Sample records for polymerase expression system

  1. Integrating T7 RNA Polymerase and Its Cognate Transcriptional Units for a Host-Independent and Stable Expression System in Single Plasmid.

    PubMed

    Liang, Xiao; Li, Chenmeng; Wang, Wenya; Li, Qiang

    2018-05-18

    Metabolic engineering and synthetic biology usually require universal expression systems for stable and efficient gene expression in various organisms. In this study, a host-independent and stable T7 expression system had been developed by integrating T7 RNA polymerase and its cognate transcriptional units in single plasmid. The expression of T7 RNA polymerase was restricted below its lethal threshold using a T7 RNA polymerase antisense gene cassette, which allowed long periods of cultivation and protein production. In addition, by designing ribosome binding sites, we further tuned the expression capacity of this novel T7 system within a wide range. This host-independent expression system efficiently expressed genes in five different Gram-negative strains and one Gram-positive strain and was also shown to be applicable in a real industrial d- p-hydroxyphenylglycine production system.

  2. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  3. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  4. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  5. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  6. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  7. Development and application of a T7 RNA polymerase-dependent expression system for antibiotic production improvement in Streptomyces.

    PubMed

    Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang

    2017-06-01

    To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.

  8. Identification of two essential aspartates for polymerase activity in parainfluenza virus L protein by a minireplicon system expressing secretory luciferase.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Yumine, Natsuko; Goto, Hideo; Nishio, Machiko

    2015-11-01

    Gene expression of nonsegmented negative-strand RNA viruses (nsNSVs) such as parainfluenza viruses requires the RNA synthesis activity of their polymerase L protein; however, the detailed mechanism of this process is poorly understood. In this study, a parainfluenza minireplicon assay expressing secretory Gaussia luciferase (Gluc) was established to analyze large protein (L) activity. Measurement of Gluc expression in the culture medium of cells transfected with the minigenome and viral polymerase components enabled quick and concise calculation of L activity. By comparing the amino acid sequences in conserved region III (CRIII), a putative polymerase-active domain of the L protein, two strictly conserved aspartates were identified in all families of nsNSV. A series of L mutants from human parainfluenza virus type 2 and parainfluenza virus type 5 showed that these aspartates are necessary for reporter gene expression. It was also confirmed that these aspartates are important for the production of viral mRNA and antigenome cRNA, but not for a polymerase-complex formation. These findings suggest that these two aspartates are key players in the nucleotidyl transfer reaction using two metal ions. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  9. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level

    PubMed Central

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-01-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698

  10. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  11. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor.

    PubMed

    Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S

    2012-02-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.

  12. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor

    PubMed Central

    Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.

    2012-01-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659

  13. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.

    PubMed

    Baumschlager, Armin; Aoki, Stephanie K; Khammash, Mustafa

    2017-11-17

    Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.

  14. Transcription factor-based biosensor

    DOEpatents

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  15. A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins.

    PubMed

    Angius, Federica; Ilioaia, Oana; Amrani, Amira; Suisse, Annabelle; Rosset, Lindsay; Legrand, Amélie; Abou-Hamdan, Abbas; Uzan, Marc; Zito, Francesca; Miroux, Bruno

    2018-06-05

    Membrane protein (MP) overproduction is one of the major bottlenecks in structural genomics and biotechnology. Despite the emergence of eukaryotic expression systems, bacteria remain a cost effective and powerful tool for protein production. The T7 RNA polymerase (T7RNAP)-based expression system is a successful and efficient expression system, which achieves high-level production of proteins. However some foreign MPs require a fine-tuning of their expression to minimize the toxicity associated with their production. Here we report a novel regulation mechanism for the T7 expression system. We have isolated two bacterial hosts, namely C44(DE3) and C45(DE3), harboring a stop codon in the T7RNAP gene, whose translation is under the control of the basal nonsense suppressive activity of the BL21(DE3) host. Evaluation of hosts with superfolder green fluorescent protein (sfGFP) revealed an unprecedented tighter control of transgene expression with a marked accumulation of the recombinant protein during stationary phase. Analysis of a collection of twenty MP fused to GFP showed an improved production yield and quality of several bacterial MPs and of one human monotopic MP. These mutant hosts are complementary to the other existing T7 hosts and will increase the versatility of the T7 expression system.

  16. Osmoregulated TAQ polymerase gene expression in Escherichia coli.

    PubMed

    Cabrera Artiles, Yeosvany; Martínez García, Duniesky; Pérez Cruz, Enrique R; Márquez Perera, Gabriel J; Feble, Manuel Luis

    2002-01-01

    The Thermus aquaticus DNA Polymerase I (Taq Pol I) gene was cloned into the pOSEX4 plasmid under the osmo-inducible promoter proU and subsequently expressed into the Escherichia coli MKH13 strain. The suitability of the enzyme in polymerase assays was determined in standard 35S dATP incorporation tests and by PCR. The Taq Pol I expression in this system, which is under the control of the osmotic pressure in the growth medium, was analyzed in different media and in different sodium chloride concentrations. A study of the osmolarity effects in the growth of the strain and in Taq Pol I expression shows that an increase in sodium chloride concentration limits the growth. At 0.25 M of NaCl maximum activity was observed; at higher values of osmolarity, we found an unexpected decline of activity. This is the first report of using the pOSEX vector for the expression of an heterologous protein and it is very advantageous to make a regulated, non toxic, simple and cost-effective manner of induction in a biotechnology process using just NaCl or other non-permeable osmolyte.

  17. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    PubMed

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  19. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  20. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  1. Utilization of RNA polymerase I promoter and terminator sequences to develop a DNA transfection system for the study of hepatitis C virus internal ribosomal entry site-dependent translation.

    PubMed

    Oem, Jae-Ku; Xiang, Zhonghua; Zhou, Yan; Babiuk, Lorne A; Liu, Qiang

    2007-09-01

    Hepatitis C virus (HCV) causes severe liver diseases in a large population worldwide. HCV protein translation is controlled by an internal ribosomal entry site (IRES) within the 5'-untranslated region (UTR). HCV IRES-dependent translation is critical for HCV-associated pathogenesis. To develop a plasmid DNA transfection system by using RNA polymerase I promoter and terminator sequences for studying HCV IRES-dependent translation. A gene cassette containing HCV 5'-UTR, Renilla luciferase reporter gene, and HCV 3'-UTR was inserted between RNA polymerase I promoter and terminator sequences. HCV IRES-directed translation was determined by luciferase assay after transfection. Transfection of the RNA polymerase I-HCV IRES plasmid into human hepatoma Huh-7 and HepG2 cells resulted in luciferase gene expression. Deletion of the IIIf domain in HCV IRES dramatically reduced luciferase activity. Our results indicated that the plasmid vector system-based on RNA polymerase I promoter and terminator sequences represents an effective approach for the study of HCV IRES-dependent translation.

  2. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  3. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  4. A self-initiating eukaryotic transient gene expression system based on contransfection of bacteriophage T7 RNA polymerase and DNA vectors containing a T7 autogene.

    PubMed Central

    Chen, X; Li, Y; Xiong, K; Wagner, T E

    1994-01-01

    A novel cytoplasmic gene expression system has been developed. This system differs from other expression systems in that it relies on the co-delivery of plasmid DNA and T7 RNA polymerase (RNAP) during transfection. The plasmid contains a T7 RNAP gene driven by the T7 promoter (T7 autogene) and a functional/reporter gene driven by another T7 promoter (T7T7/T7-gene construct). Once this DNA-enzyme complex is introduced into eukaryotic cells, the transcription of the T7 RNAP and the functional/reporter genes is initiated by the co-delivered T7 RNAP. The T7 RNAP, which is responsible for the initiation and maintenance of expression of both T7 and functional/reporter genes, is replenished by translation of newly synthesized T7 mRNA. This T7 system was designed in such a manner that the expression of the functional/reporter genes can occur in the cytoplasm and does not require any nuclear involvement. When transfected by either a pT7T7/T7Luc or a pT7T7/T7hGH plasmids with the cointroduced T7 RNAP, mouse L cells were found to express high levels of luciferase immediately after transfection, apparently due to the cytoplasmic gene expression; the expression of human growth hormone (hGH) could be sustained for at least 6 days. Both T7 and hGH mRNA were expressed by the cells transfected with pT7T7/T7hGH. These results suggest that this cytoplasmic expression system may be used for certain targets of somatic gene therapy. Images PMID:8029020

  5. The PA influenza virus polymerase subunit is a phosphorylated protein.

    PubMed

    Sanz-Ezquerro, J J; Fernández Santarén, J; Sierra, T; Aragón, T; Ortega, J; Ortín, J; Smith, G L; Nieto, A

    1998-03-01

    The induction of proteolysis by expression of the influenza virus PA polymerase subunit is the only biochemical activity ascribed to this protein. In the course of studying viral protein synthesis by two-dimensional gel electrophoresis, we observed the existence of several PA isoforms with different isoelectric points. These isoforms were also present when the PA gene was singly expressed in three different expression systems, indicating that a cellular activity is responsible for its post-translational modification. In vivo labelling with [32P]orthophosphate, followed by two-dimensional gel electrophoresis, clearly demonstrated the incorporation of phosphate into the PA molecule. Phosphoserine and phosphothreonine epitopes were present in PA, while phosphotyrosine residues were absent, as tested by immunoblotting with specific antibodies. These facts, as well as the presence of multiple consensus sites for casein kinase II (CKII) phosphorylation, prompted us to test the involvement of this kinase in PA covalent modification. PA protein purified by immunoprecipitation could be specifically labelled by the catalytic alpha subunit of human CKII, which was expressed and purified from bacteria. Collectively, these data demonstrate that the PA subunit of the influenza virus RNA polymerase is a phosphoprotein.

  6. On the efficient bio-incorporation of 5-hydroxy-tryptophan in recombinant proteins expressed in Escherichia coli with T7 RNA polymerase-based vectors.

    PubMed

    Oliveira-Souza, Wellington P; Bronze, Fellipe; Broos, Jaap; Marcondes, Marcelo F M; Oliveira, Vitor

    2017-10-21

    Biosynthetic incorporation of non-canonic amino acids is an attractive strategy to introduce new properties in recombinant proteins. Trp analogs can be incorporated in recombinant proteins replacing regular Trp during protein translation into a Trp-auxotrophic cell host. This straightforward method however, is limited to few analogs recognized and accepted by the cellular protein production machinery. 5-hydroxy-tryptophan (5OH-Trp) can be bio-incorporated using E. coli as expression host however; we have experienced very low incorporation yields - amount of protein containing regular Trp/amount of protein containing the Trp analog - during expressions of 5OH-Trp labeled proteins. Furthermore, this low incorporation yield were verified especially when the widely-used vectors based on the T7 RNA polymerase were used. Testing different 5OH-Trp incorporation protocols we verified that in these T7-based systems, the production of the T7 RNA polymerase is driven by the same elements - lac promoter/IPTG - as the target protein. Consequently, the bio-incorporation of the 5OH-Trp residues also occurs in this crucial enzyme, but, the produced T7 RNA polymerase labeled with 5OH-Trp is inactive or much less active. In the present work, we describe an efficient method to overcome this mentioned problem and bio-incorporate 5OH-Trp in proteins expressed in E. coli., using vectors based on the T7 RNA polymerase-T7 promoter. The two-step induction protocol here described showed incorporation efficiencies of 5OH-Trp higher than 90%. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Specialized Genetic Recombination Systems in Bacteria: Their Involvement in Gene Expression and Evolution,

    DTIC Science & Technology

    1980-01-01

    genetics (Hayes 1968). This marvelous process is important in providing us with the breadth of phenotypic diversity that one sees within a single plant or...separate overall pro- cesses, but may share common components of DNA metabolism, such as winding/unwinding enzymes, ligase, polymerases , various nucle...incorpuoted DNA segmnent are re- paired by DNA polymerase and ligase. Any diffoernces (base mispairing’S, nil- cleotide additions or deletions) between

  8. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  9. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X

    PubMed Central

    2011-01-01

    Background Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. Results Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. Conclusions We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX. PMID:21356081

  10. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.

  11. Melibiose permease and alpha-galactosidase of Escherichia coli: Identification by selective labeling using a T7 RNA polymerase/promoter expression system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourcher, T.; Bassilana, M.; Sarkar, H.K.

    1990-01-23

    Identification and selective labeling of the melibiose permease and alpha-galactosidase in Escherichia coli, which are encoded by the melB and melA genes, respectively, have been accomplished by selectively labeling the two gene products with a T7 RNA polymerase expression system. Following generation of a novel EcoRI restriction site in the intergenic sequence between the two genes of the mel operon by oligonucleotide-directed, site-specific mutagenesis, melA and melB were separately inserted into plasmid pT7-6 of the T7 expression system. Expression of melB was markedly enhanced by placing a strong, synthetic ribosome binding site at an optimal distance upstream from the initiationmore » codon of melB. Expression of cloned gene products was characterized functionally and by performing autoradiographic analysis on total cell, inner membrane, and cytoplasmic proteins from cells pulse labeled with (35S)methionine in the presence of rifampicin and resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results first confirm that alpha-galactosidase is a cytoplasmic protein with an Mr of 50K; in contrast, the membrane-bound melibiose permease is identified as a protein with an apparent Mr of 39K, a value significantly higher than that of 30K previously suggested.« less

  12. A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement

    PubMed Central

    Keith, Brian J.; Jozwiakowski, Stanislaw K.; Connolly, Bernard A.

    2013-01-01

    A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated–naphthoylated DEAE–cellulose, resulting in a low background mutation frequency (∼1 × 10−4). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system. PMID:23098700

  13. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    PubMed

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  14. Visualized and precise design of artificial small RNAs for regulating T7 RNA polymerase and enhancing recombinant protein folding in Escherichia coli.

    PubMed

    Zhao, Yujia; Fan, Jingjing; Li, Jinlin; Li, Jun; Zhou, Xiaohong; Li, Chun

    2016-12-01

    Small non-coding RNAs (sRNAs) have received much attention in recent years due to their unique biological properties, which can efficiently and specifically tune target gene expressions in bacteria. Inspired by natural sRNAs, recent works have proposed the use of artificial sRNAs (asRNAs) as genetic tools to regulate desired gene that has been applied in several fields, such as metabolic engineering and bacterial physiology studies. However, the rational design of asRNAs is still a challenge. In this study, we proposed structure and length as two criteria to implement rational visualized and precise design of asRNAs. T7 expression system was one of the most useful recombinant protein expression systems. However, it was deeply limited by the formation of inclusion body. To settle this problem, we designed a series of asRNAs to inhibit the T7 RNA polymerase (Gene1) expression to balance the rate between transcription and folding of recombinant protein. Based on the heterologous expression of Aspergillus oryzae Li-3 glucuronidase in E. coli , the asRNA-antigene1-17bp can effectively decrease the inclusion body and increase the enzyme activity by 169.9%.

  15. T7 RNA polymerase-driven inducible cell lysis for DNA transfer from Escherichia coli to Bacillus subtilis.

    PubMed

    Juhas, Mario; Ajioka, James W

    2017-11-01

    The majority of the good DNA editing techniques have been developed in Escherichia coli; however, Bacillus subtilis is better host for a plethora of synthetic biology and biotechnology applications. Reliable and efficient systems for the transfer of synthetic DNA between E. coli and B. subtilis are therefore of the highest importance. Using synthetic biology approaches, such as streamlined lambda Red recombineering and Gibson Isothermal Assembly, we integrated genetic circuits pT7L123, Repr-ts-1 and pLT7pol encoding the lysis genes of bacteriophages MS2, ΦX174 and lambda, the thermosensitive repressor and the T7 RNA polymerase into the E. coli chromosome. In this system, T7 RNA polymerase regulated by the thermosensitive repressor drives the expression of the phage lysis genes. We showed that T7 RNA polymerase significantly increases efficiency of cell lysis and transfer of the plasmid and bacterial artificial chromosome-encoded DNA from the lysed E. coli into B. subtilis. The T7 RNA polymerase-driven inducible cell lysis system is suitable for the efficient cell lysis and transfer of the DNA engineered in E. coli to other naturally competent hosts, such as B. subtilis. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression.

    PubMed

    Lim, Hyoun-Sub; Vaira, Anna Maria; Domier, Leslie L; Lee, Sung Chul; Kim, Hong Gi; Hammond, John

    2010-06-20

    We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS. Published by Elsevier Inc.

  17. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    NASA Astrophysics Data System (ADS)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  18. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior

    PubMed Central

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena

    2015-01-01

    ABSTRACT The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. IMPORTANCE Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. PMID:26656691

  19. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    PubMed

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Generation and characterization of a recombinant Rift Valley fever virus expressing a V5 epitope-tagged RNA-dependent RNA polymerase.

    PubMed

    Brennan, Benjamin; Li, Ping; Elliott, Richard M

    2011-12-01

    The viral RNA-dependent RNA polymerase (RdRp; L protein) of Rift Valley fever virus (RVFV; family Bunyaviridae) is a 238 kDa protein that is crucial for the life cycle of the virus, as it catalyses both transcription of viral mRNAs and replication of the tripartite genome. Despite its importance, little is known about the intracellular distribution of the polymerase or its other roles during infection, primarily because of lack of specific antibodies that recognize L protein. To begin to address these questions we investigated whether the RVFV (MP12 strain) polymerase could tolerate insertion of the V5 epitope, as has been previously demonstrated for the Bunyamwera virus L protein. Insertion of the 14 aa epitope into the polymerase sequence at aa 1852 resulted in a polymerase that retained functionality in a minigenome assay, and we were able to rescue recombinant viruses that expressed the modified L protein by reverse genetics. The L protein could be detected in infected cells by Western blotting with anti-V5 antibodies. Examination of recombinant virus-infected cells by immunofluorescence revealed a punctate perinuclear or cytoplasmic distribution of the polymerase that co-localized with the nucleocapsid protein. The generation of RVFV expressing a tagged RdRp will allow detailed examination of the role of the viral polymerase in the virus life cycle.

  1. Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions.

    PubMed

    Brunel, Joanna; Chopy, Damien; Dosnon, Marion; Bloyet, Louis-Marie; Devaux, Patricia; Urzua, Erica; Cattaneo, Roberto; Longhi, Sonia; Gerlier, Denis

    2014-09-01

    The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70.

    PubMed

    Mitchell, Jennie E; Oshima, Taku; Piper, Sarah E; Webster, Christine L; Westblade, Lars F; Karimova, Gouzel; Ladant, Daniel; Kolb, Annie; Hobman, Jon L; Busby, Stephen J W; Lee, David J

    2007-05-01

    The Escherichia coli Rsd protein forms complexes with the RNA polymerase sigma(70) factor, but its biological role is not understood. Transcriptome analysis shows that overexpression of Rsd causes increased expression from some promoters whose expression depends on the alternative sigma(38) factor, and this was confirmed by experiments with lac fusions at selected promoters. The LP18 substitution in Rsd increases the Rsd-dependent stimulation of these promoter-lac fusions. Analysis with a bacterial two-hybrid system shows that the LP18 substitution in Rsd increases its interaction with sigma(70). Our experiments support a model in which the role of Rsd is primarily to sequester sigma(70), thereby increasing the levels of RNA polymerase containing the alternative sigma(38) factor.

  3. Transient expression and activity of human DNA polymerase iota in loach embryos.

    PubMed

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  4. Gene silencing in Escherichia coli using antisense RNAs expressed from doxycycline-inducible vectors.

    PubMed

    Nakashima, N; Tamura, T

    2013-06-01

    Here, we report on the construction of doxycycline (tetracycline analogue)-inducible vectors that express antisense RNAs in Escherichia coli. Using these vectors, the expression of genes of interest can be silenced conditionally. The expression of antisense RNAs from the vectors was more tightly regulated than the previously constructed isopropyl-β-D-galactopyranoside-inducible vectors. Furthermore, expression levels of antisense RNAs were enhanced by combining the doxycycline-inducible promoter with the T7 promoter-T7 RNA polymerase system; the T7 RNA polymerase gene, under control of the doxycycline-inducible promoter, was integrated into the lacZ locus of the genome without leaving any antibiotic marker. These vectors are useful for investigating gene functions or altering cell phenotypes for biotechnological and industrial applications. A gene silencing method using antisense RNAs in Escherichia coli is described, which facilitates the investigation of bacterial gene function. In particular, the method is suitable for comprehensive analyses or phenotypic analyses of genes essential for growth. Here, we describe expansion of vector variations for expressing antisense RNAs, allowing choice of a vector appropriate for the target genes or experimental purpose. © 2013 The Society for Applied Microbiology.

  5. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    PubMed

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  6. Genomic Analysis and Isolation of RNA Polymerase II Dependent Promoters from Spodoptera frugiperda.

    PubMed

    Bleckmann, Maren; Fritz, Markus H-Y; Bhuju, Sabin; Jarek, Michael; Schürig, Margitta; Geffers, Robert; Benes, Vladimir; Besir, Hüseyin; van den Heuvel, Joop

    2015-01-01

    The Baculoviral Expression Vector System (BEVS) is the most commonly used method for high expression of recombinant protein in insect cells. Nevertheless, expression of some target proteins--especially those entering the secretory pathway--provides a severe challenge for the baculovirus infected insect cells, due to the reorganisation of intracellular compounds upon viral infection. Therefore, alternative strategies for recombinant protein production in insect cells like transient plasmid-based expression or stable expression cell lines are becoming more popular. However, the major bottleneck of these systems is the lack of strong endogenous polymerase II dependent promoters, as the strong baculoviral p10 and polH promoters used in BEVS are only functional in presence of the viral transcription machinery during the late phase of infection. In this work we present a draft genome and a transcriptome analysis of Sf21 cells for the identification of the first known endogenous Spodoptera frugiperda promoters. Therefore, putative promoter sequences were identified and selected because of high mRNA level or in analogy to other strong promoters in other eukaryotic organism. The chosen endogenous Sf21 promoters were compared to early viral promoters for their efficiency to trigger eGFP expression using transient plasmid based transfection in a BioLector Microfermentation system. Furthermore, promoter activity was not only shown in Sf21 cells but also in Hi5 cells. The novel endogenous Sf21 promoters were ranked according to their activity and expand the small pool of available promoters for stable insect cell line development and transient plasmid expression in insect cells. The best promoter was used to improve plasmid based transient transfection in insect cells substantially.

  7. DNA and RNA polymerase activity in a Moniliophthora perniciosa mitochondrial plasmid and self-defense against oxidative stress.

    PubMed

    Andrade, B S; Villela-Dias, C; Gomes, D S; Micheli, F; Góes-Neto, A

    2013-06-13

    Moniliophthora perniciosa (Stahel) Aime and Phillips-Mora is a hemibiotrophic basidiomycete (Agaricales, Tricholomataceae) that causes witches' broom disease in cocoa (Theobroma cacao L.). This pathogen carries a stable integrated invertron-type linear plasmid in its mitochondrial genome that encodes viral-like DNA and RNA polymerases related to fungal senescence and longevity. After culturing the fungus and obtaining its various stages of development in triplicate, we carried out total RNA extraction and subsequent complementary DNA synthesis. To analyze DNA and RNA polymerase expression levels, we performed real-time reverse transcriptase polymerase chain reaction for various fungal phases of development. Our results showed that DNA and RNA polymerase gene expression in the primordium phase of M. perniciosa is related to a potential defense mechanism against T. cacao oxidative attack.

  8. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    PubMed

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  9. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle.

    PubMed

    Pfannschmidt, Thomas; Blanvillain, Robert; Merendino, Livia; Courtois, Florence; Chevalier, Fabien; Liebers, Monique; Grübler, Björn; Hommel, Elisabeth; Lerbs-Mache, Silva

    2015-12-01

    Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. The Escherichia coli Regulator of Sigma 70 Protein, Rsd, Can Up-Regulate Some Stress-Dependent Promoters by Sequestering Sigma 70▿

    PubMed Central

    Mitchell, Jennie E.; Oshima, Taku; Piper, Sarah E.; Webster, Christine L.; Westblade, Lars F.; Karimova, Gouzel; Ladant, Daniel; Kolb, Annie; Hobman, Jon L.; Busby, Stephen J. W.; Lee, David J.

    2007-01-01

    The Escherichia coli Rsd protein forms complexes with the RNA polymerase σ70 factor, but its biological role is not understood. Transcriptome analysis shows that overexpression of Rsd causes increased expression from some promoters whose expression depends on the alternative σ38 factor, and this was confirmed by experiments with lac fusions at selected promoters. The LP18 substitution in Rsd increases the Rsd-dependent stimulation of these promoter-lac fusions. Analysis with a bacterial two-hybrid system shows that the LP18 substitution in Rsd increases its interaction with σ70. Our experiments support a model in which the role of Rsd is primarily to sequester σ70, thereby increasing the levels of RNA polymerase containing the alternative σ38 factor. PMID:17351046

  11. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing

    PubMed Central

    Untiveros, Milton; Olspert, Allan; Artola, Katrin

    2016-01-01

    Summary The single‐stranded, positive‐sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3′ third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA6 sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA6 sequence, with higher slippage efficiency (∼5%) than at the pipo site (∼1%). Transient expression of recombinant P1 or the ‘transframe’ product, P1N‐PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N‐PISPO inhibited short‐distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co‐opted for the evolution and expression of further novel gene products. PMID:26757490

  12. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi.

    PubMed

    Rojas, Diego A; Urbina, Fabiola; Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo; Maldonado, Edio

    2018-02-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control.

  13. Escherichia coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ.

    PubMed

    Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2002-03-01

    Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.

  14. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  15. Glycosyltransferases as marker genes for the quantitative polymerase chain reaction-based detection of circulating tumour cells from blood samples of patients with breast cancer undergoing adjuvant therapy.

    PubMed

    Kölbl, Alexandra C; Hiller, Roman A; Ilmer, Mathias; Liesche, Friederike; Heublein, Sabine; Schröder, Lennard; Hutter, Stefan; Friese, Klaus; Jeschke, Udo; Andergassen, Ulrich

    2015-08-01

    Altered glycosylation is a predominant feature of tumour cells; it serves for cell adhesion and detachment, respectively, and facilitates the immune escape of these cells. Therefore changes in the expression of glycosyltransferase genes could help to identify circulating tumour cells (CTCs) in the blood samples of cancer patients using a quantitative polymerase chain reaction (PCR) approach. Blood samples of healthy donors were inoculated with certain numbers of established breast cancer cell line cells, thus creating a model system. These samples were analysed by quantitative PCR for the expression of six different glycosyltransferase genes. The three genes with the best results in the model system were consecutively applied to samples from adjuvant breast cancer patients and of healthy donors. FUT3 and GALNT6 showed the highest increase in relative expression, while GALNT6 and ST3GAL3 were the first to reach statistically significant different ∆CT-values comparing the sample with and without addition of tumour cells. These three genes were applied to patient samples, but did not show any significant results that may suggest the presence of CTCs in the blood. Although the relative expression of some of the glycosyltransferase genes exhibited reasonable results in the model system, their application to breast cancer patient samples will have to be further improved, e.g. by co-analysis of patient blood samples by gold-standard methods.

  16. Refolding Active Human DNA Polymerase ν from Inclusion Bodies

    PubMed Central

    Arana, Mercedes E.; Powell, Gary K.; Edwards, Lori L.; Kunkel, Thomas A.; Petrovich, Robert M.

    2017-01-01

    Human DNA polymerase ν (Pol ν) is a conserved family A DNA polymerase of uncertain biological function. Physical and biochemical characterization aimed at understanding Pol ν function is hindered by the fact that, when over-expressed in E. coli, Pol ν is largely insoluble, and the small amount of soluble protein is difficult to purify. Here we describe the use of high hydrostatic pressure to refold Pol ν from inclusion bodies, in soluble and active form. The refolded Pol ν has properties comparable to those of the small amount of Pol ν that was purified from the soluble fraction. The approach described here may be applicable to other DNA polymerases that are expressed as insoluble inclusion bodies in E. coli. PMID:19853037

  17. Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression.

    PubMed

    Portugal, Raquel S; Bauer, Anja; Keil, Guenther M

    2017-08-01

    African swine fever virus threatens pig production worldwide due to the lack of vaccines, for which generation of both deletion and insertion mutants is considered. For development of the latter, operational ASFV promoters of different temporal regulation and strengths are desirable. We therefore compared the capacities of putative promoter sequences from p72, CD2v, p30, viral DNA polymerase and U104L genes to mediate expression of luciferase from transfected plasmids after activation in trans, or p30-, DNA polymerase- and U104L promoters in cis, using respective ASFV recombinants. We identified sequences with promoter activities upstream the viral ORFs, and showed that they differ in both their expression intensity regulating properties and in their temporal regulation. In summary, p30 and DNA polymerase promoters are recommended for high level early regulated transgene expression. For late expression, the p72, CD2v and U104L promoter are suitable. The latter however, only if low level transgene expression is aimed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi

    PubMed Central

    Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo

    2018-01-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control. PMID:29432450

  19. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons

    PubMed Central

    Chen, Augustine; Kao, Y. F.; Brown, Chris M.

    2005-01-01

    The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins. PMID:15731337

  20. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.

    PubMed Central

    Jeruzalmi, D; Steitz, T A

    1998-01-01

    The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025

  1. Non coding extremities of the seven influenza virus type C vRNA segments: effect on transcription and replication by the type C and type A polymerase complexes

    PubMed Central

    Crescenzo-Chaigne, Bernadette; Barbezange, Cyril; van der Werf, Sylvie

    2008-01-01

    Background The transcription/replication of the influenza viruses implicate the terminal nucleotide sequences of viral RNA, which comprise sequences at the extremities conserved among the genomic segments as well as variable 3' and 5' non-coding (NC) regions. The plasmid-based system for the in vivo reconstitution of functional ribonucleoproteins, upon expression of viral-like RNAs together with the nucleoprotein and polymerase proteins has been widely used to analyze transcription/replication of influenza viruses. It was thus shown that the type A polymerase could transcribe and replicate type A, B, or C vRNA templates whereas neither type B nor type C polymerases were able to transcribe and replicate type A templates efficiently. Here we studied the importance of the NC regions from the seven segments of type C influenza virus for efficient transcription/replication by the type A and C polymerases. Results The NC sequences of the seven genomic segments of the type C influenza virus C/Johannesburg/1/66 strain were found to be more variable in length than those of the type A and B viruses. The levels of transcription/replication of viral-like vRNAs harboring the NC sequences of the respective type C virus segments flanking the CAT reporter gene were comparable in the presence of either type C or type A polymerase complexes except for the NS and PB2-like vRNAs. For the NS-like vRNA, the transcription/replication level was higher after introduction of a U residue at position 6 in the 5' NC region as for all other segments. For the PB2-like vRNA the CAT expression level was particularly reduced with the type C polymerase. Analysis of mutants of the 5' NC sequence in the PB2-like vRNA, the shortest 5' NC sequence among the seven segments, showed that additional sequences within the PB2 ORF were essential for the efficiency of transcription but not replication by the type C polymerase complex. Conclusion In the context of a PB2-like reporter vRNA template, the sequence upstream the polyU stretch plays a role in the transcription/replication process by the type C polymerase complex. PMID:18973655

  2. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries.

    PubMed

    Terrón-González, L; Medina, C; Limón-Mortés, M C; Santero, E

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.

  3. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA.

    PubMed

    Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian

    2013-12-01

    Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Cancer and systemic sclerosis: novel insights into pathogenesis and clinical implications

    PubMed Central

    Shah, Ami A.; Rosen, Antony

    2012-01-01

    Purpose of review Most epidemiologic studies have demonstrated an increased risk of cancer in scleroderma patients. Reasons for this risk increase have been poorly understood and often attributed to cytotoxic therapies or damage from scleroderma. Recognition that some patients have a close temporal relationship between cancer diagnosis and scleroderma clinical onset has focused attention on the possibility that scleroderma may be a paraneoplastic syndrome in a subset of patients. This review will discuss the latest epidemiologic data linking cancer and scleroderma and explore a model for the development of paraneoplastic scleroderma. Recent findings New investigations have demonstrated an association between RNA polymerase III autoantibodies and a close temporal relationship between cancer diagnosis and the development of clinical scleroderma. A unique nucleolar RNA polymerase III expression pattern has been identified in malignant tissue from these scleroderma patients suggesting that autoantigen expression in the cancer and the autoantibody response are associated. Similar data in inflammatory myositis have illustrated that disease-specific autoantigens may be expressed in cancers and damaged target tissues (muscle) undergoing regeneration. Summary These data suggest a model of paraneoplastic autoimmunity in which cross-reactive immune responses may target autoantigens that are expressed in both cancers and diseased autoimmune target tissues. PMID:21825998

  5. Engineered Photoactivatable Genetic Switches Based on the Bacterium Phage T7 RNA Polymerase.

    PubMed

    Han, Tiyun; Chen, Quan; Liu, Haiyan

    2017-02-17

    Genetic switches in which the activity of T7 RNA polymerase (RNAP) is directly regulated by external signals are obtained with an engineering strategy of splitting the protein into fragments and using regulatory domains to modulate their reconstitutions. Robust switchable systems with excellent dark-off/light-on properties are obtained with the light-activatable VVD domain and its variants as regulatory domains. For the best split position found, working switches exploit either the light-induced interactions between the VVD domains or allosteric effects. The split fragments show high modularity when they are combined with different regulatory domains such as those with chemically inducible interaction, enabling chemically controlled switches. To summarize, the T7 RNA polymerase-based switches are powerful tools to implement light-activated gene expression in different contexts. Moreover, results about the studied split positions and domain organizations may facilitate future engineering studies on this and on related proteins.

  6. Stochastic resetting in backtrack recovery by RNA polymerases

    NASA Astrophysics Data System (ADS)

    Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.

    2016-06-01

    Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.

  7. Transcriptional analysis reveals the critical role of RNA polymerase-binding transcription factor, DksA, in regulating multi-drug resistance of Escherichia coli.

    PubMed

    Wang, Jiawei; Cao, Li; Yang, Xiaowen; Wu, Qingmin; Lu, Lin; Wang, Zhen

    2018-05-07

    The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations (MICs) of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes differentially expressed in the wild-type and dksA mutant were detected using RNA-Seq and were validated by performing quantitative real-time PCR (qRT-PCR). In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 up-regulated and 87 down-regulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators, and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multidrug efflux activities; oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance. Copyright © 2018. Published by Elsevier B.V.

  8. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    PubMed

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  9. Expression and mutational analysis of Cip/Kip family in early glottic cancer.

    PubMed

    Kim, D-K; Lee, J H; Lee, O J; Park, C H

    2015-02-01

    Genetic alteration of cyclin-dependent kinase inhibitors has been associated with carcinogenesis mechanisms in various organs. This study aimed to evaluate the expression and mutational analysis of Cip/Kip family cyclin-dependent kinase inhibitors (p21CIP1/WAF1, p27KIP1 and p57KIP2) in early glottic cancer. Expressions of Cip/Kip family and p53 were determined by quantitative reverse transcription polymerase chain reaction and densitometry. For the analysis of p21 inactivation, sequence alteration was assessed using single-strand conformational polymorphism polymerase chain reaction. Additionally, the inactivation mechanism of p27 and p57 were investigated using DNA methylation analysis. Reduced expression of p27 and p57 were detected in all samples, whereas the expression of p21 was incompletely down-regulated in 6 of 11 samples. Additionally, single-strand conformational polymorphism polymerase chain reaction analysis showed the p53 mutation at exon 6. Methylation of p27 and p57 was detected by DNA methylation assay. Our results suggest that the Cip/Kip family may have a role as a molecular mechanism of carcinogenesis in early glottic cancer.

  10. A necrosis-inducing elicitor domain encoded by both symptomatic and asymptomatic Plantago asiatica mosaic virus isolates, whose expression is modulated by virus replication.

    PubMed

    Komatsu, Ken; Hashimoto, Masayoshi; Maejima, Kensaku; Shiraishi, Takuya; Neriya, Yutaro; Miura, Chihiro; Minato, Nami; Okano, Yukari; Sugawara, Kyoko; Yamaji, Yasuyuki; Namba, Shigetou

    2011-04-01

    Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.

  11. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    PubMed

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  12. A Drosophila Toolkit for the Visualization and Quantification of Viral Replication Launched from Transgenic Genomes

    PubMed Central

    Wernet, Mathias F.; Klovstad, Martha; Clandinin, Thomas R.

    2014-01-01

    Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development. PMID:25386852

  13. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases

    PubMed Central

    Li, Wencheng; Laishram, Rakesh S.; Hoque, Mainul; Ji, Zhe

    2017-01-01

    Abstract Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues. PMID:28911096

  15. Reduction of wobble-position GC bases in Corynebacteria genes and enhancement of PCR and heterologous expression.

    PubMed

    Sanli, G; Blaber, S I; Blaber, M

    2001-01-01

    Corynebacteria codon usage exhibits an overall GC content of 67%, and a wobble-position GC content of 88%. Escherichia coli, on the other hand has an overall GC content of 51%, and a wobble-position GC content of 55%. The high GC content of Corynebacteria genes results in an unfavorable codon preference for heterologous expression, and can present difficulties for polymerase-based manipulations due to secondary-structure effects. Since these characteristics are due primarily to base composition at the wobble-position, synthetic genes can, in principle, be designed to eliminate these problems and retain the wild-type amino acid sequence. Such genes would obviate the need for special additives or bases during in vitro polymerase-based manipulation and mutant host strains containing uncommon tRNA's for heterologous expression. We have evaluated synthetic genes with reduced wobble-position G/C content using two variants of the enzyme 2,5-diketo-D-gluconic acid reductase (2,5-DKGR A and B) from Corynebacterium. The wild-type genes are refractory to polymerase-based manipulations and exhibit poor heterologous expression in enteric bacteria. The results indicate that a subset of codons for five amino acids (alanine, arginine, glutamate, glycine and valine) contribute the greatest contribution to reduction in G/C content at the wobble-position. Furthermore, changes in codons for two amino acids (leucine and proline) enhance bias for expression in enteric bacteria without affecting the overall G/C content. The synthetic genes are readily amplified using polymerase-based methodologies, and exhibit high levels of heterologous expression in E. coli.

  16. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    PubMed

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  17. Structural Basis of Mitochondrial Transcription Initiation.

