and accessory drive system is described which consists of: an accessory drive means; a planetary gearset having a sun gear driveably connected to the accessory drive means, a ring gear, a carrier and planet pinions rotatably mounted on the carrier, fixed to the engine crankshaft, meshing with the sun gear and with the ring gear; means for holding the ring gear against rotation; and a starter motor and first clutch means for providing a one-way driving connection between the motor and the accessory drive means.

  19. Mechanical accessories for mobile teleoperators

    SciTech Connect

    Feldman, M.J.; Herndon, J.N.

    1985-01-01

    The choice of optimum mechanical accessories for mobile teleoperators involves matching the criteria for emergency response with the available technology. This paper presents a general background to teleoperations, a potpourri of the manipulator systems available, and an argument for force reflecting manipulation. The theme presented is that the accomplishment of humanlike endeavors in hostile environments will be most successful when man model capabilities are utilized. The application of recent electronic technology to manipulator development has made new tools available to be applied to emergency response activities. The development activities described are products of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 13 refs., 7 figs.

  20. Advanced Accessory Power Supply Topologies

    SciTech Connect

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  1. Extracranial spinal accessory nerve injury.

    PubMed

    Donner, T R; Kline, D G

    1993-06-01

    Eighty-three consecutive patients with extracranial accessory nerve injury seen over a 12-year period are reviewed. The most common etiology was iatrogenic injury to the nerve at the time of previous surgery. Such operations were usually minor in nature and often related to lymph node or benign tumor removal. Examination usually distinguished winging due to trapezius weakness from that of serratus anterior palsy. Trapezius weakness was seen in all cases. Sternocleidomastoid weakness was unusual. Patients with accessory palsy were evaluated by both clinical and electromyographic studies. Patients who exhibited no clinical or electrical evidence of regeneration were operated on (44 cases). Based on intraoperative nerve action potential studies, 8 lesions in continuity had neurolysis alone. Resection with repair either by end-to-end suture or by grafts was necessary in 31 cases. One case had suture removed from nerve, two had nerve placed into target muscle, and two had more proximal neurotization. Function was usually improved in both operative and nonoperative patients. Related anatomy is discussed.

  2. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb.

    PubMed

    Mohedano-Moriano, Alicia; Pro-Sistiaga, Palma; Ubeda-Bañón, Isabel; Crespo, Carlos; Insausti, Ricardo; Martinez-Marcos, Alino

    2007-04-01

    Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.

  3. Muscle-like Nicotinic Receptor Accessory Molecules In Sensory Hair Cells of the Inner Ear

    PubMed Central

    Osman, Abdullah A.; Schrader, Angela D.; Hawkes, Aubrey J.; Akil, Omar; Bergeron, Adam; Lustig, Lawrence R.; Simmons, Dwayne D.

    2008-01-01

    Nothing is known about the regulation of nicotinic acetylcholine receptors (nAChRs) in hair cells of the inner ear. MuSK, rapsyn and RIC-3 are accessory molecules associated with muscle and brain nAChR function. We demonstrate that these accessory molecules are expressed in the inner ear raising the possibility of a muscle-like mechanism for clustering and assembly of nAChRs in hair cells. We focused our investigations on rapsyn and RIC-3. Rapsyn interacts with the cytoplasmic loop of nAChR α9 subunits but not nAChR α10 subunits. Although rapsyn and RIC-3 increase nAChR α9 expression, rapsyn plays a greater role in receptor clustering while RIC-3 is important for acetylcholine-induced calcium responses. Our data suggest that RIC-3 facilitates receptor function, while rapsyn enhances receptor clustering at the cell surface. PMID:18420419

  4. An accessory limb with an imperforate anus.

    PubMed

    Park, Kun-Bo; Kim, Yeon-Mee; Park, Ji-Yong; Chung, Mi-Lim; Jung, Yu-Jin; Nam, So-Hyun

    2014-10-01

    Congenital accessory limbs are very rare anomalies with many causative factors. We describe the case of a 1-day-old female neonate-born to a healthy, 27-year-old mother-who presented with an accessory limb (foot) attached to the buttock and an imperforate anus. We also provide a review of the relevant literature.

  5. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory....

  6. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory....

  7. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory....

  8. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory....

  9. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory....

  10. Autosomal Dominant Transmission of Accessory Navicular

    PubMed Central

    Dobbs, Matthew B; Walton, Tim

    2004-01-01

    The accessory navicular bone is one of the most symptomatic bones of the foot. Although it has been reported to be present in various members of the same family, there is a lack of knowledge about its inheritance pattern. We report two large pedigrees in which accessory navicular is inherited in an autosomal dominant fashion with incomplete penetrance. PMID:15296212

  11. Autosomal dominant transmission of accessory navicular.

    PubMed

    Dobbs, Matthew B; Walton, Tim

    2004-01-01

    The accessory navicular bone is one of the most symptomatic bones of the foot. Although it has been reported to be present in various members of the same family, there is a lack of knowledge about its inheritance pattern. We report two large pedigrees in which accessory navicular is inherited in an autosomal dominant fashion with incomplete penetrance.

  12. Three Accessories for a Rotating Platform.

    ERIC Educational Resources Information Center

    Riley, James A.; Fryer, Oscar G.

    1980-01-01

    Describes three accessories developed to be used in conjunction with the rotating platform or turntable. Three demonstrations using these accessories are included. These demonstrations are: (a) conservation of angular momentum; (b) gravity-defying goblets; and (c) direct measurement of centripetal force. (HM)

  13. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  14. The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication

    PubMed Central

    Syeda, Aisha H.; Atkinson, John; Lloyd, Robert G.; McGlynn, Peter

    2016-01-01

    Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory helicases and recombination enzymes in both bacteria and lower eukaryotes but how these replication repair systems interact to ensure efficient genome duplication remains unclear. Here, we demonstrate that the DNA content defects of Escherichia coli cells lacking the strand exchange protein RecA are driven primarily by conflicts between replication and transcription, as is the case in cells lacking the accessory helicase Rep. However, in contrast to Rep, neither RecA nor RecBCD, the helicase/exonuclease that loads RecA onto dsDNA ends, is important for maintaining rapid chromosome duplication. Furthermore, RecA and RecBCD together can sustain viability in the absence of accessory replicative helicases but only when transcriptional barriers to replication are suppressed by an RNA polymerase mutation. Our data indicate that the minimisation of replisome pausing by accessory helicases has a more significant impact on successful completion of chromosome duplication than recombination-directed fork repair. PMID:27483323

  15. A study on the function of the glycine residue in the YGDD motif of the RNA-dependent RNA polymerase beta-subunit from RNA coliphage Q beta 1.

    PubMed

    Inokuchi, Y; Kajitani, M; Hirashima, A

    1994-12-01

    Q beta replicases in which the Gly residue of the beta-subunit in the motif sequence, YGDD, was replaced with Ala, Ser, Pro, Met, or Val lost their replicase activity in vivo. In an in vitro Mg(2+)-dependent RNA-synthesizing system using poly(rC) or MDV-poly(+) RNA (a derivative of the naturally occurring small RNA that accumulates in the cells during Q beta phage infection) as templates, the lysates from the cells expressing such defective replicases exhibited only 2-6% of the enzyme activity of the lysate from those expressing wild-type replicase. However, the defective replicases, especially A357, with Ala substituted for the Gly, recovered enzyme activity when Mn2+ was added to the reaction mixture. Furthermore, the characteristics of the MDV-poly(+) RNA-dependent RNA synthesis by A357 replicase were similar to those by wild-type replicase in the presence of Mn2+. Gel retardation assay showed that all of the defective replicases could bind MDV-poly(+) RNA. These results suggest that the Gly residue in this motif of Q beta replicase is involved in Mg(2+)-catalyzed polymerization. In the Mn(2+)-catalyzed polymerization, A357 and S357 replicases can act as well as the wild-type replicase.

  16. Multisubunit RNA Polymerase Cleavage Factors Modulate the Kinetics and Energetics of Nucleotide Incorporation: An RNA Polymerase I Case Study.

    PubMed

    Appling, Francis D; Schneider, David A; Lucius, Aaron L

    2017-10-11

    All cellular RNA polymerases are influenced by protein factors that stimulate RNA polymerase-catalyzed cleavage of the nascent RNA. Despite divergence in amino acid sequence, these so-called "cleavage factors" appear to share a common mechanism of action. Cleavage factors associate with the polymerase through a conserved structural element of the polymerase known as the secondary channel or pore. This mode of association enables the cleavage factor to reach through the secondary channel into the polymerase active site to reorient the active site divalent metal ions. This reorientation converts the polymerase active site into a nuclease active site. Interestingly, eukaryotic RNA polymerases I and III (Pols I and III, respectively) have incorporated their cleavage factors as bona fide subunits known as A12.2 and C11, respectively. Although it is clear that A12.2 and C11 dramatically stimulate the polymerase's cleavage activity, it is not known if or how these subunits affect the polymerization mechanism. In this work we have used transient-state kinetic techniques to characterize a Pol I isoform lacking A12.2. Our data clearly demonstrate that the A12.2 subunit profoundly affects the kinetics and energetics of the elementary steps of Pol I-catalyzed nucleotide incorporation. Given the high degree of conservation between polymerase-cleavage factor interactions, these data indicate that cleavage factor-modulated nucleotide incorporation mechanisms may be common to all cellular RNA polymerases.

  17. Surgical treatment of the accessory navicular.

    PubMed

    Ray, S; Goldberg, V M

    1983-01-01

    Surgical management of the accessory navicular or navicular beak using the Kidner procedure was indicated in 29 feet. Pain was present in all feet; difficulty with shoe fit and flat feet were other complaints. The patients were followed up for two to ten years (mean, 4.5 years) after operation. Eleven results were excellent, 15 good, and 3 poor, all in boys with a navicular beak. Only one complication occurred. Excision of the accessory navicular or navicular beak, together with suturing the fibers of the posterior tibial tendon (inserting on the accessory navicular or navicular beak) to the inferior surface of the navicular, is effective treatment.

  18. [Co-expression of beta-subunit with other subunits of Qbeta replicase].

    PubMed

    Wang, Dong

    2004-12-01

    In researches involving in vitro protein synthesis and self-replication system, Qbeta replicase is one of the key enzymes, which are demanded for the high availability. Qbeta replicase is a RNA-dependent RNA polymerase of Qbeta coliphage. It consists of four subunits (alpha, beta, gamma, and delta subunit), where the beta-subunit is encoded by the viral genome, while the other three subunits are host proteins normally involved in protein synthesis, namely, ribosomal protein S1 (alpha), elongation factors EF-Tu (gamma) and EF-Ts (delta). To increase the production of the Qbeta replicase holoenzyme, several types of expression vectors, including pKK, pET and others, were employed to produce Qbeta replicase. However, the beta-subunit was almost in the precipitate fraction. Considering that the four subunits of Qbeta replicase holoenzyme are in equivalent molar ratio and the amount of the subunits, ribosomal S1 and EF-Ts, being produced by the host cells is relatively low, co-expression of beta-subunit with the other three subunits was performed to know whether the availability of the host subunits is the contributing factor for the solubility of the Qbeta replicase. pBAD33-rep was constructed by cloning the beta-subunit gene into pBAD 33, a pACYC derivative, and pET21a(+) was employed as expression vector for the three other subunits. Among the different combinations of co-expression experiments, solubility was found to slightly increase by SDS-PAGE analysis when the beta-subunit was co-expressed with EF-Tu-Ts. And the replicase activity assay showed this soluble enzyme is in active form. The expression of beta-subunit was enhanced by decreasing the level of inducer IPTG in co-expression, and more soluble enzyme were obtained.

