Science.gov

Sample records for polymeres pour electrolytes

  1. Polymeric electrolytic hygrometer

    NASA Technical Reports Server (NTRS)

    Lawson, D. D. (Inventor)

    1978-01-01

    An improved flow-through electrolytic hygrometer is described which utilizes a long lasting oxidation-resistant, hollow fiber formed from persulfonic acid substituted polytetrafluoroethylene having closely spaced noble metal electrodes in contact with the inner and outer surfaces of the fiber. The fiber is disposed within a chamber so that the moisture-bearing gas passes in contact with at least one surface of the fiber. The electrodes are connected in series to a dc voltage supply and an ammeter. As the gas passes through the chamber, moisture absorbed into the wall of the fiber is electrolyzed to hydrogen and oxygen by the closely spaced electrodes. The amount of electricity required for electrolysis is proportional to the absorbed moisture and is observed on the ammeter.

  2. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  3. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  4. Polymeric Electrolytic Hygrometer For Harsh Environments

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  5. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  6. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  7. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland; Wang, Shanger; Hou, Jun; Sloop, Steven Edward; Han, Yong Bong; Liu, Gao

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  8. Polymeric Electrolyte Containing 12-Crown-4 Ether

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesa; Distefano, Salvador

    1992-01-01

    Experiments show incorporation of 12-crown-4 ether into solid electrolytes based on polyethylene oxide enhances their electrochemical properties. More specifically, 12-crown-4 ether increases Faradaic efficiency for Li+ ions in low-power secondary Li cells and enables operation of these cells at lower temperatures with higher efficiencies.

  9. Morphology of rare-earth polymeric electrolytes

    SciTech Connect

    Puga, M.M.S.; Carlos, L.D.; Abrantes, T.M.A.

    1995-12-01

    The usual two-solvent casting technique was used to prepare a series of poly(ethylene oxide), PEO, and poly(propylene oxide), PPO, electrolytes containing trivalent salts of Eu, Nd, and Pr with concentrations between n = 80 and n = 3 (n is the number of ether oxygen atoms in the polymer chain per lanthanide cation). The films were characterized by differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray microanalysis, and X-ray powder diffraction. The Eu{sup 3+} and Pr{sup 3+} electrolytes with n {ge} 8 exhibit an endothermic peak around 65{degrees}C, which is associated with the melting of crystalline PEO. Films with compositions 16 {ge} n {ge} 7 showed, in addition, a smaller endotherm around 60{degrees}C, which results from a eutectic phase of PEO and PEO/salt complex. The highly concentrated PEO{sub n}EuBr{sub 3} films, n {le} 6, are glassy, transparent, and fragile materials when no traces of water are detected. The stoichiometry of the high-melting-point crystalline complex observed for these Eu{sup 3+} electrolytes appears to be close to an oxygen-cation ratio of 3:1. The morphology of the Nd{sup 3+} electrolytes was found to be independent of the salt concentration. These films are characterized by the presence of a crystalline PEO phase and, probably, a nonstoichiometric PEO-NdCl{sub 3} complex. PPO-EuBr{sub 3} electrolytes are predominantly amorphous and formation of a salt-rich complex phase was also observed at high salt concentrations. 40 refs., 9 figs.

  10. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  11. Solid polymeric electrolytes obtained from modified natural polymers

    NASA Astrophysics Data System (ADS)

    Pawlicka, Agnieszka; Machado, G. O.; Guimaraes, K. V.; Dragunski, Douglas C.

    2003-10-01

    Polysaccharides like starch and cellulose derivatives, hydroxyethylcellulose (HEC) or hydroxypropylcellulose (HPC) were modified to obtain solid polymeric electrolytes. The chemical modifications were performed by the grafting of polymers with poly(ethylene oxide) mono and diisocyanates or JEFFAMINE (Shiff base). The physical modifications were made by the plasticization process of starch and cellulose derivatives with glycerol and ethylene glycol. All the samples obtained from polysaccharides were characterized by X-ray, thermal analysis (DSC) and impedance spectroscopy. The plasticized samples showed low glass transition temperatures (Tg); for HEC the value was about -60°C and for starch it was about -30°C. Tg values for grafted samples were of about -58°C for starch and -7°C for HPC. The low Tg values obtained are important to ensure good ionic conductivity that reached the values of about 10-5 Scm-1 for plasticized samples and 10-6 Scm-1 for grafted ones at room temperature. The good film forming and ionic conductivity properties of the samples of HEC, HPC and starch are very interesting candidates to be used as solid polymer electrolytes.

  12. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    DOE PAGES

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; ...

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10-3 S cm-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  13. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    SciTech Connect

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; Fang, Youxing; Veith, Gabriel M.; Sun, Xiao-Guang; Dai, Sheng

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10-3 S cm-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  14. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  15. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  16. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Polymeric electrolytes for ambient temperature lithium batteries. Final report

    SciTech Connect

    Farrington, G.C.

    1994-06-01

    Samples of a plasticized Li{sup +} polymer electrolyte having high conductivity at room temperature were prepared with mixed plasticizer compositions of ethylene carbonate (EC) and propylene carbonate (PC). The influence of EC:PC in varying proportions with 1M LiAsF{sub 6} as the dissolved salt on the chemical and electrochemical properties of the electrolyte was studied. Electrolytes with mixed EC:PC compositions were found to have greater thermal stability, improved lithium and cathode (V{sub 6}O{sub 13}) interfacial properties, and superior mechanical properties compared to those prepared with pure EC and PC. The results of this work are relevant to possible uses of such electrolytes in energy storage technologies.