    PubMed

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    PubMed Central

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression. PMID:28331082

  19. Development of robust in vitro RNA-dependent RNA polymerase assay as a possible platform for antiviral drug testing against dengue.

    PubMed

    Amraiz, Deeba; Zaidi, Najam-Us-Sahar Sadaf; Fatima, Munazza

    2016-10-01

    NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-dependent RNA polymerase (RdRp) domain. It is an unstable protein and is prone to inactivation upon prolonged incubation at room temperature, thus affecting the inhibitor screening assays. In the current study, we expressed and purified DENV RdRp alone in Esherichia coli (E. coli) cells. The N-terminally His-tagged construct of DENV RdRp was transformed into E. coli expression strain BL-21 (DE3) pLysS cells. Protein expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4mM. The induced cultures were then grown for 20h at 18°C and cells were harvested by centrifugation at 6000xg for 15min at 4°C. The recombinant protein was purified using HisTrap affinity column (Ni-NTA) and then the sample was subjected to size exclusion chromatography, which successfully removed the degradation product obtained during the previous purification step. The in vitro polymerase activity of RdRp was successfully demonstrated using homopolymeric polycytidylic acid (poly(rC)) RNA template. This study describes the high level production of enzymatically active DENV RdRp protein which can be used to develop assays for testing large number of compounds in a high-throughput manner. RdRp has the de novo initiation activity and the in vitro polymerase assays for the protein provide a platform for highly robust and efficient antiviral compound screening systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. VLSI Microsystem for Rapid Bioinformatic Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Lue, Jaw-Chyng

    2009-01-01

    A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).

  1. A portable expression resource for engineering cross-species genetic circuits and pathways

    PubMed Central

    Kushwaha, Manish; Salis, Howard M.

    2015-01-01

    Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393

  2. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodes, M.J.; Merlin, G.; DeVos, T.

    1995-12-01

    This report investigates the duplication of two LD1 genes into the rRNA locus and the resultant transcription by RNA polymerase I, which has a faster transcription rate than that of RNA polymerase II. This was conducted using a 2.2-Mb chromosome in Leishmania donovani. 55 refs., 6 figs.

  3. The antiviral protein Viperin suppresses T7 promoter dependent RNA synthesis-possible implications for its antiviral activity.

    PubMed

    Dukhovny, Anna; Shlomai, Amir; Sklan, Ella H

    2018-05-25

    Viperin is a multifunctional interferon-inducible broad-spectrum antiviral protein. Viperin belongs to the S-Adenosylmethionine (SAM) superfamily of enzymes known to catalyze a wide variety of radical-mediated reactions. However, the exact mechanism by which viperin exerts its functions is still unclear. Interestingly, for many RNA viruses viperin was shown to inhibit viral RNA accumulation by interacting with different viral non-structural proteins. Here, we show that viperin inhibits RNA synthesis by bacteriophage T7 polymerase in mammalian cells. This inhibition is specific and occurs at the RNA level. Viperin expression significantly reduced T7-mediated cytoplasmic RNA levels. The data showing that viperin inhibits the bacteriophage T7 polymerase supports the conservation of viperin's antiviral activity between species. These results highlight the possibility that viperin might utilize a broader mechanism of inhibition. Accordingly, our results suggest a novel mechanism involving polymerase inhibition and provides a tractable system for future mechanistic studies of viperin.

  4. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae.

    PubMed

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  6. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  7. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.

    PubMed

    Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel

    2006-04-28

    Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.

  8. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    PubMed

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  9. Scanning the Human Genome for Novel Therapeutic Targets for Breast Cancer

    DTIC Science & Technology

    2006-04-01

    action of this class of non-coding regulatory RNAs13,14. MicroRNAs are transcribed by RNA polymerase II as long primary polyadenylated transcripts...Artificial miRNAs can be expressed from both RNA polymerase II and III promoters resulting in silencing to varying degrees. At present there...the highest levels of mature microRNA in RISC and generally effective silencing. These structures can be transcribed by either RNA polymerase II or

  10. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization.

    PubMed

    Kuckleburg, Christopher J; McClenahan, Dave J; Czuprynski, Charles J

    2008-02-01

    Histophilus somni is a gram-negative coccobacillus that causes respiratory and reproductive disease in cattle. The hallmark of systemic H. somni infection is diffuse vascular inflammation that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis. Previously, we demonstrated that H. somni and its lipooligosaccharide (LOS) activate bovine platelets, leading to expression of P selectin, CD40L, and FasL. Because activated platelets have been reported to induce endothelial cell cytokine production and adhesion molecule expression, we sought to determine if bovine platelets induce proinflammatory and procoagulative changes in bovine pulmonary artery endothelial cells. Endothelial cells were incubated with platelets activated with adenosine diphosphate, H. somni, or H. somni LOS. Incubation with activated bovine platelets significantly increased expression of in adhesion molecules (intercellular adhesion molecule 1, E selectin) and tissue factor, as measured by flow cytometry, real-time polymerase chain reaction, and Western blot analysis. Activated platelets also up-regulated expression of endothelial cell IL-1beta, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1alpha as determined by real-time polymerase chain reaction and an IL-1beta enzyme-linked immunosorbent assay. An interesting and surprising finding was that bovine platelets activated by H. somni or its LOS were internalized by bovine endothelial cells as visualized by transmission electron microscopy. This internalization seemed to correlate with endothelial cell activation and morphological changes indicative of cell stress. These findings suggest that activated platelets might play a role in promoting vascular inflammation during H. somni infection.

  11. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol.

    PubMed Central

    Neufeld, K L; Galarza, J M; Richards, O C; Summers, D F; Ehrenfeld, E

    1994-01-01

    A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA. Images PMID:8057462

  12. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  13. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotch, S.J.; Palant, O.; Gluzman, Y.

    1989-01-01

    A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer,more » RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, (..cap alpha..-/sup 32/P)UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro.« less

  14. Establishment of a Nipah virus rescue system.

    PubMed

    Yoneda, Misako; Guillaume, Vanessa; Ikeda, Fusako; Sakuma, Yuki; Sato, Hiroki; Wild, T Fabian; Kai, Chieko

    2006-10-31

    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.

  15. Human Mitochondrial RNA Polymerase: Evaluation of the Single-Nucleotide-Addition Cycle on Synthetic RNA/DNA Scaffolds

    PubMed Central

    Smidansky, Eric D.; Arnold, Jamie J.; Reynolds, Shelley L.; Cameron, Craig E.

    2013-01-01

    The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed. PMID:21548588

  16. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  17. Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis

    PubMed Central

    MATSUKI, Tomohiro; TSUCHIDA, Shinji; TERAUCHI, Ryu; ODA, Ryo; FUJIWARA, Hiroyoshi; MAZDA, Osam; KUBO, Toshikazu

    2016-01-01

    Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue. PMID:29900991

  18. Genomic DNA-based absolute quantification of gene expression in Vitis

    USDA-ARS?s Scientific Manuscript database

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., an...

  19. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase

    PubMed Central

    Segall-Shapiro, Thomas H; Meyer, Adam J; Ellington, Andrew D; Sontag, Eduardo D; Voigt, Christopher A

    2014-01-01

    Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co-expressed to function. The DNA-binding loop is encoded in a C-terminal 285-aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601-aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67-aa N-terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids. PMID:25080493

  20. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates.

    PubMed

    Sempere, Raquel N; Gómez-Aix, Cristina; Ruíz-Ramón, Fabiola; Gómez, Pedro; Hasiów-Jaroszewska, Beata; Sánchez-Pina, María Amelia; Aranda, Miguel A

    2016-04-01

    Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.

  1. An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.

    PubMed

    Nelson, Emily V; Pacheco, Jennifer R; Hume, Adam J; Cressey, Tessa N; Deflubé, Laure R; Ruedas, John B; Connor, John H; Ebihara, Hideki; Mühlberger, Elke

    2017-10-01

    Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  3. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger.

    PubMed

    Zheng, Xiaomei; Zheng, Ping; Sun, Jibin; Kun, Zhang; Ma, Yanhe

    2018-01-01

    U6 promoters have been used for single guide RNA (sgRNA) transcription in the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) genome editing system. However, no available U6 promoters have been identified in Aspergillus niger, which is an important industrial platform for organic acid and protein production. Two CRISPR/Cas9 systems established in A. niger have recourse to the RNA polymerase II promoter or in vitro transcription for sgRNA synthesis, but these approaches generally increase cloning efforts and genetic manipulation. The validation of functional RNA polymerase II promoters is therefore an urgent need for A. niger . Here, we developed a novel CRISPR/Cas9 system in A. niger for sgRNA expression, based on one endogenous U6 promoter and two heterologous U6 promoters. The three tested U6 promoters enabled sgRNA transcription and the disruption of the polyketide synthase albA gene in A. niger . Furthermore, this system enabled highly efficient gene insertion at the targeted genome loci in A. niger using donor DNAs with homologous arms as short as 40-bp. This study demonstrated that both heterologous and endogenous U6 promoters were functional for sgRNA expression in A. niger . Based on this result, a novel and simple CRISPR/Cas9 toolbox was established in A. niger, that will benefit future gene functional analysis and genome editing.

  4. DNA polymerase γ and disease: what we have learned from yeast

    PubMed Central

    Lodi, Tiziana; Dallabona, Cristina; Nolli, Cecilia; Goffrini, Paola; Donnini, Claudia; Baruffini, Enrico

    2015-01-01

    Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1. PMID:25852747

  5. Disruption of the psbA gene by the copy correction mechanism reveals that the expression of plastid-encoded genes is regulated by photosynthesis activity.

    PubMed

    Khan, Muhammad Sarwar; Hameed, Waqar; Nozoe, Mikio; Shiina, Takashi

    2007-05-01

    The functional analysis of genes encoded by the chloroplast genome of tobacco by reverse genetics is routine. Nevertheless, for a small number of genes their deletion generates heteroplasmic genotypes, complicating their analysis. There is thus the need for additional strategies to develop deletion mutants for these genes. We have developed a homologous copy correction-based strategy for deleting/mutating genes encoded on the chloroplast genome. This system was used to produce psbA knockouts. The resulting plants are homoplasmic and lack photosystem II (PSII) activity. Further, the deletion mutants exhibit a distinct phenotype; young leaves are green, whereas older leaves are bleached, irrespective of light conditions. This suggests that senescence is promoted by the absence of psbA. Analysis of the transcript levels indicates that NEP (nuclear-encoded plastid RNA polymerase)-dependent plastid genes are up regulated in the psbA deletion mutants, whereas the bleached leaves retain plastid-encoded plastid RNA polymerase activity. Hence, the expression of NEP-dependent plastid genes may be regulated by photosynthesis, either directly or indirectly.

  6. Gene end-like sequences within the 3' non-coding region of the Nipah virus genome attenuate viral gene transcription.

    PubMed

    Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2017-08-01

    The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  8. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    DTIC Science & Technology

    2011-11-16

    protein A (Rpa2), the minichromosome maintenance complex component genes which encode helicases, DNA ligase (Lig1), DNA polymerase e ( Pole and Pole2...and DNA polymerase d ( Pold1 and Pold2 ) are all up-regulated as a result of exposure to chromium (Figure 6), suggesting that there is an increase in...Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line Matthew G

  9. Chronic smoking and alcoholism change expression of selective genes in the human prefrontal cortex.

    PubMed

    Flatscher-Bader, Traute; Wilce, Peter A

    2006-05-01

    Alcoholism is commonly associated with chronic smoking. A number of gene expression profiles of regions within the human mesocorticolimbic system have identified potential alcohol-sensitive genes; however, the influence of smoking on these changes was not taken into account. This study addressed the impact of alcohol and smoking on the expression of 4 genes, previously identified as alcoholism-sensitive, in the human prefrontal cortex (PFC). mRNA expression of apolipoprotein D, tissue inhibitor of the metalloproteinase 3, high-affinity glial glutamate transporter and midkine, was measured in the PFC of alcoholic subjects and controls with and without smoking comorbidity using real-time polymerase chain reaction. The results show that alcohol affects transcription of some of these genes. Additionally, smoking has a marked influence on gene expression. This study emphasizes the need for careful case selection in future gene expression studies to delineate the adaptive molecular process associated with smoking and alcohol.

  10. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  11. Mutations in the sigma subunit of E. coli RNA polymerase which affect positive control of transcription.

    PubMed

    Hu, J C; Gross, C A

    1985-01-01

    The sigma subunits of bacterial RNA polymerases are required for the selective initiation of transcription. We have isolated and characterized mutations in rpoD, the gene which encodes the major form of sigma in E. coli, which affect the selectivity of transcription. These mutations increase the expression of araBAD up to 12-fold in the absence of CAP-cAMP. Expression of lac is unaffected, while expression of malT-activated operons is decreased. We determined the DNA sequence of 17 independently isolated mutations, and found that they consist of three different changes in a single CGC arginine codon at position 596 in the sigma polypeptide.

  12. Heat-mediated activation of affinity-immobilized Taq DNA polymerase.

    PubMed

    Nilsson, J; Bosnes, M; Larsen, F; Nygren, P A; Uhlén, M; Lundeberg, J

    1997-04-01

    A novel strategy for heat-mediated activation of recombinant Taq DNA polymerase is described. A serum albumin binding protein tag is used to affinity-immobilize an E. coli-expressed Taq DNA polymerase fusion protein onto a solid support coated with human serum albumin (HSA). Analysis of heat-mediated elution showed that elevated temperatures (> 70 degrees C) were required to significantly release the fusion protein from the solid support. A primer-extension assay showed that immobilization of the fusion protein resulted in little or no extension product. In contrast, fusion protein released from the HSA ligand by heat showed high polymerase activity. Thus, a heat-mediated release and reactivation of the Taq DNA polymerase fusion protein from the solid support can be obtained to allow for hot-start PCR with improved amplification performance.

  13. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus *

    PubMed Central

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-01-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (P<0.05). All these results indicated that the culturing conditions affected the expression of the proteolytic system genes in Lactobacillus bulgaricus at the transcription level. PMID:25845365

  14. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    PubMed

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  15. Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns.

    PubMed

    Rosario, Christopher J; Tan, Ming

    2016-01-15

    Chlamydia is a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early gene dnaK and the midcycle genes bioY and pgk, which have promoters controlled by the late transcriptional regulators EUO and σ(28). To resolve this issue, we analyzed the promoters of these three genes in vitro and in Chlamydia trachomatis bacteria grown in cell culture. Transcripts from the σ(28)-dependent promoter of each gene were detected only at late times in the intracellular infection, bolstering the role of σ(28) RNA polymerase in late gene expression. In each case, however, expression prior to late times was due to a second promoter that was transcribed by σ(66) RNA polymerase, which is the major form of chlamydial polymerase. These results demonstrate that chlamydial genes can be transcribed from tandem promoters with different temporal profiles, leading to a composite expression pattern that differs from the expression profile of a single promoter. In addition, tandem promoters allow a gene to be regulated by multiple mechanisms of transcriptional regulation, such as DNA supercoiling or late regulation by EUO and σ(28). We discuss how tandem promoters broaden the repertoire of temporal gene expression patterns in the chlamydial developmental cycle and can be used to fine-tune the expression of specific genes. Chlamydia is a pathogenic bacterium that is responsible for the majority of infectious disease cases reported to the CDC each year. It causes an intracellular infection that is characterized by coordinated expression of chlamydial genes in temporal waves. Chlamydial transcription has been shown to be regulated by DNA supercoiling, alternative forms of RNA polymerase, and transcription factors, but the number of transcription factors found in Chlamydia is far fewer than the number found in most bacteria. This report describes the use of tandem promoters that allow the temporal expression of a gene or operon to be controlled by more than one regulatory mechanism. This combinatorial strategy expands the range of expression patterns that are available to regulate chlamydial genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury.

    PubMed

    Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao

    2014-10-01

    Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.

  17. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  18. Estradiol targets T cell signaling pathways in human systemic lupus.

    PubMed

    Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F

    2009-12-01

    The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.

  19. A plasmid-based reverse genetics system for influenza A virus.

    PubMed Central

    Pleschka, S; Jaskunas, R; Engelhardt, O G; Zürcher, T; Palese, P; García-Sastre, A

    1996-01-01

    A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system. PMID:8648766

  20. Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication

    PubMed Central

    Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa

    2016-01-01

    ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797

  1. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  2. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    PubMed

    Qi, Yonghe; Gao, Zhenchao; Xu, Guangwei; Peng, Bo; Liu, Chenxuan; Yan, Huan; Yao, Qiyan; Sun, Guoliang; Liu, Yang; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-10-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  3. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma.

    PubMed

    Zou, Shitao; Shang, Zeng-Fu; Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong

    2016-05-31

    DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.

  4. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma

    PubMed Central

    Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong

    2016-01-01

    DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC. PMID:27057634

  5. Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgu, Muslum

    A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.

  6. Oligonucleotide microarray analysis of gene expression profiles followed by real-time reverse-transcriptase polymerase chain reaction assay in chronic active Epstein-Barr virus infection.

    PubMed

    Ito, Yoshinori; Shibata-Watanabe, Yukiko; Ushijima, Yoko; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kojima, Seiji; Kimura, Hiroshi

    2008-03-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterized by recurrent infectious mononucleosis-like symptoms and has high mortality and morbidity. To clarify the mechanisms of CAEBV, the gene-expression profiles of peripheral blood obtained from patients with CAEBV were investigated. Twenty genes were differentially expressed in 4 patients with CAEBV. This microarray result was verified using a real-time reverse-transcriptase polymerase chain reaction assay in a larger group of patients with CAEBV. Eventually, 3 genes were found to be significantly upregulated: guanylate binding protein 1, tumor necrosis factor-induced protein 6, and guanylate binding protein 5. These genes may be associated with the inflammatory reaction or with cell proliferation.

  7. Efficient Translation of Epstein-Barr Virus (EBV) DNA Polymerase Contributes to the Enhanced Lytic Replication Phenotype of M81 EBV.

    PubMed

    Church, Trenton Mel; Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar

    2018-03-15

    Epstein-Barr virus (EBV) is linked to the development of both lymphoid and epithelial malignancies worldwide. The M81 strain of EBV, isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), demonstrates spontaneous lytic replication and high-titer virus production in comparison to the prototype B95-8 EBV strain. Genetic comparisons of M81 and B95-8 EBVs were previously been performed in order to determine if the hyperlytic property of M81 is associated with sequence differences in essential lytic genes. EBV SM is an RNA-binding protein expressed during early lytic replication that is essential for virus production. We compared the functions of M81 SM and B95-8 SM and demonstrate that polymorphisms in SM do not contribute to the lytic phenotype of M81 EBV. However, the expression level of the EBV DNA polymerase protein was much higher in M81- than in B95-8-infected cells. The relative deficiency in the expression of B95-8 DNA polymerase was related to the B95-8 genome deletion, which truncates the BALF5 3' untranslated region (UTR). Similarly, the insertion of bacmid DNA into the widely used recombinant B95-8 bacmid creates an inefficient BALF5 3' UTR. We further showed that the while SM is required for and facilitates the efficient expression of both M81 and B95-8 mRNAs regardless of the 3' UTR, the BALF5 3' UTR sequence is important for BALF5 protein translation. These data indicate that the enhanced lytic replication and virus production of M81 compared to those of B95-8 are partly due to the robust translation of EBV DNA polymerase required for viral DNA replication due to a more efficient BALF5 3' UTR in M81. IMPORTANCE Epstein-Barr virus (EBV) infects more than 90% of the human population, but the incidence of EBV-associated tumors varies greatly in different parts of the world. Thus, understanding the connection between genetic polymorphisms from patient isolates of EBV, gene expression phenotypes, and disease is important and may help in developing antiviral therapy. This study examines potential causes of the enhanced lytic replicative properties of M81 EBV isolated from a nasopharyngeal carcinoma (NPC) patient and provides new evidence for the role of the BALF5 gene 3' UTR sequence in DNA polymerase protein expression during lytic replication. Variation in the gene structure of the DNA polymerase gene may therefore contribute to lytic virus reactivation and pathogenesis. Copyright © 2018 American Society for Microbiology.

  8. Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation.

    PubMed

    Ge, Shujun; Murugesan, Nivetha; Pachter, Joel S

    2009-09-01

    While the expression of the C-C chemokine ligand 2 (CCL2) in the central nervous system (CNS) is associated with numerous neuroinflammatory conditions, the critical cellular sources of this chemokine, which is responsible for disease processes-as well as associated pathogenic mechanisms, remain unresolved. As the potential for anti-CCL2 therapeutics in treating neuroinflammatory disease is likely to be contingent upon effective drug delivery to the source(s) and/or target(s) of CCL2 action in the CNS, tools to highlight the course of CCL2 action during neuroinflammation are imperative. In response to this need, we used the Cre/loxP and FLP-FRT recombination system to develop the first two, cell-conditional CCL2 knockout mice-separately targeting CCL2 gene elimination to astrocytes and endothelial cells, both of which have been considered to play crucial though undefined roles in neuroinflammatory disease. Specifically, mice containing a floxed CCL2 allele were intercrossed with GFAP-Cre or Tie2-Cre transgenic mice to generate mice with CCL2-deficient astrocytes (astrocyte KO) or endothelial cells (endothelial KO), respectively. Polymerase chain reaction, reverse transcription polymerase chain reaction/quantitative reverse transcriptase polymerase chain reaction, and enzyme-linked immunosorbent assay of CCL2 gene, RNA, and protein, respectively, from cultured astrocytes and brain microvascular endothelial cells (BMEC) established the efficiency and specificity of the CCL2 gene deletions and a CCL2 null phenotype in these CNS cells. Effective cell-conditional knockout of CCL2 was also confirmed in an in vivo setting, wherein astrocytes and BMEC were retrieved by immune-guided laser capture microdissection from their in situ positions in the brains of mice experiencing acute, lipopolysaccharide-mediated endotoxemia to induce CCL2 gene expression. In vivo analysis further revealed apparent cross-talk between BMEC and astrocytes regarding the regulation of astrocyte CCL2 expression. Use of astrocyte KO and endothelial KO mice should prove critical in elaborating the pathogenic mechanisms of and optimizing the treatments for neuroinflammatory disease.

  9. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less

  10. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases

    PubMed Central

    Hunter, Lydia J. R.; Brockington, Samuel F.; Murphy, Alex M.; Pate, Adrienne E.; Gruden, Kristina; MacFarlane, Stuart A.; Palukaitis, Peter; Carr, John P.

    2016-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7. PMID:26979928

  11. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    PubMed

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  12. DNA polymerase β variant Ile260Met generates global gene expression changes related to cellular transformation

    PubMed Central

    Sweasy, Joann B.

    2012-01-01

    Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism. PMID:22914675

  13. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2008-09-01

    In Anabaena sp. strain PCC 7120, differentiation of heterocysts takes place in response to the external cue of combined nitrogen deprivation, allowing the organism to fix atmospheric nitrogen in oxic environments. NtcA, a global transcriptional regulator of cyanobacteria, is required for activation of the expression of multiple genes involved in heterocyst differentiation, including key regulators that are specific to the process. We have set up a fully defined in vitro system, which includes the purified Anabaena RNA polymerase, and have studied the effects of NtcA and its signaling effector 2-oxoglutarate on RNA polymerase binding, open complex formation, and transcript production from promoters of the hetC, nrrA, and devB genes that are activated by NtcA at different stages of heterocyst differentiation. Both RNA polymerase and NtcA could specifically bind to the target DNA in the absence of any effector. 2-Oxoglutarate had a moderate positive effect on NtcA binding, and NtcA had a limited positive effect on RNA polymerase recruitment at the promoters. However, a stringent requirement of both NtcA and 2-oxoglutarate was observed for the detection of open complexes and transcript production at the three investigated promoters. These results support a key role for 2-oxoglutarate in transcription activation in the developing heterocyst.

  14. A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens.

    PubMed

    Litschko, Christa; Oldrini, Davide; Budde, Insa; Berger, Monika; Meens, Jochen; Gerardy-Schahn, Rita; Berti, Francesco; Schubert, Mario; Fiebig, Timm

    2018-05-29

    Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis , Actinobacillus pleuropneumoniae , Haemophilus influenzae , Bibersteinia trehalosi , and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis. IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry. Copyright © 2018 Litschko et al.

  15. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  16. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    PubMed Central

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  17. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Ilchung; Ray, Judhajeet; Gupta, Vinayak

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from themore » GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.« less

  18. Relationship between nm23H1 genetic instability and clinical pathological characteristics in Chinese digestive system cancer patients.

    PubMed

    Yang, Yue-Qin; Wu, Liang; Chen, Jin-Xing; Sun, Jian-Zhong; Li, Meng; Li, Dong-Mei; Lu, Hai-Ying; Su, Zhi-Hong; Lin, Xin-Qiu; Li, Ji-Cheng

    2008-09-28

    To study the relationship between nm23H1 gene genetic instability and its clinical pathological characteristics in Chinese digestive system cancer patients. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to analyze the microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was employed to detect the expression of nm23H1. The MSI was higher in TNM stage I + II than in stage III + IV of gastric, colonic and gallbladder carcinomas. The LOH was higher in TNM stage III + IV than in stage I + II of gastric, colonic and hepatocellular carcinomas. Lymphatic metastasis was also observed. The expression of nm23H1 protein was lower in TNM stage III + IV than in stage I + II of these tumors and in patients with lymphatic metastasis.The nm23H1 protein expression was higher in the LOH negative group than in the LOH positive group. MSI and LOH may independently control the biological behaviors of digestive system cancers. MSI could serve as an early biological marker of digestive system cancers. Enhanced expression of nm23H1 protein could efficiently inhibit cancer metastasis and improve its prognosis. LOH mostly appears in late digestive system cancer.

  19. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  20. Expression of classical components of the renin-angiotensin system in the human eye.

    PubMed

    White, Andrew J R; Cheruvu, Sarat C; Sarris, Maria; Liyanage, Surabhi S; Lumbers, Eugenie; Chui, Jeanie; Wakefield, Denis; McCluskey, Peter J

    2015-03-01

    The purpose of this study was to determine the relative expression of clinically-relevant components of the renin-angiotensin system (RAS) in the adult human eye. We obtained 14 post-mortem enucleated human eyes from patients whom had no history of inflammatory ocular disease nor pre-mortem ocular infection. We determined the gene expression for prorenin, renin, prorenin receptor, angiotensin-converting enzyme, angiotensinogen and angiotensin II Type 1 receptor, on tissue sections and in cultured human primary retinal pigment epithelial and iris pigment epithelial (RPE/IPE) cell lines, using both qualitative and quantitative reverse transcription polymerase chain reaction (RT-PCR). Protein expression was studied using indirect immunofluorescence (IF). Almost all components of the classical RAS were found at high levels, at both the transcript and protein level, in the eyes' uvea and retina; and at lower levels in the cornea, conjunctiva and sclera. There was a much lower level of expression in the reference cultured RPE/IPE cells lines. This study describes the distribution of RAS in the normal adult human eye and demonstrates the existence of an independent ocular RAS, with uveal and retinal tissues showing the highest expression of RAS components. These preliminary findings provide scope for examination of additional components of this system in the human eye, as well as possible differential expression under pathological conditions. © The Author(s) 2014.

  1. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients.

    PubMed

    Prudencio, Mercedes; Gonzales, Patrick K; Cook, Casey N; Gendron, Tania F; Daughrity, Lillian M; Song, Yuping; Ebbert, Mark T W; van Blitterswijk, Marka; Zhang, Yong-Jie; Jansen-West, Karen; Baker, Matthew C; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard; Link, Christopher D

    2017-09-01

    Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD. © The Author 2017. Published by Oxford University Press.

  2. Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces

    PubMed Central

    Jones, George H.

    2018-01-01

    Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichia coli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally. PMID:29562650

  3. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  4. Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse brain to diet and the daily light-dark cycle.

    PubMed

    Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R

    2014-08-05

    The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A Polymerase With Potential: The Fe-S Cluster in Human DNA Primase.

    PubMed

    Holt, Marilyn E; Salay, Lauren E; Chazin, Walter J

    2017-01-01

    Replication of DNA in eukaryotes is primarily executed by the combined action of processive DNA polymerases δ and ɛ. These enzymes cannot initiate synthesis of new DNA without the presence of a primer on the template ssDNA. The primers on both the leading and lagging strands are generated by DNA polymerase α-primase (pol-prim). DNA primase is a DNA-dependent RNA polymerase that synthesizes the first ~10 nucleotides and then transfers the substrate to polymerase α to complete primer synthesis. The mechanisms governing the coordination and handoff between primase and polymerase α are largely unknown. Isolated DNA primase contains a [4Fe-4S] 2+ cluster that has been shown to serve as a redox switch modulating DNA binding affinity. This discovery suggests a mechanism for modulating the priming activity of primase and handoff to polymerase α. In this chapter, we briefly discuss the current state of knowledge of primase structure and function, including the role of its iron-sulfur cluster. This is followed by providing the methods for expressing, purifying, and biophysically/structurally characterizing primase and its iron-sulfur cluster-containing domain, p58C. © 2017 Elsevier Inc. All rights reserved.

  6. RNA Polymerase Structure, Function, Regulation, Dynamics, Fidelity, and Roles in GENE EXPRESSION | Center for Cancer Research

    Cancer.gov

    Multi-subunit RNA polymerases (RNAP) are ornate molecular machines that translocate on a DNA template as they generate a complementary RNA chain. RNAPs are highly conserved in evolution among eukarya, eubacteria, archaea, and some viruses. As such, multi-subunit RNAPs appear to be an irreplaceable advance in the evolution of complex life on earth. Because of their stepwise

  7. Interaction of sigma 70 with Escherichia coli RNA polymerase core enzyme studied by surface plasmon resonance.

    PubMed

    Ferguson, A L; Hughes, A D; Tufail, U; Baumann, C G; Scott, D J; Hoggett, J G

    2000-09-22

    The interaction between the core form of bacterial RNA polymerases and sigma factors is essential for specific promoter recognition, and for coordinating the expression of different sets of genes in response to varying cellular needs. The interaction between Escherichia coli core RNA polymerase and sigma 70 has been investigated by surface plasmon resonance. The His-tagged form of sigma 70 factor was immobilised on a Ni2+-NTA chip for monitoring its interaction with core polymerase. The binding constant for the interaction was found to be 1.9x10(-7) M, and the dissociation rate constant for release of sigma from core, in the absence of DNA or transcription, was 4x10(-3) s(-1), corresponding to a half-life of about 200 s.

  8. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  9. Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity*

    PubMed Central

    Manzoor, Rashid; Kuroda, Kazumichi; Yoshida, Reiko; Tsuda, Yoshimi; Fujikura, Daisuke; Miyamoto, Hiroko; Kajihara, Masahiro; Kida, Hiroshi; Takada, Ayato

    2014-01-01

    The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments. PMID:24474693

  10. Plutella xylostella granulovirus late gene promoter activity in the context of the Autographa californica multiple nucleopolyhedrovirus genome.

    PubMed

    Ren, He-Lin; Hu, Yuan; Guo, Ya-Jun; Li, Lu-Lin

    2016-06-01

    Within Baculoviridae, little is known about the molecular mechanisms of replication in betabaculoviruses, despite extensive studies in alphabaculoviruses. In this study, the promoters of nine late genes of the betabaculovirus Plutella xylostella granulovirus (PlxyGV) were cloned into a transient expression vector and the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, and compared with homologous late gene promoters of AcMNPV in Sf9 cells. In transient expression assays, all PlxyGV late promoters were activated in cells transfected with the individual reporter plasmids together with an AcMNPV bacmid. In infected cells, reporter gene expression levels with the promoters of PlxyGV e18 and AcMNPV vp39 and gp41 were significantly higher than those of the corresponding AcMNPV or PlxyGV promoters, which had fewer late promoter motifs. Observed expression levels were lower for the PlxyGV p6.9, pk1, gran, p10a, and p10b promoters than for the corresponding AcMNPV promoters, despite equal numbers of late promoter motifs, indicating that species-specific elements contained in some late promoters were favored by the native viral RNA polymerases for optimal transcription. The 8-nt sequence TAAATAAG encompassing the ATAAG motif was conserved in the AcMNPV polh, p10, and pk1 promoters. The 5-nt sequence CAATT located 4 or 5 nt upstream of the T/ATAAG motif was conserved in the promoters of PlxyGV gran, p10c, and pk1. The results of this study demonstrated that PlxyGV late gene promoters could be effectively activated by the RNA polymerase from AcMNPV, implying that late gene expression systems are regulated by similar mechanisms in alphabaculoviruses and betabaculoviruses.

  11. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction.

    PubMed

    Brell, Marta; Ibáñez, Javier; Tortosa, Avelina

    2011-01-26

    The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.

  12. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET.

    PubMed

    Watanabe, Yukiko; Horie, Sachiko; Funaki, Yoshihito; Kikuchi, Youhei; Yamazaki, Hiromichi; Ishii, Keizo; Mori, Shiro; Vassaux, Georges; Kodama, Tetsuya

    2010-06-01

    The development of nonviral gene delivery systems is essential in gene therapy, and the use of a minimally invasive imaging methodology can provide important clinical endpoints. In the current study, we present a new methodology for gene therapy-a delivery system using nanobubbles and ultrasound as a nonviral gene delivery method. We assessed whether the gene transfer allowed by this methodology was detectable by PET and bioluminescence imaging. Two kinds of reported vectors (luciferase and human Na/I symporter [hNIS]) were transfected or cotransfected into the skeletal muscles of normal mice (BALB/c) using the ultrasound-nanobubbles method. The kinetics of luciferase gene expression were analyzed in vivo using bioluminescence imaging. At the peak of gene transfer, PET of hNIS expression was performed using our recently developed PET scanner, after (124)I injection. The imaging data were confirmed using reverse-transcriptase polymerase chain reaction amplification, biodistribution, and a blocking study. The imaging potential of the 2 methodologies was evaluated in 2 mouse models of human pathology (McH/lpr-RA1 mice showing vascular disease and C57BL/10-mdx Jic mice showing muscular dystrophy). Peak luciferase gene activity was observed in the skeletal muscle 4 d after transfection. On day 2 after hNIS and luciferase cotransfection, the expression of these genes was confirmed by reverse-transcriptase polymerase chain reaction on a muscle biopsy. PET of the hNIS gene, biodistribution, the blocking study, and autoradiography were performed on day 4 after transfection, and it was indicated that hNIS expression was restricted to the site of plasmid administration (skeletal muscle). Similar localized PET and (124)I accumulation were successfully obtained in the disease-model mice. The hNIS gene was delivered into the skeletal muscle of healthy and disease-model mice by the ultrasound-nanobubbles method, and gene expression was successfully visualized with PET. The combination of ultrasound-nanobubble gene transfer and PET may be applied to gene therapy clinical protocols.

  13. Single cell digital polymerase chain reaction on self-priming compartmentalization chip

    PubMed Central

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%–4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease. PMID:28191267

  14. Single cell digital polymerase chain reaction on self-priming compartmentalization chip.

    PubMed

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%-4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease.

  15. Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase.

    PubMed

    Jordan, Paul C; Liu, Cheng; Raynaud, Pauline; Lo, Michael K; Spiropoulou, Christina F; Symons, Julian A; Beigelman, Leo; Deval, Jerome

    2018-02-01

    Paramyxoviruses represent a family of RNA viruses causing significant human diseases. These include measles virus, the most infectious virus ever reported, in addition to parainfluenza virus, and other emerging viruses. Paramyxoviruses likely share common replication machinery but their mechanisms of RNA biosynthesis activities and details of their complex polymerase structures are unknown. Mechanistic and functional details of a paramyxovirus polymerase would have sweeping implications for understanding RNA virus replication and for the development of new antiviral medicines. To study paramyxovirus polymerase structure and function, we expressed an active recombinant Nipah virus (NiV) polymerase complex assembled from the multifunctional NiV L protein bound to its phosphoprotein cofactor. NiV is an emerging highly pathogenic virus that causes severe encephalitis and has been declared a global public health concern due to its high mortality rate. Using negative-stain electron microscopy, we demonstrated NiV polymerase forms ring-like particles resembling related RNA polymerases. We identified conserved sequence elements driving recognition of the 3'-terminal genomic promoter by NiV polymerase, and leading to initiation of RNA synthesis, primer extension, and transition to elongation mode. Polyadenylation resulting from NiV polymerase stuttering provides a mechanistic basis for transcription termination. It also suggests a divergent adaptation in promoter recognition between pneumo- and paramyxoviruses. The lack of available antiviral therapy for NiV prompted us to identify the triphosphate forms of R1479 and GS-5734, two clinically relevant nucleotide analogs, as substrates and inhibitors of NiV polymerase activity by delayed chain termination. Overall, these findings provide low-resolution structural details and the mechanism of an RNA polymerase from a previously uncharacterized virus family. This work illustrates important functional differences yet remarkable similarities between the polymerases of nonsegmented negative-strand RNA viruses.

  16. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes.

    PubMed

    Herman, M A B; Davidson, J K; Smart, C D

    2008-11-01

    Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.

  17. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    PubMed Central

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  18. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus.

    PubMed

    Whisnant, Adam W; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin; Cullen, Bryan R

    2014-05-01

    While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.

  19. Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus

    PubMed Central

    Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin

    2014-01-01

    ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910

  20. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  1. An easy and efficient strategy for KEL genotyping in a multiethnic population.

    PubMed

    Arnoni, Carine Prisco; Muniz, Janaína Guinhem; de Paula, Tatiane Aparecida; Person, Rosangela Duarte de Medeiros; Gazito, Diana; Baleotti, Wilson; Barreto, José Augusto; Castilho, Lilian; Latini, Flavia Roche Moreira

    2013-01-01

    The Kell blood group system expresses high and low frequency antigens with the most important in relation to transfusion including the antithetic KEL1 and KEL2; KEL3 and KEL4; KEL6 and KEL7 antigens. Kell is a clinically relevant system, as it is highly immunogenic and anti-KEL antibodies are associated with hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. Although required in some situations, Kell antigen phenotyping is restricted due to technical limitations. In these cases, molecular approaches maybe a solution. This study proposes three polymerase chain reaction genotyping protocols to analyze the single nucleotide polymorphisms responsible for six Kell antithetic antigens expressed in a Brazilian population. DNA was extracted from 800 blood donor samples and three polymerase chain reaction-restriction fragment length polymorphism protocols were used to genotype the KEL*1/KEL*2, KEL*3/KEL*4 and KEL*6/KEL*7 alleles. KEL*3/KEL*4 and KEL*6/KEL*7 genotyping was standardized using the NlaIII and MnlI restriction enzymes and validated using sequencing. KEL*1/KEL*2 genotyping was performed using a previously reported assay. KEL genotyping was successfully implemented in the service; the following distribution of KEL alleles was obtained for a population from southeastern Brazil: KEL*1 (2.2%), KEL*2 (97.8%), KEL*3 (0.69%), KEL*4 (99.31%), KEL*6 (2.69%) and KEL*7 (97.31%). Additionally, two individuals with rare genotypes, KEL*1/KEL*1 and KEL*3/KEL*3, were identified. KEL allele genotyping using these methods proved to be reliable and applicable to predict Kell antigen expressions in a Brazilian cohort. This easy and efficient strategy can be employed to provide safer transfusions and to help in rare donor screening.