  19. Chloroplast RNA polymerases: Role in chloroplast biogenesis.

    PubMed

    Börner, Thomas; Aleynikova, Anastasia Yu; Zubo, Yan O; Kusnetsov, Victor V

    2015-09-01

    Plastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recognition. Six different sigma factors are used by PEP in Arabidopsis plastids. NEP activity is represented by phage-type RNA polymerases. Only one NEP subunit has been identified, which bears the catalytic activity. NEP and PEP use different promoters. Many plastid genes have both PEP and NEP promoters. PEP dominates in the transcription of photosynthesis genes. Intriguingly, rpoB belongs to the few genes transcribed exclusively by NEP. Both NEP and PEP are active in non-green plastids and in chloroplasts at all stages of development. The transcriptional activity of NEP and PEP is affected by endogenous and exogenous factors. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 19 CFR 10.456 - Accessories, spare parts or tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accessories, spare parts or tools. 10.456 Section... Trade Agreement Rules of Origin § 10.456 Accessories, spare parts or tools. Accessories, spare parts or tools that form part of the good's standard accessories, spare parts or tools and are delivered with...

  1. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  2. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ

    PubMed Central

    Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A.; Lee, Ernest Y. C.; Zhang, Zhongtao; Lee, Marietta Y. W. T.

    2016-01-01

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability. PMID:26819372

  3. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ.

    PubMed

    Wang, Xiaoxiao; Zhang, Sufang; Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A; Lee, Ernest Y C; Zhang, Zhongtao; Lee, Marietta Y W T

    2016-02-02

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.

  4. Accessory Spleen: Prevalence and Multidetector CT Appearance.

    PubMed

    Rashid, Sameeah Abdulrahman

    2014-07-01

    The aim of this study was to evaluate the prevalence and computed tomography (CT) appearances of accessory spleens in hospital-based patients, and to measure and make comparisons between accessory spleen size and density. A cross-sectional study was carried out in a diagnostic center in Erbil, Iraq during January-December, 2012. Biphasic abdominal CT images of 334 consecutive patients with different age groups were evaluated for the presence of an accessory spleen, and if identified, it was further analysed for shape, diameter, density, number, and location. Patients with inadequate CT techniques, splenectomy, hematological disorders, and widespread lesions in the abdomen were excluded from this study. Of the 334 patients (198 female, 136 male), with a mean age of 47.2 years (SD 15.7), 82 accessory spleens were detected in 63 patients (18.8%). Their mean diameter was 14.7 mm (range 3-79 mm), 68% were round in shape and 75.6% were medial to the main spleen. Sixty percent of the cases showed a single accessory spleen and 40% had more than one (up to 4 detected). A significant difference in the mean diameter of accessory spleens between similar and different densities than the main spleen was observed (P = 0.018), 71 accessory spleens (mean diameter = 15.97 mm) displayed similar densities to the main spleen, while 11 (mean diameter = 7.09 mm) were hypodense or hyperdense to the main spleen. The prevalence of an accessory spleen is high, and should be considered by radiologists during abdominal CT scan reporting.

  5. The α2δ subunits of voltage-gated calcium channels.

    PubMed

    Dolphin, Annette C

    2013-07-01

    Voltage-gated calcium channels consist of the main pore-forming α1 subunit, together, except in the case of the T-type channels, with β and α2δ and sometimes γ subunits, which are collectively termed auxiliary or accessory subunits. This review will concentrate on the properties and role of the α2δ subunits of these channels. These proteins are largely extracellular, membrane-associated proteins which influence the trafficking, localization, and biophysical properties of the channels. This article is part of a Special Issue entitled: Calcium channels.

  6. 21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  7. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY...

  8. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY...

  9. 21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  10. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY...

  11. 21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  12. 21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  13. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY...

  14. 21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY...

  15. 21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  16. [Clinical features of accessory parotid gland tumors].

    PubMed

    Iguchi, Hiroyoshi; Wada, Tadashi; Yamamoto, Hidefumi; Yamada, Kei; Matsushita, Naoki; Okamoto, Sachimi; Teranishi, Yuichi; Koda, Yuki; Kosugi, Yuki; Yamane, Hideo

    2013-12-01

    Accessory parotid gland tumors are relatively rare; hence, adequately detailed clinical analyses of these tumors are difficult to perform at a single institution. In this report, we describe the findings for 65 patients [29 men, 36 women; median age, 51 (9-81) years] with accessory parotid gland tumors, consisting of 4 cases documented by us and 61 cases previously reported by other Japanese authors. Approximately 50% of the patients were treated in an otolaryngology department, while the remaining patients were treated in plastic surgery, oral surgery, or dermatology departments. In 4 patients, the results of preoperative fine-needle aspiration cytology indicated that the tumor was benign; however, the postoperative histopathology results revealed malignant tumors. The frequencies of malignant and benign tumors were 44.6% (n = 29) and 55.4% (n = 36), respectively. Mucoepidermoid carcinoma and pleomorphic adenoma were the most frequent types of malignant and benign accessory parotid gland tumors, respectively. Among the various surgical methods that were used, such as direct cheek and intraoral incisions, a standard parotidectomy incision was the most preferred treatment approach for these tumors. Recently, an endoscopic approach has also been found to yield satisfactory results. An optimal approach should be selected after evaluating the advantages and disadvantages of these methods. No definite guidelines are available regarding the choice of elective neck dissection and postoperative radiation therapy for malignant accessory parotid gland tumors. Although tumor resection (plus elective neck dissection) and postoperative radiation therapy have been frequently performed for various kinds of malignant accessory parotid gland tumors to date, additional studies are needed regarding the criteria for selecting elective neck dissection and postoperative radiation therapy. Since the malignancy rate for accessory parotid gland tumors is higher than that for parotid gland

  17. The Mediator Subunit MDT-15 Confers Metabolic Adaptation to Ingested Material

    PubMed Central

    Taubert, Stefan; Hansen, Malene; Van Gilst, Marc R.; Cooper, Samantha B.; Yamamoto, Keith R.

    2008-01-01

    In eukaryotes, RNA polymerase II (PolII) dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to PolII-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds. PMID:18454197

  18. Smallpox vaccination techniques. 2. Accessories and aftercare.

    PubMed

    Baxby, Derrick

    2003-03-28

    The various accessories used for smallpox vaccination are surveyed. These included modified vaccination instruments and various other items which facilitated the procedure, containers for preservation and transport of vaccine, sterilising equipment, aids to interpretation and recording, and a variety of skin preparations and dressings. Three phases can be discerned in the development and use of such items and procedures. Initially, in the pre-bacteriological era, there was little need for accessory equipment apart from the means of preserving and transporting vaccine. Later, particularly by the end of the 19th century, the importance of aseptic and antiseptic procedures was realised, use was made of more traumatic vaccination techniques and glass capillaries became the standard method for preservation and transport. All this led to the increasing availability of a wide range of accessories, particularly of skin preparations and dressings. Finally, from about 1930, it was appreciated that skin preparation and dressings were often unnecessary, and could be counter-productive. So, although accessories for this were still available their use was very much reduced. In some respects the use of accessories during this last phase, based on scientific analysis was a return to the earliest, 'pre-scientific', era.

  19. Basic mechanism of transcription by RNA polymerase II

    PubMed Central

    Svetlov, Vladimir; Nudler, Evgeny

    2012-01-01

    RNA polymerase II-like enzymes carry out transcription of genomes in Eukaryota, Archaea, and some viruses. They also exhibit fundamental similarity to RNA polymerases from bacteria, chloroplasts, and mitochondria. In this review we take an inventory of recent studiesilluminating different steps of basic transcription mechanism, likely common for most multi-subunit RNA polymerases. Through the amalgamation of structural and computational chemistry data we attempt to highlight the most feasible reaction pathway for the two-metal nucleotidyl transfer mechanism, and to evaluate the way catalysis can be linked to translocation in the mechano-chemical cycle catalyzed by RNA polymerase II. PMID:22982365

  20. Controlled Speed Accessory Drive demonstration program

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1981-01-01

    A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.

  1. Molecular structure of yeast RNA polymerase III: demonstration of the tripartite transcriptive system in lower eukaryotes.

    PubMed Central

    Valenzuela, P; Hager, G L; Weinberg, F; Rutter, W J

    1976-01-01

    Homogeneous RNA polymerase III (RNA nucleotidyltransferase III) has been obtained from yeast. The subunit composition of the enzyme was examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is composed of 12 putative subunits with molecular weights 160,000, 128,000, 82,000, 41,000, 40,500, 37,000, 34,000, 28,000, 24,000, 20,000, 14,500, and 11,000. The high-molecular-weight subunits and several of the smaller subunits of yeast RNA polymerase III are clearly different from those of enzymes I and II, indicating a distinct molecular structure. However, the molecular weights of some of the small subunits (41,000, 28,000, 24,000, and 14,500) appear to be identical to those of polymerases I and II. Thus, it is possible that the three classes of enzymes in yeast have some common subunits. As in other eukaryotes, yeast polymerase II is inhibited by relatively low concentrations of alpha-amanitin; however, contrary to what has been found in higher eukaryotes, yeast polymerase III is resistant (up to 2 mg/ml) to alpha-amanitin, while yeast polymerase I is sensitive to high concentrations of the drug (50% inhibition at 0.3 mg/ml). These results establish the existence of RNA polymerase III in yeast and provide a structural basis for the discrimination of the three functional polymerases in eukaryotes. Images PMID:772675

  2. Molecular structure of yeast RNA polymerase III: demonstration of the tripartite transcriptive system in lower eukaryotes.

    PubMed

    Valenzuela, P; Hager, G L; Weinberg, F; Rutter, W J

    1976-04-01

    Homogeneous RNA polymerase III (RNA nucleotidyltransferase III) has been obtained from yeast. The subunit composition of the enzyme was examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is composed of 12 putative subunits with molecular weights 160,000, 128,000, 82,000, 41,000, 40,500, 37,000, 34,000, 28,000, 24,000, 20,000, 14,500, and 11,000. The high-molecular-weight subunits and several of the smaller subunits of yeast RNA polymerase III are clearly different from those of enzymes I and II, indicating a distinct molecular structure. However, the molecular weights of some of the small subunits (41,000, 28,000, 24,000, and 14,500) appear to be identical to those of polymerases I and II. Thus, it is possible that the three classes of enzymes in yeast have some common subunits. As in other eukaryotes, yeast polymerase II is inhibited by relatively low concentrations of alpha-amanitin; however, contrary to what has been found in higher eukaryotes, yeast polymerase III is resistant (up to 2 mg/ml) to alpha-amanitin, while yeast polymerase I is sensitive to high concentrations of the drug (50% inhibition at 0.3 mg/ml). These results establish the existence of RNA polymerase III in yeast and provide a structural basis for the discrimination of the three functional polymerases in eukaryotes.