  18. Enhancement of MCF Rubber Utilizing Electric and Magnetic Fields, and Clarification of Electrolytic Polymerization.

    PubMed

    Shimada, Kunio

    2017-04-04

    Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor.

  19. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries

    NASA Astrophysics Data System (ADS)

    Appetecchi, G. B.; Kim, G.-T.; Montanino, M.; Carewska, M.; Marcilla, R.; Mecerreyes, D.; De Meatza, I.

    The electrochemical properties of solvent-free, ternary polymer electrolytes based on a novel poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) as polymer host and incorporating PYR 14TFSI ionic liquid and LiTFSI salt are reported. The PIL-LiTFSI-PYR 14TFSI electrolyte membranes were found to be chemically stable even after prolonged storage times in contact with lithium anode and thermally stable up to 300 °C. Particularly, the PIL-based electrolytes exhibited acceptable room temperature conductivity with wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Preliminary battery tests have shown that Li/LiFePO 4 solid-state cells are capable to deliver above 140 mAh g -1 at 40 °C with very good capacity retention up to medium rates.

  20. Polymeric gel electrolytes reinforced with glass-fibre cloth for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Park, Ho Cheol; Chun, Jong Han; Kim, Sang Hern; Ko, Jang Myoun; Jo, Soo Ik; Chung, Jae Sik; Sohn, Hun-Joon

    Polymeric gel electrolytes (PGE), based on polyacrylonitrile blended with poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)), which are reinforced with glass-fibre cloth (GFC) to increase the mechanical strength, are prepared for the practical use in lithium secondary batteries. The resulting electrolytes exhibit electrochemical stability at 4.5 V against lithium metal and a conductivity value of (2.0-2.1)×10 -3 S cm -1 at room temperature. The GFC-PGE electrolytes show excellent strength and flexibility when used in batteries even if they contain a plasticiser. A test cell with LiCoO 2 as a positive electrode and mesophase pich-based carbon fibre (MCF) as a negative electrode display a capacity of 110 mAh g -1 based on the positive electrode weight at the 0.2 C rate at room temperature. Over 80% of the initial capacity is retained after 400 cycles. This indicates that GFC is suitable as a reinforcing material to increase the mechanical strength of gel-based electrolytes for lithium secondary batteries.

  1. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  2. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10(-3) S cm(-1)) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li(+). The LiFePO4/PECA-GPE/Li and LiNi1.5Mn0.5O4/PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  3. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    PubMed

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.

  4. Investigation of microstructure and conducting mechanism of nanocomposite polymeric electrolytes with rectorite clay by PALS

    NASA Astrophysics Data System (ADS)

    Gao, S.; Gong, J.; Yan, X. L.; Xue, G. B.; Zhong, J.; Wang, B.

    2013-06-01

    Polymeric electrolytes with different modified organic nanoretorite (OREC) content have been prepared. Measurements of the structural transition, the positron annihilation lifetime, free volume and ionic conductivity as a function of the OREC content and the temperature have been performed. According to the variations of the ortho-positronium (o-Ps) lifetimes with temperature, the glass transition temperatures have been determined. A direct relationship between the ionic conductivity and the fractional free volume has been established using based on free volume theory Williams-Landel-Ferry (WLF)equations, implying a free-volume transport mechanism. Our experimental results indicated that the segmental chain motion and ionic migration and diffusion could be explained by the free volume theory.

  5. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity

    DOE PAGES

    Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...

    2016-09-28

    Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less

  6. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity

    SciTech Connect

    Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund ; Stacy, Eric W.; Bocharova, Vera; Gobet, Mallory; Holt, Adam P.; Saito, Tomonori; Greenbaum, Steve; Sokolov, Alexei P.; Oak Ridge National Lab. , Oak Ridge, TN

    2016-09-28

    Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach is introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.

  7. Proton conducting, high modulus polymer electrolyte membranes by polymerization-induced microphase separation

    NASA Astrophysics Data System (ADS)

    Chopade, Sujay; Hillmyer, Marc; Lodge, Timothy

    Robust solid-state polymer electrolyte membranes (PEMs) are vital for designing next-generation lithium-ion batteries and high-temperature fuel cells. However, the performance of diblock polymer electrolytes is generally limited by poor mechanical stability and network defects in the conducting pathways. We present the in-situ preparation of robust cross-linked PEMs via polymerization-induced microphase separation, and incorporation of protic ionic liquid (IL) into one of the microphase separated domains. The facile design strategy involves a delicate balance between the controlled growth of polystyrene from a poly(ethylene oxide) macro-chain transfer agent (PEO-CTA) and simultaneous chemical cross-linking by divinylbenzene in the presence of IL. Small angle X-ray scattering and transmission electron microscopy confirmed the formation of a disordered structure with bicontinuous morphology and a characteristic domain size of order 20 nm. The long-range continuity of the PEO/protic IL conducting nanochannels and cross-linked polystyrene domains imparts high thermal and mechanical stability to the PEMs, with elastic modulus approaching 10 MPa and a high ionic conductivity of 15 mS/cm at 180 °C.

  8. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries.