  2. The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus

    PubMed Central

    Shi, Kai; Li, Xin; Zhang, Guan-Qun; Xia, Xiao-Jian; Chen, Zhi-Xiang; Yu, Jing-Quan

    2013-01-01

    Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of hydrogen peroxide (H2O2) and nitric oxide (NO) in RDR1 induction in the compatible interactions between Tobacco mosaic tobamovirus (TMV) and Nicotiana tabacum, Nicotiana benthamiana, and Arabidopsis thaliana was examined. TMV inoculation onto the lower leaves of N. tabacum induced the rapid accumulation of H2O2 and NO followed by the increased accumulation of RDR1 transcripts in the non-inoculated upper leaves. Pretreatment with exogenous H2O2 and NO on upper leaf led to increased RDR1 expression and systemic TMV resistance. Conversely, dimethylthiourea (an H2O2 scavenger) and 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (an NO scavenger) partly blocked TMV- and SA-induced RDR1 expression and increased TMV susceptibility, whereas pretreatment with exogenous H2O2 and NO failed to diminish TMV infection in N. benthamiana plants with naturally occurring RDR1 loss-of-function. Furthermore, in N. tabacum and A. thaliana, TMV-induced H2O2 accumulation was NO-dependent, whereas NO generation was not affected by H2O2. These results suggest that, in response to TMV infection, H2O2 acts downstream of NO to mediate induction of RDR1, which plays a critical role in strengthening RNA silencing to restrict systemic viral infection. PMID:24098767

  3. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation.

    PubMed

    Tang, Qiang; Lu, Ting; Liu, Shuang-Jiang

    2018-06-12

    Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-P T7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.

  4. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    PubMed

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  5. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells.

    PubMed

    Poblete-Naredo, Irais; Guillem, Alain M; Juárez, Claudia; Zepeda, Rossana C; Ramírez, Leticia; Caba, Mario; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo

    2011-12-01

    Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Vascular Induction of a Disintegrin and Metalloprotease 17 by Angiotensin II Through Hypoxia Inducible Factor 1α

    PubMed Central

    Obama, Takashi; Takayanagi, Takehiko; Kobayashi, Tomonori; Bourne, Allison M.; Elliott, Katherine J.; Charbonneau, Martine; Dubois, Claire M.

    2015-01-01

    BACKGROUND A disintegrin and metalloprotease 17 (ADAM17) is a membrane-spanning metalloprotease overexpressed in various cardiovascular diseases such as hypertension and atherosclerosis. However, little is known regarding the regulation of ADAM17 expression in the cardiovascular system. Here, we test our hypothesis that angiotensin II induces ADAM17 expression in the vasculature. METHODS Cultured vascular smooth muscle cells were stimulated with 100nM angiotensin II. Mice were infused with 1 μg/kg/minute angiotensin II for 2 weeks. ADAM17 expression was evaluated by a promoter–reporter construct, quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In vascular smooth muscle cells, angiotensin II increased ADAM17 protein expression, mRNA, and promoter activity. We determined that the angiotensin II response involves hypoxia inducible factor 1α and a hypoxia responsive element. In angiotensin II–infused mice, marked induction of ADAM17 and hypoxia inducible factor 1α was seen in vasculatures in heart and kidney, as well as in aortae, by immunohistochemistry. CONCLUSIONS Angiotensin II induces ADAM17 expression in the vasculatures through a hypoxia inducible factor 1α–dependent transcriptional upregulation, potentially contributing to end-organ damage in the cardiovascular system. PMID:24871629

  7. Serine proteases in rodent hippocampus.

    PubMed

    Davies, B J; Pickard, B S; Steel, M; Morris, R G; Lathe, R

    1998-09-04

    Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.

  8. Expression of TRPC5 is decreased in the sperm of patients with varicocele-associated asthenozoospermia

    PubMed Central

    Zhu, Guangbin; Xie, Changying; Yang, Zhonghua; Wang, Yongzhi; Chen, Dong; Wang, Xinghuan

    2018-01-01

    The present study aimed to determine whether the expression of transient receptor potential channel 5 (TRPC5) protein is altered in spermatozoa of patients with varicocele-associated asthenozoospermia. TRPC5 expression in spermatozoa was determined by polymerase chain reaction and western blotting analyses, and indirect immunofluorescence was used for identification and immunolocalization of the TRPC5 channel in human sperm. Sperm motility and superoxide dismutase (SOD) activity were also determined with a computer-assisted semen analysis system and assay kit, respectively. Compared with levels in control subjects, it was identified that TRPC5 protein expression, SOD activity and cellular motility in the sperm of patients with varicocele-associated asthenozoospermia were reduced (P<0.001). Furthermore, the expression of TRPC5 was positively correlated with sperm motility (r=0.781, P<0.001) and SOD activity (r=0.933, P<0.001), indicated by partial correlation analysis. The present study may provide a novel target for the study and treatment of varicocele-associated asthenozoospermia.

  9. Systemic administration of lipopolysaccharide increases the expression of aquaporin-4 in the rat anterior pituitary gland.

    PubMed

    Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2013-01-01

    We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.

  10. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells

    PubMed Central

    Choi, Y; Lim, SY; Jeong, HS; Koo, KA; Sung, SH; Kim, YC

    2009-01-01

    Background and purpose: We conducted a genome wide gene expression analysis to explore the biological aspects of 15-methoxypinusolidic acid (15-MPA) isolated from Biota orientalis and tried to confirm the suitability of 15-MPA as a therapeutic candidate for CNS injuries focusing on microglia. Experimental approach: Murine microglial BV2 cells were treated with 15-MPA, and their transcriptome was analysed by using oligonucleotide microarrays. Genes differentially expressed upon 15-MPA treatment were selected for RT-PCR (reverse transcription-polymerase chain reaction) analysis to confirm the gene expression. Inhibition of cell proliferation and induction of apoptosis by 15-MPA were examined by bromodeoxyuridine assay, Western blot analysis of poly-ADP-ribose polymerase and flow cytometry. Key results: A total of 514 genes were differentially expressed by 15-MPA treatment. Biological pathway analysis revealed that 15-MPA induced significant changes in expression of genes in the cell cycle pathway. Genes involved in growth arrest and DNA damage [gadd45α, gadd45γ and ddit3 (DNA damage-inducible transcript 3)] and cyclin-dependent kinase inhibitor (cdkn2b) were up-regulated, whereas genes involved in cell cycle progression (ccnd1, ccnd3 and ccne1), DNA replication (mcm4, orc1l and cdc6) and cell proliferation (fos and jun) were down-regulated. RT-PCR analysis for representative genes confirmed the expression levels. 15-MPA significantly reduced bromodeoxyuridine incorporation, increased poly-ADP-ribose polymerase cleavage and the number of apoptotic cells, indicating that 15-MPA induces apoptosis in BV2 cells. Conclusion and implications: 15-MPA induced apoptosis in murine microglial cells, presumably via inhibition of the cell cycle progression. As microglial activation is detrimental in CNS injuries, these data suggest a strong therapeutic potential of 15-MPA. PMID:19466985

  11. [Development of a diagnostic test system for early non-invasive detection of prostate cancer based on PCA3 mRNA levels in urine sediment using quantitative reverse tanscription polymerase chain reaction (qRT-PCR)].

    PubMed

    Pavlov, K A; Shkoporov, A N; Khokhlova, E V; Korchagina, A A; Sidorenkov, A V; Grigor'ev, M É; Pushkar', D Iu; Chekhonin, V P

    2013-01-01

    The wide introduction of prostatic specific antigen (PSA) determination into clinical practice has resulted in a larger number of prostate biopsies, while the lower age threshold for PSA has led to a larger number of unnecessary prostate biopsies. Hence, there is a need for new biomarkers that can detect prostate cancer. PCA3 is a noncoding messenger ribonucleic acid (mRNA) that is expressed exclusively in prostate cells. The aim of the study has been to develop a diagnostic test system for early non-invasive detection of prostate cancer based on PCA3 mRNA levels in urine sediment using quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of the study, a laboratory diagnostic test system prototype has been designed, an application methodology has been developed and specificity and sensitivity data of the method has been assessed. The diagnostic system has demonstrated its ability to detect significantly elevated levels of PCA 3/KLK 3 in samples from prostate cancer (PCa) patients compared with those from healthy men. The findings have shown relatively high diagnostic sensitivity, specificity and negative-predictive values for an early non-invasive screening of prostate cancer

  12. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription

    PubMed Central

    Grierson, Patrick M.; Lillard, Kate; Behbehani, Gregory K.; Combs, Kelly A.; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-01-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. 3H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS. PMID:22106380

  13. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription.

    PubMed

    Grierson, Patrick M; Lillard, Kate; Behbehani, Gregory K; Combs, Kelly A; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-03-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.

  14. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    PubMed

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  15. Directed evolution of polymerase function by compartmentalized self-replication.

    PubMed

    Ghadessy, F J; Ong, J L; Holliger, P

    2001-04-10

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.

  16. HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.

    PubMed

    Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F

    2001-03-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.

  17. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  18. Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation*

    PubMed Central

    Vanacloig-Pedros, Elena; Bets-Plasencia, Carolina; Pascual-Ahuir, Amparo; Proft, Markus

    2015-01-01

    Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of “housekeeping” genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H+-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover. PMID:25745106

  19. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    PubMed Central

    Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng

    2015-01-01

    Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407

  20. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  1. ε, a new subunit of RNA polymerase found in gram-positive bacteria.

    PubMed

    Keller, Andrew N; Yang, Xiao; Wiedermannová, Jana; Delumeau, Olivier; Krásný, Libor; Lewis, Peter J

    2014-10-01

    RNA polymerase in bacteria is a multisubunit protein complex that is essential for gene expression. We have identified a new subunit of RNA polymerase present in the high-A+T Firmicutes phylum of Gram-positive bacteria and have named it ε. Previously ε had been identified as a small protein (ω1) that copurified with RNA polymerase. We have solved the structure of ε by X-ray crystallography and show that it is not an ω subunit. Rather, ε bears remarkable similarity to the Gp2 family of phage proteins involved in the inhibition of host cell transcription following infection. Deletion of ε shows no phenotype and has no effect on the transcriptional profile of the cell. Determination of the location of ε within the assembly of RNA polymerase core by single-particle analysis suggests that it binds toward the downstream side of the DNA binding cleft. Due to the structural similarity of ε with Gp2 and the fact they bind similar regions of RNA polymerase, we hypothesize that ε may serve a role in protection from phage infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. miRNA-26b Overexpression in Ulcerative Colitis-associated Carcinogenesis.

    PubMed

    Benderska, Natalya; Dittrich, Anna-Lena; Knaup, Sabine; Rau, Tilman T; Neufert, Clemens; Wach, Sven; Fahlbusch, Fabian B; Rauh, Manfred; Wirtz, Ralph M; Agaimy, Abbas; Srinivasan, Swetha; Mahadevan, Vijayalakshmi; Rümmele, Petra; Rapti, Emmanouela; Gazouli, Maria; Hartmann, Arndt; Schneider-Stock, Regine

    2015-09-01

    Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.

  3. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  4. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  5. Expression profile of Lgi1 gene in mouse brain during development.

    PubMed

    Ribeiro, Patrícia A O; Sbragia, Lourenço; Gilioli, Rovilson; Langone, Francesco; Conte, Fábio F; Lopes-Cendes, Iscia

    2008-07-01

    Mutations in LGI1 were described in patients with autosomal dominant partial epilepsy with auditory features (ADPEAF), and recent clinical findings have implicated LGI1 in human brain development. However, the precise role of LGI1 in epileptogenesis remains largely unknown. The objective of this study was to determine the expression pattern of Lgi1 in mice brain during development and in adult animals. Real-time polymerase chain reaction (PCR) quantification and Western blot experiments showed a relative low expression during intrauterine stages, increasing until adulthood. In addition, we did not find significant differences between left and right hemispheres. The hippocampus presented higher levels of Lgi1 expression when compared to the neocortex and the cerebellum of adult animals; however, these results did not reach statistical significance. This study was the first to determine a specific profile of Lgi1 gene expression during central nervous system development, which suggests a possible inhibitory function in latter stages of development. In addition, we did not find differences in hemispheric expression that could explain the predominance of left-sided abnormalities in patients with ADPEAF.

  6. Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.

    PubMed

    Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A

    2015-01-01

    Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.

  7. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less

  8. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA

    PubMed Central

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-01-01

    In Escherichia coli, the sigma factor σ70 directs RNA polymerase to transcribe growth-related genes, while σ38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ70, and the non-coding 6S RNA which binds to the RNA polymerase-σ70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. PMID:29686109

  9. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA.

    PubMed

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-05-31

    In Escherichia coli , the sigma factor σ 70 directs RNA polymerase to transcribe growth-related genes, while σ 38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ 70 , and the non-coding 6S RNA which binds to the RNA polymerase-σ 70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ 38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. Copyright © 2018 Lal et al.

  10. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    PubMed

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  11. HOX Genes in Human Lung

    PubMed Central

    Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.

    2001-01-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043

  12. Expression of Leptin and Visfatin in Gingival Tissues of Chronic Periodontitis With and Without Type 2 Diabetes Mellitus: A Study Using Enzyme-Linked Immunosorbent Assay and Real-Time Polymerase Chain Reaction.

    PubMed

    Ghallab, Noha A; Amr, Eman M; Shaker, Olfat G

    2015-07-01

    The aim of this study is to investigate the protein and gene expression of leptin and visfatin in gingival tissue from patients with chronic periodontitis (CP), patients with CP and type 2 diabetes mellitus (T2DM), and healthy individuals. The study includes 50 individuals: 10 healthy individuals, 20 patients with CP, and 20 patients with CP and T2DM. Plaque index, gingival index, probing depth, and clinical attachment loss were measured, and gingival biopsies were obtained. Leptin and visfatin protein expression in gingival tissues was determined using enzyme-linked immunosorbent assay, and messenger RNA (mRNA) expression was measured via real-time polymerase chain reaction. The highest leptin mRNA and protein expression was observed in the control group and was significantly (P ≤0.05) different from the CP and CP+T2DM groups. Gingival tissues from patients with CP and T2DM had a significant increase in visfatin and a decrease in leptin gene and protein expression (P <0.05) compared with both controls and patients with CP. Expression of leptin and visfatin in the gingival tissues suggests a possible role for these adipokines in the pathogenesis of CP and T2DM.

  13. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription.

    PubMed

    Conesa, Christine; Ruotolo, Roberta; Soularue, Pascal; Simms, Tiffany A; Donze, David; Sentenac, André; Dieci, Giorgio

    2005-10-01

    We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.

  14. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.

  15. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    PubMed

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  16. Compartmentalized partnered replication for the directed evolution of genetic parts and circuits.

    PubMed

    Abil, Zhanar; Ellefson, Jared W; Gollihar, Jimmy D; Watkins, Ella; Ellington, Andrew D

    2017-12-01

    Compartmentalized partnered replication (CPR) is an emulsion-based directed evolution method based on a robust and modular phenotype-genotype linkage. In contrast to other in vivo directed evolution approaches, CPR largely mitigates host fitness effects due to a relatively short expression time of the gene of interest. CPR is based on gene circuits in which the selection of a 'partner' function from a library leads to the production of a thermostable polymerase. After library preparation, bacteria produce partner proteins that can potentially lead to enhancement of transcription, translation, gene regulation, and other aspects of cellular metabolism that reinforce thermostable polymerase production. Individual cells are then trapped in water-in-oil emulsion droplets in the presence of primers and dNTPs, followed by the recovery of the partner genes via emulsion PCR. In this step, droplets with cells expressing partner proteins that promote polymerase production will produce higher copy numbers of the improved partner gene. The resulting partner genes can subsequently be recloned for the next round of selection. Here, we present a step-by-step guideline for the procedure by providing examples of (i) selection of T7 RNA polymerases that recognize orthogonal promoters and (ii) selection of tRNA for enhanced amber codon suppression. A single round of CPR should take ∼3-5 d, whereas a whole directed evolution can be performed in 3-10 rounds, depending on selection efficiency.

  17. Eukaryotic translational initiation factor 4AII reduces the replication of infectious bursal disease virus by inhibiting VP1 polymerase activity.

    PubMed

    Gao, Li; Li, Kai; Zhong, Li; Zhang, Lizhou; Qi, Xiaole; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2017-03-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although an interaction between eukaryotic translational initiation factor 4AII (eIF4AII) of the host and viral protein 1 (VP1), the RNA-dependent RNA polymerase (RdRp) of IBDV, has been established, the underlying effects of this interaction on IBDV and the molecular mechanism remain unclear. We here report that interaction of the host eIF4AII with VP1 inhibits the RNA polymerase activity of IBDV to reduce its replication in host cells. We found that ectopically expressed eIF4AII markedly inhibited IBDV growth in DF1 cells, and knockdown of eIF4AII by small interfering RNA significantly enhanced viral replication in CEF cells. Furthermore, IBDV infection led to an increase in host eIF4AII expression, suggesting a feedback mechanism between the host and virus infection both in vitro and in vivo, which further confirmed the involvement of the host eIF4AII in the IBDV life cycle. Thus, via the interaction with VP1, eIF4AII plays a critical role in the IBDV life cycle, by inhibiting viral RNA polymerase activity, leading to a reduction of IBDV replication in cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    PubMed

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.

  19. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.

    PubMed

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H

    2011-03-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  20. Direct measurement of the poliovirus RNA polymerase error frequency in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.

    1988-02-01

    The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less

  1. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases.

    PubMed Central

    Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E

    1993-01-01

    A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138

  2. Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression*

    PubMed Central

    Qian, Yufeng; Kachroo, Aashiq H.; Yellman, Christopher M.; Marcotte, Edward M.; Johnson, Kenneth A.

    2014-01-01

    Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans. PMID:24398692

  3. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures

    PubMed Central

    Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.

    2014-01-01

    Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427

  4. Induction of Syndecan-4 by Organic-Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells.

    PubMed

    Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki

    2017-02-08

    Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline ( o -Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o -Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.

  5. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    NASA Astrophysics Data System (ADS)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  6. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    PubMed

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Morimoto, Sumiko; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2008-08-01

    The aim of this study was to investigate the expression of the 4 gene transcripts, steroidogenic factors 1 (SF-1) and 2 (SF-2), steroidogenic acute regulatory (StAR), and cytochrome P450 11A1, involved in the synthesis of steroid hormones in normal human pancreas. Total RNA was extracted from normal male (n = 5) and female (n = 5) samples, obtained from the organ donor program. The expression levels of SF-1, SF-2, StAR protein, and P450scc were assessed by reverse transcription-polymerase chain reaction and complemented with immunohistochemistry analysis. Polymerase chain reaction products amplification for all genes was present in both male and female samples, although differential expression was observed. The signals detected were much more evident in male than in female messenger RNA isolates for SF-1, SF-2, and StAR protein. The expression for P450scc was more intense in female samples. A similar pattern was observed in the immunohistochemical studies. Normal human pancreas expresses 4 gene transcripts involved in steroid synthesis similarly to steroidogenic organs. A distinctive characteristic is the sexually dimorphic expression of these factors. These data provide further evidence to support that the pancreas is a truly steroidogenic tissue, highlighting the presence of sex- and location-related differences in the expression of steroidogenic factors.

  8. Matrix metalloprotease-3 expression in the medial plica and pannus-like tissue in knees from patients with medial compartment osteoarthritis.

    PubMed

    Wang, Hwai-Shi; Kuo, Pei-Yin; Yang, Chih-Chang; Lyu, Shaw-Ruey

    2011-03-01

    The severity of cartilage degeneration is positively correlated with the severity of the pathologic change of medial plica. However, knowledge of the pathogenic mechanisms and the impact of plica on cartilage destruction is limited. The aim of the present study was therefore to investigate matrix metalloprotease-3 (MMP-3) expression in the plica isolated from patients with medial compartment osteoarthritis of the knee. Immunohistochemistry showed that MMP-3 was highly expressed in pannus-like tissue and the plica. Western blotting of culture supernatants showed that interleukin-1β (IL-1β) treatment induced MMP-3 release by cells isolated from pannus tissue or the plica. Furthermore, reverse transcriptase polymerase chain reaction and real-time polymerase chain reaction analysis showed that MMP-3 mRNA levels were increased after IL-1β treatment of the cultured cells. MMP-3 and IL-1β mRNAs were expressed in the plica and pannus-like tissue, with MMP-3 mRNA being expressed at significantly higher levels in the plica than in normal synovial membrane and highly expressed in the plica at different stages in osteoarthritis (OA) patients. Pannus-like tissue and the plica express IL-1β and MMP-3. Moreover, MMP-3 mRNA and protein expression in the plica may contribute to the pathogenesis of OA. © 2011 Blackwell Publishing Limited.

  9. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is the most important tool in measuring levels of gene expression due to its accuracy, specificity, and sensitivity. However, the accuracy of qRT-PCR analysis strongly depends on transcript normalization using stably expressed reference gene...

  10. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  11. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells.

    PubMed

    Srivastava, Amit Kumar; Han, Chunhua; Zhao, Ran; Cui, Tiantian; Dai, Yuntao; Mao, Charlene; Zhao, Weiqiang; Zhang, Xiaoli; Yu, Jianhua; Wang, Qi-En

    2015-04-07

    Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.

  12. Star-PAP, a poly(A) polymerase, functions as a tumor suppressor in an orthotopic human breast cancer model.

    PubMed

    Yu, C; Gong, Y; Zhou, H; Wang, M; Kong, L; Liu, J; An, T; Zhu, H; Li, Y

    2017-02-02

    Star-PAP is a noncanonical poly(A) polymerase and required for the expression of a select set of mRNAs. However, the pathological role of Star-PAP in cancer largely remains unknown. In this study, we observed decreased expression of Star-PAP in breast cancer cell lines and tissues. Ectopic Star-PAP expression inhibited proliferation as well as colony-forming ability of breast cancer cells. In breast cancer patients, high levels of Star-PAP correlated with an improved prognosis. Moreover, by regulating the expression of BIK (BCL2-interacting killer), Star-PAP induced apoptosis of breast cancer cells through the mitochondrial pathway. The growth of breast cancer xenografts in NOD/SCID mice was also inhibited by the doxycycline-induced Star-PAP overexpression. Furthermore, Star-PAP sensitized breast cancer cells to chemotherapy drugs both in vitro and in vivo. In mammary epithelial cells, Star-PAP knockdown partially transformed these cells and induced them to undergo epithelial-mesenchymal transition (EMT). These findings suggested that Star-PAP possesses tumor-suppressing activity and can be a valuable target for developing new cancer therapeutic strategies.

  13. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    DTIC Science & Technology

    2008-12-01

    sample) was as follows: 5 µL buffer, 2 µL MgCl2, 2.5 µL DMSO, 1 µL betaine , 1 µL each dNTP, 2.5 µL F primer, 2.5 µL R primer, 0.54 µL taq polymerase...and 25.1 µL H2O. Betaine and increased DMSO were added to the master mix to eliminate polymerase jumping during PCR ampli- fication.10 Using the

  14. Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor

    PubMed Central

    Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu

    2017-01-01

    It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor. PMID:29040311

  15. Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor.

    PubMed

    Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu; Takada, Ayato

    2017-01-01

    It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.

  16. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

    PubMed

    Chan, Chi-Ping; Yuen, Chun-Kit; Cheung, Pak-Hin Hinson; Fung, Sin-Yee; Lui, Pak-Yin; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2018-03-07

    PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-β by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.

  17. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    PubMed

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  18. A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon

    PubMed Central

    Lv, Jing; Pan, Yu; Ju, Huijun; Zhou, Jinxin; Cheng, Dengfeng; Shi, Hongcheng; Zhang, Yifan

    2017-01-01

    Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18th and 196th day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo. PMID:28262785

  19. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    PubMed Central

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system. PMID:26913023

  20. Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes.

    PubMed

    Burke, James M; Kincaid, Rodney P; Aloisio, Francesca; Welch, Nicole; Sullivan, Christopher S

    2017-09-29

    Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Influence of platinum nanoparticles orally administered to rats evaluated by systemic gene expression profiling.

    PubMed

    Katao, Kazuo; Honma, Reiko; Kato, Satoko; Watanabe, Shinya; Imai, Jun-ichi

    2011-01-01

    Platinum is recognized as a harmless metal and is widely used in many industrial products. Recent studies have proposed that platinum in the form of nanoparticles has antioxidant properties, suggesting potential uses for platinum nanoparticles as additives in foods and cosmetics, with direct exposure consequences for humans. However, the influence of platinum nanoparticles on humans has not been sufficiently evaluated, thus far. Therefore, to investigate the influence of platinum nanoparticles on a living body, we comprehensively examined the expression profiles of genes obtained from 25 organs and tissues of rats after oral administration of platinum nanoparticles by gavage. Comparative analysis revealed that the expression levels of 18 genes were altered in 12 organs and tissues after the administration (approximately 0.17% of all the genes examined). Of the tissues examined, those of the glandular stomach, which were most directly exposed to the orally administered platinum nanoparticles, showed altered expression levels of genes associated with inflammation. In subcutaneous adipose tissue, the expression levels of genes whose products exhibited ATPase activity were altered. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) analysis confirmed the alteration in the expression levels of these genes in these 2 different tissues. Our findings indicate that orally administered platinum nanoparticles do not have a marked effect on systemic gene expression levels, except on a small number of genes expressed in rat tissues, including peripheral tissues indirectly exposed to the orally administered nanoparticles.

  2. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein.

    PubMed

    Laurila, Minni R L; Salgado, Paula S; Makeyev, Eugene V; Nettelship, Joanne; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H

    2005-01-01

    The RNA-dependent RNA polymerase, QDE-1, is a component of the RNA silencing pathway in Neurospora crassa. The enzymatically active carboxy-terminal fragment QDE-1 DeltaN has been expressed in Saccharomyces cerevisiae in the presence and absence of selenomethionine (SeMet). The level of SeMet incorporation was estimated by mass spectrometry to be approximately 98%. Both native and SeMet proteins were crystallized in space group P2(1) with unit cell parameters a=101.2, b=122.5, c=114.4A, beta=108.9 degrees , and 2 molecules per asymmetric unit. The native and SeMet crystals diffract to 2.3 and 3.2A, respectively, the latter are suitable for MAD structure determination.

  3. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  4. Resistance of Legionella and Acanthamoeba mauritaniensis to heat treatment as determined by relative and quantitative polymerase chain reactions.

    PubMed

    Dobrowsky, Penelope H; Khan, Sehaam; Khan, Wesaal

    2017-10-01

    Legionella and Acanthamoeba spp. persist in harvested rainwater pasteurized at high temperatures (> 72°C) and the interaction mechanisms exhibited between these organisms need to be elucidated. The resistance of two Legionella reference strains (Legionella pneumophila ATCC 33152 and Legionella longbeachae ATCC 33462), three environmental strains [Legionella longbeachae (env.), Legionella norrlandica (env.) and Legionella rowbothamii (env.)] and Acanthamoeba mauritaniensis ATCC 50676 to heat treatment (50-90°C) was determined by monitoring culturability and viability [ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR)]. The expression of metabolic and virulence genes of L. pneumophila ATCC 33152 (lolA, sidF, csrA) and L. longbeachae (env.) (lolA) in co-culture with A. mauritaniensis ATCC 50676 during heat treatment (50-90°C) was monitored using relative qPCR. While the culturability (CFU/mL) and viability (gene copies/mL) of the Legionella strains reduced significantly (p < 0.05) following heat treatment (60-90°C), L. longbeachae (env.) and L. pneumophila ATCC 33152 were culturable following heat treatment at 50-60°C. Metabolically active trophozoites and dormant cysts of A. mauritaniensis ATCC 50676 were detected at 50°C and 60-90°C, respectively. For L. pneumophila ATCC 33152, lolA expression remained constant, sidF expression increased and the expression of csrA decreased during co-culture with A. mauritaniensis ATCC 50676. For L. longbeachae (env.), while lolA was up-regulated at 50-70°C, expression was not detected at 80-90°C and in co-culture. In conclusion, while heat treatment may reduce the number of viable Legionella spp. in monoculture, results indicate that the presence of A. mauritaniensis increases the virulence of L. pneumophila during heat treatment. The virulence of Legionella spp. in co-culture with Acanthamoeba spp. should thus be monitored in water distribution systems where temperature (heat) is utilized for treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Elongin B-mediated epigenetic alteration of viral chromatin correlates with efficient human cytomegalovirus gene expression and replication.

    PubMed

    Hwang, Jiwon; Saffert, Ryan T; Kalejta, Robert F

    2011-01-01

    Elongins B and C are members of complexes that increase the efficiency of transcriptional elongation by RNA polymerase II (RNAPII) and enhance the monoubiquitination of histone H2B, an epigenetic mark of actively transcribed genes. Here we show that, in addition to its role in facilitating transcription of the cellular genome, elongin B also enhances gene expression from the double-stranded DNA genome of human cytomegalovirus (HCMV), a pathogenic herpesvirus. Reducing the level of elongin B by small interfering RNA- or short hairpin RNA-mediated knockdown decreased viral mRNA expression, viral protein accumulation, viral DNA replication, and infectious virion production. Chromatin immunoprecipitation analysis indicated viral genome occupancy of the elongating form of RNAPII, and monoubiquitinated histone H2B was reduced in elongin B-deficient cells. These data suggest that, in addition to the previously documented epigenetic regulation of transcriptional initiation, HCMV also subverts cellular elongin B-mediated epigenetic mechanisms for enhancing transcriptional elongation to enhance viral gene expression and virus replication. The genetic and epigenetic control of transcription initiation at both cellular and viral promoters is well documented. Recently, the epigenetic modification of histone H2B monoubiquitination throughout the bodies of cellular genes has been shown to enhance the elongation of RNA polymerase II-initiated transcripts. Mechanisms that might control the elongation of viral transcripts are less well studied. Here we show that, as with cellular genes, elongin B-mediated monoubiquitination of histone H2B also facilitates the transcriptional elongation of human cytomegalovirus genes. This and perhaps other epigenetic markings of actively transcribed regions may help in identifying viral genes expressed during in vitro latency or during natural infections of humans. Furthermore, this work identifies a novel, tractable model system to further study the regulation of transcriptional elongation in living cells.

  6. Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase ε

    PubMed Central

    Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai

    2015-01-01

    Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708

  7. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development. PMID:25861441

  8. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways

    PubMed Central

    Hsu, Yung-Chien; Lee, Pei-Hsien; Lei, Chen-Chou; Ho, Cheng; Shih, Ya-Hsueh; Lin, Chun-Liang

    2015-01-01

    Aims/Introduction The role of the renal nitric oxide (NO) system in the pathophysiology of diabetic nephropathy constitutes a very challenging and fertile field for future investigation. The purpose of the present study was to investigate whether NO donors can attenuate diabetic renal fibrosis and apoptosis through modulating oxidative-and nitrosative-stress, and Wnt signaling using in vivo diabetic models. Materials and Methods Diabetic rat was induced by a single intraperitoneal injection of streptozotocin. Rats in each group were intraperitoneally given 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (1 U/kg/day) and vehicle for 28 and 56 consecutive days. Expression of the oxidative-and nitrosative-stress, and Wnt signaling components were examined in kidneys from diabetic animals by quantitative reverse transcription polymerase chain reaction, western blot analysis and immunohistochemical staining. Results NO donor treatment significantly reduced the ratio of kidney weight to bodyweight and proteinuria. This treatment also significantly restored the suppressive effect of diabetes on urinary NO2 + NO3 levels. Immunohistochemistry showed that NO donor treatment significantly reduced transforming growth factor (TGF)-β1, fibronectin, cleaved caspase-3 and triphosphate-biotin nick end-labeling expression in the glomeruli of diabetic rats. We found that diabetes promoted 8-hydroxy-2′-deoxyguanosine, and peroxynitrite expression coincided with reduced endothelial NO synthase expression in glomeruli. Interestingly, NO donor treatment completely removed oxidative stress and nitrosative stress, and restored endothelial NO synthase expression in diabetic renal glomeruli. Immunohistomorphometry results showed that NO donor treatment significantly restored suppressed Wnt5a expression and β-catenin immunoreactivities in glomeruli. Based on laser-captured microdissection for quantitative reverse transcription polymerase chain reaction, diabetes significantly increased TGF-β1, and fibronectin expression coincided with depressed Wnt5a expression. NO donor treatment reduced TGF-β1, fibronectin activation, and the suppressing effect of diabetes on Wnt5a and β-catenin expression in renal glomeruli. Conclusions NO donor treatment alleviates extracellular matrix accumulation and apoptosis in diabetic nephropathy in vivo by not only preventing the diabetes-mediated oxidative and nitrostative stress, but also restoring downregulation of endothelial NO synthase expression and Wnt/β-catenin signaling. These findings suggest that modulation of NO is a viable alternative strategy for rescuing diabetic renal injury. PMID:25621130

  9. Characterization of the catalytic center of the Ebola virus L polymerase.

    PubMed

    Schmidt, Marie Luisa; Hoenen, Thomas

    2017-10-01

    Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential aspect of the EBOV life cycle.

  10. Detection of epsilon class switching and IgE synthesis in human B cells.

    PubMed

    Pène, Jérôme; Guilhot, Florence; Cognet, Isabelle; Guglielmi, Paul; Guay-Giroux, Angélique; Bonnefoy, Jean-Yves; Elson, Greg C; Yssel, Hans; Gauchat, Jean-François

    2006-01-01

    We observed that mast cells, as other cells expressing the CD40 ligand CD154, can trigger IgE synthesis in B cells in the presence of interleukin (IL)-4. Numerous complementary techniques can be used to follow the succession of molecular events leading to IgE synthesis. This chapter will illustrate how human B cells (naïve or memory) can be purified, stored, and cultivated in medium that is permissive for IgE synthesis and stimulated with IL-4 or IL-13 and CD40 activation, the latter being induced by soluble CD154, anti-CD40 antibodies, or CD154-expressing cells. All these molecules are expressed by mast cells. The quantification of the epsilon-sterile transcript synthesis by polymerase chain reaction or Northern blot, the epsilon excision circles produced during immunoglobulin heavy chain locus rearrangement by polymerase chain reaction, and the IgE production by enzyme-linked immunosorbent assay will be described.

  11. Validation of Reference Genes in mRNA Expression Analysis Applied to the Study of Asthma.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    The quantitative Polymerase Chain Reaction is the most used technique for the study of gene expression. To correct putative experimental errors of this technique is necessary normalizing the expression results of the gene of interest with the obtained for reference genes. Here, we describe an example of the process to select reference genes. In this particular case, we select reference genes for expression studies in the peripheral blood mononuclear cells of asthmatic patients.

  12. Expression of Functional Influenza Virus RNA Polymerase in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Hwang, Jung-Shan; Yamada, Kazunori; Honda, Ayae; Nakade, Kohji; Ishihama, Akira

    2000-01-01

    Influenza virus RNA polymerase with the subunit composition PB1-PB2-PA is a multifunctional enzyme with the activities of both synthesis and cleavage of RNA and is involved in both transcription and replication of the viral genome. In order to produce large amounts of the functional viral RNA polymerase sufficient for analysis of its structure-function relationships, the cDNAs for RNA segments 1, 2, and 3 of influenza virus A/PR/8, each under independent control of the alcohol oxidase gene promoter, were integrated into the chromosome of the methylotrophic yeast Pichia pastoris. Simultaneous expression of all three P proteins in the yeast P. pastoris was achieved by the addition of methanol. To purify the P protein complexes, a sequence coding for a histidine tag was added to the PB2 protein gene at its N terminus. Starting from the induced P. pastoris cell lysate, we partially purified a 3P complex by Ni2+-agarose affinity column chromatography. The 3P complex showed influenza virus model RNA-directed and ApG-primed RNA synthesis in vitro but was virtually inactive without addition of template or primer. The kinetic properties of model template-directed RNA synthesis and the requirements for template sequence were analyzed using the 3P complex. Furthermore, the 3P complex showed capped RNA-primed RNA synthesis. Thus, we conclude that functional influenza virus RNA polymerase with the catalytic properties of a transcriptase is formed in the methylotrophic yeast P. pastoris. PMID:10756019

  13. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  14. Ethanol-induced changes in Poly (ADP ribose) Polymerase and neuronal developmental gene expression

    PubMed Central

    Gavin, David P.; Kusumo, Handojo; Sharma, Rajiv P.; Guizzetti, Marina

    2016-01-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that elevated PARP enzymatic activity reduced PPARγ promoter binding, and this corresponded to decreased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. PMID:27497606

  15. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression.

    PubMed

    Gavin, David P; Kusumo, Handojo; Sharma, Rajiv P; Guizzetti, Marina

    2016-11-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. Published by Elsevier Ltd.

  16. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice.

    PubMed

    Bineshian, Farahnaz; Yadegari, Mohammad Hossien; Sharifi, Zohre; Akbari Eidgahi, Mohammadreza; Nasr, Reza

    2015-05-01

    Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively). All species isolated by culture methods (100% positivity) were evaluated with PCR using species-specific primers to identify Candida species. Relative expression of Mp65 genes increased significantly after C. albicans injection into the mice (P < 0.05). The results of the current study showed that the PCR method is reproducible for rapid identification of Candida species with specific primers. Mp65 gene expression of C. albicans after injection into the mice was 2.3 folds higher than before injection, with this difference being significant. These results indicated that increase of Mp65 gene expression might be an early stage of infection; however definitive conclusions require further studies.

  17. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  18. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus.