  3. Surgical treatment of symptomatic accessory tarsal navicular.

    PubMed

    Bennett, G L; Weiner, D S; Leighley, B

    1990-01-01

    We report a retrospective review of 50 consecutive patients (75 feet) with chronically symptomatic accessory tarsal naviculars that failed to improve with conservative treatment. Surgical treatment consisted of excision of the accessory tarsal navicular or medial protuberance of a prominent cornuate-shaped navicular combined with simple replication of the tibialis posterior tendon without altering its course. Good and excellent results were obtained in 45 (70 feet) of the 50 patients (90%). The procedure has a low rate of minor complications, is easy to perform, and is extremely well accepted by the patients.

  4. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Surgical Devices § 884.4120 Gynecologic electrocautery and accessories. (a) Identification. A gynecologic... under direct visual observation. This generic type of device may include the following accessories: an...

  5. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Surgical Devices § 884.4120 Gynecologic electrocautery and accessories. (a) Identification. A gynecologic... under direct visual observation. This generic type of device may include the following accessories: an...

  6. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  7. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  8. Future Development of Endoscopic Accessories for Endoscopic Submucosal Dissection

    PubMed Central

    Jang, Jae-Young

    2017-01-01

    Endoscopic submucosal dissection (ESD) has recently been accepted as a standard treatment for patients with early gastric cancer (EGC), without lymph node metastases. Given the rise in the number of ESDs being performed, new endoscopic accessories are being developed and existing accessories modified to facilitate the execution of ESD and reduce complication rates. This paper examines the history underlying the development of these new endoscopic accessories and indicates future directions for the development of these accessories. PMID:28609819

  9. 46 CFR 169.671 - Accessories.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Accessories. 169.671 Section 169.671 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of Less Than 50 Volts on Vessels of Less Than...

  10. 46 CFR 169.671 - Accessories.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Accessories. 169.671 Section 169.671 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of Less Than 50 Volts on Vessels of Less Than...

  11. 46 CFR 169.671 - Accessories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accessories. 169.671 Section 169.671 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of Less Than 50 Volts on Vessels of Less Than...

  12. 46 CFR 169.671 - Accessories.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Accessories. 169.671 Section 169.671 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of Less Than 50 Volts on Vessels of Less Than...

  13. Electronic Position Sensor for Power Operated Accessory

    DOEpatents

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  14. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  15. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  16. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  17. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  18. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  19. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  20. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  1. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  2. Home Economics Careers in Apparel and Accessories.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Dept. of Occupational Education and Technology.

    This course of study on careers in apparel and accessories is one of a series on home economics careers designed to assist teacher-coordinators in Texas in promotion and/or teaching home economics cooperative education programs. The course of study consists of (1) an overview and job description, (2) a job analysis, (3) a course outline, (4)…

  3. Inheritance of the accessory navicular bone.

    PubMed

    Kiter, E; Erduran, M; Günal, I

    2000-01-01

    The accessory navicular bone is one of the most symptomatic bones of the foot. Although it has been reported to be present in various members of the same family, there is a lack of knowledge about its inheritance in the literature. We examined three families and suggest that it has an autosomal dominant trait with incomplete penetrance.

  4. Home Economics Careers in Apparel and Accessories.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Dept. of Occupational Education and Technology.

    This course of study on careers in apparel and accessories is one of a series on home economics careers designed to assist teacher-coordinators in Texas in promotion and/or teaching home economics cooperative education programs. The course of study consists of (1) an overview and job description, (2) a job analysis, (3) a course outline, (4)…

  5. 46 CFR 169.671 - Accessories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accessories. 169.671 Section 169.671 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of Less Than 50 Volts on Vessels of Less Than...

  6. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to...

  7. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to...

  8. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to...

  9. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction accessories. 884.6120... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6120 Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group...

  10. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction accessories. 884.6120... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6120 Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group...

  11. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction accessories. 884.6120... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6120 Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group...

  12. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction accessories. 884.6120... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6120 Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group...

  13. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction accessories. 884.6120... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6120 Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group...

  14. PIONEER POLAR STRUCTURES. SPECIFICATIONS FOR JAMESWAY SHELTER ACCESSORIES

    DTIC Science & Technology

    Accessories were developed for the Jamesway in order to provide a suitable, light weight, quick-erecting shelter for use as quarters, messing, galley...wall extension kit; special entry kits; an improved electrical distribution system; and special utility accessories. Specifications for the Jamesway shelter accessories are included.

  15. 21 CFR 876.5980 - Gastrointestinal tube and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gastrointestinal tube and accessories. 876.5980... tube and accessories. (a) Identification. A gastrointestinal tube and accessories is a device that..., gastrointestinal string and tubes to locate internal bleeding, double lumen tube for intestinal decompression...

  16. 21 CFR 876.5980 - Gastrointestinal tube and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gastrointestinal tube and accessories. 876.5980... tube and accessories. (a) Identification. A gastrointestinal tube and accessories is a device that..., gastrointestinal string and tubes to locate internal bleeding, double lumen tube for intestinal decompression...

  17. 21 CFR 876.5980 - Gastrointestinal tube and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal tube and accessories. 876.5980... tube and accessories. (a) Identification. A gastrointestinal tube and accessories is a device that..., gastrointestinal string and tubes to locate internal bleeding, double lumen tube for intestinal decompression...

  18. 21 CFR 868.5860 - Pressure tubing and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended...

  19. 21 CFR 868.5860 - Pressure tubing and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended...

  20. 21 CFR 868.5860 - Pressure tubing and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended...

  1. 21 CFR 868.5860 - Pressure tubing and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended...

  2. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  3. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  4. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  5. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  6. 21 CFR 872.4120 - Bone cutting instrument and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...

  7. 14 CFR 25.1192 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...

  8. 14 CFR 25.1192 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...

  9. 14 CFR 25.1192 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...

  10. 21 CFR 876.5540 - Blood access device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood access device and accessories. 876.5540... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5540 Blood access device and accessories. (a) Identification. A blood access device and accessories is a device intended...

  11. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices...

  12. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  13. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  14. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  15. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  16. 21 CFR 872.6300 - Rubber dam and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  17. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  18. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  19. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  20. 21 CFR 872.6250 - Dental chair and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...

  1. 21 CFR 872.6250 - Dental chair and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...

  2. 21 CFR 872.6250 - Dental chair and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...

  3. 21 CFR 872.6250 - Dental chair and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...

  4. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accessories, spare parts, or tools. 10.600 Section... tools. (a) General. Accessories, spare parts, or tools that are delivered with a good and that form part of the good's standard accessories, spare parts, or tools will be treated as originating goods if...

  5. 19 CFR 10.537 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accessories, spare parts, or tools. 10.537 Section... Free Trade Agreement Rules of Origin § 10.537 Accessories, spare parts, or tools. Accessories, spare parts, or tools that are delivered with a good and that form part of the good's standard...

  6. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  7. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  8. 21 CFR 876.5540 - Blood access device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood access device and accessories. 876.5540... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5540 Blood access device and accessories. (a) Identification. A blood access device and accessories is a device intended...

  9. 21 CFR 876.5540 - Blood access device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood access device and accessories. 876.5540... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5540 Blood access device and accessories. (a) Identification. A blood access device and accessories is a device intended...

  10. 21 CFR 876.5540 - Blood access device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood access device and accessories. 876.5540... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5540 Blood access device and accessories. (a) Identification. A blood access device and accessories is a device intended...

  11. 21 CFR 876.5540 - Blood access device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood access device and accessories. 876.5540... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5540 Blood access device and accessories. (a) Identification. A blood access device and accessories is a device intended...

  12. 21 CFR 872.4920 - Dental electrosurgical unit and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...

  13. 21 CFR 872.6640 - Dental operative unit and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...

  14. 21 CFR 872.6250 - Dental chair and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...

  15. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  16. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  17. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  18. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  19. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  20. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  1. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing

    SciTech Connect

    Haag, Jeremy R.; Pikaard, Craig S.

    2011-08-01

    In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

  2. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease.

    PubMed

    Patino, Gustavo A; Isom, Lori L

    2010-12-10

    Voltage-gated Na+ channel (VGSC) β Subunits are not "auxiliary." These multi-functional molecules not only modulate Na+ current (I(Na)), but also function as cell adhesion molecules (CAMs)-playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system.

  3. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.

    PubMed

    Thomm, Michael; Reich, Christoph; Grünberg, Sebastian; Naji, Souad

    2009-02-01

    The recent success in reconstitution of RNAPs (RNA polymerases) from hyperthermophilic archaea from bacterially expressed purified subunits opens the way for detailed structure-function analyses of multisubunit RNAPs. The archaeal enzyme shows close structural similarity to eukaryotic RNAP, particularly to polymerase II, and can therefore be used as model for analyses of the eukaryotic transcriptional machinery. The cleft loops in the active centre of RNAP were deleted and modified to unravel their function in interaction with nucleic acids during transcription. The rudder, lid and fork 2 cleft loops were required for promoter-directed initiation and elongation, the rudder was essential for open complex formation. Analyses of transcripts from heteroduplex templates containing stable open complexes revealed that bubble reclosure is required for RNA displacement during elongation. Archaeal transcription systems contain, besides the orthologues of the eukaryotic transcription factors TBP (TATA-box-binding protein) and TF (transcription factor) IIB, an orthologue of the N-terminal part of the alpha subunit of eukaryotic TFIIE, called TFE, whose function is poorly understood. Recent analyses revealed that TFE is involved in open complex formation and, in striking contrast with eukaryotic TFIIE, is also present in elongation complexes. Recombinant archaeal RNAPs lacking specific subunits were used to investigate the functions of smaller subunits. These studies revealed that the subunits P and H, the orthologues of eukaryotic Rpb12 and Rpb5, were not required for RNAP assembly. Subunit P was essential for open complex formation, and the DeltaH enzyme was greatly impaired in all assays, with the exception of promoter recruitment. Recent reconstitution studies indicate that Rpb12 and Rpb5 can be incorporated into archaeal RNAP and can complement for the function of the corresponding archaeal subunit in in vitro transcription assays.

  4. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  5. RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae.