    PubMed

    Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Xu, Guodong; Sun, Yubao; Lin, An; Cheng, Hansong

    2014-10-22

    A novel protocol to generate and control porosity in polymeric structures is presented for fabrication of single ion polymer electrolyte (SIPE) membranes for lithium ion batteries. A series of SIPEs with varying ratios of aliphatic and aromatic segments was successfully synthesized and subsequently blended with PVDF-HFP to fabricate membranes of various sizes of pores. The membranes were characterized using techniques including SEM, solvent uptake capacity measurement and ionic conductivity. We demonstrate that appropriate membrane porosity enhances ionic conductivity, reduces interfacial resistance between electrodes and electrolyte and ultimately boosts performance of Li-ion batteries. The implication of the structure-performance relationship for battery design is discussed.

  9. All solid-state redox supercapacitors based on supramolecular 1,5-diaminoanthraquinone oligomeric electrode and polymeric electrolytes

    NASA Astrophysics Data System (ADS)

    Hashmi, S. A.; Suematsu, Shunzo; Naoi, Katsuhiko

    Supramolecular conducting oligomeric 1,5-diaminoanthraquinone (DAAQ)-based all solid-state redox supercapacitors have been fabricated with the solid polymer electrolyte, poly vinyl alcohol (PVA)-H 3PO 4 blend and polymeric gel electrolyte poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-tetra ethyl ammonium perchlorate (TEAClO 4) system. The films of gel electrolyte of the optimized composition PMMA (35 wt.%)-EC:PC (1:1 v/v)-1 M TEAClO 4 and polymer electrolyte PVA-H 3PO 4 (50:50 w/w) blend exhibited high ionic conductivity (10 -4 to 10 -3 S cm -1 at room temperature) with good mechanical strength, suitable for application in electrochemical supercapacitors. The capacitors have been characterized using a.c. impedance spectroscopy, linear sweep voltammetry and prolonged cyclic test. The maximum capacitance value of 3.7-5.4 mF cm -2 (equivalent to single electrode capacitance 125-184 F g -1 of DAAQ electrode) has been observed for the PMMA-gel electrolyte based capacitor. This corresponds to the energy density 92-135 Wh kg -1. System based on the proton-conducting PVA-H 3PO 4 polymer blend, however has relatively lower capacitance of 1.1-4.0 mF cm -2 (equivalent to single electrode capacitance of 36-136 F g -1).

  10. Electrolytes

    MedlinePlus

    ... part of blood that doesn't contain cells. Sodium, potassium, and chloride levels can also be measured as part of ... in urine. It test the levels of calcium, chloride, potassium, sodium, and other electrolytes. References Chernecky CC, Berger BJ. ...

  11. P(DMS-co-EO)/P(EPI-co-EO) blend as a polymeric electrolyte

    NASA Astrophysics Data System (ADS)

    Polo Fonseca, C.; Cezare, T. T.; Neves, S.

    A new polymer electrolyte comprising the blend of poly(dimethylsiloxane-co-ethylene oxide) (P(DMS-co-EO)), and poly(epichlorohydrin-co-ethylene oxide) (P(EPI-co-EO)), with different concentrations of LiClO 4 is described. The polymer electrolyte was prepared by a solution-cast technique. The electrochemical properties were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry techniques. The maximum ionic conductivity ( σ=1.2×10 -4 S cm -1) was obtained for the P(DMS-co-EO)/P(EPI-co-EO) 15/85 and 20/80 blends with 6 wt.% LiClO 4. These same films had a wide electrochemical stability, higher than 5 V at room temperature. A stable passive layer at the interface between the polymer electrolyte and lithium metal was formed within the first few days and maintained during the follow storage period. UV-Vis absorption spectra of the blends showed a transparent polymer electrolyte in the visible region.

  12. Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Choudhary, Shobhna

    2014-06-01

    Solid polymer nanocomposite electrolytes (SPNEs) consisted of poly(methyl methacrylate) (PMMA) and lithium perchlorate (LiClO4) of molar ratio C=O:Li+=4:1 with varying concentration of montmorillonite (MMT) clay as nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The dielectric/electrical dispersion behaviour of these electrolytes was studied by dielectric relaxation spectroscopy at ambient temperature. The dielectric loss tangent and electric modulus spectra have been analyzed for relaxation processes corresponding to the side groups rotation and the segmental motion of PMMA chain, which confirm their fluctuating behaviour with the sample preparation methods and also with change of MMT concentration. The feasibility of these relaxation fluctuations has been explained using a transient complex structural model based on Lewis acid-base interactions. The low permittivity and moderate dc ionic conductivity at ambient temperature suggest the suitability of these electrolytes in fabrication of ion conducting electrochromic devices and lithium ion batteries. The amorphous behaviour and the exfoliated/intercalated MMT structures of these nanocomposite electrolytes were confirmed by X-ray diffraction measurements.

  13. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors.

    PubMed

    Shimada, Kunio; Saga, Norihiko

    2016-09-18

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.

  14. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors

    PubMed Central

    Shimada, Kunio; Saga, Norihiko

    2016-01-01

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics. PMID:27649210

  15. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  16. Hot pressed K+ ion conducting solid polymer electrolytes: synthesis, ion conduction and polymeric battery fabrication

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2016-07-01

    Synthesis and ion transport studies of hot pressed K+ ion conducting solid polymer electrolytes (SPEs): (1 - x) PEO: x KBr, where 0 < x < 50 in wt%, are reported. The solvent-free/hot-press method is used for synthesis of the present SPEs. The two orders of conductivity enhancement achieved after the polymer-salt complexation in SPE composition: (70:30) with conductivity ( σ) 5.01 × 10-7 S cm-1 from the room temperature conductivity measurements. Materials characterization and polymer-salt complexations of present SPEs have been explained with the help of various techniques viz. X-ray diffraction, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy technique. To explain the ion conduction in the present SPEs, temperature dependent ionic conductivity ( σ), ionic mobility ( μ), mobile ion concentration ( n), ionic transference number ( t ion ) and ionic drift velocity ( v d ) have been calculated with the help of various experimental techniques. A solid state polymer battery is also fabricated by using the present SPE as an electrolyte and have been calculated their important cell parameters at room temperature.