    PubMed

    Liao, Yang-Wen-Ke; Liu, Ya-Ru; Liang, Jia-Yang; Wang, Wen-Ping; Zhou, Jie; Xia, Xiao-Jian; Zhou, Yan-Hong; Yu, Jing-Quan; Shi, Kai

    2015-03-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen attack. The SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense, which is pathogenesis-related protein-independent but involves an RNA-dependent RNA polymerase 1 (RDR1)-mediated RNA silencing mechanism and/or an alternative oxidase (AOX)-associated defense pathway. However, the relationship between these two viral defense-related pathways remains unclear. In this study, Tobacco mosaic virus (TMV) inoculation onto Solanum lycopersicum (tomato) leaves induced a rapid induction of the SlAOX1a transcript level as well as the total and CN-resistant respiration at 0.5 dpi, followed by an increase in SlRDR1 gene expression at 1 dpi in the upper uninoculated leaves. Silencing SlRDR1 using virus-induced gene silencing system significantly reduced SlRDR1 expression and tomato defense against TMV but had no evident effect on SlAOX1a transcription. Conversely, silencing SlAOX1a not only effectively reduced the AOX1a transcript level, but also blocked the TMV-induced SlRDR1 expression and decreased the basal defense against TMV. Furthermore, the application of an exogenous AOX activator on empty vector-silenced control plants greatly induced the accumulation of SlRDR1 and SlAOX1a transcript and reduced TMV viral RNA accumulation, but failed to have such effects on SlRDR1-silenced plants. Moreover, RDR1-overexpressed transgenic Nicotiana benthamiana plants enhanced defense against TMV than the empty vector-transformed plants, but these effects were not affected by the exogenous AOX activator or inhibitor. These results indicate that RDR1 is involved in the AOX-mediated defense pathway against TMV infection and plays a crucial role in enhancing RNA silencing to limit virus systemic spread.

  19. Gene expression analysis of wood decay fungus Fibroporia Radiculosa grown In ACQ-treated wood

    Treesearch

    Ayfer Akgul; Ali Akgul; Juliet D. Diehl Tang

    2018-01-01

    Copper-tolerant brown-rot fungi are able todegrade wood treated with copper or copper-based wood preservatives. This research used quantitative reverse transcriptase polymerase chain reaction to explore what genes of the brown-rot fungus, Fibroporia radiculosa, were expressed when the fungus was overcoming the wood preservatives and decaying the...

  20. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN

    PubMed Central

    Gil-Humanes, Javier; Čegan, Radim; Kono, Thomas J.Y.; Konečná, Eva; Belanto, Joseph J.; Starker, Colby G.

    2017-01-01

    We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare). PMID:28522548

  1. A multi-purpose toolkit to enable advanced genome engineering in plants

    DOE PAGES

    Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier; ...

    2017-05-18

    Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less

  2. A multi-purpose toolkit to enable advanced genome engineering in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier

    Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less

  3. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes.

    PubMed

    Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G; Donigan, Katherine A; McLenigan, Mary P; Yang, William; Saribasak, Huseyin; Huston, Donald E; Lange, Sabine S; Woodgate, Roger; Gearhart, Patricia J

    2016-08-22

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. @2016.

  4. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes

    PubMed Central

    Donigan, Katherine A.; Huston, Donald E.; Lange, Sabine S.

    2016-01-01

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι–compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. PMID:27455952

  5. RNA Pol IV and V in Gene Silencing: Rebel Polymerases Evolving Away From Pol II’s Rules

    PubMed Central

    Zhou, Ming; Law, Julie A.

    2015-01-01

    Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1–3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insight into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin. PMID:26344361

  6. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta.

    PubMed

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    The cardiovascular renin-angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats' aortae, while only AT1R was upregulated in the FRD female rats' aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. © The Author(s) 2016.

  7. Fructose-rich diet induces gender-specific changes in expression of the renin–angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta

    PubMed Central

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    Introduction: The cardiovascular renin–angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Materials and methods: Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. Results: In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats’ aortae, while only AT1R was upregulated in the FRD female rats’ aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. Conclusions: The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. PMID:27121972

  8. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2).

    PubMed Central

    Paget, M S; Kang, J G; Roe, J H; Buttner, M J

    1998-01-01

    We have identified an RNA polymerase sigma factor, sigmaR, that is part of a system that senses and responds to thiol oxidation in the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2). Deletion of the gene (sigR) encoding sigmaR caused sensitivity to the thiol-specific oxidant diamide and to the redox cycling compounds menadione and plumbagin. This correlated with reduced levels of disulfide reductase activity and an inability to induce this activity on exposure to diamide. The trxBA operon, encoding thioredoxin reductase and thioredoxin, was found to be under the direct control of sigmaR. trxBA is transcribed from two promoters, trxBp1 and trxBp2, separated by 5-6 bp. trxBp1 is transiently induced at least 50-fold in response to diamide treatment in a sigR-dependent manner. Purified sigmaR directed transcription from trxBp1 in vitro, indicating that trxBp1 is a target for sigmaR. Transcription of sigR itself initiates at two promoters, sigRp1 and sigRp2, which are separated by 173 bp. The sigRp2 transcript was undetectable in a sigR-null mutant, and purified sigmaR could direct transcription from sigRp2 in vitro, indicating that sigR is positively autoregulated. Transcription from sigRp2 was also transiently induced (70-fold) following treatment with diamide. We propose a model in which sigmaR induces expression of the thioredoxin system in response to cytoplasmic disulfide bond formation. Upon reestablishment of normal thiol levels, sigmaR activity is switched off, resulting in down-regulation of trxBA and sigR. We present evidence that the sigmaR system also functions in the actinomycete pathogen Mycobacterium tuberculosis. PMID:9755177

  9. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2).

    PubMed

    Paget, M S; Kang, J G; Roe, J H; Buttner, M J

    1998-10-01

    We have identified an RNA polymerase sigma factor, sigmaR, that is part of a system that senses and responds to thiol oxidation in the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2). Deletion of the gene (sigR) encoding sigmaR caused sensitivity to the thiol-specific oxidant diamide and to the redox cycling compounds menadione and plumbagin. This correlated with reduced levels of disulfide reductase activity and an inability to induce this activity on exposure to diamide. The trxBA operon, encoding thioredoxin reductase and thioredoxin, was found to be under the direct control of sigmaR. trxBA is transcribed from two promoters, trxBp1 and trxBp2, separated by 5-6 bp. trxBp1 is transiently induced at least 50-fold in response to diamide treatment in a sigR-dependent manner. Purified sigmaR directed transcription from trxBp1 in vitro, indicating that trxBp1 is a target for sigmaR. Transcription of sigR itself initiates at two promoters, sigRp1 and sigRp2, which are separated by 173 bp. The sigRp2 transcript was undetectable in a sigR-null mutant, and purified sigmaR could direct transcription from sigRp2 in vitro, indicating that sigR is positively autoregulated. Transcription from sigRp2 was also transiently induced (70-fold) following treatment with diamide. We propose a model in which sigmaR induces expression of the thioredoxin system in response to cytoplasmic disulfide bond formation. Upon reestablishment of normal thiol levels, sigmaR activity is switched off, resulting in down-regulation of trxBA and sigR. We present evidence that the sigmaR system also functions in the actinomycete pathogen Mycobacterium tuberculosis.

  10. Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model.

    PubMed

    Ma, Limin; Li, Ruohan; Huang, Hao; Yuan, Jinxian; Ou, Shu; Xu, Tao; Yu, Xinyuan; Liu, Xi; Chen, Yangmei

    2017-05-01

    Some studies have suggested that BAFF and BAFFR are highly expressed in the central nervous system (CNS) and participate in inflammatory and immune associated diseases. However, whether BAFF and BAFFR are involved in the pathogenesis of epilepsy remains unknown. This study aimed to investigate the expression of BAFF and BAFFR proteins in the brains of patients with temporal lobe epilepsy (TLE) and in a pilocarpine-induced rat model of TLE to identify possible roles of the BAFF-BAFFR signaling pathway in epileptogenesis. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot, immunohistochemistry, and double-immunofluorescence were performed in this study. The results showed that BAFF and BAFFR expression levels were markedly up-regulated in intractable TLE patients and TLE rats. Moreover, BAFF and BAFFR proteins mainly highly expressed in the membranes and cytoplasms of the dendritic marker MAP2 in the cortex and hippocampus. Therefore, the significant increased in BAFF and BAFFR protein expression in both TLE patients and rats suggest that BAFF and BAFFR may play important roles in regulating the pathogenesis of epilepsy. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Differential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences.

    PubMed

    Sharma, Umender K; Chatterji, Dipankar

    2008-05-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to sigma(70) with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

  12. Differential Mechanisms of Binding of Anti-Sigma Factors Escherichia coli Rsd and Bacteriophage T4 AsiA to E. coli RNA Polymerase Lead to Diverse Physiological Consequences▿

    PubMed Central

    Sharma, Umender K.; Chatterji, Dipankar

    2008-01-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70. PMID:18359804

  13. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    PubMed Central

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John; Neyts, Johan; Sakowicz, Roman; Zhong, Weidong; Tang, Hengli; Schmitz, Uli

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase. PMID:22720059

  14. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus.

    PubMed

    Wu, Yanfang; Zhang, Feifei; Ma, Jianyang; Zhang, Xiaoyan; Wu, Lingling; Qu, Bo; Xia, Shiwei; Chen, Shunle; Tang, Yuanjia; Shen, Nan

    2015-05-21

    Despite growing evidence that large intergenic noncoding RNAs (lincRNAs) can regulate gene expression and widely take part in normal physiological and disease conditions, our knowledge of systemic lupus erythematosus (SLE)-related lincRNAs remains limited. The aim of this study was to detect the levels of four lincRNAs (ENST00000500949: linc0949, ENST00000500597: linc0597, ENST00000501992: linc1992, and ENST00000523995: linc3995) involved in innate immunity in the peripheral blood mononuclear cells (PBMCs) of patients with SLE and correlate these lincRNA levels with disease activity, organ damage, clinical features and medical therapies. PBMCs were obtained from 102 patients with SLE, 54 patients with rheumatoid arthritis (RA) and 76 healthy donors. lincRNA expression levels were measured by real-time quantitative polymerase chain reaction. Disease activity was assessed using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores, and organ damage was evaluated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index. linc0949 and linc0597 were significantly decreased in patients with SLE compared with patients with RA and healthy control subjects. linc0949 was correlated with SLEDAI-2K score (r = -0.329, P = 0.0007), as well as with complement component C3 level (r = 0.348, P = 0.0003). The level of linc0949 was also reduced in patients with SLE who had the presence of cumulative organ damage. In addition, decreasing expression of linc0949 was associated with lupus nephritis. linc0949 expression significantly increased after treatment, whereas neither disease activity nor organ damage correlated with linc0597 expression. Our results provide novel empirical evidence that linc0949 could be a potential biomarker for diagnosis, disease activity and therapeutic response in SLE.

  15. [Regulating human interferon-gamma gene expression in marrow stromal cells in mice by Tet-off system].

    PubMed

    Qin, Xin-Tian; Lu, Yue; Tan, Yin-Duo; Chen, Xiao-Qin; Gen, Qi-Rong

    2008-01-01

    We have constructed plasmid "pTre-IFN-gamma" and proved that the Tet-off system could regulate the expression of human interferon-gamma (IFN-gamma) gene in murine marrow stromal cells in vitro. This study was to investigate the regulatory reversibility of Tet-off system and its effect on the expression of human IFN-gamma gene in murine marrow stromal cells in mice. Plasmids pTet-off and pTre-IFN-gamma were co-transfected into murine marrow stromal cells. The expression of IFN-gamma in marrow stromal cells was detected with ELISA. The marrow stromal cells were transfused into BABL/c naked mice after co-transfection. The expression of IFN-gamma mRNA in the spleen was detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). IFN-gamma protein was detected in the culture solution of marrow stromal cells after co-transfection. The secretion peak appeared within the first 72 h. The protein level of IFN-gamma was significantly lower in 300 ng/ml tetracycline hydrochloride-treated marrow stroma cells than in untreated cells [(67.11+/-22.14) pg/1 x 10(7) cells vs. (319.96+/-29.04) pg/1 x 10(7) cells, P<0.001]; its expression was increased when removed tetracycline hydrochloride (P=0.032). The expression of human IFN-gamma mRNA was detected in the spleen. The mRNA level of IFN-gamma was significantly higher in untreated group than in continuous tetracycline hydrochloride-treated group [(1.5+/-0.7)x10(5) copies . (100 mg)(-1) vs. (6.9+/-5.3)x10(2) copies . (100 mg)(-1), P<0.001]; its expression in the mice received tetracycline hydrochloride for one single time lay between the above two groups with significant difference. In mice, Tet-off system could rapidly, efficiently and reversibly regulate the expression of human IFN-gamma gene in marrow stromal cells in vitro and in vivo.

  16. Understanding the impact of water distribution system conditions on the biodegradation of haloacetic acids and expression of bacterial dehalogenase genes.

    PubMed

    Behbahani, Mohsen; Lin, Boren; Phares, Tamara L; Seo, Youngwoo

    2018-06-05

    The objective of this study is to evaluate the influence of water distribution system conditions (pH, total organic carbon, residual chlorine, and phosphate) on haloacetic acids (HAAs) biodegradation. A series of batch microcosm tests were conducted to determine biodegradation kinetics and collected biomass was used for real time quantitative reverse transcription polymerase chain reaction analyses to monitor how these drinking water distribution system conditions affect the relative expression of bacterial dehalogenase genes. It was observed that tested water distribution system conditions affected HAA biodegradation with different removal efficiencies (0-100%). HAA biodegradation was improved in tested samples with TOC (3 mg/L) and pH 8.5 compared to those of TOC (0 mg/L) and pH 7, respectively. However, slight improvement was observed with the increased PO 4 concentration (3.5 mg/L), and the presence of residual chlorine even at low concentration prohibited biodegradation of HAAs. The observed trend in the relative expression of dehII genes was compatible with the HAA biodegradation trend. Overall relative expression ratio of dehII genes was lower at pH 7, phosphate (0.5 mg/L), and TOC (0 mg/L) in comparison with pH 8.5, phosphate (3.5 mg/L), and TOC (3 mg/L) in the same experimental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish.

    PubMed

    Tu, Hongwei; Fan, Chengji; Chen, Xiaohui; Liu, Jiaxian; Wang, Bin; Huang, Zhibin; Zhang, Yiyue; Meng, Xiaojing; Zou, Fei

    2017-08-01

    The synaptic adhesion protein Neurexin 2a (Nrxn2a) plays a key role in neuronal development and is associated with cognitive functioning and locomotor behavior. Although low-level metal exposure poses a potential risk to the human nervous system, especially during the developmental stages, little is known about the effects of metal exposures on nrxn2a expression during embryonic development. We therefore exposed wild-type zebrafish embryos/larvae to cadmium (CdCl 2 ), manganese (MnCl 2 ), and lead ([CH 3 COO] 2 Pb), to determine their effect on mortality, malformation, and hatching rate. Concentrations of these metals in zebrafish were detected by inductively coupled plasma mass spectrometry analysis. Locomotor activity of zebrafish larvae was analyzed using a video-track tracking system. Expression of nrxn2a was assessed by in situ hybridization and quantitative polymerase chain reaction. The results showed that mortality, malformation, and bioaccumulation increased as the exposure dosages and duration increased. Developmental exposure to these metals significantly reduced larval swim distance and velocity. The nrxn2aa and nrxn2ab genes were expressed in the central nervous system and downregulated by almost all of the 3 metals, especially Pb. These data demonstrate that exposure to metals downregulates nrxn2a in the zebrafish model system, and this is likely linked to concurrent developmental processes. Environ Toxicol Chem 2017;36:2147-2154. © 2017 SETAC. © 2017 SETAC.

  18. Isolation, characterization, and expression of Le-msx, a maternally expressed member of the msx gene family from the glossiphoniid leech, Helobdella.

    PubMed

    Master, V A; Kourakis, M J; Martindale, M Q

    1996-12-01

    The msx gene family is one of the most highly conserved of the nonclustered homeobox-containing genes. We have isolated an msx homolog (Le-msx) from the glossiphoniid leech, Helobdella robusta, and characterized its pattern of expression by whole mount in situ hybridization. In situ expression and reverse transcription polymerase chain reaction (RT-PCR) data results show that Le-msx is a maternal transcript initially uniformly distributed in the cortex of immature oocytes that becomes asymmetrically localized to the polar regions of the uncleaved zygote. This is the earliest reported expression for the msx gene family and the first maternally expressed homeodomain-containing transcription factor reported in annelids. During embryonic development, Le-msx is expressed in all 10 embryonic stem cells and their segmental founder cell descendants. At midembryonic stages, Le-msx is expressed in the expanding germinal plate. Le-msx is confined to the central nervous system and nephridia at late (stage 9) stages and subsequently disappears from nephridia. In addition, we present a phylogenetic hypothesis for the evolution of the msx gene family, including the identification of a putative C. elegans msx homolog and the realignment of the sponge msx homolog to the NK class of homeodomain genes.

  19. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Understanding the role of DNA polymerase λ gene in different growth and developmental stages of Oryza sativa L. indica rice cultivars.

    PubMed

    Sihi, Sayantani; Maiti, Soumitra; Bakshi, Sankar; Nayak, Arup; Chaudhuri, Shubho; Sengupta, Dibyendu Narayan

    2017-11-01

    DNA polymerase λ (Pol λ) is the only member of DNA polymerase family X present in plants. The enzyme is ddNTP sensitive as it contains the conserved C-terminal Pol β domain. The 1.1 kb partial coding sequence isolated spanned the whole 3' regions of the gene containing functionally important domains of the Pol λ gene. Comparative in silico studies from both indica and japonica cultivars involving homology modelling showed that the model for the partial Pol λ gene was stable and acceptable. The alignment of both the protein models showed a RMS value of 0.783. Apart from this, expression of Pol λ and its relative activity is studied during different development stages of three different indica rice cultivars (IR29, Nonabokra and N22). Enhanced accumulation and higher activity of Pol λ during the early seedling stage was detected. Higher expression and activity were observed in the anthers, which was probably necessary for DNA repair during microspore formation. However, during the maturation stage of seed development and plant growth, expression and the activity of Pol λ decreased due to slow metabolic activity and a reduced rate of cell division respectively. Furthermore, the expression and activity of Pol λ were found to be higher in IR29 in comparison to Nonabokra and N22. IR29 is a rice cultivar susceptible to environmental stresses and hence it encounters higher DNA damages. The enhanced presence and activity of the Pol λ enzyme in IR29 with respect to the other two cultivars, which are more tolerant to the environmental stresses during various developmental stages, is therefore explainable. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerase delta1 (POLD1).

    PubMed

    Xu, Yifang; Qin, Qinghong; Chen, Rushi; Wei, Changyuan; Mo, Qinguo

    2018-07-20

    Sirtuin 1 (SIRT1), class III histone deacetylase, plays an important character in cell proliferation, cell cycle, apoptosis, energy metabolism and DNA repair. In recent years, researchers have attached increasing attention on the role of SIRT1 in tumorigenesis, development and drug resistance. The effect of SIRT1 on breast cancer is still controversial and its exact role remains to be elucidated. In the present study, we investigated the significant role of SIRT1 in breast cancer by exploring the effect of SIRT1 on DNA polymerase delta1 (POLD1), the gene coding for DNA polymerase δ catalytic subunit p125. Immunohistochemistry showed that the protein expression level of SIRT1 was higher in breast cancer tissues relative to adjacent normal tissues. Knockdown of SIRT1 by shRNA decreased the proliferation, migration, and invasion of human breast cancer cell line MCF-7, while the overexpression of SIRT1 promoted the proliferation, migration, and invasion of MCF-7 cells. Clinically, the immunohistochemistry results revealed that the expression of SIRT1 was positively correlated with p125. Further analysis demonstrated that silencing of SIRT1 increased the expression of p53, while the expression level of POLD1/p125 decreased, and the result by overexpressing SIRT1 was opposite. Collectively, these data suggest that SIRT1 is an oncogenic factor in breast cancer cells and can be involved in the progression of breast cancer by inhibiting p53 and activating POLD1. Our finding provides new insights into the mechanisms of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Mediator of RNA polymerase II transcription subunit 19 promotes osteosarcoma growth and metastasis and associates with prognosis.

    PubMed

    Yu, Wenxi; Zhang, Zhichang; Min, Daliu; Yang, Qingcheng; Du, Xuefei; Tang, Lina; Lin, Feng; Sun, Yuanjue; Zhao, Hui; Zheng, Shuier; He, Aina; Li, Hongtao; Yao, Yang; Shen, Zan

    2014-04-01

    Osteosarcoma (OS) is the most common primary malignant tumour of bone. Nearly 30-40% of OS patients have a poor prognosis despite multimodal treatments. Because the carcinogenesis of OS remains unclear, the identification of new oncogenes that control the tumourigenesis and progression of OS is crucial for developing new therapies. Here, we found that the expression of Mediator of RNA polymerase II transcription subunit 19 (Med19) was increased in OS samples from patients compared to normal bone tissues. Cyclin D1 and cyclin B1 are upregulated in Med19 positive OS tissues. Importantly, among 97 OS patients of Enneking stage IIB or IIIB, Med19 expression was correlated with metastasis (P<0.05) and poor prognosis (P<0.01). Med19 knockdown significantly induced growth inhibition, reduced colony-forming ability and suppressed migration in the OS cell lines Saos-2 and U2OS, along with the downregulated expression of cyclin D1 and cyclin B1. Med19 knockdown also induced apoptosis in Saos-2 cells via induction of caspase-3 and poly ADP-ribose polymerase (PARP). In addition, Med19 knockdown significantly suppressed tumour growth in an OS xenograft nude mouse model via suppression of cyclin D1 and cyclin B1. Simultaneously, Med19 downregulation decreased the expression of Ki67 and proliferating cell nuclear antigen (PCNA) in tumour samples from OS xenograft nude mice. Med19 depletion remarkably reduced tumour metastasis in a model of OS metastatic spreading. Taken together, our data suggest that Med19 acts as an oncogene in OS via a possible cyclin D1/cyclin B1 modulation pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. DNA polymerase θ contributes to the generation of C/G mutations during somatic hypermutation of Ig genes

    PubMed Central

    Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang

    2005-01-01

    Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387

  4. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III

    PubMed Central

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3′ end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells. PMID:25764216

  5. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss).

    PubMed

    Downs, Anna G; Scholles, Katie R; Hollis, David M

    2016-12-01

    Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca 2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. RNA polymerase II conserved protein domains as platforms for protein-protein interactions

    PubMed Central

    García-López, M Carmen

    2011-01-01

    RNA polymerase II establishes many protein-protein interactions with transcriptional regulators to coordinate gene expression, but little is known about protein domains involved in the contact with them. We use a new approach to look for conserved regions of the RNA pol II of S. cerevisiae located at the surface of the structure of the complex, hypothesizing that they might be involved in the interaction with transcriptional regulators. We defined five different conserved domains and demonstrate that all of them make contact with transcriptional regulators. PMID:21922063

  8. Artificial dental pulp exposure injury up-regulates antigen-presenting cell-related molecules in rat central nervous system.

    PubMed

    Kaneko, Tomoatsu; Kaneko, Mitsuhiro; Chokechanachaisakul, Uraiwan; Kawamura, Jun; Kaneko, Reika; Sunakawa, Mitsuhiro; Okiji, Takashi; Suda, Hideaki

    2010-03-01

    Bacterial infection and resulting inflammation of the dental pulp might not only trigger neuroimmune interactions in this tissue but also sensitize the central nervous system (CNS) such as the thalamus via nociceptive neurons. Thus, immunopathologic changes in the rat thalamus that take place after pulp inflammation were investigated. Pulp exposure was made in mandibular right first molars of 5-week-old Wistar rats. After 24 hours, the thalamus was retrieved and subjected to either immunohistochemistry for class II major histocompatibility complex (MHC) molecules and glial fibrillary acidic protein (GFAP) or mRNA expression analysis of antigen-presenting cell-related molecules and N-methyl-D-aspartate receptor 2D subunit (NR2D) by means of reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. At 24 hours after pulp exposure, the density of class II MHC molecule-expressing and GFAP-expressing cells was increased in the contralateral thalamus. Gene expression analysis revealed the up-regulation of class II MHC molecules, CD80, CD83, CD86, and NR2D in the contralateral thalamus, as compared with the ipsilateral thalamus. These results suggest the signal of pulp inflammation induces neuronal activation in the CNS. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription

    PubMed Central

    Jennings, Barbara H.

    2014-01-01

    Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. PMID:25165826

  10. The molecular genetic basis of mitochondrial malfunction in bladder tissue following outlet obstruction.

    PubMed

    Levin, Robert M; Hudson, Alan P

    2004-08-01

    Bladder dysfunction following partial outlet obstruction is a frequent consequence of benign prostatic hyperplasia and an increasingly common problem given the aging of the general population. Recent studies from this and other groups have begun to elucidate the molecular bases for the well described physiological malfunctions that characterize this clinical entity. We summarized and synthesized that information. Using modern methods of molecular genetics, including real-time polymerase chain reaction, real-time reverse transcriptase-polymerase chain reaction and others, as well as traditional experimental techniques such as electron microscopy we and others examined the transcriptional profile, morphology, etc of bladder smooth muscle mitochondria in experimental models of outlet obstruction. Data from many studies have demonstrated that aberrant gene expression in the mitochondrial and mitochondria related nuclear genetic systems underlies the loss of compliance and other attributes of bladder dysfunction following outlet obstruction. Such aberrant transcriptional characteristics engender loss of function in the electron transport and oxidative phosphorylation systems. Morphological studies of mitochondria in the animal model systems support this conclusion. In large part the loss of function in bladder smooth muscle following outlet obstruction results from the attenuation of mitochondrial energy production. In this article we reviewed and synthesized all available experimental observations relevant to this problem and we suggest future lines of inquiry that should prove fruitful in developing new strategies to treat the condition.

  11. The value of molecular expression of KIT and KIT ligand analysed using real-time polymerase chain reaction and immunohistochemistry as a prognostic indicator for canine cutaneous mast cell tumours.

    PubMed

    Costa Casagrande, T A; de Oliveira Barros, L M; Fukumasu, H; Cogliati, B; Chaible, L M; Dagli, M L Z; Matera, J M

    2015-03-01

    This study investigated the correlation between KIT gene expression determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) and the rate of tumour recurrence and tumour-related deaths in dogs affected with mast cell tumour (MCT). Kaplan-Meier curves were constructed to compare tumour recurrence and tumour-related death between patients. The log-rank test was used to check for significant differences between curves. KIT-I, KIT-II and KIT-III staining patterns were observed in 9 (11.11%), 50 (61.73%) and 22 (27.16%) tumours, respectively. Tumour recurrence rates and tumour-related deaths were not associated with KIT staining patterns (P = 0278, P > 0.05), KIT (P = 0.289, P > 0.05) or KIT ligand (P = 0.106, P > 0.05) gene expression. Despite the lack of association between KIT staining pattern and patient survival time, the results suggest a correlation between aberrant KIT localization and increased proliferative activity of MCTs. RT-PCR seems to be a sensible method for quantitative detection of KIT gene expression in canine MCT, although expressions levels are not correlated with prognosis. © 2013 Blackwell Publishing Ltd.

  12. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  13. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  14. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    PubMed

    Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E

    2014-01-01

    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  15. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    PubMed

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).

  16. Expression patterns of micro-RNAs 146a, 181a, and 155 in subacute sclerosing panencephalitis.

    PubMed

    Yiş, Uluç; Tüfekçi, Uğur Kemal; Genç, Şermin; Çarman, Kürşat Bora; Bayram, Erhan; Topçu, Yasemin; Kurul, Semra Hız

    2015-01-01

    Subacute sclerosing panencephalitis is caused by persistent brain infection of mutated virus, showing inflammation, neurodegeneration, and demyelination. Although many factors are emphasized in the pathogenesis of subacute sclerosing panencephalitis, the exact mechanism of neurodegeneration remains unknown. Micro-RNAs are small, noncoding RNAs that regulate gene expression at the posttranscriptional levels. Micro-RNAs are essential for normal immune system development; besides they are also implicated in the pathogenesis of many chronic inflammatory disorders. The aim of this study is to investigate the expression patterns of micro-RNAs 146a, 181a, and 155 in peripheral blood mononuclear cells of patients with subacute sclerosing panencephalitis. We enrolled 39 patients with subacute sclerosing panencephalitis and 41 healthy controls. Quantitative analysis of micro-RNAs 146a, 181a, and 155 were performed using specific stem-loop primers followed by real-time polymerase chain reaction. All of 3 micro-RNAs were upregulated in subacute sclerosing panencephalitis patients. In addition, the level of micro-RNA 155 expression was higher in stage 3 patients. But, micro-RNA 146a and 181a expression levels showed no association or correlation with clinically relevant data. Alteration of peripheral blood mononuclear cell micro-RNAs in subacute sclerosing panencephalitis may shed new light on the pathogenesis of disease and may contribute to the aberrant systemic rise in mRNA levels in subacute sclerosing panencephalitis. © The Author(s) 2014.

  17. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  18. Inducible expression of A Disintegrin and Metalloproteinase 8 in chronic periodontitis and gingival epithelial cells.

    PubMed

    Aung, W P P; Chotjumlong, P; Pata, S; Montreekachon, P; Supanchart, C; Khongkhunthian, S; Sastraruji, T; Krisanaprakornkit, S

    2017-06-01

    The expression of A Disintegrin and Metalloproteinase 8 (ADAM8) is associated with several inflammatory diseases. Elevated ADAM8 levels have been shown in gingival crevicular fluid of patients with chronic periodontitis. The objective of this study was to investigate ADAM8 expression in chronic periodontitis tissues compared with that in normal tissues. ADAM8 expression and its inductive mechanism were examined in human gingival epithelial cells (HGECs) and human gingival fibroblasts. Total RNA and protein were extracted from gingival biopsies of 33 patients with chronic periodontitis and those of 23 healthy volunteers. ADAM8 mRNA and protein expression was analyzed by real-time polymerase chain reaction, immunoblotting and immunohistochemistry. ADAM8 expression in control and stimulated cells in the presence or absence of specific inhibitors for mitogen-activated protein kinase pathways was assayed by real-time polymerase chain reaction, immunoblotting, flow cytometry and immunofluorescence. ADAM8 mRNA and protein expression in chronic periodontitis tissues was significantly greater than that in normal tissues (p < 0.01). Significantly increased ADAM8 expression was detected in the gingival epithelium of chronic periodontitis tissues (p < 0.001). ADAM8 mRNA expression in HGECs, but not in human gingival fibroblasts, was significantly induced by stimulation with Fusobacterium nucleatum (p < 0.05), partially via the p44/42 mitogen-activated protein kinase pathway. ADAM8 expression in the cell lysates and on the surface of HGECs was induced by stimulation with F. nucleatum. ADAM8 expression is increased in inflamed chronic periodontitis tissues and localized within gingival epithelium, consistent with an upregulation of ADAM8 expression in F. nucleatum-stimulated HGECs, suggesting a possible role of ADAM8 in innate immunity of periodontal tissue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Short-term application of dexamethasone on stem cells derived from human gingiva reduces the expression of RUNX2 and β-catenin.

    PubMed

    Kim, Bo-Bae; Kim, Minji; Park, Yun-Hee; Ko, Youngkyung; Park, Jun-Beom

    2017-06-01

    Objective Next-generation sequencing was performed to evaluate the effects of short-term application of dexamethasone on human gingiva-derived mesenchymal stem cells. Methods Human gingiva-derived stem cells were treated with a final concentration of 10 -7  M dexamethasone and the same concentration of vehicle control. This was followed by mRNA sequencing and data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and western blot analysis of RUNX2 and β-catenin. Results In total, 26,364 mRNAs were differentially expressed. Comparison of the results of dexamethasone versus control at 2 hours revealed that 7 mRNAs were upregulated and 25 mRNAs were downregulated. The application of dexamethasone reduced the expression of RUNX2 and β-catenin in human gingiva-derived mesenchymal stem cells. Conclusion The effects of dexamethasone on stem cells were evaluated with mRNA sequencing, and validation of the expression was performed with qualitative real-time polymerase chain reaction and western blot analysis. The results of this study can provide new insights into the role of mRNA sequencing in maxillofacial areas.

  20. Star-PAP, a poly(A) polymerase, functions as a tumor suppressor in an orthotopic human breast cancer model

    PubMed Central

    Yu, C; Gong, Y; Zhou, H; Wang, M; Kong, L; Liu, J; An, T; Zhu, H; Li, Y

    2017-01-01

    Star-PAP is a noncanonical poly(A) polymerase and required for the expression of a select set of mRNAs. However, the pathological role of Star-PAP in cancer largely remains unknown. In this study, we observed decreased expression of Star-PAP in breast cancer cell lines and tissues. Ectopic Star-PAP expression inhibited proliferation as well as colony-forming ability of breast cancer cells. In breast cancer patients, high levels of Star-PAP correlated with an improved prognosis. Moreover, by regulating the expression of BIK (BCL2-interacting killer), Star-PAP induced apoptosis of breast cancer cells through the mitochondrial pathway. The growth of breast cancer xenografts in NOD/SCID mice was also inhibited by the doxycycline-induced Star-PAP overexpression. Furthermore, Star-PAP sensitized breast cancer cells to chemotherapy drugs both in vitro and in vivo. In mammary epithelial cells, Star-PAP knockdown partially transformed these cells and induced them to undergo epithelial–mesenchymal transition (EMT). These findings suggested that Star-PAP possesses tumor-suppressing activity and can be a valuable target for developing new cancer therapeutic strategies. PMID:28151486

  1. Expression of Fra-1 in human hepatocellular carcinoma and its prognostic significance.

    PubMed

    Gao, Xiao-Qiang; Ge, Yong-Sheng; Shu, Qing-Hua; Ma, Hua-Xing

    2017-06-01

    This study aimed to explore the clinical significance and prognostic value of Fra-1 in hepatocellular carcinoma patients after curative resection. Fra-1 expression was investigated using a combination of techniques: immunohistochemistry for 66 samples of hepatocellular carcinoma and quantitative real-time polymerase chain reaction and western blotting assays for 19 matched hepatocellular carcinoma specimens. Fra-1 was present in 38 of 66 (57.6%) tumor tissues, with intense staining in the nuclei. There was also positive staining in 14 of 66 (21.2%) adjacent peritumoral tissues, with weak staining in the cytoplasm. Quantitative real-time polymerase chain reaction and western blotting assays confirmed higher expression of Fra-1 messenger RNA and Fra-1 protein in tumor tissues than adjacent non-tumor tissues for 19 hepatocellular carcinoma samples (p < 0.001). Positive expression of Fra-1 was significantly related to vascular invasion and serum alpha-fetoprotein. Kaplan-Meier survival analysis found that overexpressed Fra-1 was correlated with poor overall survival and disease-free survival. Multivariate analysis identified Fra-1 as an independent prognostic factor. Fra-1 may be involved in the progress of hepatocellular carcinoma and could be a promising molecular candidate in the diagnosis and treatment of hepatocellular carcinoma.

  2. Careful accounting of extrinsic noise in protein expression reveals correlations among its sources

    NASA Astrophysics Data System (ADS)

    Cole, John A.; Luthey-Schulten, Zaida

    2017-06-01

    In order to grow and replicate, living cells must express a diverse array of proteins, but the process by which proteins are made includes a great deal of inherent randomness. Understanding this randomness—whether it arises from the discrete stochastic nature of chemical reactivity ("intrinsic" noise), or from cell-to-cell variability in the concentrations of molecules involved in gene expression, or from the timings of important cell-cycle events like DNA replication and cell division ("extrinsic" noise)—remains a challenge. In this article we analyze a model of gene expression that accounts for several extrinsic sources of noise, including those associated with chromosomal replication, cell division, and variability in the numbers of RNA polymerase, ribonuclease E, and ribosomes. We then attempt to fit our model to a large proteomics and transcriptomics data set and find that only through the introduction of a few key correlations among the extrinsic noise sources can we accurately recapitulate the experimental data. These include significant correlations between the rate of mRNA degradation (mediated by ribonuclease E) and the rates of both transcription (RNA polymerase) and translation (ribosomes) and, strikingly, an anticorrelation between the transcription and the translation rates themselves.

  3. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit.

    PubMed

    Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he

    2015-10-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.

  4. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    PubMed

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Toxoplasma Gondii Infection of Chicken Embryos Causes Retinal Changes and Modulates HSP90B1 Gene Expression: A Promising Ocular Toxoplasmosis Model.

    PubMed

    Nasaré, Alex M; Tedesco, Roberto C; Cristovam, Priscila C; Cenedese, Marcos A; Galisteo, Andrés J; Andrade, Heitor F; Gomes, José Álvaro P; Guimarães, Érik V; Barbosa, Helene S; Alonso, Luis G

    2015-12-01

    HSP90B1 is a gene that codifies heat shock protein 108 (HSP108) that belongs to a group of proteins induced under stress situation, and it has close relation with the nervous system, especially in the retina. Toxoplasma gondii causes ocular toxoplasmosis that has been associated with a late manifestation of the congenital toxoplasmosis although experimental models show that morphological alterations are already present during embryological development. Here, we used 18 eyes of Gallus domesticus embryos in 7th and 20th embryonic days to establish a model of congenital ocular toxoplasmosis, experimentally infected in its fifth day correlating with HSP90B1 gene expression. Embryos' eyes were histologically evaluated, and gene expression was performed by real-time polymerase chain reaction (PCR). Our data showed parasite present in the choroid, unusual migration of retinal pigment epithelium, and chorioretinal scars, and a tendency to a lower expression of the HSP90B1 gene upon experimental infection. This is a promising model to better understand T. gondii etiopathogeny.

  6. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat.

    PubMed

    Han, Wenjing; Li, Xiaoyan; Wang, Lele; Wang, Honghao; Yang, Kun; Wang, Zhixin; Wang, Ruijun; Su, Rui; Liu, Zhihong; Zhao, Yanhong; Zhang, Yanjun; Li, Jinquan

    2018-03-01

    This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. We found that FoxN1 , FoxE1 , and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1 , FoxE1 , and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

  7. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    PubMed

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  8. A recombinant Toscana virus nucleoprotein in a diagnostic immunoblot test system.