    PubMed

    Volokhov, Dmitriy V; Simonyan, Vahan; Davidson, Maureen K; Chizhikov, Vladimir E

    2012-01-01

    Conventional classification of the species in the family Mycoplasmataceae is mainly based on phenotypic criteria, which are complicated, can be difficult to measure, and have the potential to be hampered by phenotypic deviations among the isolates. The number of biochemical reactions suitable for phenotypic characterization of the Mycoplasmataceae is also very limited and therefore the strategy for the final identification of the Mycoplasmataceae species is based on comparative serological results. However, serological testing of the Mycoplasmataceae species requires a performance panel of hyperimmune sera which contains anti-serum to each known species of the family, a high level of technical expertise, and can only be properly performed by mycoplasma-reference laboratories. In addition, the existence of uncultivated and fastidious Mycoplasmataceae species/isolates in clinical materials significantly complicates, or even makes impossible, the application of conventional bacteriological tests. The analysis of available genetic markers is an additional approach for the primary identification and phylogenetic classification of cultivable species and uncultivable or fastidious organisms in standard microbiological laboratories. The partial nucleotide sequences of the RNA polymerase β-subunit gene (rpoB) and the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known type strains and the available non-type strains of the Mycoplasmataceae species. In addition to the available 16S rRNA gene data, the ITS and rpoB sequences were used to infer phylogenetic relationships among these species and to enable identification of the Mycoplasmataceae isolates to the species level. The comparison of the ITS and rpoB phylogenetic trees with the 16S rRNA reference phylogenetic tree revealed a similar clustering patterns for the Mycoplasmataceae species, with minor discrepancies for a few species that demonstrated higher divergence of their ITS and rpoB in

  6. Adaptive strategies of the influenza virus polymerase for replication in humans.

    PubMed

    Mehle, Andrew; Doudna, Jennifer A

    2009-12-15

    Transmission of influenza viruses into the human population requires surmounting barriers to cross-species infection. Changes in the influenza polymerase overcome one such barrier. Viruses isolated from birds generally contain polymerases with the avian-signature glutamic acid at amino acid 627 in the PB2 subunit. These polymerases display restricted activity in human cells. An adaptive change in this residue from glutamic acid to the human-signature lysine confers high levels of polymerase activity in human cells. This mutation permits escape from a species-specific restriction factor that targets polymerases from avian viruses. A 2009 swine-origin H1N1 influenza A virus recently established a pandemic infection in humans, even though the virus encodes a PB2 with the restrictive glutamic acid at amino acid 627. We show here that the 2009 H1N1 virus has acquired second-site suppressor mutations in its PB2 polymerase subunit that convey enhanced polymerase activity in human cells. Introduction of this polymorphism into the PB2 subunit of a primary avian isolate also increased polymerase activity and viral replication in human and porcine cells. An alternate adaptive strategy has also been identified, whereby introduction of a human PA subunit into an avian polymerase overcomes restriction in human cells. These data reveal a strategy used by the 2009 H1N1 influenza A virus and identify other pathways by which avian and swine-origin viruses may evolve to enhance replication, and potentially pathogenesis, in humans.

  7. Accessory cells for β-cell transplantation.

    PubMed

    Staels, W; De Groef, S; Heremans, Y; Coppens, V; Van Gassen, N; Leuckx, G; Van de Casteele, M; Van Riet, I; Luttun, A; Heimberg, H; De Leu, N

    2016-02-01

    Despite recent advances, insulin therapy remains a treatment, not a cure, for diabetes mellitus with persistent risk of glycaemic alterations and life-threatening complications. Restoration of the endogenous β-cell mass through regeneration or transplantation offers an attractive alternative. Unfortunately, signals that drive β-cell regeneration remain enigmatic and β-cell replacement therapy still faces major hurdles that prevent its widespread application. Co-transplantation of accessory non-islet cells with islet cells has been shown to improve the outcome of experimental islet transplantation. This review will highlight current travails in β-cell therapy and focuses on the potential benefits of accessory cells for islet transplantation in diabetes.

  8. Accessory spine of the foramen ovale.

    PubMed

    Skrzat, J; Walocha, J; Zawiliński, J

    2012-11-01

    The objective of this study was to provide morphometric analysis of an accessory spine that was found within the lumen of the foramen ovale, as well as to find out whether this structure could mechanically irritate the mandibular nerve. A bifid spine was perceived in the macerated skull of an adult individual. It was located in the anterior part of the left foramen ovale. The overall length of the spine was found to be 1.8 mm. The spine had a homogenous structure, and showed high levels of mineralisation. We conclude that the accessory spine did not compress the mandibular nerve, and that the foramen ovale provided enough space for passage of the nerve. In all likelihood, these structures remained in anatomical accordance without causing any neurological symptoms.

  9. Surgical treatment of symptomatic accessory navicular.

    PubMed

    Tan, S M; Chin, T W; Mitra, A K; Tan, S K

    1995-05-01

    The accessory navicular is a known cause of foot pain. When symptomatic and conservative measures have failed, surgical intervention may be required. Simple excision of the ossicle or the Kidner procedure with transplantation of tibialis posterior tendon to the undersurface of the navicular bone may be done. Eighteen patients with symptomatic accessory navicular were reviewed at the Singapore General Hospital, Department of Orthopaedic Surgery 'O' Unit. All 18 patients had foot pain and restriction of activities. Thirteen noticed a prominence on the medial side of the affected foot and 7 had difficulty with shoe fitting. Nine underwent simple excision of the ossicle while the other 9 had the Kidner procedure done. The average follow-up period was 3.1 years. Both the simple excision and the Kidner procedure were equally successful in relieving symptoms in 15 out of the 18 cases. The Kidner procedure did not confer any particular advantage over simple excision.

  10. Accessory deep peroneal neuropathy: collision technique diagnosis.

    PubMed

    Sander, H W; Quinto, C; Chokroverty, S

    1998-01-01

    Accessory deep peroneal nerve (ADPN), a common anatomic variant, is traditionally suspected when common peroneal nerve stimulation evokes a greater amplitude extensor digitorum brevis compound muscle action potential than deep peroneal nerve (DPN) stimulation. Posterolateral ankle stimulation over the ADPN is confirmatory. We report a rare patient with ADPN neuropathy in whom the collision technique was necessary to confirm the presence of an ADPN and to distinguish between neuropathy of the ADPN and the DPN.

  11. Solving the RNA polymerase I structural puzzle

    SciTech Connect

    Moreno-Morcillo, María; Taylor, Nicholas M. I.; Gruene, Tim; Legrand, Pierre; Rashid, Umar J.; Ruiz, Federico M.; Steuerwald, Ulrich; Müller, Christoph W.; Fernández-Tornero, Carlos

    2014-10-01

    Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.

  12. Interaction of Proteus mirabilis Urease Apoenzyme and Accessory Proteins Identified with Yeast Two-Hybrid Technology

    PubMed Central

    Heimer, Susan R.; Mobley, Harry L. T.

    2001-01-01

    Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins. PMID:11157956

  13. Accessories to the crime: recent advances in HIV accessory protein biology.

    PubMed

    Gramberg, Thomas; Sunseri, Nicole; Landau, Nathaniel R

    2009-02-01

    Recent advances in understanding the roles of the lentiviral accessory proteins have provided fascinating insight into the molecular biology of the virus and uncovered previously unappreciated innate immune mechanisms by which the host defends itself. HIV-1 and other lentiviruses have developed accessory proteins that counterattack the antiviral defenses in a sort of evolutionary battle. The virus is remarkably adept at co-opting cellular degradative pathways to destroy the protective proteins. This review focuses on recent advances in understanding three of the accessory proteins-virion infectivity factor (Vif), viral protein R (Vpr), and viral protein U (Vpu)-that target different restriction factors to ensure virus replication. These proteins may provide promising targets for the development of novel classes of antiretroviral drugs.

  14. Directed Polymerase Evolution

    PubMed Central

    Chen, Tingjian; Romesberg, Floyd E.

    2014-01-01

    Polymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose. These systems draw on different methods of creating a pool of randomly mutated polymerases and are differentiated by the process used to isolate the most fit members. A variety of polymerases have been evolved, providing new or improved functionality, as well as interesting new insight into the factors governing activity. PMID:24211837

  15. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader

    PubMed Central

    Seybert, Anja; Wigley, Dale B

    2004-01-01

    Circular clamps are utilised by replicative polymerases to enhance processivity. The topological problem of loading a toroidal clamp onto DNA is overcome by ATP-dependent clamp loader complexes. Different organisms use related protein machines to load clamps, but the mechanisms by which they utilise ATP are surprisingly different. Using mutant clamp loaders that are deficient in either ATP binding or hydrolysis in different subunits, we show how the different subunits of an archaeal clamp loader use ATP binding and hydrolysis in distinct ways at different steps in the loading process. Binding of nucleotide by the large subunit and three of the four small subunits is sufficient for clamp loading. However, ATP hydrolysis by the small subunits is required for release of PCNA to allow formation of the complex between PCNA and the polymerase, while hydrolysis by the large subunit is required for catalytic clamp loading. PMID:15014449

  16. Endoscope-assisted transoral accessory parotid mass excision.

    PubMed

    Woo, Seung Hoon

    2016-01-01

    Accessory parotid gland tissue is salivary tissue adjacent to Stensen's duct that is distinctly separate from the main body of the parotid gland. Surgical removal of an accessory parotid mass is usually accomplished through an external neck incision. However, this procedure inevitably results in a neck scar. We report the case of a 55-year-old man with an accessory parotid mass. We applied a modified approach to accessory parotid mass removal through the mouth with an endoscope system. The patient, who was diagnosed with a benign pleomorphic adenoma, underwent endoscope-assisted transoral accessory parotid mass excision. The follow-up time was 6 months. The patient experienced no serious postoperative complications or recurrence. Resection of an accessory parotid mass can be performed via an endoscope-assisted transoral approach. In this study, we describe the procedure of the endoscope-assisted transoral resection. © 2015 Wiley Periodicals, Inc.

  17. Congenital salivary fistula of accessory parotid gland: imaging findings.

    PubMed

    Gadodia, A; Seith, A; Sharma, R; Thakar, A

    2008-03-01

    We report the imaging findings in a rare case of an accessory parotid gland fistula. An eight-year-old boy was presented with complaints of serous discharge from his left cheek since birth. As part of the radiological investigation, magnetic resonance imaging, computed tomography sialography with fistulography, and digital sialography with fistulography were performed. Magnetic resonance imaging demonstrated the exact location of an accessory parotid gland but failed to demonstrate the accessory duct. The presence of an accessory gland was well delineated on computed tomography fistulography and computed tomography sialography. Fistulography revealed a small accessory parotid duct and gland. No communication between the ductal systems of both glands was demonstrated. In such cases, pre-operative imaging (with sialography, magnetic resonance sialography and computed tomography sialography with fistulography) is helpful for exact delineation of the ductal anatomy. To the best of our knowledge, only four previous cases of congenital accessory parotid gland fistula have been reported in the English literature.