  17. Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization

    NASA Astrophysics Data System (ADS)

    Pei, Haiqin; Hong, Liang; Lee, Jim Yang

    Methanol crossover through the Nafion membrane is a perennial problem in the operation of direct methanol fuel cells (DMFCs) and therefore justifies the search for a Nafion substitute. This study reports a new methanol-blocking polymer matrix which consists of a methanol barrier phase and an embedded proton source. A three-component polymer blend (TCPB) of poly(4-vinylphenol-co-methyl methacrylate), poly(butyl methacrylate) (PBMA), and Paraloid ® B-82 acrylic copolymer resins is used as a methanol barrier. In order to implant a proton source in the membrane as homogeneously as possible, the hydrophilic monomers, 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and a cross-linking agent (poly(ethylene glycol) dimethylacrylate) (PEGDMA) are polymerized after they have been embedded in the TCPB matrix. The embedded polymerization has resulted in an asymmetric membrane structure, in which the hydrophilic network is sandwiched by two outer layers of predominantly hydrophobic TCPB. Measurements are made of properties of the AMPS-containing membranes that are important to fuel cell applications such as water uptake, ion-exchange capacity, proton conductivity, methanol permeability and tensile strength. The highest proton conductivity of the AMPS-containing membrane is about 0.030 S cm -1 at 70 °C. The low methanol permeability (10 -8 to 10 -7 cm 2 s -1) of the AMPS-containing membranes is their primary advantage for DMFC applications.

  18. Temperature-stable polymeric fluid-loss reducer tolerant to high electrolyte contamination

    SciTech Connect

    Son, A.J.; Ballard, T.M.; Loftin, R.E.

    1984-09-01

    Drilling deep hot wells with water-based fluids has been limited by lack of additives that would maintain stable rheologies and fluid loss properties at elevated temperatures. The problem is accelerated when high chemical contaminants are encountered, such as salts of sodium, calcium, magnesium, etc. The copolymer of styrene and maleic anhydride is stable at temperatures over 400/sup 0/F and it functions as a rheology stabilizer but does not provide fluid loss control. A new synthetic polymer is now available which provides dual function of rheological stabilization and fluid loss control under such unfavorable conditions. The paper discusses the unique functionalities of the new breed of polymers, performance under drastic conditions of temperature and electrolyte contamination and field case histories.

  19. Crystalline, Glassy and Polymeric Electrolytes:. Similarities and Differences in Ionic Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Souquet, Jean Louis

    2006-06-01

    Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate

  20. Pile a combustible a electrolyte polymere solide a consommation directe de gaz propane

    NASA Astrophysics Data System (ADS)

    Rodriguez Varela, Francisco Javier

    A Polymer Electrolyte Membrane Fuel Cell working with propane as the fuel has been studied. The propane was directly introduced into the cell without previous external reforming, resulting in a Direct Propane Fuel Cell (DPFC). Electrodes of composition 40% Pt/C and 40% PtRu/C (commercial), 20% PtOx/C and 20% Pt/C + 10% CrO3 (home-prepared) have been tested as anodes catalysts in the DPFC. Commercial NafionRTM 117 membranes were used as polymer electrolytes. The anode electrocatalysts were also tested in a H2/O2 fuel cell in order to asses their electrocatalytical characteristics. It has been shown by the polarization curves that the anodes based on 40% Pt/C and 40% PtRu/C provide higher current densities from the H2 /O2 fuel cell than the anodes 20% PtOx/C and 20% Pt/C + 10% CrO3. However, a more in-depth analysis has revealed important features of both home-prepared anodes. For example, relatively high current densities were obtained from these electrocatalysts during the oxidation of H2. Also, the lower open circuit anode potential for the oxidation of H2 has been obtained with the anode 20% PtOx/C. On the other hand, the current density at high cell potentials (970 mV) of the fuel cell based on the anode 20% Pt/C + 10% CrO3 was higher than the current densities of 40% Pt/C and 40% PtRu/C. Kinetic data has shown that the catalyst 20% Pt/C + 10% CrO3 provided a more important exchange current density than the rest of the anode catalysts. It has also been shown that 20% Pt/C + 10% CrO3 possess the largest mass activity while the lower mass activity is that of the catalyst 40% Pt/C. These results have revealed that the home-prepared anodes based on 20% PtOx/C and 20% Pt/C + 10% CrO 3 have important electrocatalytic characteristics for PEM fuel cells applications. Samples of the electrocatalysts were analysed by X-ray diffraction and transmission electron microscopy. A polycrystalline structure has been shown for all Pt-based materials except for 20% PtOx/C which

  1. Highly efficient solid-state dye-sensitized solar cells based on hexylimidazolium iodide ionic polymer electrolyte prepared by in situ low-temperature polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiang; Yan, Chao; Zhang, Juan; Hou, Shuo; Zhang, Wei