    PubMed

    Schwarz, T F; Gilch, S; Schätzl, H M

    1998-01-01

    Sandfly fever, a vector-borne disease endemic in the Mediterranean region, is caused by Toscana virus (TOS). The disease is increasingly important as a travel-related infection. Serological diagnosis is currently dependent on viral antigens derived from TOS-infected cell cultures. In this study, we report the cloning and expression of the TOS nucleoprotein (N) in Escherichia coli and evaluation of the recombinant (r) TOS N protein as an antigen for immunoblot assays. The TOS N gene was amplified by reverse-transcriptase polymerase chain reaction and cloned into the bacterial expression vector pTrcHis-A. Sera with known TOS antibody status were used to evaluate the immunoblot assay. The expressed rTOS N protein was purified and used as antigen for immunoblots. By recombinant immunoblot, the TOS antibody status (IgM and/or IgG) of the test panel was correctly identified. No cross-reactivity was detected. The rTOS N protein is useful as an antigen for immunoblot assays, and will enable more laboratories to perform TOS antibody diagnosis.

  9. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    PubMed

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  10. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao

    2015-01-01

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433

  11. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  12. Promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, S.L.; Ryan, K.; Sollner-Webb, B.

    1989-02-01

    We have examined the mechanism by which transcriptional initiation at the mouse rDNA promoter is augmented by the RNA polymerase I terminator element that resides just upstream of it. Using templates in which terminator elements are instead positioned at the opposite side of the plasmid rather than proximal to the promoter, or conditions where transcription is terminated elsewhere in the plasmid by UV-induced lesions, we show that the terminator's stimulatory effect is not position dependent. Mouse terminator elements therefore do not stimulate via the previously postulated 'read-through enhancement' model in which terminated polymerases are handed off to an adjacent promotermore » in a concerted reaction. The position independence and orientation dependence of the terminator also makes it unlikely that the terminator functions as a promoter element or as an enhancer. Instead, terminators serve to augment initiation by preventing polymerases from reading completely around the plasmid and through the promoter from upstream, an event which we show interferes with subsequent rounds of initiation. Notably, this transcriptional interference arises because polymerase passage across a promoter disrupts the otherwise stable transcription complex, specifically releasing the bound transcription factor D. These liberated D molecules can then bind to other templates and activate their expression. The rDNA transcriptional interference is not due to a steric impediment to the binding of new polymerase molecules, and it does not similarly liberate the initiation-competent polymerase (factor C). These studies have also convincingly demonstrated that multiple rounds of transcription are obtained from rDNA template molecules in vitro.« less

  13. Poly(ADP-ribose) polymerase-independent potentiation of nitrosourea cytotoxicity by 3-aminobenzamide in human malignant glioma cells.

    PubMed

    Winter, S; Weller, M

    2000-06-16

    Poly(ADP-ribose) polymerase is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents and is thought to be involved in DNA repair. Here, we examined the effects of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, on the chemosensitivity of human malignant glioma cells. 3-Aminobenzamide selectively potentiated the cytotoxicity of the nitrosoureas, nimustine, carmustine and lomustine in 10 of 12 human malignant glioma cell lines. In contrast, 3-aminobenzamide did not modulate the cytotoxic effects of doxorubicine, teniposide, vincristine, camptothecin or cytarabine. The nitrosoureas did not induce poly(ADP-ribose) polymerase activity in the glioma cells. Ectopic expression of truncated poly(ADP-ribose) polymerase containing the poly(ADP-ribose) polymerase DNA-binding domain, which acts as a dominant-negative mutant, in LN-18 or LN-229 cells did not alter the 3-aminobenzamide effect on nitrosourea-mediated cytotoxicity. Thus, 3-aminobenzamide may target another nicotinamide adenine dinucleotide (NAD)-requiring enzyme, but not poly(ADP-ribose) polymerase, when enhancing nitrosourea cytotoxicity in human malignant glioma cells. Carmustine cytotoxicity was associated with a G2/M arrest. Coexposure to carmustine and 3-aminobenzamide overcame this G2/M arrest in T98G cells, which are sensitized to carmustine by 3-aminobenzamide, but not in U251MG cells, which are refractory to 3-aminobenzamide-mediated sensitization to carmustine. Thus, 3-aminobenzamide-mediated sensitization to carmustine cytotoxicity may result from interference with the stable G2/M arrest response to carmustine in human glioma cells.

  14. Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the ς70 Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa

    PubMed Central

    Dove, Simon L.; Hochschild, Ann

    2001-01-01

    A number of transcriptional regulators mediate their effects through direct contact with the ς70 subunit of Escherichia coli RNA polymerase (RNAP). In particular, several regulators have been shown to contact a C-terminal portion of ς70 that harbors conserved region 4. This region of ς contains a putative helix-turn-helix DNA-binding motif that contacts the −35 element of ς70-dependent promoters directly. Here we report the use of a recently developed bacterial two-hybrid system to study the interaction between the putative anti-ς factor Rsd and the ς70 subunit of E. coli RNAP. Using this system, we found that Rsd can interact with an 86-amino-acid C-terminal fragment of ς70 and also that amino acid substitution R596H, within region 4 of ς70, weakens this interaction. We demonstrated the specificity of this effect by showing that substitution R596H does not weaken the interaction between ς and two other regulators shown previously to contact region 4 of ς70. We also demonstrated that AlgQ, a homolog of Rsd that positively regulates virulence gene expression in Pseudomonas aeruginosa, can contact the C-terminal region of the ς70 subunit of RNAP from this organism. We found that amino acid substitution R600H in ς70 from P. aeruginosa, corresponding to the R596H substitution in E. coli ς70, specifically weakens the interaction between AlgQ and ς70. Taken together, our findings suggest that Rsd and AlgQ contact similar surfaces of RNAP present in region 4 of ς70 and probably regulate gene expression through this contact. PMID:11591686

  15. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa.

    PubMed

    Dove, S L; Hochschild, A

    2001-11-01

    A number of transcriptional regulators mediate their effects through direct contact with the sigma(70) subunit of Escherichia coli RNA polymerase (RNAP). In particular, several regulators have been shown to contact a C-terminal portion of sigma(70) that harbors conserved region 4. This region of sigma contains a putative helix-turn-helix DNA-binding motif that contacts the -35 element of sigma(70)-dependent promoters directly. Here we report the use of a recently developed bacterial two-hybrid system to study the interaction between the putative anti-sigma factor Rsd and the sigma(70) subunit of E. coli RNAP. Using this system, we found that Rsd can interact with an 86-amino-acid C-terminal fragment of sigma(70) and also that amino acid substitution R596H, within region 4 of sigma(70), weakens this interaction. We demonstrated the specificity of this effect by showing that substitution R596H does not weaken the interaction between sigma and two other regulators shown previously to contact region 4 of sigma(70). We also demonstrated that AlgQ, a homolog of Rsd that positively regulates virulence gene expression in Pseudomonas aeruginosa, can contact the C-terminal region of the sigma(70) subunit of RNAP from this organism. We found that amino acid substitution R600H in sigma(70) from P. aeruginosa, corresponding to the R596H substitution in E. coli sigma(70), specifically weakens the interaction between AlgQ and sigma(70). Taken together, our findings suggest that Rsd and AlgQ contact similar surfaces of RNAP present in region 4 of sigma(70) and probably regulate gene expression through this contact.

  16. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice.

    PubMed Central

    Thorey, I S; Ceceña, G; Reynolds, W; Oshima, R G

    1993-01-01

    The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene. Images PMID:7692231

  17. Detection of canine cytokine gene expression by reverse transcription-polymerase chain reaction.

    PubMed

    Pinelli, E; van der Kaaij, S Y; Slappendel, R; Fragio, C; Ruitenberg, E J; Bernadina, W; Rutten, V P

    1999-08-02

    Further characterization of the canine immune system will greatly benefit from the availability of tools to detect canine cytokines. Our interest concerns the study on the role of cytokines in canine visceral leishmaniasis. For this purpose, we have designed specific primers using previously published sequences for the detection of canine IL-2, IFN-gamma and IL10 mRNA by reverse transcription-polymerase chain reaction (RT-PCR). For IL-4, we have cloned and sequenced this cytokine gene, and developed canine-specific primers. To control for sample-to-sample variation in the quantity of mRNA and variation in the RT and PCR reactions, the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a housekeeping gene, were determined in parallel. Primers to amplify G3PDH were designed from consensus sequences obtained from the Genbank database. The mRNA levels of the cytokines mentioned here were detected from ConA-stimulated peripheral mononuclear cells derived from Leishmania-infected dogs. A different pattern of cytokine production among infected animals was found.

  18. Quantification of Wilms' tumor 1 mRNA by digital polymerase chain reaction.

    PubMed

    Koizumi, Yuki; Furuya, Daisuke; Endo, Teruo; Asanuma, Kouichi; Yanagihara, Nozomi; Takahashi, Satoshi

    2018-02-01

    Wilms' tumor 1 (WT1) is overexpressed in various hematopoietic tumors and widely used as a marker of minimal residual disease. WT1 mRNA has been analyzed using quantitative real-time polymerase chain reaction (real-time PCR). In the present study, we analyzed 40 peripheral blood and bone marrow samples obtained from cases of acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome at Sapporo Medical University Hospital from April 2012 to January 2015. We performed quantification of WT1 was performed using QuantStudio 3D Digital PCR System (Thermo Fisher Scientific‎) and compared the results between digital PCR and real-time PCR technology. The correlation between digital PCR and real-time PCR was very strong (R = 0.99), and the detection limits of the two methods were equivalent. Digital PCR was able to accurately detect lower WT levels compared with real-time PCR. Digital PCR technology can thus be utilized to predict WT1/ABL1 expression level accurately and should thus be useful for diagnosis or the evaluation of drug efficiency in patients with leukemia.

  19. Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling.

    PubMed

    Imaoka, Susumu; Mori, Tomohiro; Kinoshita, Tsutomu

    2007-02-01

    Bisphenol A (BpA) is widely used in industry and dentistry. Its effects on the embryonic development of Xenopus laevis were investigated. Xenopus embryos at stage 10.5 were treated with BpA. Developmental abnormalities were observed at stage 35; malformation of the head region including eyes and scoliosis. The expression of several markers of embryonic development was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The pan-neural marker SOX-2, the neural stem cell marker nrp-1, the mesodermal marker MyoD, and the endodermal marker sox17alpha, were used. Although the expression of marker genes was not changed by treatment with BpA, that of Pax-6, a key regulator of the morphogenesis of the eyes, was decreased by BpA. Pax-6 is a downstream factor of Notch signaling. So, the expression of a typical Notch-dependent factor, ESR-1, was investigated in the presence of BpA. The expression of ESR-1 was efficiently suppressed by BpA. In whole mount in situ hybridization (WISH), Pax-6 was expressed in the central nervous system and eyes. The expression was lost completely on treatment with BpA. The expression of ESR-1 in the central nervous system and eyes also disappeared with BpA treatment. Injection of the intracellular domain of Notch efficiently recovered ESR-1 expression in the presence of BpA although injection of a ligand for notch, Delta, did not. These results suggest that BpA decreased the expression of ESR-1 by disrupting the Notch signal.

  20. An In Vitro RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity.

    PubMed

    Morin, Benjamin; Liang, Bo; Gardner, Erica; Ross, Robin A; Whelan, Sean P J

    2017-01-01

    We report an in vitro RNA synthesis assay for the RNA-dependent RNA polymerase (RdRP) of rabies virus (RABV). We expressed RABV large polymerase protein (L) in insect cells from a recombinant baculovirus vector and the phosphoprotein cofactor (P) in Escherichia coli and purified the resulting proteins by affinity and size exclusion chromatography. Using chemically synthesized short RNA corresponding to the first 19 nucleotides (nt) of the rabies virus genome, we demonstrate that L alone initiates synthesis on naked RNA and that P serves to enhance the initiation and processivity of the RdRP. The L-P complex lacks full processivity, which we interpret to reflect the lack of the viral nucleocapsid protein (N) on the template. Using this assay, we define the requirements in P for stimulation of RdRP activity as residues 11 to 50 of P and formally demonstrate that ribavirin triphosphate (RTP) inhibits the RdRP. By comparing the properties of RABV RdRP with those of the related rhabdovirus, vesicular stomatitis virus (VSV), we demonstrate that both polymerases can copy the heterologous promoter sequence. The requirements for engagement of the N-RNA template of VSV by its polymerase are provided by the C-terminal domain (CTD) of P. A chimeric RABV P protein in which the oligomerization domain (OD) and the CTD were replaced by those of VSV P stimulated RABV RdRP activity on naked RNA but was insufficient to permit initiation on the VSV N-RNA template. This result implies that interactions between L and the template N are also required for initiation of RNA synthesis, extending our knowledge of ribonucleoprotein interactions that are critical for gene expression. The current understanding of the structural and functional significance of the components of the rabies virus replication machinery is incomplete. Although structures are available for the nucleocapsid protein in complex with RNA, and also for portions of P, information on both the structure and function of the L protein is lacking. This study reports the expression and purification of the full-length L protein of RABV and the characterization of its RdRP activity in vitro The study provides a new assay that has utility for screening inhibitors and understanding their mechanisms of action, as well as defining new interactions that are required for RdRP activity. Copyright © 2016 American Society for Microbiology.

  1. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    PubMed

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  2. Structural and mechanistic studies of polymerase η bypass of phenanthriplatin DNA damage.

    PubMed

    Gregory, Mark T; Park, Ga Young; Johnstone, Timothy C; Lee, Young-Sam; Yang, Wei; Lippard, Stephen J

    2014-06-24

    Platinum drugs are a mainstay of anticancer chemotherapy. Nevertheless, tumors often display inherent or acquired resistance to platinum-based treatments, prompting the search for new compounds that do not exhibit cross-resistance with current therapies. Phenanthriplatin, cis-diamminephenanthridinechloroplatinum(II), is a potent monofunctional platinum complex that displays a spectrum of activity distinct from those of the clinically approved platinum drugs. Inhibition of RNA polymerases by phenanthriplatin lesions has been implicated in its mechanism of action. The present study evaluates the ability of phenanthriplatin lesions to inhibit DNA replication, a function disrupted by traditional platinum drugs. Phenanthriplatin lesions effectively inhibit DNA polymerases ν, ζ, and κ and the Klenow fragment. In contrast to results obtained with DNA damaged by cisplatin, all of these polymerases were capable of inserting a base opposite a phenanthriplatin lesion, but only Pol η, an enzyme efficient in translesion synthesis, was able to fully bypass the adduct, albeit with low efficiency. X-ray structural characterization of Pol η complexed with site-specifically platinated DNA at both the insertion and +1 extension steps reveals that phenanthriplatin on DNA interacts with and inhibits Pol η in a manner distinct from that of cisplatin-DNA adducts. Unlike cisplatin and oxaliplatin, the efficacies of which are influenced by Pol η expression, phenanthriplatin is highly toxic to both Pol η+ and Pol η- cells. Given that increased expression of Pol η is a known mechanism by which cells resist cisplatin treatment, phenanthriplatin may be valuable in the treatment of cancers that are, or can easily become, resistant to cisplatin.

  3. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo.

    PubMed

    Hoogstraten, Deborah; Nigg, Alex L; Heath, Helen; Mullenders, Leon H F; van Driel, Roel; Hoeijmakers, Jan H J; Vermeulen, Wim; Houtsmuller, Adriaan B

    2002-11-01

    The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for involvement of TFIIH in RNA polymerase I (RNAP1) transcription. Photobleaching revealed that TFIIH moves freely and gets engaged in RNAP1 and RNAP2 transcription for approximately 25 and approximately 6 s, respectively. TFIIH readily switches between transcription and repair sites (where it is immobilized for approximately 4 min) without large-scale alterations in composition. Our findings support a model of diffusion and random collision of individual components that permits a quick and versatile response to changing conditions.

  4. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity.

    PubMed

    Tajaddod, Mansoureh; Tanzer, Andrea; Licht, Konstantin; Wolfinger, Michael T; Badelt, Stefan; Huber, Florian; Pusch, Oliver; Schopoff, Sandy; Janisiw, Michael; Hofacker, Ivo; Jantsch, Michael F

    2016-10-25

    Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.

  5. Lower expressions of the human bitter taste receptor TAS2R in smokers: reverse transcriptase-polymerase chain reaction analysis.

    PubMed

    Aoki, Mieko; Takao, Tetsuya; Takao, Kyoichi; Koike, Fumihiko; Suganuma, Narufumi

    2014-01-01

    Despite the fact that smokers have deficit in detecting taste, particularly bitter taste, no study has investigated its biological correlate. In this context, we compared the expression of the bitter taste receptor gene, taste 2 receptor (TAS2R) in the tongues of smokers and non-smokers. Tissue samples were collected from the lateral portion of the tongues of 22 smokers and 22 age- and gender-matched healthy volunteers (19 males and three females) with no history of smoking. Reverse transcriptase-polymerase chain reaction was used to examine the expression of TAS2R in the two groups, and the effect of aging on TAS2R expression was also assessed. TAS2R expression was significantly lower among smokers than non-smokers (t = 6.525, P < .0001, 11.36 ± 6.0 vs. 2.09 ± 2.8, mean ± SD, non-smokers vs. smokers). Further, a positive correlation between age and expression of TAS2R was observed in non-smokers (r = .642, P = .001), but not smokers (r = .124, P = .584). This correlation difference was significant (Z = 1.96, P = .0496). Smokers showed a significantly lower expression of the bitter taste receptor gene than non-smokers, which is potentially caused by their inability to acquire such receptors with age because of cigarette smoking, in contrast to non-smokers.

  6. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    PubMed

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  7. Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.

    PubMed

    Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko

    2015-03-01

    Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Panax ginseng induces the expression of CatSper genes and sperm hyperactivation

    PubMed Central

    Park, Eun Hwa; Kim, Do Rim; Kim, Ha Young; Park, Seong Kyu; Chang, Mun Seog

    2014-01-01

    The cation channel of sperm (CatSper) protein family plays important roles in male reproduction and infertility. The four members of this family are expressed exclusively in the testis and are localized differently in sperm. To investigate the effects of Panax ginseng treatment on the expression of CatSper genes and sperm hyperactivation in male mice, sperm motility and CatSper gene expression were assessed using a computer-assisted semen analysis system, a Fluoroskan Ascent microplate fluorometer to assess Ca2+ influx, real-time polymerase chain reaction, Western blotting and immunofluorescence. The results suggested that the Ca2+ levels of sperm cells treated with P. ginseng were increased significantly compared with the normal group. The P. ginseng-treated groups showed increased sperm motility parameters, such as the curvilinear velocity and amplitude of lateral head displacement. Taken together, the data suggest that CatSper messenger ribonucleic acid levels were increased significantly in mouse testes in the P. ginseng-treated group, as was the protein level, with the exception of CatSper2. In conclusion, P. ginseng plays an important role in improving sperm hyperactivation via CatSper gene expression. PMID:24969054

  9. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  10. A System of Two Polymerases - A Model for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Kunin, Victor

    2000-10-01

    What was the first living molecule - RNA or protein? This question embodies the major disagreement in studies on the origin of life. The fact that in contemporary cells RNA polymerase is a protein and peptidyl transferase consists of RNA suggests the existence of a mutual catalytic dependence between these two kinds of biopolymers. I suggest that this dependence is a `frozen accident', a remnant from the first living system. This system is proposed to be a combination of an RNA molecule capable of catalyzing amino acid polymerization and the resulting protein functioning as an RNA-dependent RNA polymerase. The specificity of the protein synthesis is thought to be achieved by the composition of the surrounding medium and the specificity of the RNA synthesis - by Watson - Crick base pairing. Despite its apparent simplicity, the system possesses a great potential to evolve into a primitive ribosome and further to life, as it is seen today. This model provides a possible explanation for the origin of the interaction between nucleic acids and protein. Based on the suggested system, I propose a new definition of life as a system of nucleic acid and protein polymerases with a constant supply of monomers, energy and protection.

  11. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells.

    PubMed

    Li, Wenjuan; Cheng, Peng; Nie, Shangdan; Cui, Wen

    2016-01-01

    Japanese encephalitis (JE) is one of the most severe viral infections of the central nervous system. No effective treatment for JE currently exists, because its pathogenesis remains largely unknown. The present study was designed to screen the potential microRNAs (miRNAs) involved in JE. Glioblastoma cells were collected, after being infected with the Japanese encephalitis virus (JEV). Total miRNAs were extracted and analyzed using an miRNA chip. One of the most severely affected miRNAs was selected, and the role of miR-370 in JEV infection was investigated. Cell viability and apoptosis of the host cells were evaluated. JEV replication was detected via analysis of gene E expression. Real-time polymerase chain reaction was used to determine the levels of endogenous miR-370 and expression of innate immunity-related genes. Following JEV infection, 114 miRNAs were affected, as evidenced by the miRNA chip. Among them, 30 miRNAs were upregulated and 84 were downregulated. The changes observed in five miRNAs were confirmed by real-time polymerase chain reaction. One of the significantly downregulated miRNAs was miR-370. Therefore, miR-370 mimic was transfected into the cells, following which the levels of endogenous miR-370 were significantly elevated. Concurrently, JEV replication was significantly reduced 24 hours after transfection of miR-370 mimic. Functionally, miR-370 mimic mitigated both JEV-induced apoptosis and the inhibition of host cell proliferation. Following JEV infection, interferon-β and nuclear factor-kappa B were upregulated, whereas miR-370 mimic prevented the upregulation of the genes induced by JEV infection. The present study demonstrated that miR-370 expression in host cells is downregulated following JEV infection, which further mediates innate immunity-related gene expression. Taken together, miR-370 mimic might be useful to prevent viral replication and infection-induced host cell injury.

  12. Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome

    PubMed Central

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.

    2013-01-01

    Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152

  13. Genomic Binding Profiles of Functionally Distinct RNA Polymerase III Transcription Complexes in Human Cells

    PubMed Central

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J.; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2012-01-01

    Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner. PMID:20418883

  14. Engineering of a DNA Polymerase for Direct m6 A Sequencing.

    PubMed

    Aschenbrenner, Joos; Werner, Stephan; Marchand, Virginie; Adam, Martina; Motorin, Yuri; Helm, Mark; Marx, Andreas

    2018-01-08

    Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N 6 -methyladenosine (m 6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m 6 A-containing RNA prior to sequencing, since m 6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m 6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N 6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m 6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m 6 A sites directly from the sequencing data of untreated RNA samples. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-12-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

  16. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D.

    PubMed

    Jishage, M; Ishihama, A

    1999-06-01

    The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-dependent P2 with the gearbox sequence. To get insight into the in vivo role of Rsd, the expression of a reporter gene fused to either the sigma70- or sigmaS-dependent promoter was analyzed in the absence of Rsd or the presence of overexpressed Rsd. In the rsd null mutant, the sigma70- and sigmaS-dependent gene expression was increased or decreased, respectively. On the other hand, the sigma70- or sigmaS-dependent transcription was reduced or enhanced, respectively, after overexpression of Rsd. The repression of the sigmaS-dependent transcription in the rsd mutant is overcome by increased production of the sigmaS subunit. Together these observations support the prediction that Rsd is involved in replacement of the RNA polymerase sigma subunit from sigma70 to sigmaS during the transition from exponential growth to the stationary phase.

  17. Gene transfer to brain using herpes simplex virus vectors.

    PubMed

    Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A

    1994-01-01

    Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.

  18. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection

    PubMed Central

    Walton, Senta M.; Liao, Tingting; Stubbs, Keith A.; Marshall, Barry J.; Fulurija, Alma; Benghezal, Mohammed

    2017-01-01

    Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. PMID:28644872

  19. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection.

    PubMed

    Debowski, Aleksandra W; Walton, Senta M; Chua, Eng-Guan; Tay, Alfred Chin-Yen; Liao, Tingting; Lamichhane, Binit; Himbeck, Robyn; Stubbs, Keith A; Marshall, Barry J; Fulurija, Alma; Benghezal, Mohammed

    2017-06-01

    Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.

  20. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    PubMed

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  1. High levels of PROM1 (CD133) transcript are a potential predictor of poor prognosis in medulloblastoma

    PubMed Central

    Raso, Alessandro; Mascelli, Samantha; Biassoni, Roberto; Nozza, Paolo; Kool, Marcel; Pistorio, Angela; Ugolotti, Elisabetta; Milanaccio, Claudia; Pignatelli, Sara; Ferraro, Manuela; Pavanello, Marco; Ravegnani, Marcello; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2011-01-01

    The surface marker PROM1 is considered one of the most important markers of tumor-initiating cells, and its expression is believed to be an adverse prognostic factor in gliomas and in other malignancies. To date, to our knowledge, no specific studies of its expression in medulloblastoma series have been performed. The aims of our study were to evaluate the expression profile of the PROM1 gene in medulloblastoma and to assess its possible role as a prognostic factor. The PROM1 gene expression was evaluated by quantitative– polymerase chain reaction on 45 medulloblastoma samples by using specific dye-labeled probe systems. A significantly higher expression of PROM1 was found both in patients with poorer prognosis (P= .007) and in those with metastasis (P= .03). Kaplan–Meier analysis showed that both overall survival (OS) and progression-free survival (PFS) were shorter in patients with higher PROM1 mRNA levels than in patients with lower expression, even when the desmoplastic cases were excluded (P= .0004 and P= .002, for OS and PFS for all cases, respectively; P= .002 and P= .008 for OS and PFS for nondesmoplastic cases, respectively). Cox regression model demonstrated that PROM1 expression is an independent prognostic factor (hazard ratio, 4.56; P= .008). The result was validated on an independent cohort of 42 cases by microarray-based analysis (P= .019). This work suggests that high mRNA levels of PROM1 are associated with poor outcome in pediatric medulloblastoma. Furthermore, high PROM1 expression levels seem to increase the likelihood of metastases. Such results need to be confirmed in larger prospective series to possibly incorporate PROM1 gene expression into risk classification systems to be used in the clinical setting. PMID:21486962

  2. Prognostic value of tripartite motif containing 29 expression in patients with gastric cancer following surgical resection.

    PubMed

    Wang, Chenghu; Zhou, Yi; Chen, Beibei; Yuan, Weiwei; Huang, Jinxi

    2018-04-01

    Tripartite motif containing 29 (TRIM29) dysregulation serves an important function in the progression of numerous types of cancer, but its function in the prognosis of patients with gastric cancer remains unknown. The present study assessed the prognostic value of TRIM29 in patients with gastric cancer following surgical resection. A total of 243 fresh gastric adenocarcinoma and adjacent normal tissues were continuously retrieved from patients who underwent curative surgery for gastric cancer at the Cancer Hospital of Henan Province (Zhengzhou, China) between January 2005 and December 2011. The reverse transcription-quantitative polymerase chain reaction was performed to assess TRIM29 expression. The association between TRIM29 expression and clinicopathological features and prognosis was subsequently evaluated. The results of the present study revealed that the expression of TRIM29 was increased in the gastric cancer tissues compared with the normal adjacent tissues, and that upregulated expression of TRIM29 was associated with tumor cell differentiation, tumor stage, lymph node metastasis, and tumor-node-metastasis (TNM) stage. In the training and validation data, high TRIM29 expression was associated with poor overall survival in patients with gastric cancer. Furthermore, multivariate analysis identified that TRIM29 expression was an independent prognostic factor for overall survival, in addition to TNM stage and Lauren classification. Combining TRIM29 expression with the TNM staging system generated a novel predictive model that exhibited improved prognostic accuracy for overall survival in patients with gastric cancer. The present study revealed that TRIM29 was an independent adverse prognostic factor in patients with gastric cancer. Incorporating TRIM29 expression level into the TNM staging system may improve risk stratification and render prognosis more accurate in patients with gastric cancer.

  3. Impact of systemic alitretinoin treatment on skin barrier gene and protein expression in patients with chronic hand eczema.

    PubMed

    Kumari, V; Timm, K; Kühl, A A; Heine, G; Worm, M

    2016-12-01

    Chronic hand eczema (CHE) is a common inflammatory skin disease that affects approximately 10% of the population. Systemic alitretinoin has been shown to be effective in patients with CHE who are refractory to topical corticosteroids. To analyse the impact of alitretinoin on the skin barrier genes and protein expression in the skin lesions of patients with CHE. Fifteen patients with CHE were treated with 30 mg daily of alitretinoin for up to 27 weeks. Disease severity was assessed using a clinical score. Skin biopsies from all the patients were evaluated before and after therapy for the expression of Ki-67, various skin barrier genes and thymic stromal lymphopoietin (TSLP) by real-time quantitative polymerase chain reaction and immunohistochemistry. After alitretinoin application, an improvement in the clinical severity of CHE was observed in the majority of patients. Analysis of skin biopsies before treatment showed a significant increase in Ki-67-positive cells in the suprabasal layer and a dysregulated expression of various skin barrier genes, such as claudin 1, loricrin, filaggrin and cytokeratin 10, which were normalized after treatment. TSLP was significantly upregulated in patients with CHE and also normalized after alitretinoin treatment and negatively correlated with filaggrin. Our data indicate that the expression of barrier genes and proteins was normalized following treatment with alitretinoin in patients with CHE. The change in expression levels of these genes correlated with the clinical efficacy, suggesting that alitretinoin exhibits a disease-modifying activity. TSLP is upregulated in CHE and seems to counteract filaggrin expression in the skin. © 2016 British Association of Dermatologists.

  4. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus.

    PubMed

    Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming

    2018-03-01

    Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.

  5. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein.

    PubMed Central

    Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M

    1991-01-01

    The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142

  6. Production and characterization of a highly pure RNA polymerase holoenzyme from Mycobacterium tuberculosis.

    PubMed

    Herrera-Asmat, Omar; Lubkowska, Lucyna; Kashlev, Mikhail; Bustamante, Carlos J; Guerra, Daniel G; Kireeva, Maria L

    2017-06-01

    Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α 2 ββ'ω·σ A can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD. Published by Elsevier Inc.

  7. Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Goto, Hideo; Nishio, Machiko

    2016-07-01

    Gene expression of paramyxoviruses is regulated by genome-encoded cis-acting elements; however, whether all the required elements for viral growth have been identified is not clear. Using a mini-replicon system, it has been shown that human parainfluenza virus type 2 (hPIV2) polymerase can recognize the promoter elements of parainfluenza virus type 5 (PIV5), but reporter activity is lower in this case. We constructed a series of luciferase-encoding chimeric PIV2/5 mini-genomes that are basically hPIV2, but whose leader (le), mRNA start signal and trailer sequence are partially replaced with those of PIV5. Studies of the chimeric PIV2/5 mini-replicons demonstrated that replacement of hPIV2 le with PIV5 le results in remarkably weak luciferase expression. Further mutagenesis identified the responsible region as positions 25-30 of the PIV5 le. Using recombinant hPIV2, the impact of this region on viral life cycles was assessed. Insertion of the mutation at this region facilitated viral growth, genomic replication and mRNA transcription at the early stage of infection, which elicited severe cell damage. In contrast, at the late infection stage it caused a reduction in viral transcription. Here, we identify a novel cis-acting element in the internal region of an le sequence that is involved in the regulation of polymerase, and which contributes to maintaining a balance between viral growth and cytotoxicity.

  8. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

    PubMed Central

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription. PMID:25764111

  9. Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.

    PubMed

    Tovar-Méndez, Alejandro; Matamoros, Manuel A; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel

    2011-07-01

    Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.

  10. Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus1[W][OA

    PubMed Central

    Tovar-Méndez, Alejandro; Matamoros, Manuel A.; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel

    2011-01-01

    Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules. PMID:21562331

  11. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  12. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  13. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation.

    PubMed

    Askari, N; Yaghoobi, M M; Shamsara, M; Esmaeili-Mahani, S

    2015-10-01

    Numerous studies have indicated dental pulp stem cells (DPSCs) potency to differentiate into several types of cell lineages. Oligodendrocyte lineage transcription factor 2 (OLIG2) plays an important role in the oligodendrogenic pathway. In this study, a tetracycline (Tet)-inducible system expressing OLIG2 gene was transfected into human DPSCs to direct their differentiation toward oligodendrocyte progenitor cells (OPCs). Following induction, the expression of stage-specific markers was studied by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), immunocytochemistry and western blotting. In the following, the cells were transplanted into the mouse model of local sciatic demyelination damage by lysolecithin. Recovery of lysolecithin-induced lesions in sciatic nerve was studied by treadmill exercise, von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Improvement of behavioral symptoms was efficiently observed from the second week to the sixth week post-transplantation. Our findings showed that exogenous expression of the OLIG2 gene by a Tet-regulated system could be used as an efficient way to induce the differentiation of DPSCs into functional oligodendrocytes. Meanwhile, the DPSC-derived OPCs have relevant therapeutic potential in the animal model of sciatic nerve injury and therefore might represent a valuable tool for stem cell-based therapy in inflammatory and degenerative diseases of the peripheral and central nervous systems (CNSs). Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Role of the putative structural protein Sed1p in mitochondrial genome maintenance.

    PubMed

    Phadnis, Naina; Ayres Sia, Elaine

    2004-09-24

    The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.

  15. Involvement of skeletal renin-angiotensin system and kallikrein-kinin system in bone deteriorations of type 1 diabetic mice with estrogen deficiency.

    PubMed

    Zhang, Yan; Wang, Liang; Liu, Jin-Xin; Wang, Xin-Luan; Shi, Qi; Wang, Yong-Jun

    This study was aimed to investigate the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) in bone deteriorations of mice in response to the combination treatment of estrogen deficiency and hyperglycemia. The female C57BL/6J mice were sham-operated or ovariectomized with vehicle or streptozotocin (STZ) treatment. Two weeks later, the biochemistries in serum and urine were determined by standard colorimetric methods or ELISA. The H&E and TRAP staining were performed at the tibial proximal metaphysis. The polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. The mice after treating with ovariectomy and STZ showed the decreased level of serum Ca and the increased level of serum PTH and urine Ca. The H&E staining showed trabecular bone abnormalities as demonstrated by the loss, disconnection and separation of trabecular bone network as well as the loss of chondrocytes and appearance of chondrocyte cluster at growth plate of tibia. The significant increase of matured osteoclast number was shown in group with double treatments. The combination treatment significantly up-regulated mRNA expression of AGT, ACE, renin receptor, MMP-9 and CAII, and protein expression of renin, and decreased the ratio of OPG/RANKL and the expression of bradykinin receptors in bone tissue. Ovariectomy combined with STZ induction produced more detrimental actions on bone through the activation of local bone RAS and the down-regulation of bradykinin receptors, as compared to the respective single treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The urokinase plasminogen activator system components are regulated by vascular endothelial growth factor D in bovine oviduct.

    PubMed

    García, Daniela C; Russo-Maenza, Agostina; Miceli, Dora C; Valdecantos, Pablo A; Roldán-Olarte, Mariela

    2018-06-08

    SummaryThe mammalian oviduct plays a pivotal role in the success of early reproductive events. The urokinase plasminogen activator system (uPAS) is present in the bovine oviduct and is involved in extracellular matrix remodelling through plasmin generation. This system can be regulated by several members of the vascular endothelial growth factors (VEGF) and their receptors. In this study, the VEGF-D effect on the regulation of uPAS was evaluated. First, RT-polymerase chain reaction (PCR) analyses were used to evidence the expression of VEGF-D and its receptors in oviductal epithelial cells (BOEC). VEGF-D, VEGFR2 and VEGFR3 transcripts were found in ex vivo and in vitro BOEC, while only VEGFR2 mRNA was present after in vitro conditions. VEGF-D showed a regulatory effect on uPAS gene expression in a dose-dependent manner, inducing an increase in the expression of both uPA and its receptor (uPAR) at 24 h post-induction and decreases in the expression of its inhibitor (PAI-1). In addition, the regulation of cell migration induced by VEGF-D and uPA in BOEC monolayer cultures was analyzed. The wound areas of monolayer cultures incubated with VEGF-D 10 ng/ml or uPA 10 nM were modified and significant differences were found at 24 h for both stimulations. These results indicated that uPAS and VEGF-D systems can modify the arrangement of the bovine oviductal epithelium and contribute to the correct maintenance of the oviductal microenvironment.

  17. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    PubMed

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  18. Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants.

    PubMed

    Rajabi-Memari, H; Jalali-Javaran, M; Rasaee, M J; Rahbarizadeh, F; Forouzandeh-Moghadam, M; Esmaili, A

    2006-08-01

    A promising alternative to conventional antibodies is the single-domain antibody fragment of the Camelidae (V(HH)), which (because of features such as small length, high expression, solubility, and stability) is preferred to other antibody derivatives. In this report, a recombinant single-domain antibody (V(HH)) against MUC1 mucin in the tobacco plant, which may be considered as a suitable and economical alternative expression system, was produced. This antibody was expressed under the control of a strong constitutive promoter, CaMV35S, and NOS terminator. A plant high-expression sequence (Kozak sequence) was linked at the 5' end for overexpression of the V(HH) gene. The constructed cassette (pBIV(HH)) was transferred to agrobacterium, and the VHH gene was inserted into the plant genome by agrobacterium-mediated transformation. Transgenic lines were selected on kanamycin (100 mg/L) and maintained in soil, and subsequent generations were obtained. The presence and expression of the transgene was confirmed in the transformants by polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot. Tobacco transgenic lines leave expressed V(HH) at levels varying from 1.12% to 1.63% of the total soluble protein. This report examines the transformation and expression of recombinant single-domain antibody (V(HH)) against antigen-associated tumor in tobacco plants.

  19. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.

    PubMed

    Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W

    1996-10-01

    The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already selected against during embryonic development, demonstrating the general importance of this protein in multiple cell types.

  20. [Neurological adaptations to hypoxia in Tibetan antelope (Pantholops hodgsonii) with a view of molecular biology of respiratory globin-neuroglobin].