  18. Imaging of the symptomatic type II accessory navicular bone.

    PubMed

    Mosel, Leigh D; Kat, Evelyn; Voyvodic, Frank

    2004-06-01

    Accessory ossicles of the foot are commonly mistaken for fractures. The accessory navicular is one of the most common accessory ossicles of the foot. There is a higher incidence in women and the finding might be bilateral in 50-90%. This entity is usually asymptomatic, although populations with medial foot pain have a higher prevalence. Three types of accessory navicular bone have been described. The type II accessory navicular is the most commonly symptomatic variant with localized chronic or acute on chronic medial foot pain and tenderness with associated inflammation of overlying soft tissues. Plain radiographic identification of the accessory navicular is insufficient to attribute symptomatology. Ultrasound allows for comparison with the asymptomatic side and localization of pain. Bone scintigraphy has a high sensitivity but positive findings lack specificity. Magnetic resonance imaging is of high diagnostic value for demonstrating both bone marrow and soft tissue oedema.

  19. RNase-like domain in DNA-directed RNA polymerase II.

    PubMed Central

    Shirai, T; Go, M

    1991-01-01

    DNA-directed RNA polymerase is responsible for gene expression. Despite its importance, many details of its function and higher-order structure still remain unknown. We report here a local sequence similarity between the second largest subunit of RNA polymerase II and bacterial RNases Ba (barnase), Bi, and St. The most remarkable similarity is that the catalytic sites of the RNases are shared with the eukaryotic RNA polymerase II subunits of Drosophila melanogaster and Saccharomyces cerevisiae. Several amino acids conserved among the RNases and the RNase-like domains of the RNA polymerase subunits are located in the neighborhood of the catalytic sites of barnase, whose three-dimensional structure has been resolved. This observation suggests the functional importance of the RNase-like domain of the RNA polymerase subunits and indicates that the RNase-like domain may have RNase activity. The location of the RNase-like domain relative to the region necessary for RNA polymerization is similar to the relative proximity of 5'----3' or 3'----5' exonuclease and the region of polymerase activity of DNA polymerase I. The RNase-like domain might work in proofreading, as in RNA-directed RNA polymerase of influenza virus, or it may contribute to RNA binding through an unknown function. Images PMID:1924368

  20. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... generic type of device may include the following accessories: signal analysis and display equipment... type of device does not include devices used to image some relatively unchanging physiological...

  1. 21 CFR 876.1500 - Endoscope and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... photographic accessories for endoscope, miscellaneous bulb adapter for endoscope, binocular attachment for endoscope, eyepiece attachment for prescription lens, teaching attachment, inflation bulb, measuring device...

  2. 21 CFR 876.1500 - Endoscope and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... photographic accessories for endoscope, miscellaneous bulb adapter for endoscope, binocular attachment for endoscope, eyepiece attachment for prescription lens, teaching attachment, inflation bulb, measuring device...

  3. Accessory slips of the extensor digiti minimi.

    PubMed

    Li, Jing; Mao, Qing Hua

    2014-01-01

    During the educational dissection of a 69-year-old Chinese male cadaver, an extensor digiti minimi (EDM) with five slips on the right hand was discovered. Except for the two slips of the little finger, the two radial slips were inserted into the dorsal aponeurosis of the middle finger and the ring finger, respectively. The middle slip was connected to the junctura tendinum in the fourth intermetacarpal spaces. Variations in this region are of paramount importance for the reconstructive surgeons, who may utilize the accessory slips to restore functional capacity of the fingers.

  4. Spinal accessory nerve function following neck dissection.

    PubMed

    Zibordi, F; Baiocco, F; Bascelli, C; Bini, A; Canepa, A

    1988-01-01

    Spinal accessory nerve (SAN) function was evaluated by electromyography (EMG) and muscle testing in 36 patients who underwent neck dissection with SAN preservation. The results emphasized that SAN function was relatively good after conservative neck surgery. Muscle testing findings showed better function than did EMG findings. After surgery the trapezius muscle functioned more efficiently than the sternocleidomastoid (SCM) muscle probably because of the more traumatic surgical handling of both the SCM muscle and its SAN branch. In order to obtain the functional advantages of SAN preservation, the authors suggest that the conservative procedure in radical neck dissection be used whenever warranted by oncologic diagnosis.

  5. Optimization of diffuse reflectance infrared spectroscopy accessories

    SciTech Connect

    Hirschfeld, T.

    1986-11-01

    The value of diffuse reflectance as an infrared or near-infrared spectroscopic sampling procedure has been limited by the low efficiency of accessories designed for it. In terms of signal-to-noise ratio, these average 2-6% for integrating spheres and 10-12% for various ellipsoidal mirror arrangements. Much better performances, up to 37% efficiency, can be obtained by optimizing a concentric confocal ellipsoidal mirror arrangement by using a very large central opening in the amular collector mirror, and adapting the throughput of the detector to the geometry of the collected beam.

  6. HIV-1 Accessory Proteins: Vpu and Vif

    PubMed Central

    Andrew, Amy; Strebel, Klaus

    2014-01-01

    HIV-1 Vif and Vpu are accessory factors involved in late stages of viral replication. Vif regulates viral infectivity by preventing virion incorporation of APOBEC3G and other members of the family of cytidine deaminases, while Vpu causes degradation of CD4 and promotes virus release by functionally inactivating the host factor BST-2. This chapter described techniques used for the characterization of Vif and Vpu and their functional interaction with host factors. Many of the techniques are, however, applicable to the functional analysis of other viral proteins. PMID:24158820

  7. Archaeal RNA polymerase

    PubMed Central

    Hirata, Akira; Murakami, Katsuhiko S.

    2010-01-01

    Summary The recently solved X-ray crystal structures of archaeal RNA polymerase allows a structural comparison of the transcription machinery among all three domains of life. Archaeal transcription is very simple and all components, including the structures of general transcription factors and RNA polymerase, are highly conserved in eukaryotes. Therefore, it could be a new model for dissection of the eukaryotic transcription apparatus. The archaeal RNA polymerase structure also provides a framework for addressing the functional role that Fe–S clusters play within the transcription machinery of archaea and eukaryotes. A comparison between bacterial and archaeal open complex models reveals likely key motifs of archaeal RNA polymerase for DNA unwinding during the open complex formation. PMID:19880312

  8. The expanding polymerase universe.

    PubMed

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  9. Role of Human DNA Polymerase and Its Accessory Proteins in Breast Cancer

    DTIC Science & Technology

    1998-09-01

    Coinfection of Sf9 Cells with Pol 8, Cyclins, and Cdks and 3 2Pi Tris-HC1, pH 7.8, 0.25 m sucrose, 0.1 m NaCl, 0.1% Nonidet P-40, 0.1 mm Labeling-Sf9...glycerol, 7.8, 0.25 M sucrose, 0.5 m NaCl, 0.1% Nonidet P-40, 0.1 mm EGTA, 1 mm 0.5 mm EDTA, 0.1 mm EGTA, I mM dithiothreitol). EDTA, 1 mm dithiothreitol...5 column. The enzyme was eluted with a linear Molt 4 cells were prepared and lysed with 300 jl of Nonidet P-40 buffer gradient of 0-1 m NaCl for 20

  10. Role of Human DNA Polymerase and its Accessory Proteins in Breast Cancer.

    DTIC Science & Technology

    1999-09-01

    of lysis buffer (40 mm Coinfection of Sf9 Cells with Pol 5, Cyclins, and Cdks and 3"Pi Tris-HC1, pH 7.8, 0.25 m sucrose, 0.1 M NaCl, 0.1% Nonidet P...Tris-HCl, pH 7.5, 10% glycerol, 7.8, 0.25 M sucrose, 0.5 M NaC1, 0.1% Nonidet P-40, 0.1 mm EGTA, 1 mm 0.5 mm EDTA, 0.1 mm EGTA, I mm dithiothreitol...growing onto a Mono Q HR 5/5 column. The enzyme was eluted with a linear Molt 4 cells were prepared and lysed with 300 M1 of Nonidet P-40 buffer

  11. Role of Human DNA Polymerase and Its Accessory Proteins in Breast Cancer

    DTIC Science & Technology

    2002-04-01

    7.8, 0.25 m sucrose, 0.1 M NaCl, 0.1% Nonidet P-40, 0.1 mm Labeling-Sf9 cells (10’) were grown to exponential stage. Pol 6, cyclin, EGTA, 1 mM EDTA, 1...Tris-HCl, pH dialyzed against TGEED buffer (50 mM Tris-HC1, pH 7.5, 10% glycerol, 7.8, 0.25 m sucrose, 0.5 m NaCl, 0.1% Nonidet P-40, 0.1 mm EGTA, 1...lysed with 300 M1 of Nonidet P-40 buffer gradient of 0-1 m NaCl for 20 min at 1 ml/min. (50 mm Tris-HCl, 1 mm phenylmethylsulfonyl fluoride, 150 mm

  12. Role of Human DNA Polymerase and Its Accessory Proteins in Breast Cancer

    DTIC Science & Technology

    2000-09-01

    Ultracentriiigation. Sedimentation steps were carried out at 0-4 °C using the procedures analysis was carried out using a Beckman ultracentrifuge described by Jiang...supernatant was filtered through glass wool. the bottom of the tubes. The sedimentation velocities were Batchwise DEAE-Celludose Adsorption. DE-52 cellulose...enzymne sedimented with a much higher velocity Procedures, leading to the isolation of a heterodimer of p125 (S,_0. = 9.2) than the heterodimer which

  13. Reviewing prescription spending and accessory usage.

    PubMed

    Oxenham, Julie

    This article aims to explore the role of the stoma nurse specialist in the community and how recent initiatives within the NHS have impacted on the roles in stoma care to react to the rising prescription costs in the specialty. The article will explore how the stoma care nurse conducted her prescription reviews within her own clinical commissioning group (CCG). The findings of the reviews will be highlighted by a small case history and a mini audit that reveals that some stoma patients may be using their stoma care accessories inappropriately, which may contribute to the rise in stoma prescription spending. To prevent the incorrect use of stoma appliances it may necessitate an annual review of ostomates (individuals who have a stoma), as the author's reviews revealed that inappropriate usage was particularly commonplace when a patient may have not been reviewed by a stoma care specialist for some considerable amount of time. Initial education of the ostomate and ongoing education of how stoma products work is essential to prevent the misuse of stoma appliances, particularly accessories, as the reviews revealed that often patients were not always aware of how their products worked in practice.

  14. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK.

    PubMed

    Feaver, W J; Svejstrup, J Q; Henry, N L; Kornberg, R D

    1994-12-16

    KIN28, a member of the p34cdc2/CDC28 family of protein kinases, is identified as a subunit of yeast RNA polymerase transcription factor IIH (TFIIH) on the basis of sequence determination, immunological reactivity, and copurification. KIN28 is, moreover, one of three subunits of TFIIK, a subassembly of TFIIH with protein kinase activity directed toward the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II. Itself a phosphoprotein, KIN28 interacts specifically with the two largest subunits of RNA polymerase II. Previous work of others points to two further associations: KIN28 interacts in vivo with the cyclin CCL1, and KIN28 and CCL1 are homologous to human MO15 and cyclin H, which form the cyclin-dependent kinase-activating kinase (CAK). We show that human CAK possesses the CTD kinase activity characteristic of TFIIH.