    2017-03-01

    Solid-state dye-sensitized solar cells (DSCs) are fabricated using a novel ionic polymer electrolyte containing hexylimidazolium iodide (HII) ionic polymer prepared by in situ polymerization of N,N‧-bis(imidazolyl) hexane and 1,6-diiodohexane without an initiator at low temperature (40 °C). The as-prepared HII ionic polymer has a similar structure to alkylimidazolium iodide ionic liquid, and the imidazolium cations are contained in the polymer main chain; so, it can act simultaneously as the redox mediator in the electrolyte. By incorporating an appropriate amount of 1,3-dimethylimidazolium iodide (DMII) in HII ionic polymer (DMII/HII ionic polymer = 0.7:1, weight ratio), the conductivity of the ionic polymer electrolyte is greatly improved due to the formation of Grotthuss bond exchange. In addition, in situ synthesis of ionic polymer electrolyte guarantees a good pore-filling of the electrolyte in the TiO2 photoanode. As a result, the solid-state DSC based on the ionic polymer electrolyte containing HII ionic polymer and DMII without iodine achieves a conversion efficiency of 6.55% under the illumination of 100 mW cm-2 (AM 1.5), which also exhibits a good at-rest stability at room temperature.

  2. Amelioration de l'adhesion de revetements organiques deposes par plasma froid sur polymeres pour applications biomedicales

    NASA Astrophysics Data System (ADS)

    Sbai, Marouan

    Plasma surface modification is commonly used in biomedical field, for example to enhance cell adhesion and growth surrounding the stent covers without affecting its bulk properties. Plasma polymer (PP) deposition used to create thin films rich in functional groups, e.g. primary amines, known to enhance the cellular response and allow grafting of biomolecules especially on stent grafts. Thin film adhesion to stent polymeric cover should be considered especially as they will evolve in a biological environment. The aim of this project is to evaluate the adhesion of PP on polytetrafluoroethylene (PTFE) and polyethyleneterephthalate (PET). Thereafter, an ammonia plasma treatment on PTFE is performed prior to deposition of PP to optimize the PP/PTFE adhesion. PP studied here (referred to as "LP") is prepared from a mixture of ethylene (C2H4) and ammonia (NH3). It is deposited on two supports, PET and PTFE. The interfacial adhesion between the LP coating and the substrate was evaluated by "Peel-test 180 °" according to ASTM F1842. Staining of the surface after peel test followed by an image analysis was performed to determine the percentage of removed coating. Adhesion optimization is done by varying operating plasma parameters such as power, pressure and pretreatment time. Chemical analyses and wettability of LP and pretreated surfaces in dry and wet conditions are characterized by XPS and contact angle measurements, respectively. The adhesion of LP/PET was excellent in a dry environment (<1%), but lower under wet conditions (4+/-6% and 44+/-7% as minimum and maximum values at 5min and 60min of immersion in deionized water, respectively). However, 56% to 75% of the LP is removed from virgin PTFE in a dry and wet environment, respectively; percentages can be substantially reduced by plasma pretreatment (0% and 8+/-3% in air and 30min in deionized water). Almost no delamination was observed with NH3 plasma pretreatment at 15s, 100 mTorr and 50W. N2 plasma pretreatment

  3. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    SciTech Connect

    Junhom, W.; Magaraphan, R.

    2015-05-22

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  4. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    NASA Astrophysics Data System (ADS)

    Junhom, W.; Magaraphan, R.

    2015-05-01

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  5. Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes.

    PubMed

    Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András

    2016-02-01

    The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects.

  6. Polymerization Effect of Electrolytes on Hydrogen-Bonding Cryoprotectants: Ion–Dipole Interactions between Metal Ions and Glycerol

    PubMed Central

    2015-01-01

    Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion–dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation–dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation–dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes. PMID:25405831

  7. Polymerization effect of electrolytes on hydrogen-bonding cryoprotectants: ion-dipole interactions between metal ions and glycerol.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2014-12-11

    Protectants which are cell membrane permeable, such as glycerol, have been used effectively in the cryopreservation field for a number of decades, for both slow cooling and vitrification applications. In the latter case, the glass transition temperature (Tg) of the vitrification composition is key to its application, dictating the ultimate storage conditions. It has been observed that the addition of some electrolytes to glycerol, such as MgCl2, could elevate the Tg of the mixture, thus potentially providing more storage condition flexibility. The microscopic mechanisms that give rise to the Tg-enhancing behavior of these electrolytes are not yet well understood. The current study focuses on molecular dynamics simulation of glycerol mixed with a variety of metal chlorides (i.e., NaCl, KCl, MgCl2, and CaCl2), covering a temperature range that spans both the liquid and glassy states. The characteristics of the ion-dipole interactions between metal cations and hydroxyl groups of glycerol were analyzed. The interruption of the original hydrogen-bonding network among glycerol molecules by the addition of ions was also investigated in the context of hydrogen-bonding quantity and lifetime. Divalent metal cations were found to significantly increase the Tg by strengthening the interacting network in the electrolyte/glycerol mixture via strong cation-dipole attractions. In contrast, monovalent cations increased the Tg insignificantly, as the cation-dipole attraction was only slightly stronger than the original hydrogen-bonding network among glycerol molecules. The precursor of crystallization of NaCl and KCl was also observed in these compositions, potentially contributing to weak Tg-enhancing ability. The Tg-enhancing mechanisms elucidated in this study suggest a structure-enhancing role for divalent ions that could be of benefit in the design of protective formulations for biopreservation purposes.