    PubMed

    Bai, Zhen-Zhong; Yang, Ying-Zhong; Jin, Guo-En; Ma, Lan; Ge, Ri-Li

    2012-11-01

    Neuroglobin (Ngb) is a respiratory protein that is preferentially expressed in brain of mouse and man. In this article, Tibetan antelope, living at altitude of 3 000-5 000 m for millions of years, was selected as the model of hypoxia-tolerant adaptation species. Using reverse transcription polymerase chain reaction (RT-PCR) and Western blot techniques, expression of Ngb gene was amplified and analyzed in antelope brain tissue. Our results showed that Ngb homology protein in Tibetan antelope was identified with more sequence similarity with cattle (96%), sheep (95%), and human (95%). We detected that there were some mutations occurred in the Open Reading Frame of Ngb in Tibetan antelope compared with sheep. Phylogenetic analysis of Ngb chain showed that it was closer to cattle than the others. This study suggests possible roles of central nervous system enriched Ngb in adaptation of Tibetan antelope to extremely high altitude.

  1. Electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study.

    PubMed

    Okabe, Tadashi; Sato, Chiyo; Matsumoto, Keisuke; Ozawa, Hitoshi; Sakamoto, Atsuhiro

    2009-11-01

    Electroconvulsive shock therapy (ECT) has been widely used as an effective and established treatment for refractory depression and schizophrenia. Some reports have shown that ECT is also effective for treating refractory neuropathic pain. In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from day 2 after surgery. An electroconvulsive shock (ECS) was administered to rodents once daily for 6 days on days 7-12 after CCI operation using a pulse generator. Thermal and mechanical stimulation tests were performed to assess pain thresholds. Real-time polymerase chain reaction was used to measure the gene expression levels for 5HT(1A)R, 5HT(2A)R, neuropeptide Y (NPY), and GABAA(alpha1)R in the brain. After ECS, the latency to withdrawal from thermal stimulation was significantly increased; however, pain withdrawal thresholds in response to mechanical stimulation were not significantly changed. Expression ratios of NPY were significantly greater after ECS. Symptoms of neuropathic pain improved and expression of NPY in the brain was increased in CCI model rats after ECS, suggesting that changes in the expression of NPY in the brain may be related to the mechanism of action of ECT in treating neuropathic pain.

  2. Born to run: control of transcription elongation by RNA polymerase II.

    PubMed

    Chen, Fei Xavier; Smith, Edwin R; Shilatifard, Ali

    2018-05-08

    The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.

  3. The structure of an RNAi polymerase links RNA silencing and transcription.

    PubMed

    Salgado, Paula S; Koivunen, Minni R L; Makeyev, Eugene V; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2006-12-01

    RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-A resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world.

  4. ZEB1 is Estrogen Responsive In Vitro in Human Foreskin Cells and is Over Expressed in Penile Skin in Patients With Severe Hypospadias

    PubMed Central

    Qiao, Liang; Tasian, Gregory E.; Zhang, Haiyang; Cunha, Gerald R.; Baskin, Laurence

    2012-01-01

    Purpose We determined the effect of estrogen on ZEB1 in vitro and tested the hypothesis that ZEB1 is over expressed in the penile skin of subjects with hypospadias. Materials and Methods Hs68 cells, a fibroblast cell line derived from human foreskin, were exposed to 0, 1, 10 and 100 nM estrogen, and the expression level of ZEB1 was assessed using reverse transcription real-time polymerase chain reaction, Western blot and immunocytochemical analysis. Next, preputial skin was prospectively collected from case and control subjects at hypospadias repair (37 cases) and circumcision (11). Hypospadias was classified as severe (13 cases) or mild (24) based on the position of the urethral meatus. ZEB1 expression was quantified using reverse transcription real-time polymerase chain reaction, Western blot and immunohistochemical analysis. Results Estrogen increased ZEB1 expression at the mRNA and protein levels in Hs68 cells in a concentration dependent fashion (p <0.01). Subjects with severe hypospadias had significantly higher ZEB1 mRNA levels and protein expression compared to controls or subjects with mild hypospadias (both p <0.01). Subjects with severe hypospadias had increased expression of ZEB1 in the basal layers of the preputial epidermis. Conclusions Estrogen increases ZEB1 expression in a human foreskin fibroblast cell line in vitro. Furthermore, ZEB1 is significantly over expressed in the penile skin of subjects with severe hypospadias. We propose that ZEB1 overexpression may contribute to development of hypospadias and may mediate the effect of estrogen on developing external male genitalia. PMID:21421232

  5. Inactivation of parkin by promoter methylation correlated with lymph node metastasis and genomic instability in nasopharyngeal carcinoma.

    PubMed

    Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-03-01

    This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.

  6. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studiesmore » indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.« less

  7. [Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].

    PubMed

    Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e

    2010-06-01

    To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.

  8. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus.

    PubMed

    Ma, Jianping; Wang, Jufang; Liu, Yanfen; Wang, Changyi; Duan, Donghui; Lu, Nanjia; Wang, Kaiyue; Zhang, Lu; Gu, Kaibo; Chen, Sihan; Zhang, Tao; You, Dingyun; Han, Liyuan

    2017-02-01

    The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings.

  9. Activation of RAS family genes in urothelial carcinoma.

    PubMed

    Boulalas, I; Zaravinos, A; Karyotis, I; Delakas, D; Spandidos, D A

    2009-05-01

    Bladder cancer is the fifth most common malignancy in men in Western society. We determined RAS codon 12 and 13 point mutations and evaluated mRNA expression levels in transitional cell carcinoma cases. Samples from 30 human bladder cancers and 30 normal tissues were analyzed by polymerase chain reaction/restriction fragment length polymorphism and direct sequencing to determine the occurrence of mutations in codons 12 and 13 of RAS family genes. Moreover, we used real-time reverse transcriptase-polymerase chain reaction to evaluate the expression profile of RAS genes in bladder cancer specimens compared to that in adjacent normal tissues. Overall H-RAS mutations in codon 12 were observed in 9 tumor samples (30%). Two of the 9 patients (22%) had invasive bladder cancer and 7 (77%) had noninvasive bladder cancer. One H-RAS mutation (11%) was homozygous and the remaining 89% were heterozygous. All samples were WT for K and N-RAS oncogenes. Moreover, 23 of 30 samples (77%) showed over expression in at least 1 RAS family gene compared to adjacent normal tissue. K and N-RAS had the highest levels of over expression in bladder cancer specimens (50%), whereas 27% of transitional cell carcinomas demonstrated H-RAS over expression relative to paired normal tissues. Our results underline the importance of H-RAS activation in human bladder cancer by codon 12 mutations. Moreover, they provide evidence that increased expression of all 3 RAS genes is a common event in bladder cancer that is associated with disease development.

  10. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway.

    PubMed

    Li, Weicong; Zheng, Zaosong; Chen, Haicheng; Cai, Yuhong; Xie, Wenlian

    2018-05-01

    Previous years have witnessed the importance of long non-coding RNAs (lncRNAs) in cancer research. The lncRNA Pvt1 oncogene (non-protein coding) (PVT1) was revealed to be upregulated in various cancer types. The aim of the present study was to investigate the function of PVT1 in clear cell renal cell carcinoma (ccRCC). The expression of PVT1 in ccRCC was analyzed using reverse transcription-quantitative polymerase chain reaction, and it was revealed that PVT1 expression was upregulated in ccRCC tissues compared with that in normal adjacent tissues. Next, PVT1 expression from The Cancer Genome Atlas datasets was validated, and it was also revealed that the high expression of PVT1 was associated with advanced disease stage and a poor prognosis. Furthermore, the knockdown of PVT1 induced apoptosis by increasing the expression of poly ADP ribose polymerase and Bcl-2-associated X protein, and promoted cell cycle arrest at the G1 phase by decreasing the expression of cyclin D1. Study of the mechanism involved indicated that PVT1 promoted the progression of ccRCC partly through activation of the epidermal growth factor receptor pathway. Altogether, the results of the present study suggested that PVT1 serves oncogenic functions and may be a biomarker and therapeutic target in ccRCC.

  11. RT-qPCR Demonstrates Light-Dependent AtRBCS1A and AtRBCS3B mRNA Expressions in "Arabidopsis thaliana" Leaves

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; Li, Anna; Feissner, Robert; Ahmad, Talal

    2016-01-01

    Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is widely used in diagnosis and research to determine specific mRNA expressions in cells. As RT-qPCR applications increase, it is necessary to provide undergraduates hands-on experience of this modern technique. Here, we report a 3-week laboratory exercise using RT-qPCR to…

  12. Head and Neck Squamous Cell Carcinomas Do Not Express EGFRvIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchers, Lieuwe J., E-mail: l.j.melchers@umcg.nl; Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen; Clausen, Martijn J.A.M.

    2014-10-01

    Purpose: To assess the prevalence of EGFRvIII, a specific variant of EGFR (epidermal growth factor receptor), in 3 well-defined cohorts of head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Immunohistochemistry for the specific detection of EGFRvIII using the L8A4 antibody was optimized on formalin-fixed, paraffin-embedded tissue using glioblastoma tissue. It was compared with EGFR and EGFRvIII RNA expression using a specific reverse transcription–polymerase chain reaction also optimized for formalin-fixed, paraffin-embedded tissue. Tissue microarrays including 531 HNSCCs of various stages with complete clinicopathologic and follow-up data were tested for the presence of EGFRvIII. Results: None of the 531 casesmore » showed EGFRvIII protein expression. Using an immunohistochemistry protocol reported by others revealed cytoplasmic staining in 8% of cases. Reverse transcription–polymerase chain reaction for the EGFRvIII transcript of the 28 highest cytoplasmic staining cases, as well as 69 negative cases, did not show expression in any of the tested cases, suggesting aspecific staining by a nonoptimal protocol. Conclusions: The EGFRvIII mutation is not present in HNSCC. Therefore, EGFRvIII does not influence treatment response in HNSCC and is not a usable clinical prognostic marker.« less

  13. Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium.

    PubMed

    Girard, Beatrice M; Malley, Susan E; Vizzard, Margaret A

    2011-02-01

    Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency, and results in increased referred somatic hypersensitivity. Additional NGF-mediated pleiotropic changes might contribute to the increased voiding frequency and pelvic hypersensitivity observed in these transgenic mice, such as modulation of other growth factor/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific uroplakin II promoter. In the present study, we examined NGF, brain-derived neurotrophic factor (BDNF), and associated receptor [p75(NTR), tyrosine kinase (Trk)A, TrkB] transcript and protein expression in urothelium and detrusor smooth muscle of NGF-overexpressing (OE) and littermate wild-type mice, using real-time quantitative reverse transcription-polymerase chain reaction, ELISAs, and semiquantitation of immunohistochemistry. We focused on these growth factor/receptors given the established roles of NGF/TrkA, NGF/p75(NTR), and BDNF/TrkB systems in bladder function. Increased voiding frequency in NGF-OE mice was confirmed by examining urination patterns. BDNF, TrkA, and TrkB protein expression was significantly (P ≤ 0.01) reduced and p75(NTR) protein expression was significantly (P ≤ 0.01) increased in urinary bladder of NGF-OE mice. The NGF-OE-induced changes in neurotrophic factor/receptor expression in urinary bladder may represent compensatory changes to reduce voiding frequency in the NGF-OE mouse.

  14. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment

    PubMed Central

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Background: Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes–anthracyclines. Methods: Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. Results: A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. Conclusion: A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer. PMID:29558872

  15. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment.

    PubMed

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes-anthracyclines. Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer.

  16. The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs1[W][OA

    PubMed Central

    Nuthikattu, Saivageethi; McCue, Andrea D.; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N.; Slotkin, R. Keith

    2013-01-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing. PMID:23542151

  17. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs.

    PubMed

    Nuthikattu, Saivageethi; McCue, Andrea D; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N; Slotkin, R Keith

    2013-05-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.

  18. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish.

    PubMed

    Yang, Qian; Yang, Xianhai; Liu, Jining; Ren, Wenjuan; Chen, Yingwen; Shen, Shubao

    2017-09-01

    Bisphenol F (BPF) has been frequently detected in various environmental compartments, and previous studies found that BPF exhibits similar estrogenic and anti-androgenic effects on the mammalian endocrine system to those of bisphenol A (BPA). However, the potential disrupting effects of BPF on aquatic organisms and the underling disrupting mechanisms have not been investigated. In this study, the potential disrupting mechanisms of BPF on the hypothalamic-pituitary-gonadal (HPG) axis and liver were probed by employing the OECD 21-day short-term fecundity assay in zebrafish. The results show that BPF exposure (1 mg/L) impaired the reproductive function of zebrafish, as exemplified by alterations to testicular and ovarian histology of the treated zebrafish. Homogenate testosterone (T) levels in male zebrafish decreased in a concentration-dependent manner, and 17β-estradiol (E2) levels increased significantly when fish were exposed to 0.1 and 1 mg/L BPF. The real-time polymerase chain reaction was performed to examine gene expression in the HPG axis and liver. Hepatic vitellogenin expression was significantly upregulated in males, suggesting that BPF possesses estrogenic activity. The disturbed hormone balance was enhanced by the significant changes in gene expression along the HPG axis. These alterations suggest that BPF leads to adverse effects on the endocrine system of teleost fish, and that these effects were more prominent in males than in females.

  19. Neutrophil CD64 expression, procalcitonin and presepsin are useful to differentiate infections from flares in SLE patients with SIRS.

    PubMed

    Echeverri, A; Naranjo-Escobar, J; Posso-Osorio, I; Aguirre-Valencia, D; Zambrano, D; Castaño, G L; Martínez, J D; Cañas, C A; Tobón, G J

    2018-06-01

    Background/Objective Differentiating systemic lupus erythematosus (SLE) activity from infections in febrile patients is difficult because of similar initial clinical presentation. The aim of this study is to evaluate the usefulness of a number of biomarkers for differentiating infections from activity in SLE patients admitted with systemic inflammatory response (SIRS). Methods Patients with SLE and SIRS admitted to the emergency room were included in this study. Measurements of different markers including procalcitonin, neutrophil CD64 expression and presepsin, were performed. Infection was considered present when positive cultures and/or polymerase chain reaction were obtained. Sensitivity and specificity were calculated for all biomarkers. Results Twenty-seven patients were admitted, 23 women (82.5%), mean age 33.2 years. An infectious disease was confirmed in 12 cases. Markers for SLE activity including anti-DNA titers by IIF ( p = 0.041) and enzyme-linked immunosorbent assay ( p = 0.009) were used for differentiating SLE flares from infection. On the contrary, increased procalcitonin ( p = 0.047), neutrophil CD64 expression by flow cytometry ( p = 0.037) and presepsin ( p = 0.037) levels were observed in infected SLE patients. Conclusions High neutrophil CD64 expression, presepsin and procalcitonin levels are useful to differentiate infections from activity in SLE patients. In most cases, a positive bioscore that includes these three markers demonstrate the presence of an infectious disease.

  20. Stable, high-level expression of a type I antifreeze protein in Escherichia coli.

    PubMed

    Solomon, R G; Appels, R

    1999-06-01

    The type I antifreeze proteins are simple amphipathic helical proteins found in abundance in polar fish species, where they act to prevent freezing of internal fluids by a mechanism of noncolligative freezing point depression. Large-scale production of these proteins for research and biotechnological purposes has been hampered by their apparent instability when expressed in heterologous host systems. This has necessitated their production as fusion proteins, in polymeric form, or as proproteins for secretion, with the concomitant necessity for postpurification processing to generate the mature form of the protein. We have successfully expressed a recombinant variant of type I antifreeze protein (rAFP) in Escherichia coli using the inducible T7 polymerase transcription expression system. The rAFP contains five copies of the 11 amino acid ice-binding repeat motif found in all type I antifreeze proteins. The protein accumulates to high levels intracellularly in the form of inclusion bodies, with no apparent degradation by the cellular proteolytic machinery. We have devised a simple and rapid purification protocol for this recombinant type I antifreeze protein which does not require cellular fractionation, purification of the inclusion bodies, or chromatographic steps. This protocol may be of general use for this class of protein. The protein displays all three activities common to these proteins: recrystallization inhibition, noncolligative freezing point depression, and modification of the morphology of single ice crystals in solution.

  1. Synthetic transcripts of double-stranded Birnavirus genome are infectious.

    PubMed Central

    Mundt, E; Vakharia, V N

    1996-01-01

    We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines. Images Fig. 2 Fig. 3 Fig. 4 PMID:8855321

  2. Evaluation of Four RNA Extraction Methods for Gene Expression Analyses of Cryptosporidium parvum and Toxoplasma gondii Oocys

    EPA Science Inventory

    Cryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (...

  3. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression.

    PubMed

    González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S

    2017-11-01

    Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. The prognostic role of E2A-PBX1 expression detected by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) in B cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Hong, Yan; Zhao, Xiaosu; Qin, Yazhen; Zhou, Songhai; Chang, Yingjun; Wang, Yu; Zhang, Xiaohui; Xu, Lanping; Huang, Xiaojun

    2018-04-28

    The E2A-PBX1 rearrangement is common in B cell acute lymphoblastic leukemia (B-ALL). However, whether this fusion gene can be used as a reliable marker for minimal residual disease (MRD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unknown. In this study, clinical data were collected from 28 consecutive B-ALL patients who received allo-HSCT. Their MRD was evaluated by E2A-PBX1 and leukemia-associated immunophenotype (LAIP). The median follow-up was 374 days (55-2342 days). Of the enrolled patients, seven (25%) patients died of leukemia relapse. A total of nine (32.1%) patients experienced relapse at a median of 164 days (75-559 days) after transplantation. The median expression level in the first positive sample was 0.14% (0.0071-902.4%). The duration from E2A-PBX1-positive results to hematological relapse was 74 days (30-469 days). E2A-PBX1 expression generally became positive prior to flow cytometry. Patients with positive E2A-PBX1 gene expression pre-transplantation were more likely to have positive E2A-PBX1 expression after transplantation. Taken all together, E2A-PBX1 expression determined by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) could be used to evaluate MRD status after allo-HSCT. Patients with positive E2A-PBX1 expression after transplant will have a poor prognosis.

  5. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction Assay Is a Feasible Method for the Relative Quantification of Heregulin Expression in Non-Small Cell Lung Cancer Tissue.

    PubMed

    Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin

    2017-01-01

    In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.

  6. TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors.

    PubMed

    Radebaugh, C A; Matthews, J L; Geiss, G K; Liu, F; Wong, J M; Bateman, E; Camier, S; Sentenac, A; Paule, M R

    1994-01-01

    The role of the Acanthamoeba castellanii TATA-binding protein (TBP) in transcription was examined. Specific antibodies against the nonconserved N-terminal domain of TBP were used to verify the presence of TBP in the fundamental transcription initiation factor for RNA polymerase I, TIF-IB, and to demonstrate that TBP is part of the committed initiation complex on the rRNA promoter. The same antibodies inhibit transcription in all three polymerase systems, but they do so differentially. Oligonucleotide competitors were used to evaluate the accessibility of the TATA-binding site in TIF-IB, TFIID, and TFIIIB. The results suggest that insertion of TBP into the polymerase II and III factors is more similar than insertion into the polymerase I factor.

  7. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor.

    PubMed

    Kajita, Shinya; Sugawara, Shinsuke; Miyazaki, Yasumasa; Nakamura, Masaya; Katayama, Yoshihiro; Shishido, Kazuo; Iimura, Yosuke

    2004-12-01

    One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants microg(-1) of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.

  8. Differential expression of utrophin-A and -B promoters in the central nervous system (CNS) of normal and dystrophic mdx mice.

    PubMed

    Baby, Santhosh M; Bogdanovich, Sasha; Willmann, Gabriel; Basu, Utpal; Lozynska, Olga; Khurana, Tejvir S

    2010-03-01

    Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms. As this distinction may impact upregulation strategies, we generated Utrn-A and -B promoter-specific antibodies, Taqman Polymerase chain reaction (PCR)-based absolute copy number assays, and luciferase-reporter constructs to study CNS of normal and dystrophic mdx mice. Differential expression of Utrn-A and -B was noted in microdissected and capillary-enriched fractions. At the protein level, Utrn-B was predominantly expressed in vasculature and ependymal lining, whereas Utrn-A was expressed in neurons, astrocytes, choroid plexus and pia mater. mRNA quantification demonstrated matching patterns of differential expression; however, transcription-translation mismatch was noted for Utrn-B in caudal brain regions. Utrn-A and Utrn-B proteins were significantly upregulated in olfactory bulb and cerebellum of mdx brain. Differential promoter activity, mRNA and protein expressions were studied in cultured C2C12, bEnd3, neurons and astrocytes. Promoter activity ranking for Utrn-A and -B was neurons > astrocytes > C2C12 > bEnd3 and bEnd3 > astrocytes > neurons > C2C12, respectively. Our results identify promoter usage patterns for therapeutic targeting and define promoter-specific differential distribution of Utrn isoforms in normal and dystrophic CNS.

  9. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  10. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    PubMed

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Expression profiles of antimicrobial peptides (AMPs) and their regulation by Relish

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Fuhua; Li, Shihao; Wen, Rong; Xiang, Jianhai

    2012-07-01

    Antimicrobial peptides (AMPs), as key immune effectors, play important roles in the innate immune system of invertebrates. Different types of AMPs, including Penaeidin, Crustin, ALF (antilipopolysaccharide factor) have been identified in different penaeid shrimp; however, systematic analyses on the function of different AMPs in shrimp responsive to different types of bacteria are very limited. In this study, we analyzed the expression profiles of AMPs in the Chinese shrimps, Fenneropenaeus chinensis, simultaneously by real-time RT-PCR (reverse transcription-polymerase chain reaction) when shrimp were challenged with Micrococcus lysodeikticus (Gram-positive, G+) or Vibrio anguillarium (Gram-negative, G-). Different AMPs showed different expression profiles when shrimp were injected with one type of bacterium, and one AMP also showed different expression profiles when shrimp were challenged with different bacteria. Furthermore, the expression of these AMPs showed temporal expression profiles, suggesting that different AMPs function coordinately in bacteria-infected shrimp. An RNA interference approach was used to study the function of the Relish transcription factor in regulating the transcription of different AMPs. The current study showed that Relish could regulate the transcription of different AMPs in shrimp. Differential expression profiles of AMPs in shrimp injected with different types of bacteria indicated that a complicated antimicrobial response network existed in shrimp. These data contribute to our understanding of immunity in shrimp and may provide a strategy for the control of disease in shrimp.

  12. Expression of TGF-beta1, osteonectin, and BMP-4 in mandibular distraction osteogenesis with compression stimulation: reverse transcriptase-polymerase chain reaction study and biomechanical test.

    PubMed

    Kim, Uk-Kyu; Park, Seong-Jin; Seong, Wook-Jin; Heo, Jun; Hwang, Dae-Seok; Kim, Yong-Deok; Shin, Sang-Hun; Kim, Gyoo-Cheon

    2010-09-01

    This study compared the levels of transforming growth factor-beta1 (TGF-beta1), osteonectin, and bone morphogenetic protein-4 (BMP-4) expression in regenerated bone in a rabbit mandible that had undergone conventional distraction osteogenesis (DO) with those in regenerated bone from a modified DO technique with compression stimulation. A total of 42 rabbits were used in this reverse transcriptase-polymerase chain reaction study. In the control group, distraction was performed at 1 mm/day for 8 days. In the experimental group, overdistraction was performed for 10 days, followed by a 3-day latency period and 2 days of compression to achieve the same amount of DO. Three rabbits per subgroup were killed at 0, 5, 13, 20, 27, 34, and 41 days after the initial osteotomy. The levels of TGF-beta1, osteonectin, and BMP-4 in the bone regenerates were measured by reverse transcriptase-polymerase chain reaction. A biomechanical microhardness test was also performed in 8 rabbits as a separate experiment. Reverse transcriptase-polymerase chain reaction revealed a greater level of TGF-beta1 in the experimental group immediately after applying the compression force that continued for 2 weeks. The level then decreased to that of the control group at 3 weeks. The greater level of osteonectin in the experimental group after compression than that in the control group continued for 3 weeks. In the experimental group, the level of BMP-4 increased immediately after compression. However, the level in the control group decreased. The microhardness ratio of distracted bone to normal bone on the cortex was statistically different at 0.47 in the control group and 0.80 in the experimental group (P = .049) at 55 days after osteotomy. The effectiveness of the new DO technique with compression stimulation was confirmed by the gene expression study and the biomechanical test findings. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  14. Repeated Exposure to Sublethal Doses of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain

    DTIC Science & Technology

    2012-01-01

    NUMBER activates BDNF expression in mouse brain 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pizarro, JM, Chang, WE, Bah, MJ...of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain Jose M. Pizarro,*,† Wenling E. Chang,†,‡ Mariama J. Bah,† Linnzi K. M...triphosphate and UTP, and 2 ll modified cytidine triphosphate solution [2mM]), 33P-UTP (specific activity of 5 3 109 cpm/lg), 2 ll RNA polymerase, 2 ll of

  15. Elevated AQP1 Expression Is Associated With Unfavorable Oncologic Outcome in Patients With Hilar Cholangiocarcinoma.

    PubMed

    Li, Chunxiang; Li, Xiaofu; Wu, Linfeng; Jiang, Zheng

    2017-08-01

    Hilar cholangiocarcinomas are malignant tumors with a poor prognosis. An early prediction of prognosis for patients may help us determine treatment strategies. Aquaporin 1 is a cell membrane channel involved in water transport, cell motility, and proliferation. Increasing evidences showed that aquaporin 1 played a role in tumor prognosis and diagnosis. The purpose of this study is to evaluate the role of aquaporin 1 in hilar cholangiocarcinoma. Here, we analyzed messenger RNA expression data of genes function as bile secretion in a data set of 169 samples using the R2 bioinformatic platform ( http://r2.amc.nl ). Quantitative polymerase chain reaction was performed to verify the gene expression in 17 hilar cholangiocarcinoma samples. Immunohistochemistry was also performed in a series of specimens from 62 hilar cholangiocarcinoma tissues, and its clinical significance was assessed by clinical correlation and Kaplan-Meier analyses. All data were analyzed using the R2 web application, aquaporin 1 was selected for further analysis. The significant expression variation of aquaporin 1 among 17 cases with cholangiocarcinoma was also found using quantitative polymerase chain reaction. The expression level of aquaporin 1 protein significantly correlated with tumor-node-metastasis stage ( P = .002) and overall survival time ( P = .010). Higher aquaporin 1 expression indicated poor prognostic outcomes ( P <.05, log-rank test). Multivariate analysis also showed strong aquaporin 1 protein expression was an independent adverse prognosticator in hilar cholangiocarcinoma ( P = .002). This study highlighted the prognostic value of aquaporin 1 in hilar cholangiocarcinoma. Strong aquaporin 1 expression predicts poor survival, regardless of pathological features. Immunohistochemical detection of aquaporin 1, as a prognostic marker, may contribute to predicting clinical outcome for patients with hilar cholangiocarcinoma.

  16. Transcription of G-protein coupled receptors in corporeal smooth muscle is regulated by the endogenous neutral endopeptidase inhibitor sialorphin.

    PubMed

    Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P

    2008-08-01

    Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.

  17. Expression characteristics of long noncoding RNA uc.322 and its effects on pancreatic islet function.

    PubMed

    Zhao, Xiaoqin; Rong, Can; Pan, Fenghui; Xiang, Lizhi; Wang, Xinlei; Hu, Yun

    2018-06-28

    Increasing evidence indicates that long noncoding RNAs (lncRNAs) perform special biological functions by regulating gene expression through multiple pathways and molecular mechanisms. The aim of this study was to explore the expression characteristics of lncRNA uc.322 in pancreatic islet cells and its effects on the secretion function of islet cells. Bioinformatics analysis was used to detect the lncRNA uc.322 sequence, location, and structural features. Expression of lncRNA uc.322 in different tissues was detected by quantitative polymerase chain reaction analyses. Quantitative polymerase chain reaction, Western blot analysis, adenosine triphosphate determination, glucose-stimulated insulin secretion, and enzyme-linked immunosorbent assay were used to evaluate the effects of lncRNA uc.322 on insulin secretion. The results showed that the full-length of lncRNA uc.322 is 224 bp and that it is highly conserved in various species. Bioinformatics analysis revealed that lncRNA uc.322 is located on chr7:122893196-122893419 (GRCH37/hg19) within the SRY-related HMG-box 6 gene exon region. Compared with other tissues, lncRNA uc.322 is highly expressed in pancreatic tissue. Upregulation of lncRNA uc.322 expression increases the insulin transcription factors pancreatic and duodenal homeobox 1 and Forkhead box O1 expression, promotes insulin secretion in the extracellular fluid of Min6 cells, and increases the adenosine triphosphate concentration. On the other hand, knockdown of lncRNA uc.322 has opposite effects on Min6 cells. Overall, this study showed that upregulation of lncRNA uc.322 in islet β-cells can increase the expression of insulin transcription factors and promote insulin secretion, and it may be a new therapeutic target for diabetes. © 2018 Wiley Periodicals, Inc.

  18. Efficient delivery of connective tissue growth factor shRNA using PAMAM nanoparticles.

    PubMed

    Huang, Z J; Yi, B; Yuan, H; Yang, G P

    2014-08-28

    The aim of this study was to detect the anti-fibrosis activity of connective tissue growth factor (CTGF) small hairpin RNA (shRNA) mediated by polyamidoamine dendrimer nanoparticles in rat myocardial cell lines and myocardium. CTGF shRNAs were constructed from inverted oligonucleotides and a polyamidoamine nanoparticle vector was used to transfer shRNA into H9c2 myocardial cells and spontaneously hypertensive rats. The expression of CTGF, transforming growth factor-b1, and laminin were measured by semi-quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. pCTGF-shRNA significantly reduced CTGF upregulation induced by angiotensin II in H9c2 myocardial cells. The mRNA and protein expression of CTGF and laminin in pCTGF-shRNA-transferred spontaneously hypertensive rats decreased significantly compared to the control group and pHK-shRNA group (P < 0.05). The expression of transforming growth factor-b1 showed no significant difference among the 3 groups (P > 0.05). pCTGF-shRNA mediated by polyamidoamine can be used to successfully reduce myocardial CTGF and laminin expression, suggesting that this system can be used to improve myocardial fibrosis therapy.

  19. Changes of Gene Expressions in Spontaneously Hypertensive Rat Model After Losartan Treatment

    PubMed Central

    Cha, Ji Hei; Lee, Hye Ryon; Kim, Kwan Chang; Cho, Min-Sun

    2012-01-01

    Background and Objectives The renin angiotensin system seems to play an important role in the development of cardiac and vascular hypertrophy in hypertension. The changes in pathology, and gene expressions of the angiotensin II receptor type 1A (ATIA) and angiotensin converting enzyme (ACE) were investigated in order to explore the effects of losartan in spontaneously hypertensive rat (SHR) models. Materials and Methods Twelve week-old male Wistar rats were grouped as follows: control (C) group, hypertension (H) group, and losartan (L) group in which SHR was treated with losartan (10 mg/kg/day). Western blot and reverse transcription-polymerase chain reaction analysis regarding seven genes such as endothelin-1, ACE, ATIA, neutrophil cytosolic factor, brain natriuretic peptide, troponin I, endothelial nitric oxide synthase were performed. Results Systolic blood pressure was significantly decreased in the L group compared with the H group in weeks 3 and 5. ACE and ATIA proteins in the L group were lower than H group in week 5. Conclusion Losartan reduced blood pressure, cardiac hypertrophy and protein expressions of ACE and ATIA. Changes of protein expressions were more sensitive than changes in pathology. Further study is needed for the differing doses of losartan in SHR models. PMID:23236328

  20. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  1. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei

    2013-10-11

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases ofmore » human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.« less

  2. Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”)

    PubMed Central

    Pachlopnik Schmid, Jana; Lemoine, Roxane; Nehme, Nadine; Cormier-Daire, Valéry; Revy, Patrick; Debeurme, Franck; Debré, Marianne; Nitschke, Patrick; Bole-Feysot, Christine; Legeai-Mallet, Laurence; Lim, Annick; de Villartay, Jean-Pierre; Picard, Capucine; Durandy, Anne; Fischer, Alain

    2012-01-01

    DNA polymerase ε (Polε) is a large, four-subunit polymerase that is conserved throughout the eukaryotes. Its primary function is to synthesize DNA at the leading strand during replication. It is also involved in a wide variety of fundamental cellular processes, including cell cycle progression and DNA repair/recombination. Here, we report that a homozygous single base pair substitution in POLE1 (polymerase ε 1), encoding the catalytic subunit of Polε, caused facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”) in a large, consanguineous family. The mutation resulted in alternative splicing in the conserved region of intron 34, which strongly decreased protein expression of Polε1 and also to a lesser extent the Polε2 subunit. We observed impairment in proliferation and G1- to S-phase progression in patients’ T lymphocytes. Polε1 depletion also impaired G1- to S-phase progression in B lymphocytes, chondrocytes, and osteoblasts. Our results evidence the developmental impact of a Polε catalytic subunit deficiency in humans and its causal relationship with a newly recognized, inherited disorder. PMID:23230001

  3. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  4. In vitro fluorescence studies of transcription factor IIB-DNA interaction.

    PubMed

    Górecki, Andrzej; Figiel, Małgorzata; Dziedzicka-Wasylewska, Marta

    2015-01-01

    General transcription factor TFIIB is one of the basal constituents of the preinitiation complex of eukaryotic RNA polymerase II, acting as a bridge between the preinitiation complex and the polymerase, and binding promoter DNA in an asymmetric manner, thereby defining the direction of the transcription. Methods of fluorescence spectroscopy together with circular dichroism spectroscopy were used to observe conformational changes in the structure of recombinant human TFIIB after binding to specific DNA sequence. To facilitate the exploration of the structural changes, several site-directed mutations have been introduced altering the fluorescence properties of the protein. Our observations showed that binding of specific DNA sequences changed the protein structure and dynamics, and TFIIB may exist in two conformational states, which can be described by a different microenvironment of W52. Fluorescence studies using both intrinsic and exogenous fluorophores showed that these changes significantly depended on the recognition sequence and concerned various regions of the protein, including those interacting with other transcription factors and RNA polymerase II. DNA binding can cause rearrangements in regions of proteins interacting with the polymerase in a manner dependent on the recognized sequences, and therefore, influence the gene expression.

  5. Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs.

    PubMed

    Church, Victoria A; Pressman, Sigal; Isaji, Mamiko; Truscott, Mary; Cizmecioglu, Nihal Terzi; Buratowski, Stephen; Frolov, Maxim V; Carthew, Richard W

    2017-09-26

    The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.

    2000-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  7. ECB deacylase mutants

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.

    2002-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  8. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.

    2001-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  9. Elimination of endogenous aberrant kappa chain transcripts from sp2/0-derived hybridoma cells by specific ribozyme cleavage: utility in genetic therapy of HIV-1 infections.

    PubMed Central

    Duan, L; Pomerantz, R J

    1994-01-01

    The pooled degenerate-primer polymerase chain reaction (PCR) technology is now widely used in the amplification and cloning of murine hybridoma-specific immunoglobulin gene cDNAs. The design of primers is mainly based on the highly conserved 5' terminus of immunoglobulin gene variable regions and the constant region in the 3' terminus. Of note, most murine hybridoma cell lines are derived from the Sp2/0 cell line, which is demonstrated to express endogenous aberrant kappa chains (abV kappa). This high-level endogenous abV kappa mixes with specific kappa chains in the hybridomas and interferes with the efficiency of the reverse transcriptase (RT)-PCR cloning strategy. In this report, during the cloning of murine anti-human immunodeficiency virus type I (HIV-1) hybridoma immunoglobulin cDNAs, a specific primer-PCR screening system was developed, based on the abV kappa complementarity-defining region (CDR), to eliminate abV kappa-carrying plasmids. Furthermore, an abV kappa sequence-specific derived ribozyme was developed and packaged in a retroviral expression vector system. This abV kappa ribozyme can be transduced into different murine hybridomas, and expressed intracellularly to potently eliminate endogenous abV kappa RNA. Images PMID:7816635

  10. [Study of signal transduction pathway in the expression of inflammatory factors stimulated by lipopolysaccharides from Porphyromonas endodontalis in osteoblasts].

    PubMed

    Yang, Di; Qiu, Li-hong; Li, Ren; Li, Zi-mu; Li, Chen

    2010-04-01

    To quantify the interleukin (IL)-1beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides ([PS) extracted from Porphyromonoas endodontalis (P. endodontalis) in osteoblasts, and to relate P. endodontalis LPS to the bone resorptive pathogenesis in the lesions of chronic apical periodontitis. MG63 cells was pretreated with PD98059 or SB203580 for 1 h and then treated with P. endodontolis LPS for 6 h. The expression of IL-1beta mRNA and IL-6 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR) technique. The production of IL-1beta mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with PD98059. Both of the production of IL-1beta mRNA and JL-6 mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with SB203580. The synthesis of IL-1beta mRNA stimulated by Pendodontalis LPS in MG63 probably occur via extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) signal transduction system. The synthesis of IL-6 mRNA stimulated by P.endodontalis LPS in MG63 probahly occur via p38MAPK signal transduction system.

  11. The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by σ54 and a Cognate Transcriptional Regulator▿†

    PubMed Central

    Fiévet, Anouchka; My, Laetitia; Cascales, Eric; Ansaldi, Mireille; Pauleta, Sofia R.; Moura, Isabel; Dermoun, Zorah; Bernard, Christophe S.; Dolla, Alain; Aubert, Corinne

    2011-01-01

    Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the σ54-RNA polymerase. We further demonstrate that the σ54-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with σ54-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the σ70-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed. PMID:21531797

  12. Influence of 5'-flanking sequence on 4.5SI RNA gene transcription by RNA polymerase III.

    PubMed

    Gogolevskaya, Irina K; Stasenko, Danil V; Tatosyan, Karina A; Kramerov, Dmitri A

    2018-05-01

    Short nuclear 4.5SI RNA can be found in three related rodent families. Its function remains unknown. The genes of 4.5SI RNA contain an internal promoter of RNA polymerase III composed of the boxes A and B. Here, the effect of the sequence immediately upstream of the mouse 4.5SI RNA gene on its transcription was studied. The gene with deletions and substitutions in the 5'-flanking sequence was used to transfect HeLa cells and its transcriptional activity was evaluated from the cellular level of 4.5SI RNA. Single-nucleotide substitutions in the region adjacent to the transcription start site (positions -2 to -8) decreased the expression activity of the gene down to 40%-60% of the control. The substitution of the conserved pentanucleotide AGAAT (positions -14 to -18) could either decrease (43%-56%) or increase (134%) the gene expression. A TATA-like box (TACATGA) was found at positions -24 to -30 of the 4.5SI RNA gene. Its replacement with a polylinker fragment of the vector did not decrease the transcription level, while its replacement with a GC-rich sequence almost completely (down to 2%-5%) suppressed the transcription of the 4.5SI RNA gene. The effect of plasmid sequences bordering the gene on its transcription by RNA polymerase III is discussed.