  15. Brugada syndrome in a patient with accessory pathway.

    PubMed

    Bodegas, A I; Arana, J I; Vitoria, Y; Arriandiaga, J R; Barrenetxea, J I

    2002-01-01

    Brugada syndrome in a patient with Wolff-Parkinson-White syndrome. We report a 32-year-old man with orthodromic atrioventricular (AV) reciprocating tachycardia using a right posterior accessory pathway. However, his ECG showed ST segment elevation in leads V1 to V3. After successful radiofrequency ablation of his accessory pathway a cardioverter defibrillator was implanted.

  16. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microscopes and accessories. 864.3600 Section 864.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  17. 21 CFR 864.3600 - Microscopes and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microscopes and accessories. 864.3600 Section 864.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3600...

  18. 21 CFR 884.2700 - Intrauterine pressure monitor and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intrauterine pressure monitor and accessories. 884... Monitoring Devices § 884.2700 Intrauterine pressure monitor and accessories. (a) Identification. An intrauterine pressure monitor is a device designed to detect and measure intrauterine and amniotic...

  19. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial engines, the engine power section and all portions of the exhaust sytem must be isolated from the engine...

  20. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial engines, the engine power section and all portions of the exhaust sytem must be isolated from the engine...

  1. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial engines, the engine power section and all portions of the exhaust sytem must be isolated from the engine...

  2. 14 CFR 125.149 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine accessory section diaphragm. 125.149... Requirements § 125.149 Engine accessory section diaphragm. Unless equivalent protection can be shown by other means, a diaphragm that complies with § 125.145 must be provided on air-cooled engines to isolate the...

  3. 14 CFR 125.149 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine accessory section diaphragm. 125.149... Requirements § 125.149 Engine accessory section diaphragm. Unless equivalent protection can be shown by other means, a diaphragm that complies with § 125.145 must be provided on air-cooled engines to isolate the...

  4. 14 CFR 125.149 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine accessory section diaphragm. 125.149... Requirements § 125.149 Engine accessory section diaphragm. Unless equivalent protection can be shown by other means, a diaphragm that complies with § 125.145 must be provided on air-cooled engines to isolate the...

  5. 14 CFR 125.149 - Engine accessory section diaphragm.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine accessory section diaphragm. 125.149... Requirements § 125.149 Engine accessory section diaphragm. Unless equivalent protection can be shown by other means, a diaphragm that complies with § 125.145 must be provided on air-cooled engines to isolate the...

  6. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant...

  7. 21 CFR 878.1800 - Speculum and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Speculum and accessories. 878.1800 Section 878.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Diagnostic Devices § 878.1800 Speculum and accessories...

  8. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial engines, the engine power section and all portions of the exhaust sytem must be isolated from the...

  9. 21 CFR 884.5350 - Contraceptive diaphragm and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Contraceptive diaphragm and accessories. 884.5350 Section 884.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Devices § 884.5350 Contraceptive diaphragm and accessories. (a) Identification. A contraceptive diaphragm...

  10. 21 CFR 878.1800 - Speculum and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Speculum and accessories. 878.1800 Section 878.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Diagnostic Devices § 878.1800 Speculum and accessories...

  11. 49 CFR 192.147 - Flanges and flange accessories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....147 Flanges and flange accessories. (a) Each flange or flange accessory (other than cast iron) must... be subjected in service. (c) Each flange on a flanged joint in cast iron pipe must conform in dimensions, drilling, face and gasket design to ASME/ANSI B16.1 and be cast integrally with the pipe,...

  12. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine...

  13. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine...

  14. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  15. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  16. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  17. 21 CFR 876.1500 - Endoscope and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endoscope and accessories. 876.1500 Section 876.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1500 Endoscope and accessories...

  18. 21 CFR 876.1500 - Endoscope and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endoscope and accessories. 876.1500 Section 876.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1500 Endoscope and accessories...

  19. Accessory lower limb associated with spina bifida: case report.

    PubMed

    Bayri, Yaşar; Tanrıkulu, Bahattin; Ekşi, Murat Sakir; Dağçınar, Adnan

    2014-12-01

    Heterotopic redundancies, such as an accessory limb associated with spina bifida, are extremely rare anomalies. There are 12 cases of accessory limb associated with spinal bifida in literature. This report aims a detailed description of the additional case and an analysis of the findings in light. A male baby was born at 40 weeks of gestation and was referred to the neurosurgery clinic with a diagnosis of accessory lower limb. On physical examination, the dorsal meningocele was located at the lumbosacral region and there was accessory lower limb on it. There was no open neural placode. The accessory limb was excised on postnatal day 3. Dysraphic appendages are rare and complicated anomalies. They should be investigated carefully, and all of the lesions must be repaired for babies' quality of life.

  20. A rare case of chronic sialadenitis of accessory parotid gland.

    PubMed

    Sathe, Nilam Uttam; Thakare, Samir; Wadkar, Gaurav; Gaikwad, Ninad

    2014-01-01

    The accessory parotid gland is salivary tissue adjacent to stenson's duct that is separated from the main parotid gland and lying on masseter muscle. It has secondary duct empting into the stenson's duct. The differential diagnosis of mid-cheek masses include pathology arising from normal anatomic structures or from variations of normal accessory parotid gland tissue. Surgical resection is the treatment of choice for the accessory parotid gland tumor. We report a case of accessory parotid gland with chronic sialadenitis in a 26 years old male with the diagnosis and treatment. Accessory parotid gland pathologies should be included in the differential diagnosis of a patient presently with a mid-cheek mass.

  1. Percutaneous drilling of symptomatic accessory navicular in young athletes.

    PubMed

    Nakayama, Shoichiro; Sugimoto, Kazuya; Takakura, Yoshinori; Tanaka, Yasuhito; Kasanami, Ryoji

    2005-04-01

    Results of percutaneous drilling for symptomatic type II accessory tarsal navicular bone are not determined. Percutaneous drilling of accessory navicular synchondrosis will induce or accelerate bone union between the accessory and primary navicular bones. Bone union of the synchondrosis leads to symptomatic relief. Case series; Level of evidence, 4. Thirty-one feet of 29 patients with type II accessory tarsal navicular treated by percutaneous drilling were reviewed. Twenty-four feet (77.4%) were assessed as excellent, 6 (19.4%) as good, and 1 (3.2%) as fair. No feet were assessed as poor. Bone union was obtained in 16 (80%) of the 20 feet when the proximal phalanx of the great toe was immature and in 2 of the 11 feet when it was mature. Percutaneous drilling of the synchondrosis was effective for a symptomatic type II accessory navicular, especially in patients with immature proximal phalanx of the great toe.

  2. A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking.

    PubMed

    White, Samantha L; Ortinski, Pavel I; Friedman, Shayna H; Zhang, Lei; Neve, Rachael L; Kalb, Robert G; Schmidt, Heath D; Pierce, R Christopher

    2016-02-01

    A growing body of evidence indicates that the transport of GluA1 subunit-containing calcium-permeable AMPA receptors (CP-AMPARs) to synapses in subregions of the nucleus accumbens promotes cocaine seeking. Consistent with these findings, the present results show that administration of the CP-AMPAR antagonist, Naspm, into the caudal lateral core or caudal medial shell of the nucleus accumbens attenuated cocaine priming-induced reinstatement of drug seeking. Moreover, viral-mediated overexpression of 'pore dead' GluA1 subunits (via herpes simplex virus (HSV) GluA1-Q582E) in the lateral core or medial shell attenuated the reinstatement of cocaine seeking. The overexpression of wild-type GluA1 subunits (via HSV GluA1-WT) in the medial shell, but not the lateral core, enhanced the reinstatement of cocaine seeking. These results indicate that activation of GluA1-containing AMPARs in subregions of the nucleus accumbens reinstates cocaine seeking. SAP97 and 4.1N are proteins involved in GluA1 trafficking to and stabilization in synapses; SAP97-GluA1 interactions also influence dendritic growth. We next examined potential roles of SAP97 and 4.1N in cocaine seeking. Viral-mediated expression of a microRNA that reduces SAP97 protein expression (HSV miSAP97) in the medial accumbens shell attenuated cocaine seeking. In contrast, a virus that overexpressed a dominant-negative form of a 4.1N C-terminal domain (HSV 4.1N-CTD), which prevents endogenous 4.1N binding to GluA1 subunits, had no effect on cocaine seeking. These results indicate that the GluA1 subunit accessory protein SAP97 may represent a novel target for pharmacotherapeutic intervention in the treatment of cocaine craving.

  3. A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking

    PubMed Central

    White, Samantha L; Ortinski, Pavel I; Friedman, Shayna H; Zhang, Lei; Neve, Rachael L; Kalb, Robert G; Schmidt, Heath D; Pierce, R Christopher

    2016-01-01

    A growing body of evidence indicates that the transport of GluA1 subunit-containing calcium-permeable AMPA receptors (CP-AMPARs) to synapses in subregions of the nucleus accumbens promotes cocaine seeking. Consistent with these findings, the present results show that administration of the CP-AMPAR antagonist, Naspm, into the caudal lateral core or caudal medial shell of the nucleus accumbens attenuated cocaine priming-induced reinstatement of drug seeking. Moreover, viral-mediated overexpression of ‘pore dead' GluA1 subunits (via herpes simplex virus (HSV) GluA1-Q582E) in the lateral core or medial shell attenuated the reinstatement of cocaine seeking. The overexpression of wild-type GluA1 subunits (via HSV GluA1-WT) in the medial shell, but not the lateral core, enhanced the reinstatement of cocaine seeking. These results indicate that activation of GluA1-containing AMPARs in subregions of the nucleus accumbens reinstates cocaine seeking. SAP97 and 4.1N are proteins involved in GluA1 trafficking to and stabilization in synapses; SAP97-GluA1 interactions also influence dendritic growth. We next examined potential roles of SAP97 and 4.1N in cocaine seeking. Viral-mediated expression of a microRNA that reduces SAP97 protein expression (HSV miSAP97) in the medial accumbens shell attenuated cocaine seeking. In contrast, a virus that overexpressed a dominant-negative form of a 4.1N C-terminal domain (HSV 4.1N-CTD), which prevents endogenous 4.1N binding to GluA1 subunits, had no effect on cocaine seeking. These results indicate that the GluA1 subunit accessory protein SAP97 may represent a novel target for pharmacotherapeutic intervention in the treatment of cocaine craving. PMID:26149358

  4. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  5. The origin and early evolution of nucleic acid polymerases

    NASA Astrophysics Data System (ADS)

    Lazcano, A.; Llaca, V.; Cappello, R.; Valverde, V.; Oro, J.

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the cubacterial RNA polymerase β' subunit and its homologues is discussed. We show that in the DNA-dependent RNA polymerases from the three cellular lineages a very conserved sequence of eight amino acids also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein is present. The optimal conditions for the replicase activity of the avian myeloblastosis virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is also discussed.