  8. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    PubMed

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  9. Photopolymerized Electrolytes For Electrochromic Devices

    NASA Technical Reports Server (NTRS)

    Cogan, Stuart; Rauh, R. David

    1994-01-01

    Thin ion-conducting electrolyte films for use in electrochromic devices now fabricated relatively easily and quickly with any of class of improved formulations containing ultraviolet-polymerizable components. Formulations are liquids in their monomeric forms and self-supporting, transparent solids in their polymeric forms. Thin solid electrolytes form quickly and easily between electrode-bearing substrates. Film thus polymerized acts not only as solid electrolyte but also as glue holding laminate together: feature simplifies fabrication by reducing need for sealants and additional mechanical supports.

  10. Preparation of 15 mol% YO 1.5-doped ThO 2 disk electrolytes by a polymeric gel-combustion method

    NASA Astrophysics Data System (ADS)

    Arul Antony, S.; Nagaraja, K. S.; Sreedharan, O. M.

    2001-06-01

    A hybrid of polymeric gel and auto-combustion techniques was adapted for the synthesis and lower temperature sintering of 15 mol% YO 1.5-doped thoria (15 YDT) homogeneous solid solutions at 1350°C. The YDT discs so prepared were of density better than 99% theoretical and the cubic cell parameter was ao=558.15(±0.13) pm in close agreement with 557.8 pm recently reported as high quality data in JCPDS confirming the validity of the anion vacancy model for Th 0.85Y 0.15O 1.925.

  11. Multifunctional polymeric nanocomposites fabricated by incorporation of exfoliated graphene nanoplatelets and their application in bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xian

    The focus of this research is to investigate the potential of using exfoliated graphene nanoplatelets, GNP, as the multifunctional nano-reinforcement in fabricating polymer/GNP nanocomposites and then explore their prospective applications in bipolar plates for polymer electrolyte membrane (PEM) fuel cells. Firstly, HDPE (high density polyethylene)/GNP nanocomposites were fabricated using the conventional compounding method of melt-extrusion followed by injection molding. The mechanical properties, crystallization behaviors, thermal stability, thermal conductivity, and electrical conductivity of the resulting HDPE/GNP nanocomposites were evaluated as a function of GNP concentration. Results showed that HDPE/GNP nanocomposites exhibit equivalent flexural modulus and strength to HDPE composites filled with other commercial reinforcements but they have superior impact strength. By investigating the crystallization behavior of HDPE/GNP nanocomposites, it was found that GNP is a good nucleating agent at low loading levels and as a result can significantly increase crystallization temperature and crystallinity of HDPE. At high GNP loadings, however, the close proximity of GNP particles retards the crystallization process. The thermal stability and thermal conductivity of HDPE/GNP nanocomposites were significantly enhanced due to the excellent thermal properties of GNP. Meanwhile, results indicated that the percolation threshold of these nanocomposites prepared by the conventional melt-extrusion and injection molding is relatively high at around 10--15 vol% GNP loading. To enhance the electrical conductivity of HDPE/GNP nanocomposites, two special processing methods named solid state ball milling (SSBM) and solid state shear pulverization (SSSP) were studied. The mechanism by which SSBM and SSSP are capable of producing lower percolation or higher electrical conductivity is to coat the polymer surface by GNP platelets which facilitate the formation of conductive networks

  12. Electrolytic cell

    NASA Astrophysics Data System (ADS)

    Bullock, J. S.; Hale, B. D.

    1984-09-01

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end is located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  13. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  14. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  15. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  16. Photocured Gelled Electrolytes For Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan

    1994-01-01

    Class of photocured polymers exhibiting lithium-ion conductivities greater than those of well-studied polymers based on polyethylene oxide (PEO) show promise as polymeric electrolytes in rechargeable lithium cells. Increase in conductivity occasioned by use of electrolytes, coupled with amenability of electrolytes to formation into uniform thin (less than 25 micrometers thick), wide films, expected to result in cells with power densities greater than 100 W h/kg and charge/discharge rates exceeding currents equal, in amperes, to ampere-hour ratings. All-solid-state lithium batteries containing these electrolytes used as high-power, high-rate rechargeable power sources in commercial and aerospace applications.

  17. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  18. Liquid electrolytes

    SciTech Connect

    Nagai, J.; Mizuhashi, M.; Kamimori, T.

    1990-12-31

    In contrast to lithium batteries, the electrochromic windows are used under the sunlight, which requires the stability against UV-light, in addition to the usual electrochemical and thermal stabilities. Thus, the selection of the electrode materials and the combination with the electrolytes should be carefully performed in terms of stability requirements. Recently many reports in relation to those subjects were published. Therefore only fundamental properties of liquid electrolytes required for the electrochromic research are reviewed in this chapter.