  13. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A

    PubMed Central

    Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.

    2012-01-01

    DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637

  14. A novel platform for biologically active recombinant human interleukin-13 production.

    PubMed

    Wang, David J; Brandsma, Martin; Yin, Ziqin; Wang, Aiming; Jevnikar, Anthony M; Ma, Shengwu

    2008-06-01

    Interleukin-13 (IL-13) is a pleiotropic regulatory cytokine with the potential for treating several human diseases, including type-1 diabetes. Thus far, conventional expression systems for recombinant IL-13 production have proven difficult and are limited by efficiency. In this study, transgenic plants were used as a novel expression platform for the production of human IL-13 (hIL-13). DNA constructs containing hIL-13 cDNA were introduced into tobacco plants. Transcriptional expression of the hIL-13 gene in transgenic plants was confirmed by reverse transcriptase-polymerase chain reaction and Northern blotting. Western blot analysis showed that the hIL-13 protein was efficiently accumulated in transgenic plants and present in multiple molecular forms, with an expression level as high as 0.15% of total soluble protein in leaves. The multiple forms of plant-derived recombinant hIL-13 (rhIL-13) are a result of differential N-linked glycosylation, as revealed by enzymatic and chemical deglycosylation, but not of disulphide-linked oligomerization. In vitro trypsin digestion indicated that plant rhIL-13 was more resistant than unglycosylated control rhIL-13 to proteolysis. The stability of plant rhIL-13 to digestion was further supported with simulated gastric and intestinal fluid digestion. In vitro bioassays using a factor-dependent human erythroleukaemic cell line (TF-1 cells) showed that plant rhIL-13 retained the biological functions of the authentic hIL-13 protein. These results demonstrate that transgenic plants are superior to conventional cell-based expression systems for the production of rhIL-13. Moreover, transgenic plants synthesizing high levels of rhIL-13 may prove to be an attractive delivery system for direct oral administration of IL-13 in the treatment of clinical diseases such as type-1 diabetes.

  15. Influence of trichloroacetic acid peeling on the skin stress response system.

    PubMed

    Kimura, Ayako; Kanazawa, Nobuo; Li, Hong-Jin; Yonei, Nozomi; Yamamoto, Yuki; Furukawa, Fukumi

    2011-08-01

    Although trichloroacetic acid (TCA) peeling is widely applied for cosmetic treatment of photodamaged skin, the entire biological mechanisms have yet to be determined. The skin stress response system (SSRS) involves corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) products that are locally-generated in response to locally-provided stressors or pro-inflammatory cytokines. This system would restrict tissue damage and restore local homeostasis. To determine the influence of TCA peeling on the SSRS in vitro and in vivo, expressions of POMC, melanocortin receptor 1 (MC1R), CRH and CRH receptor 1 (CRHR1) mRNA were examined by reverse transcription polymerase chain reaction in Pam212 murine keratinocytes, murine plantar and healthy human abdominal skin specimens after TCA treatment. In addition, their protein expressions as well as those of POMC-derived peptides were examined immunohistochemically. After TCA treatment, transient upregulation of POMC and MC1R mRNA expressions was observed in both murine and human skin, as well as in Pam212. Enhanced POMC protein, recovery of once-impaired MC1R protein, and no enhancement of POMC-derived peptide productions were revealed immunohistochemically in both murine and human epidermis. In contrast, neither expression levels of CRH and CRHR1 mRNA nor epidermal protein were enhanced after TCA application in murine and human skin, except for induction of human CRH mRNA expression. These results suggest that TCA activates the SSRS by inducing POMC and MC1R productions of keratinocytes in the CRH-independent manner, and that the biological effects of POMC itself are responsible for the TCA-induced epidermal SSRS activation. © 2010 Japanese Dermatological Association.

  16. Properties of a recombinant bovine tissue factor expressed by Silkworm pupae and its performance as an Owren-type prothrombin time reagent for warfarin monitoring.

    PubMed

    Okuda, Masahiro; Taniguchi, Tomokuni; Takamiya, Osamu

    2012-09-01

    Tissue factor (TF), or thromboplastin, is a glycoprotein that triggers the extrinsic coagulation pathway. In blood coagulation testing, TF has been used as a natural source for determining Quick prothrombin time (PT) or the Owren PT (OBT). Currently, natural sources are being replaced with recombinant proteins because of their uniform characteristics and the possibility of stable mass production of PT reagents. Because bovine spongiform encephalopathy (BSE)-infected cows are widespread in Japan, we prepared a recombinant bovine TF (rbTF) with a baculovirus expression system using silkworms. To overcome the limitations of natural TF, especially in bovine brain, we expressed a full-length rbTF protein in Silkworm pupae with a baculovirus expression system. Baculovirus inactivation and the presence of DNA fragments in the rbTF fraction were confirmed using Reed-Muench and polymerase chain reaction methods after inactivation with a detergent. The rbTF fraction prepared by an immobilized anti-Silkworm pupae fluid protein Sepharose 4B column was identified as a visible band on western blots with a polyclonal antibody against human TF with cross-reactivity with TFs. The inhibition of the polyclonal antibody against human TF by the clotting assay for PT was identified, and amidolytic biological activity through activated factor VII on S-2288 substrate was observed. In conclusion, the rbTF expressed by the baculovirus system using Silkworm pupae was uniformly specific for bovine TF. The OBT reagent incorporated by this rbTF was similar to those of commercial reagents. It also showed a suitable International Sensitivity Index and reproducibility precision, thereby allowing for diagnostic use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

    PubMed Central

    Bastiani, Michele; Liu, Libin; Hill, Michelle M.; Jedrychowski, Mark P.; Nixon, Susan J.; Lo, Harriet P.; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R.; Gygi, Steven P.; Vinten, Jorgen; Walser, Piers J.; North, Kathryn N.; Hancock, John F.; Pilch, Paul F.

    2009-01-01

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein. PMID:19546242

  18. Transcriptional regulation by FOXP1, FOXP2, and FOXP4 dimerization.

    PubMed

    Sin, Cora; Li, Hongyan; Crawford, Dorota A

    2015-02-01

    FOXP1, FOXP2, and FOXP4 are three members of the FOXP gene subfamily of transcription factors involved in the development of the central nervous system. Previous studies have shown that the transcriptional activity of FOXP1/2/4 is regulated by homo- and heterodimerization. However, their transcriptional gene targets in the developing brain are still largely unknown. FOXP2 regulates the expression of many genes important in embryonic development, including WNT and Notch signaling pathways. In this study, we investigate whether dimerization of FOXP1/2/4 leads to differential expression of ten known FOXP2 target genes (CER1, SFRP4, WISP2, PRICKLE1, NCOR2, SNW1, NEUROD2, PAX3, EFNB3, and SLIT1). FOXP1/2/4 open-reading frames were stably transfected into HEK293 cells, and the expression level of these FOXP2 target genes was quantified using real-time polymerase chain reaction. Our results revealed that the specific combination of FOXP1/2/4 dimers regulates transcription of various FOXP2 target genes involved in early neuronal development.

  19. Molecular cloning, sequencing, and expression of the outer membrane protein P2 gene of Haemophilus parasuis.

    PubMed

    Li, Peng; Bai, Juan; Li, Jun-xing; Zhang, Guo-long; Song, Yan-hua; Li, Yu-feng; Wang, Xian-wei; Jiang, Ping

    2012-10-01

    Haemophilus parasuis is the etiological agent of Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis in young pigs. But it is difficult to develop universal serological diagnostic tools and effective vaccines against this disease because of the serovar diversity of the isolates. In this study, enterobacterial repetitive intergenic consensus-polymerase chain reaction, were performed to investigate the gene profile of 111 isolates of H. parasuis from China. And a specific common gene of H. parasuis was cloned and identified as the outer-membrane protein (OMP) P2 gene. Sequencing results of OMP P2 genes of 22 isolates showed that they had high homology and could be divided into 2 genetic types. Moreover, the OMPP2 protein was expressed in Escherichia coli expressing system. And the purified recombinant protein provided partial protection against H. parasuis infection in mice. It suggested the OMP P2 was an immunogenic protein and had great potential to serve as a vaccine and diagnostic antigen. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Data-driven information retrieval in heterogeneous collections of transcriptomics data links SIM2s to malignant pleural mesothelioma.

    PubMed

    Caldas, José; Gehlenborg, Nils; Kettunen, Eeva; Faisal, Ali; Rönty, Mikko; Nicholson, Andrew G; Knuutila, Sakari; Brazma, Alvis; Kaski, Samuel

    2012-01-15

    Genome-wide measurement of transcript levels is an ubiquitous tool in biomedical research. As experimental data continues to be deposited in public databases, it is becoming important to develop search engines that enable the retrieval of relevant studies given a query study. While retrieval systems based on meta-data already exist, data-driven approaches that retrieve studies based on similarities in the expression data itself have a greater potential of uncovering novel biological insights. We propose an information retrieval method based on differential expression. Our method deals with arbitrary experimental designs and performs competitively with alternative approaches, while making the search results interpretable in terms of differential expression patterns. We show that our model yields meaningful connections between biological conditions from different studies. Finally, we validate a previously unknown connection between malignant pleural mesothelioma and SIM2s suggested by our method, via real-time polymerase chain reaction in an independent set of mesothelioma samples. Supplementary data and source code are available from http://www.ebi.ac.uk/fg/research/rex.

  1. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  2. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334.

    PubMed

    Kim, Saet-Byul; Lee, Hye-Young; Seo, Seungyeon; Lee, Joo Hyun; Choi, Doil

    2015-01-01

    Potyviruses are one of the most destructive viral pathogens of Solanaceae plants. In Capsicum annuum landrace CM334, a broad-spectrum gene, Pvr4 is known to be involved in resistance against multiple potyviruses, including Pepper mottle virus (PepMoV), Pepper severe mosaic virus (PepSMV), and Potato virus Y (PVY). However, a potyvirus avirulence factor against Pvr4 has not been identified. To identify the avirulence factor corresponding to Pvr4 in potyviruses, we performed Agrobacterium-mediated transient expressions of potyvirus protein coding regions in potyvirus-resistant (Pvr4) and -susceptible (pvr4) pepper plants. Hypersensitive response (HR) was observed only when a RNA-dependent RNA polymerase (NIb) of PepMoV, PepSMV, or PVY was expressed in Pvr4-bearing pepper leaves in a genotype-specific manner. In contrast, HR was not observed when the NIb of Tobacco etch virus (TEV), a virulent potyvirus, was expressed in Pvr4-bearing pepper leaves. Our results clearly demonstrate that NIbs of PepMoV, PepSMV, and PVY serve as avirulence factors for Pvr4 in pepper plants.

  3. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  4. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    PubMed

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  5. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    PubMed

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  6. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  7. A comparative gene expression analysis of iron-limited cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensis using newly developed iron assays

    NASA Astrophysics Data System (ADS)

    Abdala, Z. M.; Powell, K.; Cronin, D.; Chappell, D.

    2016-02-01

    A comparative gene expression analysis of iron-limited cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensisusing newly developed iron assays Zuzanna M. Abdala, Kimberly Powell, Dylan P. Cronin, P. Dreux Chappell Diatoms, accounting for about 40% of the primary production in marine ecosystems, play a vital role in the dynamics of marine systems. Iron availability is understood to be a driving factor controlling productivity of many marine phytoplankton, including diatoms, as it functions as a cofactor for many proteins including several involved with photosynthetic processes. Previous work examining transcriptomes of diatoms of the Thalassiosira genus grown in controlled laboratory settings has identified genes whose expression can be used as sensitive markers of iron status. Data mining publically available diatom transcriptome data for these genes enables development of additional iron status assays for environmentally-relevant diatoms. For the present study, gene expression analysis of iron-limited laboratory cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensis grown in continuous light was done using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). C. socialis and P. arenysensis serve as comparative models for analyzing gene expression in iron limitation in different ecological community assemblages. These data may ultimately assist to illuminate the function of iron in photosynthetic activity in diatoms.

  8. Expression of a serine protease (motopsin PRSS12) mRNA in the mouse brain: in situ hybridization histochemical study.

    PubMed

    Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y

    1999-03-20

    Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.

  9. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  10. Simultaneous inactivation of sigma factors B and D interferes with light acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Pollari, Maija; Ruotsalainen, Virpi; Rantamäki, Susanne; Tyystjärvi, Esa; Tyystjärvi, Taina

    2009-06-01

    In cyanobacteria, gene expression is regulated mainly at the level of transcription initiation, which is mediated by the RNA polymerase holoenzyme. The RNA polymerase core is catalytically active, while the sigma factor recognizes promoter sequences. Group 2 sigma factors are similar to the principal sigma factor but are nonessential. Group 2 sigma factors SigB and SigD are structurally the most similar sigma factors in Synechocystis sp. strain PCC 6803. Under standard growth conditions, simultaneous inactivation of sigB and sigD genes did not affect the growth, but the photosynthesis and growth of the DeltasigBD strain were slower than in the control strain at double light intensity. Light-saturated electron transfer rates and the fluorescence and thermoluminescence measurements showed that photosynthetic light reactions are fully functional in the DeltasigBD strain, but absorption and 77 K emission spectra measurements suggest that the light-harvesting system of the DeltasigBD strain does not acclimate normally to higher light intensity. Furthermore, the DeltasigBD strain is more sensitive to photoinhibition under bright light because impaired upregulation of psbA genes leads to insufficient PSII repair.

  11. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector

    PubMed Central

    Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  12. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    PubMed

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. [Effect of Leonurus Heterophyllus Sweet on tissue factor transcription and expression in human umbilical vein endothelial cells in vitro].

    PubMed

    Zheng, Lian; Fang, Chi-hua

    2007-06-01

    To investigate the effect of Leonurus Heterophyllus Sweet, (LHS) on tissue factor (TF) transcription and expression induced by thrombin in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with different concentrations of LHS and the TF mRNA expression was detected by reverse transcript-polymerase chain reaction (RT-PCR). LHS treatment of HUVECs at different concentrations and for different times resulted in significant differences in TF expression (Plt;0.01). The transcription of TF in LHS-treated cells was significantly different from that of the blank control group (Plt;0.01). LHS can decrease the expression of TF and intervene with TF transcription in HUVECs in vitro.

  14. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal.

    PubMed

    Janowska, Beata; Kurpios-Piec, Dagmara; Prorok, Paulina; Szparecki, Grzegorz; Komisarski, Marek; Kowalczyk, Paweł; Janion, Celina; Tudek, Barbara

    2012-01-03

    One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G>C≫A>T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZα gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA(-)Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II. Mutation spectrum established for strains expressing only Pol V, showed that in uvrA(-) bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T→C:G, A:T→G:C, G:C→A:T and G:C→T:A prevailed. The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain

    PubMed Central

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Betzi, Stéphane; Morelli, Xavier; Burmeister, Wim P.; Iseni, Frédéric

    2014-01-01

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface. PMID:24603707

  16. DNA polymerase preference determines PCR priming efficiency.

    PubMed

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially available DNA polymerases. The results suggest that the interaction of the DNA polymerase with the primer:template junction during the initiation of DNA polymerization is very important in terms of overall amplification bias and has broader implications for both the primer design process and multiplex PCR.

  17. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.

  18. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  19. Definition of RNA polymerase II CoTC terminator elements in the human genome.

    PubMed

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J

    2013-04-25

    Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells.

    PubMed

    Wang, Penglong; Yuan, Xuan; Wang, Yan; Zhao, Hong; Sun, Xiling; Zheng, Qiusheng

    2015-11-01

    The current study investigated the mechanisms by which licochalcone C induces apoptosis of T24 human malignant bladder cancer cells. Cell viability was evaluated using an MTT assay. Apoptosis was investigated using a morphological assay, flow cytometry and a caspase‑3 activity assay. Alterations in the gene expression levels of Bcl‑2 family members were measured by semi‑quantitative reverse transcription‑polymerase chain reaction assays. The protein levels of pro‑caspase‑3 and cleaved poly(ADP ribose) polymerase were measured using western blotting. The results indicated that licochalcone C induced T24 cell apoptosis in a concentration‑dependent manner. Licochalcone C treatment reduced the levels of the anti‑apoptotic mRNAs (Bcl‑2, Bcl‑w and Bcl‑XL) and increased expression of the pro‑apoptotic mRNAs (Bax and Bim). The Bcl‑2 family inhibitor (ABT‑737) reduced apoptosis induced by licochalcone C in T24 cells. The current study demonstrated that licochalcone C may be a potential adjuvant therapeutic agent for bladder cancer.

  1. Mitochondrial RNA polymerase is an essential enzyme in erythrocytic stages of Plasmodium falciparum.

    PubMed

    Ke, Hangjun; Morrisey, Joanne M; Ganesan, Suresh M; Mather, Michael W; Vaidya, Akhil B

    2012-09-01

    We have shown that transgenic Plasmodium falciparum parasites expressing the yeast DHODH (dihydroorotate dehydrogenase) are independent of the mtETC (mitochondrial electron transport chain), suggesting that they might not need the mitochondrial genome (mtDNA), since it only encodes three protein subunits belonging to the mtETC and fragmentary ribosomal RNA molecules. Disrupting the mitochondrial RNA polymerase (mtRNAP), which is critical for mtDNA replication and transcription, might then cause the generation of a ρ(0) parasite line lacking mtDNA. We made multiple attempts to disrupt the mtRNAP gene by double crossover recombination methods in parasite lines expressing yDHODH either episomally or integrated in the genome, but were unable to produce the desired knockout. We verified that the mtRNAP gene was accessible to recombination by successfully integrating a triple HA tag at the 3' end via single cross-over recombination. These studies suggest that mtRNAP is essential even in mtETC-independent P. falciparum parasites. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Expression and characterization of a novel reverse transcriptase of the LTR retrotransposon Tf1.

    PubMed

    Kirshenboim, Noa; Hayouka, Zvi; Friedler, Assaf; Hizi, Amnon

    2007-09-30

    The LTR retrotransposon of Schizosacharomyces pombe, Tf1, has several distinctive properties that can be related to the unique properties of its reverse transcriptase (RT). Consequently, we expressed, purified and studied the recombinant Tf1 RT. This monomeric protein possesses all activities typical to RTs: DNA and RNA-dependent DNA polymerase as well as an inherent ribonuclease H. The DNA polymerase activity shows preference to Mn(+)(2) or Mg(+)(2), depending on the substrate used, whereas the ribonuclease H strongly prefers Mn(+)(2). The most outstanding feature of Tf1 RT is its capacity to add non-templated nucleotides to the 3'-ends of the nascent DNA. This is mainly apparent in the presence of Mn(+)(2), as is the noticeable low fidelity of DNA synthesis. In all, Tf1 RT has a marked infidelity in synthesizing DNA at template ends, a phenomenon that can explain, as discussed herein, some of the features of Tf1 replication in the host cells.

  3. Novel cytochrome P450 genes, CYP6EB1 and CYP6EC1, are over-expressed in acrinathrin-resistant Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Cifuentes, D; Chynoweth, R; Guillén, J; De la Rúa, P; Bielza, P

    2012-06-01

    Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.

  4. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting.

    PubMed

    Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R

    2017-11-01

    Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.

  5. Intragenic DNA methylation prevents spurious transcription initiation.

    PubMed

    Neri, Francesco; Rapelli, Stefania; Krepelova, Anna; Incarnato, Danny; Parlato, Caterina; Basile, Giulia; Maldotti, Mara; Anselmi, Francesca; Oliviero, Salvatore

    2017-03-02

    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.

  6. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Characterization of the porcine neonatal Fc receptor—potential use for trans-epithelial protein delivery

    PubMed Central

    Stirling, Catrina M A; Charleston, Bryan; Takamatsu, Haru; Claypool, Steven; Lencer, Wayne; Blumberg, Richard S; Wileman, Thomas E

    2005-01-01

    The neonatal Fc receptor transports maternal immunoglobulin across the gut wall and has the potential to deliver genetically engineered proteins bearing immunoglobulin Fc domains across the gut to the mucosal immune system. Here we have characterized the porcine neonatal Fc receptor and tested its utility as a model system to study this kind of protein delivery. The complete DNA sequence obtained from an EST revealed 70–80% homology to mouse and human receptors, respectively, and tyrptophan and di-leucine endocytosis motifs were identified in the cytoplasmic tail. Reverse transcription–polymerase chain reaction analysis showed expression of the receptor mRNA in gut, liver, kidney and spleen tissue, aortic endothelial cells and monocytes. Pig kidney cell lines showed saturable pH-dependent binding and uptake of porcine immunoglobulin G (IgG) and also bovine, mouse and human IgG. Polyclonal antibodies raised against the receptor immunoprecipitated a protein of 40 000 MW when the cDNA was expressed in cells and the receptor required assembly with porcine β2-microglobulin for transport from the endoplasmic reticulum to recycling and early endosomes. Immunohistochemical analysis showed the receptor expressed in epithelial cells of the gut of young and adult animals. The ability of the receptor to deliver immunoglobulin across the gut was demonstrated by feeding piglets bovine colostrum as a source of bovine IgG. Bovine IgG was delivered into the pig circulation. Pigs express the neonatal Fc receptor and the receptor has the potential to deliver protein antigens to the pig immune system. PMID:15804291

  8. The expression of heme oxygenase-1 and inducible nitric oxide synthase in aorta during the development of hypertension in spontaneously hypertensive rats.

    PubMed

    Cheng, Pao-Yun; Chen, Jin-Jer; Yen, Mao-Hsiung

    2004-12-01

    The aim of this study was to observe the time-course changes of heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS) induction in aorta during the development of hypertension, as well as the relationship of HO-1/carbon monoxide (CO) system and iNOS/nitric oxide (NO) system in spontaneously hypertensive rats (SHR). The systolic blood pressure (SBP) was determined in conscious rats by the tail-cuff method. The tissue HO-1 and iNOS mRNA and protein levels were estimated with reverse transcription polymerase chain reaction and Western blot method. The expression of HO-1 and iNOS in aorta increased with the SBP elevation during the development of SHR and was attenuated when the hypertension was lowered with the vasodilator hydralazine. At 8 weeks, only HO-1 was induced, whereas at 12 and 16 weeks, both HO-1 and iNOS were observed. The level of plasma nitrite/nitrate was associated with the change in iNOS expression in SHR. In addition, the SBP of 8-week-old SHR was significantly increased after pretreatment with zinc protoporphyrin IX for 7 consecutive days. Chronic blockade of iNOS activity by aminoguanidine resulted in significant up-regulation of HO-1, but the pressor effect was blunt. These results suggest that the up-regulation of HO-1 and iNOS in aorta is a compensatory mechanism for the elevation of SBP during the development of hypertension in SHR. The expression of HO-1 is earlier than that of iNOS. Our data suggest that the HO-1/CO system takes over and acts as a major modulator for the regulation of SBP when the iNOS/NO system is suppressed.

  9. Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the alpha6-integrin subunit.

    PubMed

    Kashimata, M; Gresik, E W

    1997-02-01

    Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.

  10. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    PubMed

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  11. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    PubMed Central

    Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O.; Li, Zhenghe

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. PMID:26484673

  12. Changes in regulatory molecules for lymphangiogenesis in intestinal lymphangiectasia with enteric protein loss.

    PubMed

    Hokari, Ryota; Kitagawa, Noritake; Watanabe, Chikako; Komoto, Shunsuke; Kurihara, Chie; Okada, Yoshikiyo; Kawaguchi, Atsushi; Nagao, Shigeaki; Hibi, Toshifumi; Miura, Soichiro

    2008-07-01

    Vascular endothelial growth factor receptor 3 (VEGFR3) and LYVE-1 are specifically expressed in the endothelium of the lymphatic systems. VEGF-C, D, FOXC2, Prox 1, and SOX18 are known to play central roles in lymphatic development. We investigated the expression of regulatory molecules for lymphangiogenesis in the duodenal mucosa of idiopathic intestinal lymphangiectasia. Biopsy samples were obtained from duodenal biopsies in patients with intestinal lymphangiectasia complicated with protein-losing from white spot lesions in which lymphangiectasia was histologically confirmed. Immunohistochemical analysis for VEGFR3 and LYVE-1 was performed. mRNA expression of VEGF-C, VEGF-D, VEGFR3, and transcription factors was determined by the quantitative reverse transcription-polymerase chain reaction method. In the control mucosa, VEGFR3 was weakly expressed on the central lymphatic vessels in the lamina propria and LYVE-1 was expressed mainly on the lymphatic vessels in the submucosa. In intestinal lymphangiectasia, VEGFR3 and LYVE-1 expression levels were increased on the mucosal surface corresponding to widely dilated lymphatic vessels, while they were decreased in the deeper mucosa. mRNA expression study showed a significant increase in the expression level of VEGFR3 in lymphangiectasia, but the expression of VEGF-C and -D mRNA was significantly suppressed compared with that in controls despite the presence of lymphangiectasia. The mRNA expression levels of FOXC2 and SOX18 were also decreased, whereas Prox 1 was not altered. There is an altered expression of regulatory molecules for lymphangiogenesis in the duodenal mucosa in these patients.

  13. Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells.

    PubMed

    Jin, Aihong; Chen, Hao; Wang, Chaoqun; Tsang, Lai Ling; Jiang, Xiaohua; Cai, Zhiming; Chan, Hsiao Chang; Zhou, Xiaping

    2014-06-01

    To examine the expression of CD147 in 60 human endometriosis lesions and how CD147 regulates migration and apoptosis in human uterine epithelial (HESs) cells. Experimental clinical study and laboratory-based investigation. Hospital and academic research center. Sixty women with chocolate cysts and 16 control women without endometriosis. Human uterine epithelial cells were treated with anti-CD147 antibody. Real-time polymerase chain reaction for detecting CD147 expression in 60 human endometriosis lesions; migration assay and CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) assay for cell functional investigation; Western blot for detecting protein levels; gelatin zymography for evaluating the activity of matrix metalloproteinase-2 (MMP-2) in cultured cells. Expression of CD147 was significantly higher in ectopic endometrial tissues from patients with endometriosis than in normal endometrial tissues. Interference with CD147 function led to decreased migration and cell viability in HESs cells. Surprisingly, MMP-2 expression and activity were not changed after treating HESs cells with anti-CD147 antibody. Further examination revealed that immunodepletion of CD147 induced apoptosis in HESs cells, leading to the activation of caspase 3 and poly(ADP-ribose) polymerase. The results of the present study suggest that abnormally high expression of CD147 in ovarian endometriosis lesions with enhanced cell survival (reduced apoptosis) and migration, in an MMP-2-independent manner, may underlie the progression of endometriosis in humans. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  15. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  17. A polymerase chain reaction-based methodology to detect gene doping.

    PubMed

    Carter, Adam; Flueck, Martin

    2012-04-01

    The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.

  18. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1.

    PubMed

    Pan, Ling; Pasternak, David A; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W; Pan, Ying-Xian

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3' or 5' splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function.

  19. Regulation of expression of the ada gene controlling the adaptive response. Interactions with the ada promoter of the Ada protein and RNA polymerase.

    PubMed

    Sakumi, K; Sekiguchi, M

    1989-01-20

    The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada promoter even when the cysteine residue at position 321 of the protein was methylated. When the Ada protein with alanine at position 321 was methylated, it acquired the potential to bind to the ada promoter. These results are compatible with the notion that methylation of the cysteine residue at position 69 causes a conformational change of the Ada protein, thereby facilitating binding of the protein to the upstream regulatory sequence.

  20. Tools to minimize interlaboratory variability in vitellogenin gene expression monitoring programs

    USGS Publications Warehouse

    Jastrow, Aaron; Gordon, Denise A.; Auger, Kasie M.; Punska, Elizabeth C.; Arcaro, Kathleen F.; Keteles, Kristen; Winkelman, Dana L.; Lattier, David; Biales, Adam; Lazorchak, James M.

    2017-01-01

    The egg yolk precursor protein vitellogenin is widely used as a biomarker of estrogen exposure in male fish. However, standardized methodology is lacking and little is known regarding the reproducibility of results among laboratories using different equipment, reagents, protocols, and data analysis programs. To address this data gap we tested the reproducibility across laboratories to evaluate vitellogenin gene (vtg) expression and assessed the value of using a freely available software data analysis program. Samples collected from studies of male fathead minnows (Pimephales promelas) exposed to 17α-ethinylestradiol (EE2) and minnows exposed to processed wastewater effluent were evaluated for vtg expression in 4 laboratories. Our results indicate reasonable consistency among laboratories if the free software for expression analysis LinRegPCR is used, with 3 of 4 laboratories detecting vtg in fish exposed to 5 ng/L EE2 (n = 5). All 4 laboratories detected significantly increased vtg levels in 15 male fish exposed to wastewater effluent compared with 15 male fish held in a control stream. Finally, we were able to determine that the source of high interlaboratory variability from complementary deoxyribonucleic acid (cDNA) to quantitative polymerase chain reaction (qPCR) analyses was the expression analysis software unique to each real-time qPCR machine. We successfully eliminated the interlaboratory variability by reanalyzing raw fluorescence data with independent freeware, which yielded cycle thresholds and polymerase chain reaction (PCR) efficiencies that calculated results independently of proprietary software. Our results suggest that laboratories engaged in monitoring programs should validate their PCR protocols and analyze their gene expression data following the guidelines established in the present study for all gene expression biomarkers. 

  1. Study on relationship between expression level and molecular conformations of gene drugs targeting to hepatoma cells in vitro

    PubMed Central

    Yang, Dong-Ye; Lu, Fang-Gen; Tang, Xi-Xiang; Zhao, Shui-Ping; Ouyang, Chun-Hui; Wu, Xiao-Ping; Liu, Xiao-Wei; Wu, Xiao-Ying

    2003-01-01

    AIM: To increase exogenous gene expression level by modulating molecular conformations of targeting gene drugs. METHODS: The full length cDNAs of both P40 and P35 subunits of human interleukin 12 were amplified through polymerase chain reaction (PCR) and cloned into eukaryotic expressing vectors pcDNA3.1 (±) to construct plasmids of P (+)/IL-12, P (+)/P40 and P (-)/P35. These plasmids were combined with ASOR-PLL to form two targeting gene drugs [ASOR-PLL-P (+)/IL-12 and ASOR-PLL-P (+)/P40 + ASOR-PLL-P (-)/P35] in optimal ratios. The conformations of these two drugs at various concentrations adjuvant were examined under electron microscope (EM) and the drugs were transfected into HepG2 (ASGr+) cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed with total RNA extracted from the transfected cells to determine the hIL12 mRNA transcript level. The hIL12 protein in the cultured supernatant was measured with enzyme-linked immunosorbent assay (ELISA) 48 hours after transfection. RESULTS: Targeting gene drugs, whose structures were granular and circle-like and diameters ranged from 25 nm to 150 nm, had the highest hIL-12 expression level. The hIL-12 expression level in the group co-transfected with ASOR-PLL-P (+)/P40 and ASOR-PLL-P (-)/P35 was higher than that of ASOR-PLL-P (+)/IL-12 transfected group. CONCLUSION: The molecular conformations of targeting gene drugs play an important role in exogenous gene expression level, the best structures are granular and circle-like and their diameters range from 25 nm to 150 nm. The sizes and linking styles of exogenous genes also have some effects on their expression level. PMID:12970883

  2. Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1*

    PubMed Central

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N.; Sif, Saïd

    2012-01-01

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. PMID:22761421

  3. High expression of long noncoding RNA NORAD indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer.

    PubMed

    Li, Qiaqia; Li, Chao; Chen, Jinbo; Liu, Peihua; Cui, Yu; Zhou, Xinyi; Li, Huihuang; Zu, Xiongbing

    2018-06-01

    To explore the function of NORAD in bladder cancer (BC), and to verify whether NORAD could be used as a biomarker to determine preoperative presence of progression and lymph node metastasis. To our knowledge, it is the first study investigating NORAD and its implications in BC. BC specimens of 90 patients underwent bladder cystectomy or transurethral resection between January 2012 to December 2016 were tested by fluorescence in situ hybridization. The association between NORAD expression and clinicopathological features and prognosis of the patients was analyzed using Kaplan-Meier survival analysis and Cox regression analysis. Quantitative real-time polymerase chain reaction was performed in 4 BC cell lines and 10 fresh tumor sample together with adjacent tissues. MTT, colony formation assay, and Annexin-V apoptosis detection were performed after knockdown of NORAD using shRNA in TSSCUP cells. Western blot was performed to related proteins extracted from these cells. Fluorescence in situ hybridization indicated that high NORAD expression was associated with more advanced histological grade and clinical stage for patients with BC. Higher NORAD expression resulted in lower overall survival, and was an independent prognostic indicator. Real-time polymerase chain reaction showed that the expression of NORAD in BC tissues was higher than those measured in adjacent normal tissues. MTT and colony formation assay demonstrated that knockdown of NORAD results in lower proliferation in TSSCUP cells, whereas PUM2 expression was upregulated and E2F3 downregulated. High NORAD expression could serve as an independent prognostic factor for overall survival of patients with transitional BC. NORAD could be considered as a promising candidate for novel biomarker and therapeutic target for human BC. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1.

    PubMed

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N; Sif, Saïd

    2012-08-24

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage.

  5. A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity

    PubMed Central

    McKell, Allison O.; LaConte, Leslie E. W.

    2017-01-01

    ABSTRACT Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase. IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP1, which is the enzyme responsible for copying the viral RNA genome. The mutation is located in a poorly understood region of the polymerase called the N-terminal domain. In this study, we determined that the mutation reduces the ability of VP1 to properly localize within infected cells at high temperatures, as well as reduced the ability of the enzyme to copy viral RNA in a test tube. The results of this study explain the temperature sensitivity of SA11-tsC and shed new light on functional protein-protein interaction sites of VP1. PMID:28100623

  6. Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus).

    PubMed

    Chen, H P; Deng, S P; Dai, M L; Zhu, C H; Li, G L

    2016-04-07

    Androgen plays critical roles in vertebrate reproductive systems via androgen receptors (ARs). In the present study, the full-length spotted scat (Scatophagus argus) androgen receptor (sAR) cDNA sequence was cloned from testis. The sAR cDNA measured 2448 bp in length with an open-reading frame of 2289 bp, encoding 763 amino acids. Amino acid alignment analyses showed that the sARs exhibited highly evolutionary conserved functional domains. Phylogenetically, the sARs clustered within the ARβ common vertebrate group. Real-time polymerase chain reaction (RT-PCR) revealed that sAR expression varied in level and distribution throughout the tissues of both females and males. sAR expression was detected during testicular development by quantitative RT-PCR. The results showed that the highest transcription of sARs was observed in the mid-testicular stage, and remained at a high expression level until the late-testicular stage. In addition, the effects of 17α-methyltestosterone (MT) and estrogen (E2) on the expression of sARs in ovaries were determined using quantitative RT-PCR. sAR expression increased at 12 and 24 h post-MT treatment and decreased with E2 treatment. The present study provides preliminary evidence indicating gonadal plasticity of spotted scat under exogenous steroidal hormone treatments. It also provides a theoretical basis for sex reversal and production of artificial pseudo-males for female monosex breeding.

  7. Effect of systemic administration of lipopolysaccharides derived from Porphyromonas gingivalis on gene expression in mice kidney.

    PubMed

    Harada, Fumiya; Uehara, Osamu; Morikawa, Tetsuro; Hiraki, Daichi; Onishi, Aya; Toraya, Seiko; Adhikari, Bhoj Raj; Takai, Rie; Yoshida, Koki; Sato, Jun; Nishimura, Michiko; Chiba, Itsuo; Wu, Ching Zong; Abiko, Yoshihiro

    2018-01-31

    Although an association between periodontitis and chronic kidney disease (CKD) has been suggested, the mechanism involved remains unclear. Herein, we examined the global gene expression profile in a mouse model that showed no acute inflammation in the kidney following stimulation with lipopolysaccharides (LPS) derived from Porphyromonas gingivalis (PG-LPS). The mice were injected with PG-LPS at a concentration of 5 mg/kg intraperitoneally, every 3 days, for 1 month. Microarray analysis was used to identify 10 genes with the highest expression levels in the kidney stimulated with PG-LPS. Among them, the functions of five genes (Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1) were known. The upregulation of these genes was confirmed by quantitative polymerase chain reaction assay. Furthermore, we examined whether the expression of these upregulated genes were altered in endothelial cells derived from the kidney, in vitro. The mRNA expression levels of all five genes were significantly higher in the experimental group than in the controls (no LPS stimulation; *p < 0.05). In conclusion, the responses noted in the kidney may have arisen mainly from the endothelial cells. Moreover, upregulation of the expression levels of Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1 may be associated with the pathogenesis of CKD.

  8. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  9. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  10. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells.

    PubMed

    Chui, Amy; Gunatillake, Tilini; Brennecke, Shaun P; Ignjatovic, Vera; Monagle, Paul T; Whitelock, John M; van Zanten, Dagmar E; Eijsink, Jasper; Wang, Yao; Deane, James; Borg, Anthony J; Stevenson, Janet; Erwich, Jan Jaap; Said, Joanne M; Murthi, Padma

    2017-06-01

    Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced BGN and the downstream targets of BGN were determined. Furthermore, the expression of targets was validated in primary placental endothelial cells isolated from FGR or control pregnancies. APPROACH AND RESULTS: BGN expression was determined using real-time polymerase chain reaction in placental tissues collected during chorionic villous sampling performed at 10 to 12 weeks' gestation from pregnancies that had known clinical outcomes, including SGA. Short-interference RNA reduced BGN expression in telomerase-immortalized microvascular endothelial cells, and the effect on proliferation, angiogenesis, and thrombin generation was determined. An angiogenesis array identified downstream targets of BGN, and their expression in control and FGR primary placental endothelial cells was validated using real-time polymerase chain reaction. Reduced BGN expression was observed in SGA placental tissues. BGN reduction decreased network formation of telomerase-immortalized microvascular endothelial cells but did not affect thrombin generation or cellular proliferation. The array identified target genes, which were further validated: angiopoetin 4 ( ANGPT4 ), platelet-derived growth factor receptor α ( PDGFRA ), tumor necrosis factor superfamily member 15 ( TNFSF15 ), angiogenin ( ANG ), serpin family C member 1 ( SERPIN1 ), angiopoietin 2 ( ANGPT2 ), and CXC motif chemokine 12 ( CXCL12 ) in telomerase-immortalized microvascular endothelial cells and primary placental endothelial cells obtained from control and FGR pregnancies. This study reports a temporal relationship between altered placental BGN expression and subsequent development of SGA. Reduction of BGN in vascular endothelial cells leads to disrupted network formation and alterations in the expression of genes involved in angiogenesis. Therefore, differential expression of these may contribute to aberrant angiogenesis in SGA pregnancies. © 2017 American Heart Association, Inc.