  6. Number of accessory or nutrient canals in the human mandible.

    PubMed

    Aps, Johan K M

    2014-01-01

    The aim of the study was to assess the presence, location and the number of accessory or nutrient canals in the body of the mandible by means of cone beam CT images, obtained with the Planmeca ProMax® 3D Max device. Seventy-four cone beam images of the mandible from adult patients (37 males and 37 females) who were imaged for dental implantology planning or third molar extraction were used to assess the number and location of accessory or nutrient canals. All images were taken with the same machine (Planmeca® ProMax 3D Max) at 200-, 400- or 600-μm resolution. Distinction was made between canals entering or exiting the mandible superior or inferior of the inferior alveolar canal and between similar canals superior or inferior of the genial tubercula. The number of accessory canals varied between nil to 11. No statistical significant difference between males and females was found with regard to the number or location of accessory canals in the mandible. Only 5.4% of patients had no accessory canals. One to five accessory canals were found in 71.6%, and 23% of patients had more than five accessory canals. The majority (81%) of patients had between two and six accessory canals. It seems that subjects showing no accessory canals whatsoever should be considered exceptional as more subjects with than without accessory canals in the body of the mandible were found. These results are clinically relevant for mandibular surgery and mandibular local anaesthesia.

  7. 21 CFR 882.4300 - Manual cranial drills, burrs, trephines, and their accessories

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Manual cranial drills, burrs, trephines, and their accessories (a) Identification. Manual cranial drills, burrs, trephines, and their accessories are bone cutting and drilling instruments that are used without...

  8. 21 CFR 882.4300 - Manual cranial drills, burrs, trephines, and their accessories

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Manual cranial drills, burrs, trephines, and their accessories (a) Identification. Manual cranial drills, burrs, trephines, and their accessories are bone cutting and drilling instruments that are used without...

  9. 21 CFR 882.4300 - Manual cranial drills, burrs, trephines, and their accessories

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Manual cranial drills, burrs, trephines, and their accessories (a) Identification. Manual cranial drills, burrs, trephines, and their accessories are bone cutting and drilling instruments that are used without...

  10. 21 CFR 882.4300 - Manual cranial drills, burrs, trephines, and their accessories

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Manual cranial drills, burrs, trephines, and their accessories (a) Identification. Manual cranial drills, burrs, trephines, and their accessories are bone cutting and drilling instruments that are used without...

  11. Intrapancreatic accessory spleen diagnosed on radionuclide imaging.

    PubMed

    Belkhir, Sara Melboucy; Archambaud, Frédérique; Prigent, Alain; Chaumet-Riffaud, Philippe

    2009-09-01

    Intrapancreatic accessory spleen (IPAS) is ectopic splenic tissue distinct from the main spleen. A 46-year-old man with chronic hepatitis C, presented in 2006 with low right chest pain which led to a diagnosis of tuberculosis pleurisy. CT scan and MRI showed a round, homogenous, well limited mass of 3cm in the pancreas tail. Tc-99m heat-damaged red blood cell scintigraphy with SPECT-CT was performed to confirm the diagnosis of IPAS. Most cases of IPAS described in the literature were diagnosed by pathologists after distal pancreatectomy and splenectomy performed for a suspicion of pancreatic tumor. However, heat-damaged red blood cell scintigraphy remains the most commonly used diagnostic procedure for IPAS, even if superparamagnetic iron oxide MRI contrast agent may be used in the future.

  12. Hunting for eruption ages in accessory minerals

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.

    2012-12-01

    A primary goal in geochronology is to provide precise and accurate ages for tephras that serve as chronostratigraphic markers for constraining the timing and rates of volcanism, sedimentation, climate change, and catastrophic events in Earth history. Zircon remains the most versatile accessory mineral for dating silicic tephras due to its common preservation in distal pyroclastic deposits, as well as the robustness of its U-Pb and U-series systems even after host materials have been hydrothermally altered or weathered. Countless studies document that zircon may be complexly zoned in age due to inheritance, contamination, recycling of antecrysts, protracted crystallization in long-lived magma reservoirs, or any combination of these. Other accessory minerals such as allanite or chevkinite can retain similar records of protracted crystallization. If the goal is to date the durations of magmatic crystallization, differentiation, and/or magma residence, then these protracted chronologies within and between accessory minerals are a blessing. However, if the goal is to date the timing of eruption with high precision, i.e., absolute ages with millennial-scale uncertainties, then this age zoning is a curse. Observations from ion microprobe 238U-230Th dating of Pleistocene zircon and allanite provide insight into the record of near-eruption crystallization in accessory minerals and serve as a guide for high-precision whole-crystal dating. Although imprecise relative to conventional techniques, ion probe analysis allows high-spatial resolution 238U-230Th dating that can document multi-millennial age distributions at the crystal scale. Analysis of unpolished rims and continuous depth profiling of zircon from small and large volume eruptions (e.g., Coso, Mono Craters, Yellowstone) reveals that the final several micrometers of crystallization often yield ages that are indistinguishable from associated eruption ages from the 40Ar/39Ar or (U-Th)/He methods. Using this approach, we

  13. An accessory flexor of the fifth toe.

    PubMed

    Asomugha, A L; Chukwuanukwu, T O G; Nwajagu, G I; Ukoha, U

    2005-12-01

    The presence of accessory muscles and other organs on the lower limbs of some individuals have variously been reported in the literature. We report an unusual muscle located on the plantar surface of the left foot of a cadaver, which had not been previously described. This muscle originated from the tendon of tibialis posterior and inserted into the middle phalanx of the fifth toe. It differed from the 'expansions' of the tibialis posterior tendon, which usually pass from its insertion on the navicular bone to other tarsal bones and are ligamentous in nature. The muscle produced flexion of the fifth toe and is innervated by the medial plantar nerve. Awareness of this is important to Anatomists and surgeons, especially those working on the foot.

  14. Fluid assisted installation of electrical cable accessories

    DOEpatents

    Mayer, Robert W.; Silva, Frank A.

    1977-01-01

    An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.

  15. The polymerase chain reaction.

    PubMed

    Welch, Hazel M

    2012-01-01

    The polymerase chain reaction (PCR) has had a significant impact on all aspects of the molecular biosciences, from cancer research to forensic science. The sensitivity and specificity inherent in the technique allow minute quantities of genetic material to be detected while the unique properties of thermostable DNA polymerase ensure that abundant copies are reliably reproduced to levels that can be visualized and/or used for further applications. This chapter describes applications of PCR and PCR-RT to investigate primary cancer and metastatic disease at both the DNA and mRNA expression levels.

  16. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    PubMed

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  17. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    PubMed Central

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-01-01

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information. PMID:25369811

  18. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt

    PubMed Central

    Ivanova, Iglika G.; Maringele, Laura

    2016-01-01

    Damaged DNA can be repaired by removal and re-synthesis of up to 30 nucleotides during base or nucleotide excision repair. An important question is what happens when many more nucleotides are removed, resulting in long single-stranded DNA (ssDNA) lesions. Such lesions appear on chromosomes during telomere damage, double strand break repair or after the UV damage of stationary phase cells. Here, we show that long single-stranded lesions, formed at dysfunctional telomeres in budding yeast, are re-synthesized when cells are removed from the telomere-damaging environment. This process requires Pol32, an accessory factor of Polymerase δ. However, re-synthesis takes place even when the telomere-damaging conditions persist, in which case the accessory factors of both polymerases δ and ε are required, and surprisingly, salt. Salt added to the medium facilitates the DNA synthesis, independently of the osmotic stress responses. These results provide unexpected insights into the DNA metabolism and challenge the current view on cellular responses to telomere dysfunction. PMID:26883631

  19. Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jin, Yu

    2016-01-01

    Polymerases are protein enzymes that move along nucleic acid chains and catalyze template-based polymerization reactions during gene transcription and replication. The polymerases also substantially improve transcription or replication fidelity through the non-equilibrium enzymatic cycles. We briefly review computational efforts that have been made toward understanding mechano-chemical coupling and fidelity control mechanisms of the polymerase elongation. The polymerases are regarded as molecular information motors during the elongation process. It requires a full spectrum of computational approaches from multiple time and length scales to understand the full polymerase functional cycle. We stay away from quantum mechanics based approaches to the polymerase catalysis due to abundant former surveys, while addressing statistical physics modeling approaches along with all-atom molecular dynamics simulation studies. We organize this review around our own modeling and simulation practices on a single subunit T7 RNA polymerase, and summarize commensurate studies on structurally similar DNA polymerases as well. For multi-subunit RNA polymerases that have been actively studied in recent years, we leave systematical reviews of the simulation achievements to latest computational chemistry surveys, while covering only representative studies published very recently, including our own work modeling structure-based elongation kinetic of yeast RNA polymerase II. In the end, we briefly go through physical modeling on elongation pauses and backtracking activities of the multi-subunit RNAPs. We emphasize on the fluctuation and control mechanisms of the polymerase actions, highlight the non-equilibrium nature of the operation system, and try to build some perspectives toward understanding the polymerase impacts from the single molecule level to a genome-wide scale. Project supported by the National Natural Science Foundation (Grant No. 11275022).

  20. The scolopidial accessory organ in the Jerusalem cricket (Orthoptera: Stenopelmatidae).

    PubMed

    Strauß, Johannes

    2017-03-01

    Multiple mechanosensory organs form the subgenual organ complex in orthopteroid insects, located in the proximal tibia. In several Ensifera (Orthoptera), a small chordotonal organ, the so-called accessory organ, is the most posterior part of this sensory complex. In order to document the presence of this accessory organ among the Ensifera, the chordotonal sensilla and their innervation in the posterior tibia of two species of Jerusalem crickets (Stenopelmatidae: Stenopelmatus) is described. The sensory structures were stained by axonal tracing. Scolopidial sensilla occur in the posterior subgenual organ and the accessory organ in all leg pairs. The accessory organ contains 10-17 scolopidial sensilla. Both groups of sensilla are commonly spatially separated. However, in few cases neuronal fibres occurred between both organs. The two sensillum groups are considered as separate organs by the general spatial separation and innervation by different nerve branches. A functional role for mechanoreception is considered: since the accessory organ is located closely under the cuticle, sensilla may be suited to detect vibrations transferred over the leg's surface. This study extends the known taxa with an accessory organ, which occurs in several taxa of Ensifera. Comparative neuroanatomy thus suggests that the accessory organ may be conserved at least in Tettigoniidea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Management of dancers with symptomatic accessory navicular: 2 case reports.