  19. Advanced High Energy Lithium Polymer Electrolyte Battery

    DTIC Science & Technology

    2007-11-02

    of the two phase nature of the latter materials.5,6 These materials are also always intrinsically ’ wet ’ in physical appearance. The above...into polymeric matrix of respectively PVC or PAN and radiation polymerized polyethers (so called gel or " wet " electrolytes). In spite of rather...The most widely studied material was polyethylene oxide ) (PEO), incorporating lithium salts such as LiC104 and LiCF3S03. This material however

  20. Electrolytic orthoborate salts for lithium batteries

    SciTech Connect

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  1. Electrolytic orthoborate salts for lithium batteries

    SciTech Connect

    Angell, Charles Austen; Xu, Wu

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  2. Electrolyte Racers

    ERIC Educational Resources Information Center

    Kellie, Shawn; Kellie, Tonya; Corbin-Tipton, Elizabeth

    2006-01-01

    A fast way to teach investigative skills in science is to tie them to NASCAR using Hot Wheels Formula Fuelers Race Cars. These inexpensive toy cars travel different distances based on the strength of the "electrolyte" (a substance that conducts electricity when dissolved in water) in their "fuel" tanks. Advertisements for these race cars urge kids…

  3. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  4. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  5. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  6. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  7. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  8. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  9. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  10. VIEW POURING PLATFORM SHOWING MOLD POURING JACKETS AND WEIGHTS AND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW POURING PLATFORM SHOWING MOLD POURING JACKETS AND WEIGHTS AND, IN THE FOREGROUND, SAND RETURN FROM THE SHAKEOUT ACTUATING A SIMPLE LEVER SYSTEM THAT ADDED FRESH WATER TO THE SAND IN PREPARATION FOR ITS REUSE. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  11. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  12. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  13. The improvement of rechargeable lithium battery electrolyte performance with additives

    NASA Technical Reports Server (NTRS)

    Dominey, L. A.; Goldman, J. L.

    1990-01-01

    The deliberate introduction of additives like 2-methylfuran (2-MeF) is known to improve Li cycleability in cyclic ether electrolytes. The authors found that the proclivity of 2-MeF to polymerize in the bulk electrolyte or on a TiS2 cathode was inhibited by the addition of reduced oxygen species, such as O2- and OH-. Additionally, the polymerization of tetrahydrofuran and dioxolane and the destructive processes initiated by AsF6- decomposition to AsF5 and AsF3 were inhibited by the introduction of reduced oxygen species, particularly OH- at the 10-ppm to 100-ppm level.

  14. Fuel cell having electrolyte

    DOEpatents

    Wright, Maynard K.

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  15. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  16. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  17. Biokompatible Polymere

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  18. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  19. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  20. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  1. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  2. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  3. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  4. Room-temperature ionic liquid battery electrolytes

    SciTech Connect

    Carlin, R.T.; Fuller, J.

    1997-12-01

    The room-temperature molten salts possess a number of unique properties that make them ideal battery electrolytes. In particular, they are nonflammable, nonvolatile, and chemically inert, and they display wide electrochemical windows, high inherent conductivities, and wide thermal operating ranges. Although the ionic liquids have excellent characteristics, the chemical and electrochemical properties of desirable battery electrode materials are not well understood in these electrolytes. The research has focused on rechargeable electrodes and has included work on metallic lithium and sodium anodes in buffered neutral chloroaluminate melts, graphite-intercalation electrodes in neutral chloroaluminate and non-chloroaluminate melts, and silane-imidazole polymeric cathodes in acidic chloroaluminate melts. This paper will provide an overview of the research in these areas.

  5. When It Rains, It Pours

    ERIC Educational Resources Information Center

    Mills, Linda

    2012-01-01

    "It's raining, it's pouring, the old man is snoring!" "The itsy, bitsy spider crawled up the waterspout, down came the rain and washed the spider out. Out came the sun and dried up all the rain, and the itsy, bitsy spider went up the spout again." What do children's nursery rhymes have to do with the school library? The author begins by telling a…

  6. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  7. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  8. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  9. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  10. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    SciTech Connect

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  11. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  12. Investigation of the Pour Point Depression Ability of Polyalkyl Acrylate Additives After Sonication

    NASA Astrophysics Data System (ADS)

    Volkova, G. I.; Anufriev, R. V.; Yudina, N. V.; Tchaikovskaya, O. N.

    2016-12-01

    Effect of ultrasonic treatment on the molecular parameters of polymeric additives based on polyalkyl acrylate is investigated. The viscosity, temperature, and energy characteristics of high-wax crude oil and solutions of petroleum wax in decane and aviation fuel TS-1 in the presence of initial and ultrasonified additives are determined. Results obtained indicate that the pour point depression ability of the additives is not reduced after treatment in an ultrasonic field.

  13. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  14. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  15. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  16. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  17. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  18. Norbornene-Based Polymer Electrolytes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Cheung, Iris; Smart, Marshall; Prakash, Surya; Miyazawa, Akira; Hu, Jinbo

    2007-01-01

    Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors. Single-ion-conducting polymers that can be used in lithium cells have long been sought. Single-ion conductors are preferred to multiple-ion conductors as solid electrolytes because concentration gradients associated with multiple-ion conduction lead to concentration polarization. By minimizing concentration polarization, one can enhance charge and discharge rates. Norbornene sulfonic acid esters have been synthesized by a ring-opening metathesis polymerization technique, using ruthenium-based catalysts. The resulting polymer structures (see figure) include sulfonate ionomers attached to the backbones of the polymer molecules. These molecules are single-ion conductors in that they conduct mobile Li+ ions only; the SO3 anions in these polymers, being tethered to the backbones, do not contribute to ionic conduction. This molecular system is especially attractive in that it is highly amenable to modification through functionalization of the backbone or copolymerization with various monomers. Polymers of this type have been blended with poly(ethylene oxide) to lend mechanical integrity to free-standing films, and the films have been fabricated into solid polymer electrolytes. These electrolytes have been demonstrated to exhibit conductivity of 2 10(exp -5)S/cm (which is high, relative to the conductivities of other solid electrolytes) at ambient temperature, plus acceptably high stability. This type of norbornene-based polymeric solid electrolyte is in the early stages of development. Inasmuch as the method of synthesis of these polymers is inherently flexible and techniques for the fabrication of the polymers into solid electrolytes are amenable to optimization, there is reason to anticipate further improvements.