  11. Increased Expression of Interleukin-18 mRNA is Associated with Carotid Artery Stenosis

    PubMed

    Arapi, Berk; Bayoğlu, Burcu; Cengiz, Müjgan; Dirican, Ahmet; Deser, Serkan Burç; Junusbekov, Yerik; Arslan, Caner

    2018-05-29

    Carotid artery stenosis is the atherosclerotic narrowing of the proximal internal carotid artery and one of the primary causes of stroke. Elevated expression of the pleiotropic proinflammatory cytokine interleukin-18 has been demonstrated in human atherosclerotic plaques. To investigate whether the mRNA expression levels of interleukin-18 and interleukin-18-binding protein and interleukin-18 −137 G/C (rs187238) variants are associated with carotid artery stenosis development. Case-control study. The mRNA expression levels of interleukin-18 and interleukin-18-binding protein and interleukin-18 rs187238 variants were evaluated by quantitative real-time polymerase chain reaction and real-time polymerase chain reaction, respectively, in the peripheral blood mononuclear cells of 70 patients with carotid artery stenosis (36 symptomatic, 34 asymptomatic) and 75 healthy controls. Interleukin-18 mRNA expression was significantly increased in carotid artery stenosis patients compared to that in healthy controls (p=0.01). However, no significant difference was observed between interleukin-18-binding protein mRNA expression levels in patients with carotid artery stenosis and those in controls (p=0.101). Internal carotid artery stenosis severity was significantly higher in symptomatic patients than that in asymptomatic patients (p<0.001). A significant relationship was identified between interleukin-18 expression and internal carotid artery stenosis severity in patients with carotid artery stenosis (p=0.051). Interleukin-18 rs187238 polymorphism genotype frequencies did not significantly differ between patients with carotid artery stenosis and controls (p=0.246). A significant difference was identified between interleukin-18-binding protein gene expression and symptomatic and asymptomatic patients (p=0.026), but there was no difference in interleukin-18 expression between the symptomatic and asymptomatic subgroups (p=0.397). Interleukin-18 mRNA expression may affect carotid artery stenosis etiopathogenesis and internal carotid artery stenosis severity and also may play a mechanistic role in the pathogenesis of carotid artery stenosis, influencing the appearance of symptoms.

  12. Low-intensity pulsed ultrasound produced an increase of osteogenic genes expression during the process of bone healing in rats.

    PubMed

    Fávaro-Pípi, Elaine; Bossini, Paulo; de Oliveira, Poliani; Ribeiro, Juliana Uema; Tim, Carla; Parizotto, Nivaldo A; Alves, Jose Marcos; Ribeiro, Daniel Araki; Selistre de Araújo, Heloísa Sobreiro; Renno, Ana Claudia Muniz

    2010-12-01

    The aim of this study was to measure the temporal expression of osteogenic genes during the process of bone healing in low-intensity pulsed ultrasound (LIPUS) treated bone defects by means of histopathologic and real-time polymerase chain reaction (PCR) analysis. Animals were randomly distributed into two groups (n = 30): control group (bone defect without treatment) and LIPUS treated (bone defect treated with LIPUS). On days 7, 13 and 25 postinjury, 10 rats per group were sacrificed. Rats were treated with a 30 mW/cm(2) LIPUS. The results pointed out intense new bone formation surrounded by highly vascularized connective tissue presenting a slight osteogenic activity, with primary bone deposition was observed in the group exposed to LIPUS in the intermediary (13 days) and late stages of repair (25 days) in the treated animals. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) showed an upregulation of bone morphogenetic protein 4 (BMP4), osteocalcin and Runx2 genes 7 days after the surgery. In the intermediary period, there was no increase in the expression. The expression of alkaline phosphatase, BMP4 and Runx2 was significantly increased at the last period. Our results indicate that LIPUS therapy improves bone repair in rats and upregulated osteogenic genes, mainly at the late stages of recovery. Copyright © 2010. Published by Elsevier Inc.

  13. Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip.

    PubMed

    Xia, Yanling; Qu, Haomiao; Lu, Binshan; Zhang, Qiang; Li, Heping

    2018-04-01

    Molecular cloning and bioinformatics analysis of annexin A2 ( ANXA2 ) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer ( Cervus Nippon hortulorum ) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus . Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  14. PARP-1 serves as a novel molecular marker for hepatocellular carcinoma in a Southern Chinese Zhuang population.

    PubMed

    Li, Jiatong; Dou, Dongwei; Li, Ping; Luo, Wenqi; Lv, Wenxin; Zhang, Chengdong; Song, Xiaowei; Yang, Yuan; Zhang, Yuening; Xu, Yanzhen; Xiao, Feifan; Wei, Yan; Qin, Jian; Li, Hongtao; Yang, Xiaoli

    2017-07-01

    PARP-1 (poly(ADP-ribose) polymerase-1) plays an important role in tumorigenesis. Since its effects on different populations are varied, this study investigated the impact of PARP-1 on primary hepatocellular carcinoma in a Southern Chinese Zhuang population. We assessed the global PARP-1 messenger RNA expression in patients with hepatocellular carcinoma using The Cancer Genome Atlas dataset. Increased PARP-1 expression, related to alpha-fetoprotein level, was observed. The area under the receiver operating characteristic curve value was 0.833. Kaplan-Meier survival curves indicated that higher PARP-1 expression was not correlated with poorer overall survival and recurrence-free survival. In a Zhuang population, PARP-1 messenger RNA and protein levels were increased in the hepatocellular carcinoma tissue and its adjacent liver tissues as assessed by quantitative polymerase chain reaction, immunohistochemistry, and western blotting. Higher PARP-1 level was associated with a higher tumor stage (p < 0.05), without correlation with age, gender, smoking, drinking, tumor size, serum alpha-fetoprotein level, hepatitis B virus infection, metastasis, and invasion (p > 0.05). Further analysis suggested that H2AX, a PARP-1 protein interaction partner, was coordinated with PARP-1 in hepatocellular carcinoma tumorigenesis. Overall, some new characteristics of PARP-1 expression were noted in the Zhuang population. PARP-1 is a novel promising diagnostic marker for hepatocellular carcinoma in the Southern Chinese Zhuang population.

  15. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines

    PubMed Central

    Kim, Jong In; Lee, Chang Min; Park, Eok-Sung; Kim, Ki Nyun; Kim, Hyung Chul; Lee, Hae Young

    2012-01-01

    Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer. PMID:22363901

  16. b-FGF induces corneal blood and lymphatic vessel growth in a spatially distinct pattern.

    PubMed

    Hajrasouliha, Amir R; Sadrai, Zahra; Chauhan, Sunil K; Dana, Reza

    2012-07-01

    To study the spatial variances in ligand expression and angiogenic effect in response to the inflammatory response induced by basic fibroblast growth factor (b-FGF). b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of Balb/c mice. On days 1, 3, and 7, blood (heme-) and lymphangiogenesis were observed by immunofluorescence staining of corneal flat mounts with LYVE-1 and CD31 to identify lymphatic and blood vessels, respectively. A second group of corneas were harvested for quantitative real-time polymerase chain reaction. Each cornea was divided into 2 different areas: (1) pre-pellet area and (2) opposite-pellet area. Expression of vascular endothelial growth factor (VEGF) ligands was evaluated using real-time polymerase chain reaction in each respective zone. Blood vessels grew into the cornea from the pre-pellet area, whereas corneal lymphatic vessels grew from the opposite-pellet area toward the center of the cornea. VEGF-A was upregulated in the pre-pellet, whereas VEGF-D expression was mostly observed in the opposite-pellet area. VEGF-C level increased simultaneously in both areas. A single inducing factor, that is, b-FGF, may simultaneously provoke hemangiogenesis and lymphangiogenesis in different locations of the cornea through differential expression of VEGF ligands. This distinctive spatial pattern should be considered while evaluating the corneal predilection for inflammation beyond that which is directly visible by slit lamp examination.

  17. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.

    PubMed

    Kang, J J; Yokoi, T J; Holland, M J

    1995-12-01

    The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.

  18. Functional conservation of RNA polymerase II in fission and budding yeasts.

    PubMed

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  19. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution.

    PubMed

    Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath

    2017-08-23

    Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.

  20. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tissue Phthalate Levels Correlate With Changes in Immune Gene Expression in a Population of Juvenile Wild Salmon.

    PubMed

    Martins, Kelly; Hagedorn, Birgit; Ali, Shareen; Kennish, John; Applegate, Ben; Leu, Matthias; Epp, Lidia; Pallister, Chris; Zwollo, Patty

    2016-07-01

    Phthalates have detrimental effects on health and have been shown to dysregulate the immune system of mammals, birds, and fish. We recently reported that di(2-ethylhexyl) phthalate exposure reduces the abundance and inhibits the proliferation of rainbow trout (Oncorhynchus mykiss) IgM(+) B lymphocytes and expression of secreted immunoglobulin heavy-chain mu transcripts in an in vitro culture system. We proposed that phthalates act as immunomodulators by modifying the normal B cell-activation pathways by accelerating B cell differentiation while suppressing plasmablast expansion, thus resulting in fewer IgM-secreting plasma cells. This hypothesis was tested here in an in vivo field study of juvenile Dolly Varden (Salvelinus malma) from a plastic-polluted lake in the Gulf of Alaska. Fish tissues were analyzed for both phthalate levels using liquid chromatography-coupled tandem mass spectrometry and for changes in immune gene expression using reverse transcriptase-real time polymerase chain reaction. Results showed that fish with higher tissue levels of di(2-ethylhexyl) phthalate, di(n-butyl) phthalate, and/or dimethyl phthalate expressed significantly fewer secreted and membrane-bound immunoglobulin heavy-chain mu and Blimp1 transcripts in their hematopoietic tissue. This suggests that in vivo uptake of phthalates in fish changes the expression of B cell-specific genes. Chronic exposure to phthalates likely dysregulates normal B-lymphoid development and antibody responses in salmonids and may increase susceptibility to infection. Given the conserved nature of B-lineage cells in vertebrate animals, other marine species may be similarly affected by chronic phthalate exposure.

  2. Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system.

    PubMed

    Okochi, Mina; Tsuchiya, Hiroyoshi; Kumazawa, Fumitaka; Shikida, Mitsuhiro; Honda, Hiroyuki

    2010-02-01

    A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a powerful tool for various biochemical applications by moving and coalescing sample droplets using magnetic beads immersed in mineral oil. The droplet containing magnetic beads and the cells were manipulated with the magnet located underneath the channel, and coalesced with a droplet of lysis buffer. Using K562 cells as the leukemia model, the cell lysis, cDNA synthesis, and amplification of WT1 gene that is known as the prognostic factor for acute leukemia were successfully performed from a single cell. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis.

    PubMed Central

    Widmer, G; Keenan, M C; Patterson, J L

    1990-01-01

    Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680

  4. Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major.

    PubMed

    Ma, Jing; Liu, Fei; Du, Xin; Ma, Duan; Xiong, Likuan

    2017-03-01

    β-thalassemia is caused by β-globin gene mutations. However, heterogeneous phenotypes were found in individuals with same genotype, and still undescribed mechanism underlies such variation. We collected blood samples from 30 β-thalassemia major, 30 β-thalassemia minor patients, and 30 matched normal controls. Human lncRNA Array v2.0 (8 × 60 K, Arraystar) was used to detect changes in long non-coding RNAs (lncRNAs) and mRNAs in three samples each from β-thalassemia major, β-thalassemia minor, and control groups. Compared with normal controls, 1424 and 2045 lncRNAs were up- and downregulated, respectively, in β-thalassemia major patients, whereas 623 and 349 lncRNAs were up- and downregulated, respectively, in β-thalassemia minor patients. Compared with β-thalassemia minor group, 1367 and 2356 lncRNAs were up- and downregulated, respectively, in β-thalassemia major group. We selected five lncRNAs that displayed altered expressions (DQ583499, X-inactive specific transcript (Xist), lincRNA-TPM1, MRFS16P, and lincRNA-RUNX2-2) and confirmed their expression levels in all samples using real-time polymerase chain reaction. Based on coding-noncoding gene co-expression network and gene ontology biological process analyses, several signaling pathways were associated with three common organ systems exhibiting β-thalassemia phenotypes: hematologic, skeletal, and hepatic systems. This study implicates that abnormal expression levels of lncRNAs and mRNA in β-thalassemia cases may be correlated with its various clinical phenotypes.

  5. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    PubMed

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological samples in order to validate this method and then generate a diagnostic kit for Paracoccidioidomycosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa.

    PubMed

    Schlapbach, Christoph; Hänni, Tanja; Yawalkar, Nikhil; Hunger, Robert E

    2011-10-01

    Hidradenitis suppurativa is a debilitating chronic disease primarily affecting intertriginous skin of the axillae, perineum, and inframammary regions. The pathogenesis of this inflammatory disease is still poorly understood. Recently, increased attention has been paid to the role of the immune system. Since the interleukin 12 (IL-12)/T helper 1 (Th1) and the IL-23/Th17 pathways are believed to be crucially involved in the pathogenesis of multiple chronic inflammatory diseases, we investigated the expression and cellular source of IL-12, IL-23, and IL-17 in hidradenitis suppurativa. Ten patients with hidradenitis suppurativa were included in the study. Tissue samples were obtained from lesional skin and compared with healthy skin as a control. Expression of IL-12, IL-23, and IL-17 was analyzed by semiquantitative real-time polymerase chain reaction and immunohistochemistry, and the cellular source of these cytokines was determined by double immunofluorescence. IL-12 and IL-23 were found to be abundantly expressed by macrophages infiltrating papillary and reticular dermis of lesional skin. In accordance with the high expression of IL-23 and its important role in the development of T helper 17 (Th17) cells, IL-17-producing T helper cells were found to distinctly infiltrate lesional dermis. The sample size was small. Our findings suggest that the IL-23/Th17 pathway is expressed in hidradenitis suppurativa and further support involvement of the immune system. Moreover, targeting the IL-12/IL-23-common subunit p40 with novel monoclonal antibodies may represent a new option for the treatment of this recalcitrant disease. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Opioid receptors and their ligands in the musculoskeletal system and relevance for pain control.

    PubMed

    Spetea, Mariana

    2013-01-01

    Interest in opioid drugs like morphine, as the oldest and most potent pain-killing agents known, has been maintained through the years. One of the most frequent chronic pain sensations people experience is associated with pathological conditions of the musculoskeletal system. Chronic musculoskeletal pain is a major health problem, and an adequate management requires understanding of both peripheral and central components, with more attention drawn to the former. Intense experimental and clinical research activities resulted in important knowledge on the mechanisms and functions of the endogenous opioid system located in the periphery. This review describes the occurrence and distribution of endogenous opioids and their receptors in the musculoskeletal system, and their role in pain control in musculoskeletal disorders, such as rheumatoid arthritis and osteoarthritis. Using different techniques, including immunohistochemistry, electron microscopy or radioimmunoassay, expression of enkephalins, dynorphin, β-endorphin, and endomorphins was demonstrated in musculoskeletal tissues of animals and humans. Localization of opioid peptides was found in synovial membrane, periosteum, bone and bone marrow, loose connective tissue, the paratenon and musculotendinous junction of the achilles tendon. Animal and human studies have also demonstrated expression of µ, δ and κ opioid receptor proteins in musculoskeletal tissues using radioligand binding assays, autoradiography, electrophysiology, immunohistochemistry and Western blotting. Opioid receptor gene expression was reported based on polymerase chain reaction and in situ hybridization techniques. Combining morphological and quantitative approaches, important evidence that the musculoskeletal apparatus is equipped with a peripheral opioid system is provided. Demonstration of the occurrence of an endogenous opioid system in bone and joint tissues represents an essential step for defining novel pharmacological strategies to attain peripheral control of pain in musculoskeletal disorders.

  8. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    PubMed

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  9. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.

    PubMed Central

    Pedraza-Reyes, M; Gutiérrez-Corona, F; Nicholson, W L

    1994-01-01

    Bacterial spores are highly resistant to killing by UV radiation and exhibit unique DNA photochemistry. UV irradiation of spore DNA results in formation of spore photoproduct (SP), the thymine dimer 5-thyminyl-5,6-dihydrothymine. Repair of SP occurs during germination of Bacillus subtilis spores by two distinct routes, either by the general nucleotide excision repair (uvr) pathway or by a novel SP-specific monomerization reaction mediated by the enzyme SP lyase, which is encoded by the spl gene. Repair of SP occurs early in spore germination and is independent of de novo protein synthesis, suggesting that the SP repair enzymes are synthesized during sporulation and are packaged in the dormant spore. To test this hypothesis, the expression of a translational spl-lacZ fusion integrated at the spl locus was monitored during B. subtilis growth and sporulation. beta-Galactosidase expression from the spl-lacZ fusion was silent during vegetative growth and was not DNA damage inducible, but it was activated at morphological stage III of sporulation specifically in the forespore compartment, coincident with activation of expression of the stage III marker enzyme glucose dehydrogenase. Expression of the spl-lacZ fusion was shown to be dependent upon the sporulation-specific RNA polymerase containing the sigma-G factor (E sigma G), as spl-lacZ expression was abolished in a mutant harboring a deletion in the sigG gene and restored by expression of the sigG gene in trans. Primer extension analysis of spl mRNA revealed a major extension product initiating upstream from a small open reading frame of unknown function which precedes spl, and it revealed two other shorter minor extension products. All three extension products were present in higher quantities during sporulation and after sigG induction. The three putative transcripts are all preceded by sequences which share homology with the consensus sigma-G factor-type promoter sequence, but in vitro transcription by purified sigma-G RNA polymerase was detected only from the promoter corresponding to the major extension product. The open reading frame-spl operon therefore appears to be an additional member of the sigma-G regulon, which also includes as members the small, acid-soluble spore proteins which are in large part responsible for spore DNA photochemistry. Therefore, sporulating bacteria appear to coordinately regulate genes whose products not only alter spore DNA photochemistry but also repair the major spore-specific photoproduct during germination Images PMID:8021181

  10. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis.

    PubMed

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-12-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).

  11. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis

    PubMed Central

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A.; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. PMID:27811014

  12. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism

    PubMed Central

    KOBORI, HIROYUKI; ICHIHARA, ATSUHIRO; SUZUKI, HIROMICHI; TAKENAKA, TSUNEO; MIYASHITA, YUTAKA; HAYASHI, MATSUHIKO; SARUTA, TAKAO

    2008-01-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism. PMID:9277473

  13. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    PubMed

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  14. Comparison of multiple gene assembly methods for metabolic engineering

    Treesearch

    Chenfeng Lu; Karen Mansoorabadi; Thomas Jeffries

    2007-01-01

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase...

  15. Genome-wide characterization of Mediator recruitment, function, and regulation.

    PubMed

    Grünberg, Sebastian; Zentner, Gabriel E

    2017-05-27

    Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.

  16. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon.

    PubMed

    Wang, Hao-Ven; Vaupel, Kristina; Buettner, Reinhard; Bosserhoff, Anja-Katrin; Moser, Markus

    2004-09-01

    AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues. By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we identified a fifth, previously unknown AP-2-related gene, AP-2 epsilon. AP-2 epsilon encodes an open reading frame of 434 amino acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses of murine embryos revealed AP-2 epsilon expression from gestational stage embryonic day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2 epsilon cDNA fragment demonstrated that during embryogenesis, expression of AP-2 epsilon is mainly restricted to neural tissue, especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by immunohistochemistry with an AP-2 epsilon-specific antiserum. By using this antiserum, we could further localize AP-2 epsilon expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important function of AP-2 epsilon for the development of the olfactory system.

  18. CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom's Macroglobulinemia and mast cell disorders.

    PubMed

    Santos, Daniel Ditzel; Hatjiharissi, Evdoxia; Tournilhac, Olivier; Chemaly, Mariana Z A; Leleu, Xavier; Xu, Lian; Patterson, Christopher; Branagan, Andrew R; Manning, Robert J; Ho, Allen W; Hunter, Zachary R; Dimmock, Elizabeth A; Kutok, Jeffery L; Churchill, Winthrop H; Castells, Mariana C; Tai, Yu-Tzu; Anderson, Kenneth C; Treon, Steven P

    2006-05-01

    Alemtuzumab is a monoclonal antibody used in the treatment of CD52-expressing B-cell malignancies, including Waldenstrom's macroglobulinemia (WM). Recent studies demonstrate high levels of alemtuzumab activity in relapsed/refractory disease. One potential target of alemtuzumab is bone marrow mast cells (BMMCs), which provide growth and survival signaling for WM lymphoplasmacytic cells. We therefore examined BMMCs (FceRI+, CD117+) from WM and other mast cell (MC) disorders for expression of CD52. We identified cell surface antigen expression by multicolor flow cytometric analysis and found CD52 expressed on human mast-derived cell line-1 (HMC-1) and LAD2 MC lines, on BMMC from 13 of 15 patients with WM, and on BMMCs from 4 of 4 patients with systemic mastocytosis (SM). None of 4 healthy donors expressed CD52. Reverse-transcriptase polymerase chain reaction analysis confirmed CD52 expression in the HMC-1 and LAD2 MC lines, in BMMCs from 14 of 15 patients with WM, and 3 of 3 patients with SM. CD52 transcripts were also detected in BMMCs from 6 of 6 healthy donors, despite the absence of CD52 cell surface expression. Importantly, we observed high levels of alemtuzumab-mediated, antibody-dependent, cell-mediated cytotoxicity against LAD2 MCs and BMMCs from patients with WM and SM. These studies demonstrate that CD52 is widely expressed on human MCs and WM bone marrow lymphoplasmacytic cells and provide the preclinical rationale for the use of alemtuzumab in the treatment of WM and possibly other MC-related disorders.

  19. Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro.

    PubMed

    Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V

    2017-02-01

    Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Polymerase Chain Reaction for Detection of Systemic Plant Pathogens

    USDA-ARS?s Scientific Manuscript database

    This chapter outlines the advances and application of the polymerase chain reaction (PCR) since its development in 1984 and its enhancements and applications to detection of viruses, viroids and phytoplasma in pome and stone fruits. PCR is probably the most rapidly and widely adopted technology eve...

  1. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    ERIC Educational Resources Information Center

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  2. Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells.

    PubMed

    Wang, Linli; Chen, Yuehua; Guan, Chunyan; Zhao, Zhiju; Li, Qiang; Yang, Jianguo; Mo, Jian; Wang, Bin; Wu, Wei; Yang, Xiaohui; Song, Libing; Li, Jun

    2017-11-02

    Because the lack of an induced pluripotent stem cell (iPSC) induction system with optimal safety and efficiency limits the application of these cells, development of such a system is important. To create such an induction system, we screened a variety of reprogrammed plasmid combinations and multiple compounds and then verified the system's feasibility using urine cells from different individuals. We also compared large-scale iPSC chromosomal variations and expression of genes associated with genomic stability between this system and the traditional episomal system using karyotype and quantitative reverse transcription polymerase chain reaction analyses. We developed a high-efficiency episomal system, the 6F/BM1-4C system, lacking tumorigenic factors for human urine-derived cell (hUC) reprogramming. This system includes six low-risk factors (6F), Oct4, Glis1, Klf4, Sox2, L-Myc, and the miR-302 cluster. Transfected hUCs were treated with four compounds (4C), inhibitor of lysine-demethylase1, methyl ethyl ketone, glycogen synthase kinase 3 beta, and histone deacetylase, within a short time period. Comparative analysis revealed significantly decreased chromosomal variation in iPSCs and significantly increased Sirt1 expression compared with iPSCs induced using the traditional episomal system. The 6F/BM1-4C system effectively induces reprogramming of urine cells in samples obtained from different individuals. iPSCs induced using the 6F/BM1-4C system are more stable at the cytogenetic level and have potential value for clinical application.

  3. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III[OPEN

    PubMed Central

    Wang, Jiechen; Ye, Jianwei; Zheng, Xixi; Xiang, Xiaoli; Li, Changsheng; Fu, Miaomiao; Wang, Qiong; Zhang, Zhiyong; Wu, Yongrui

    2017-01-01

    Maize (Zea mays) floury3 (fl3) is a classic semidominant negative mutant that exhibits severe defects in the endosperm but fl3 plants otherwise appear normal. We cloned the fl3 gene and determined that it encodes a PLATZ (plant AT-rich sequence and zinc binding) protein. The mutation in fl3 resulted in an Asn-to-His replacement in the conserved PLATZ domain, creating a dominant allele. Fl3 is specifically expressed in starchy endosperm cells and regulated by genomic imprinting, which leads to the suppressed expression of fl3 when transmitted through the male, perhaps as a consequence the semidominant behavior. Yeast two-hybrid screening and bimolecular luciferase complementation experiments revealed that FL3 interacts with the RNA polymerase III subunit 53 (RPC53) and transcription factor class C 1 (TFC1), two critical factors of the RNA polymerase III (RNAPIII) transcription complex. In the fl3 endosperm, the levels of many tRNAs and 5S rRNA that are transcribed by RNAPIII are significantly reduced, suggesting that the incorrectly folded fl3 protein may impair the function of RNAPIII. The transcriptome is dramatically altered in fl3 mutants, in which the downregulated genes are primarily enriched in pathways related to translation, ribosome, misfolded protein responses, and nutrient reservoir activity. Collectively, these changes may lead to defects in endosperm development and storage reserve filling in fl3 seeds. PMID:28874509

  4. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects

    NASA Astrophysics Data System (ADS)

    Song, Yong-Shun; Shu, Yao-Gen; Zhou, Xin; Ou-Yang, Zhong-Can; Li, Ming

    2017-01-01

    The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.

  5. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

    PubMed

    Jackson, D A; Pombo, A; Iborra, F

    2000-02-01

    The control of RNA synthesis from protein-coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega-complex-the RNA polymerase II holoenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.-Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

  6. Vancomycin modifies the expression of the agr system in multidrug-resistant Staphylococcus aureus clinical isolates

    PubMed Central

    Cázares-Domínguez, Vicenta; Ochoa, Sara A.; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Escalona, Gerardo; Olivares, Alma L.; Olivares-Trejo, José de Jesús; Velázquez-Guadarrama, Norma; Xicohtencatl-Cortes, Juan

    2015-01-01

    Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. Methods: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. Results: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. Conclusion: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors. PMID:25999924

  7. Specific Detection of Campylobacter Jejuni and Campylobacter Coli by Using Polymerase Chain Reaction

    DTIC Science & Technology

    1992-10-01

    indicated a high degree of SSC buffer (1x SSC is 0.15 M NaC! plus 0.015 M sodium conservation at the amino terminus of the protein (20). We citrate...Guerry, P., S. M. Logan, S. A. Thornton, and T. J. Trust. 1990. American Society for Microbiology, Washington, D.C. Genomic organization and expression of...Probes 4:261-271. 1981. Construction and expression of recombinant plasmids 36. Taylor, D. N. 1991. Campylobacter infections in developing encoding type 1

  8. Mitochondrial Gene Cytochrome b Developmental and Environmental Expression in Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2009-11-01

    Culicidae), a primary vector of dengue and yellow fever viruses, has not been explored. By using real- time quantitative polymerase chain reaction (qPCR...pesticide) on AeaCytB gene expression. Taken together, these results suggest thatAeaCytB gene plays an important role in the development of Ae. aegypti...2and 9 d old) were exposed to three temperatures (24, 37, and 40C) and 56 1.5% RH in an environmental chamber (L-C incubator, Lab-Line Instruments

  9. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  10. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana.

    PubMed

    Trinh, Cao Son; Jeong, Chan Young; Lee, Won Je; Truong, Hai An; Chung, Namhyun; Han, Juhyeong; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    In this study, a novel plant growth-promoting rhizobacteria (PGPR), the bacterial strain Paenibacillus pabuli P7S (PP7S), showed promising plant growth-promoting effects. Furthermore, it induced anthocyanin accumulation in Arabidopsis. When co-cultivated with PP7S, there was a significant increase in anthocyanin content and biomass of Arabidopsis seedlings compared with those of the control. The quantitative reverse transcription-polymerase chain reaction analysis revealed higher expression of many key genes regulating anthocyanin and flavonoid biosynthesis pathways in PP7S-treated seedlings when compared with that of the control. Furthermore, higher expression of pathogen-related genes and microbe-associated molecular pattern genes was also observed in response to PP7S, indicating that the PGPR triggered the induced systemic response (ISR) in A. thaliana. These results suggest that PP7S promotes plant growth in A. thaliana and increases anthocyanin biosynthesis by triggering specific ISRs in plant. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Subcellular Localization of Patched and Smoothened, the Receptors for Sonic Hedgehog Signaling, in the Hippocampal Neuron

    PubMed Central

    Petralia, Ronald S.; Schwartz, Catherine M.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2011-01-01

    Cumulative evidence suggests that, aside from patterning the embryonic neural tube, Sonic hedgehog (Shh) signaling plays important roles in the mature nervous system. In this study, we investigate the expression and localization of the Shh signaling receptors, Patched (Ptch) and Smoothened (Smo), in the hippocampal neurons of young and mature rats. Reverse transcriptase-polymerase chain reaction and immunoblotting analyses show that the expression of Ptch and Smo remains at a moderate level in young postnatal and adult brains. By using immunofluorescence light microscopy and immunoelectron microscopy, we examine the spatial distribution of Ptch and Smo within the hippocampal neurons. In young developing neurons, Ptch and Smo are present in the processes and are clustered at their growth cones. In mature neurons, Ptch and Smo are concentrated in dendrites, spines, and postsynaptic sites. Synaptic Ptch and Smo often co-exist with unusual structures—synaptic spinules and autophagosomes. Our results reveal the anatomical organization of the Shh receptors within both the young and the mature hippocampal neurons. PMID:21618238

  12. Estrogen Drives Cellular Transformation and Mutagenesis in Cells Expressing the Breast Cancer-Associated R438W DNA Polymerase Lambda Protein.

    PubMed

    Nemec, Antonia A; Bush, Korie B; Towle-Weicksel, Jamie B; Taylor, B Frazier; Schulz, Vincent; Weidhaas, Joanne B; Tuck, David P; Sweasy, Joann B

    2016-11-01

    Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Measurement of indicator genes using global complementary DNA (cDNA) amplification, by polyadenylic acid reverse transcriptase polymerase chain reaction (poly A RT-PCR): A feasibility study using paired samples from tissue and ductal juice in patients undergoing pancreatoduodenectomy.

    PubMed

    Sanyal, Sudip; Siriwardena, Ajith K; Byers, Richard

    2018-06-01

    The aim of this study is to compare gene expression profiles in RNA isolated from pancreatic ductal juice with the RNA expression profiles of the same genes from matched intra-operative tissue samples from pancreatic tumours. Intra-operative sampling of pancreatic juice and collection of matched tissue samples was undertaken in patients undergoing pancreatoduodenectomy for clinically suspected pancreatic cancer and a precursor lesion, main-duct intraductal papillary mucinous neoplasm. RNA was isolated and Poly A PCR was used to globally amplify the RNA. Real-time polymerase chain reaction (RT-PCR) was used to measure expression levels of 17 genes selected from microarray studies. Spearman's rank correlation test was used to examine the relationship of gene expression between pancreatic juice and tissue. The study was approved by Regional Ethics Committee. Mesothelin (MSLN) showed significant correlation (p < 0.008) in expression levels between paired pancreatic juice and tissue samples in pancreas cancer. In intraductal papillary mucinous neoplasms (IPMN), Matrix Metalloproteinase 7 (MMP7), showed significant correlation (p < 0.01) in the expression levels between paired pancreatic juice and tissue samples. This study confirms that RNA analysis of paired pancreatic juice and tissue samples and establishment of cDNA using poly A PCR is technically feasible. Application of the technique to non-invasively obtained pancreatic juice during endoscopic assessment of tumours and the use of gene arrays of cancer indicator genes are the next steps in development of this technique. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  14. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.

    PubMed

    Zheng, W Y; Wang, Y; Zhang, Z C; Yan, F

    2015-10-05

    We examined the immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genomic DNA from the M5 strain of goat Brucella was amplified by polymerase chain reaction and cloned into the prokaryotic expression vector pGEX-4T-1. The expression and immunological characteristics of the fusion protein GST-omp31 were subjected to preliminary western blot detection with goat Brucella rabbit immune serum. The Brucella immunized BALB/c mouse serum was detected using purified protein. The high-potency mouse splenocytes and myeloma Sp2/0 cells were fused. Positive clones were screened by enzyme-linked immunosorbent assay to establish a hybridoma cell line. Mice were inoculated intraperitoneally with hybridoma cells to prepare ascites. The mAb was purified using the n-caprylic acid-ammonium sulfate method. The characteristics of mAb were examined using western blotting and enzyme-linked immunosorbent assay. A 680-base pair band was observed after polymerase chain reaction. Enzyme digestion identification and sequencing showed that the pGEX-4T-1-omp31 prokaryotic expression vector was successfully established; a target band of approximately 57 kDa with an apparent molecular weight consistent with the size of the target fusion protein. At 25°C, the expression of soluble expression increased significantly; the fusion protein GST-omp31 was detected by western blotting. Anti-omp31 protein mAb was obtained from 2 strains of Brucella. The antibody showed strong specificity and sensitivity and did not cross-react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus pyocyaneus. The pGEX-4T-1-omp31 prokaryotic expression vector was successfully established and showed good immunogenicity. The antibody also showed strong specificity and good sensitivity.

  15. Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans

    PubMed Central

    Lee, Matt K.; Pryhuber, Gloria S.; Schwarz, Margaret A.; Smith, Susan M.; Pavlova, Zdena; Sunday, Mary E.

    2005-01-01

    Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD. PMID:15778491

  16. Human methyl purine DNA glycosylase and DNA polymerase ß expression collectively predict sensitivity to temozolomide

    PubMed Central

    Trivedi, Ram N.; Wang, Xiao-hong; Jelezcova, Elena; Goellner, Eva M.; Tang, Jiangbo; Sobol, Robert W.

    2014-01-01

    Over-expression of N-methylpurine DNA glycosylase (MPG) has been suggested as a possible gene therapy approach to sensitize tumor cells to the cell killing effects of temozolomide, an imidazotetrazine-class chemotherapeutic alkylating agent. In the present study, we show that both elevated MPG expression and shRNA-mediated loss of Pol ß expression in human breast cancer cells increases cellular sensitivity to temozolomide. Resistance to temozolomide is restored by complementation of either wild-type human Pol ß or human Pol ß with an inactivating mutation specific to the polymerase active site yet functional for 5′dRP lyase activity. These genetic and cellular studies uniquely demonstrate that over-expression of MPG causes an imbalance in BER leading to an accumulation of cytotoxic 5′dRP lesions and that the 5′dRP lyase activity of Pol ß is required to restore resistance to temozolomide. These results imply that Pol ß dependent 5′dRP lyase activity is the rate-limiting step in BER in these cells and suggests that BER is a tightly balanced pathway for the repair of alkylated bases such as N7-MeG and N3-MeA. Further, we find that 5′dRP-mediated cell death is independent of caspase-3 activation and does not induce the formation of autophagosomes, as measured by GFP-LC3 localization. The experiments presented herein suggest that it will be important to investigate whether an active BER pathway could be partially responsible for the temozolomide-mediated resistance seen in some tumors and that balanced BER protein expression and overall BER capacity may help predict sensitivity to temozolomide. PMID:18477668

  17. N-methylpurine DNA glycosylase and DNA polymerase β modulate BER inhibitor potentiation of glioma cells to temozolomide

    PubMed Central

    Tang, Jiang-bo; Svilar, David; Trivedi, Ram N.; Wang, Xiao-hong; Goellner, Eva M.; Moore, Briana; Hamilton, Ronald L.; Banze, Lauren A.; Brown, Ashley R.; Sobol, Robert W.

    2011-01-01

    Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity. N-methylpurine DNA glycosylase (MPG) initiates BER by removing TMZ-induced N3-methyladenine and N7-methylguanine base lesions, leaving abasic sites (AP sites) in DNA for further processing by BER. Using the human glioma cell lines LN428 and T98G, we report here that potentiation of TMZ via BER inhibition [methoxyamine (MX), the PARP inhibitors PJ34 and ABT-888 or depletion (knockdown) of PARG] is greatly enhanced by over-expression of the BER initiating enzyme MPG. We also show that methoxyamine-induced potentiation of TMZ in MPG expressing glioma cells is abrogated by elevated-expression of the rate-limiting BER enzyme DNA polymerase β (Polβ), suggesting that cells proficient for BER readily repair AP sites in the presence of MX. Further, depletion of Polβ increases PARP inhibitor-induced potentiation in the MPG over-expressing glioma cells, suggesting that expression of Polβ modulates the cytotoxic effect of combining increased repair initiation and BER inhibition. This study demonstrates that MPG overexpression, together with inhibition of BER, sensitizes glioma cells to the alkylating agent TMZ in a Polβ-dependent manner, suggesting that the expression level of both MPG and Polβ might be used to predict the effectiveness of MX and PARP-mediated potentiation of TMZ in cancer treatment. PMID:21377995

  18. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453

  19. Familial 46,XY sex reversal without campomelic dysplasia caused by a deletion upstream of the SOX9 gene

    PubMed Central

    Layman, Lawrence C.; Ullmann, Reinhard; Shen, Yiping; Ha, Kyungsoo; Rehman, Khurram; Looney, Stephen; McDonough, Paul G.; Kim, Hyung-Goo; Carr, Bruce R.

    2014-01-01

    Background 46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. Methods DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. Results A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. Conclusion This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression. PMID:24907458

  20. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    PubMed

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

Top