    PubMed

    Smith, Teresa Riemer

    2012-05-01

    Case report. Symptomatic accessory navicular can be a source of pain and disability. The treatment considerations for accessory navicular in dancers may differ due to increased demands on the foot, the repetitive nature of the movements, and the specific footwear required. The purpose of this report is to describe the management (1 conservative and 1 postoperative) of 2 adolescent dancers with symptomatic accessory navicular. Case 1 was an 11-year-old female who underwent surgical excision of a symptomatic accessory navicular. Case 2 was a 15-year-old female who, following a traumatic injury that caused pain judged to be related to her accessory navicular, was managed nonsurgically. Treatment included pain management, range-of-motion exercises, trunk and lower extremity strengthening, balance and proprioception training, orthoses, crosstraining, and a guided return-to-dance progression. Both patients had improved pain, dance technique, strength, and patient-reported outcome scores that allowed a full return to dance. The 2 dancers presented here had foot pain believed to be related to a symptomatic accessory navicular. In both cases, treatment targeted specific impairments to improve function and disability. The guided progression of activities was intended to facilitate a return to dance that protected healing tissues and prevented a recurrence of symptoms. Clinicians should be aware of the effect of a symptomatic accessory navicular in the young dancer and potentially effective nonsurgical treatment options for this condition.

  2. The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity

    PubMed Central

    Angerer, Heike; Radermacher, Michael; Mańkowska, Michalina; Steger, Mirco; Zwicker, Klaus; Heide, Heinrich; Wittig, Ilka; Brandt, Ulrich; Zickermann, Volker

    2014-01-01

    Mitochondrial complex I is the largest and most complicated enzyme of the oxidative phosphorylation system. It comprises a number of so-called accessory subunits of largely unknown structure and function. Here we studied subunit NB4M [NDUFA6, LYR motif containing protein 6 (LYRM6)], a member of the LYRM family of proteins. Chromosomal deletion of the corresponding gene in the yeast Yarrowia lipolytica caused concomitant loss of the mitochondrial acyl carrier protein subunit ACPM1 from the enzyme complex and paralyzed ubiquinone reductase activity. Exchanging the LYR motif and an associated conserved phenylalanine by alanines in subunit NB4M also abolished the activity and binding of subunit ACPM1. We show, by single-particle electron microscopy and structural modeling, that subunits NB4M and ACPM1 form a subdomain that protrudes from the peripheral arm in the vicinity of central subunit domains known to be involved in controlling the catalytic activity of complex I. PMID:24706851

  3. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  4. The B. subtilis Accessory Helicase PcrA Facilitates DNA Replication through Transcription Units.

    PubMed

    Merrikh, Christopher N; Brewer, Bonita J; Merrikh, Houra

    2015-06-01

    In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries, which can occur in either the head-on (lagging strand genes) or co-directional (leading strand genes) orientations. These conflicts lead to replication fork stalling and can destabilize the genome. Both eukaryotic and prokaryotic cells possess resolution factors that reduce the severity of these encounters. Though Escherichia coli accessory helicases have been implicated in the mitigation of head-on conflicts, direct evidence of these proteins mitigating co-directional conflicts is lacking. Furthermore, the endogenous chromosomal regions where these helicases act, and the mechanism of recruitment, have not been identified. We show that the essential Bacillus subtilis accessory helicase PcrA aids replication progression through protein coding genes of both head-on and co-directional orientations, as well as rRNA and tRNA genes. ChIP-Seq experiments show that co-directional conflicts at highly transcribed rRNA, tRNA, and head-on protein coding genes are major targets of PcrA activity on the chromosome. Partial depletion of PcrA renders cells extremely sensitive to head-on conflicts, linking the essential function of PcrA to conflict resolution. Furthermore, ablating PcrA's ATPase/helicase activity simultaneously increases its association with conflict regions, while incapacitating its ability to mitigate conflicts, and leads to cell death. In contrast, disruption of PcrA's C-terminal RNA polymerase interaction domain does not impact its ability to mitigate conflicts between replication and transcription, its association with conflict regions, or cell survival. Altogether, this work establishes PcrA as an essential factor involved in mitigating transcription-replication conflicts and identifies chromosomal regions where it routinely acts. As both conflicts and accessory helicases are found in all domains of life, these results are

  5. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex.

    PubMed

    Chackerian, Alissa A; Oldham, Elizabeth R; Murphy, Erin E; Schmitz, Jochen; Pflanz, Stefan; Kastelein, Robert A

    2007-08-15

    IL-33 (IL-1F11) is a recently described member of the IL-1 family of cytokines that stimulates the generation of cells, cytokines, and Igs characteristic of a type 2 immune response. IL-33 mediates signal transduction through ST2, a receptor expressed on Th2 and mast cells. In this study, we demonstrate that IL-33 and ST2 form a complex with IL-1R accessory protein (IL-1RAcP), a signaling receptor subunit that is also a member of the IL-1R complex. Additionally, IL-1RAcP is required for IL-33-induced in vivo effects, and IL-33-mediated signal transduction can be inhibited by dominant-negative IL-1RAcP. The implications of this shared usage of IL-1RAcP by IL-1(alpha and beta) and IL-33 are discussed.

  6. RNA Polymerases of Maize. Purification and Molecular Structure of DNA-dependent RNA Polymerase II*

    PubMed Central

    Mullinix, Kathleen P.; Strain, Gustave C.; Bogorad, Lawrence

    1973-01-01

    Nuclear DNA-dependent RNA polymerase II has been purified from leaves of Zea mays by a new procedure that improves enzyme stability and thus permits more manipulation during purification. The purification procedure includes a heating step, gel filtration on Sepharose 6B and 4B, and chromatography on DEAE- and DNA-celluloses. This method of purification yields an enzyme that exhibits maximal activity when denatured DNA is used as a template. Electrophoresis of highly purified enzyme on polyacrylamide gels containing sodium dodecyl sulfate indicates that maize RNA polymerase IIa is composed of several polypeptide subunits. The most highly purified preparations contain polypeptides with molecular weights of 200,000, 160,000, 35,000, 25,000, 20,000, and 17,000. Images PMID:4525172

  7. Successful treatment of accessory breast cancer with endocrine therapy().

    PubMed

    Wang, Chun-Xi; Guo, Shu-Li; Han, Li-Na

    Accessory breast cancers in males are extremely rare, and only a few cases have been reported in the literature. In this paper, an 87-year-old male patient was diagnosed with an accessory breast cancer by means of computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), and immunohistochemistry based on needle biopsy, and has undergone successful resection and postoperative adjuvant endocrine therapy. He was the oldest male patient with an accessory breast cancer reported in the Chinese Hospital Knowledge Database and PubMed literature from 1975 to 2015.

  8. PIONEER POLAR STRUCTURES - ACCESSORIES FOR THE JAMESWAY SHELTER

    DTIC Science & Technology

    Accessories were developed for improving the Jamesway in order to provide a suitable light weight, quick-erecting shelter for use as quarters...increased the general usefulness of the Jamesway shelter. It was concluded that the heavy-duty floor and foundation system, the wall-extension kit, the...special entries, and the improved electrical distribution system should be accepted as standard accessories for the James way shelter. The special utility accessories should be considered for use with the Jamesway for special applications.

  9. The association of hallux limitus with the accessory navicular.

    PubMed

    Evans, R D Lee; Averett, Ryan; Sanders, Stephanie

    2002-06-01

    Hallux limitus is one of the most prevalent, debilitating disorders of the first metatarsophalangeal joint, and it has many proposed etiologies. This article reviews these etiologies, focusing primarily on the pes planus foot. The pes planus foot type is often associated with symptomatic hallux limitus and the accessory navicular. This article discusses this correlation, although a causal relationship has not been proven. The prevalence and classification of the accessory navicular are also discussed. Clinical cases involving symptomatic hallux limitus occurring concomitantly with an accessory navicular are reviewed, including radiographic findings, symptoms, and surgical treatment.

  10. Successful treatment of accessory breast cancer with endocrine therapy#

    PubMed Central

    Wang, Chun-Xi; Guo, Shu-Li; Han, Li-Na

    2017-01-01

    Accessory breast cancers in males are extremely rare, and only a few cases have been reported in the literature. In this paper, an 87-year-old male patient was diagnosed with an accessory breast cancer by means of computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), and immunohistochemistry based on needle biopsy, and has undergone successful resection and postoperative adjuvant endocrine therapy. He was the oldest male patient with an accessory breast cancer reported in the Chinese Hospital Knowledge Database and PubMed literature from 1975 to 2015. PMID:28070998

  11. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.

    PubMed

    Coloma, Javier; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2016-04-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer--with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes.

  12. HIV-1 Vpu Accessory Protein Induces Caspase-mediated Cleavage of IRF3 Transcription Factor*

    PubMed Central

    Park, Sang Yoon; Waheed, Abdul A.; Zhang, Zai-Rong; Freed, Eric O.; Bonifacino, Juan S.

    2014-01-01

    Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis. PMID:25352594

  13. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks.

    PubMed

    Lanza, Val F; Baquero, Fernando; de la Cruz, Fernando; Coque, Teresa M

    2017-01-15

    AcCNET (Accessory genome Constellation Network) is a Perl application that aims to compare accessory genomes of a large number of genomic units, both at qualitative and quantitative levels. Using the proteomes extracted from the analysed genomes, AcCNET creates a bipartite network compatible with standard network analysis platforms. AcCNET allows merging phylogenetic and functional information about the concerned genomes, thus improving the capability of current methods of network analysis. The AcCNET bipartite network opens a new perspective to explore the pangenome of bacterial species, focusing on the accessory genome behind the idiosyncrasy of a particular strain and/or population.

  14. 21 CFR 872.4200 - Dental handpiece and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven... restorations, such as fillings, and for cleaning teeth. (b) Classification. Class I....

  15. 21 CFR 872.4200 - Dental handpiece and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven... restorations, such as fillings, and for cleaning teeth. (b) Classification. Class I....

  16. Complete Spinal Accessory Nerve Palsy From Carrying Climbing Gear.

    PubMed

    Coulter, Jess M; Warme, Winston J

    2015-09-01

    We report an unusual case of spinal accessory nerve palsy sustained while transporting climbing gear. Spinal accessory nerve injury is commonly a result of iatrogenic surgical trauma during lymph node excision. This particular nerve is less frequently injured by blunt trauma. The case reported here results from compression of the spinal accessory nerve for a sustained period-that is, carrying a load over the shoulder using a single nylon rope for 2.5 hours. This highlights the importance of using proper load-carrying equipment to distribute weight over a greater surface area to avoid nerve compression in the posterior triangle of the neck. The signs and symptoms of spinal accessory nerve palsy and its etiology are discussed. This report is particularly relevant to individuals involved in mountaineering and rock climbing but can be extended to anyone carrying a load with a strap over one shoulder and across the body.

  17. 21 CFR 884.2740 - Perinatal monitoring system and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with... SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2740 Perinatal monitoring system and accessories. (a) Identification. A...

  18. 21 CFR 884.2740 - Perinatal monitoring system and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... heart rate by means of combining and coordinating uterine contraction and fetal heart monitors with... SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2740 Perinatal monitoring system and accessories. (a) Identification. A...

  19. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... abutments, aid in the fabrication of dental prosthetics, and be used as an accessory with endosseous dental..., countertorque devices, placement and removal tools, laboratory pieces used for fabrication of dental...

  20. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... abutments, aid in the fabrication of dental prosthetics, and be used as an accessory with endosseous dental..., countertorque devices, placement and removal tools, laboratory pieces used for fabrication of dental...