  19. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  20. Solid electrolyte cell

    NASA Technical Reports Server (NTRS)

    Richter, R. (Inventor)

    1982-01-01

    A solid electrolyte cell including a body of solid ionized gas-conductive electrolyte having mutually spaced surfaces and on which is deposited a multiplicity of mutually spaced electrodes is described. Strips and of bare substances are interposed between electrodes, so that currents of ionic gas may be established between the electrodes via the bare strips, whereby electrical resistance for the cells is lowered and the gas conductivity is enhanced.

  1. CFD study on electrolyte distribution in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Bortolin, S.; Toninelli, P.; Maggiolo, D.; Guarnieri, M.; Del, D., Col

    2015-11-01

    The most important component in a redox flow battery (RFB) cell is the MEA (membrane electrode assembly), a sandwich consisting of two catalyzed electrodes with an interposed polymeric membrane. In order to allow electrolyte flow toward the electroactive sites, the electrodes have a porous structure that can be obtained with carbon base materials such as carbon felts. The RFB cell is closed by two plates containing the distribution flow channels. Considering that a uniform electrolyte distribution in the reaction region is a prerequisite for high-efficiency operation, the flow pattern is an important parameter to be investigated for the optimization of the cell. In the present work, the effect of different channels patterns on the electrolyte distribution and on the pressure drop is numerically investigated. Three-dimensional simulations have been carried out with ANSYS Fluent code and four different layouts have been considered. Calculations have been performed both in the distribution channels and in the felt porous region.

  2. A plasticized polymer-electrolyte-based photoelectrochemical solar cell

    SciTech Connect

    Mao, D.; Ibrahim, M.A.; Frank, A.J.

    1998-01-01

    A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderate light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.

  3. PEO-based polymer electrolytes for secondary lithium batteries

    NASA Astrophysics Data System (ADS)

    Stowe, Micah Kristin

    Polyethers mixed with lithium salts are excellent candidates for electrolytes in rechargeable lithium batteries. Polyether systems with low crystallinity result in fast ion mobility and therefore high conductivities. In this work the properties of several poly(ethylene oxide) based electrolytes are examined with an emphasis on systems with reduced crystallinity including, composite polymer electrolytes, oligomeric polyethers, and (AB) microblock copolymers. Highly conductive and processable composite polymer electrolytes were made using surface functionalized fumed silica fillers and PEGDME-500 (LiClO 4, O/Li = 20). The fillers were both hydrophobic and cross-linkable and formed an open three-dimensional network in the electrolytes due to van der Waals forces. The open network allowed for high ionic mobility and provided for the mechanical stability of the composite. Methacrylate monomers of differing hydrophobicity were added to cross-link the silica network and impart permanent mechanical stability. The optical, conductive, thermal, mechanical, and kinetic properties of the composites are examined as a function of monomer hydrophobicity and filler surface chemistry. It was found that hydrophobic monomers such as butyl methacrylate and octyl methacrylate preferentially phase separate onto the filler surface while hydrophilic methyl methacrylate is soluble in the electrolyte phase. The composites were both photochemically and thermally cured to 85--95% conversion of monomer to polymer. Hydrophilic monomers such as methyl methacrylate are more compatible with the electrolyte after polymerization and therefore provide for better mechanical properties in the composite. However, unpolymerized methyl methacrylate can react at the electrodes resulting in increased interfacial resistance. A branched oligomeric polyether, star(12)PEO, was prepared and characterized. Electrolytes formed from star(12)PEO and LiClO4 were characterized by DSC and variable temperature impedance

  4. Seebeck effect in electrolytes.

    PubMed

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  5. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  6. Improved electrolytes for fuel cells

    SciTech Connect

    Gard, G.L.; Roe, D.K.

    1991-06-01

    Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

  7. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  8. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  9. Integrated photovoltaic electrolytic cell

    SciTech Connect

    Ohkawa, T.

    1982-10-05

    A photovoltaic-electrolytic unit is provided to produce an electric current from solar energy and utilize the current to produce hydrogen by the electrolysis of water. The unit floats in an aqueous medium so that photoelectric cells are exposed to solar radiation, and electrodes submerged in the medium produce oxygen which is vented and hydrogen which is collected in the unit.

  10. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  11. Solid electrolyte structure

    DOEpatents

    Fraioli, Anthony V.

    1984-01-01

    A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.

  12. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  13. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  14. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.

    PubMed

    Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng

    2017-01-31

    Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.

  15. Synthesis and properties of polymerized ionic liquids

    DOE PAGES

    Eftekhari, Ali; Saito, Tomonori

    2017-03-14

    Polymerization of ionic liquids results in the formation of ionic polymers, which are called poly (ionic liquid)s or polymerized ionic liquids (PIL). This is a brand new form of ionicity in polymer chains with a broad range of applications, though ionic polymers have a long history with the sub-families of polyelectrolytes and ionomers. Although mobility of ions in ionic liquids has named them as the promising candidates for various applications, their applicability is limited in many practical systems because of not having the advantages of neither liquids nor solids, suffering from both leakage issue and high viscosity. PILs perfectly fitmore » with the practical requirements while having almost all features of ionic liquids. This review summarizes some potential applications of PILs. The architecture of PILs can be easily re-designed by both the polymer backbone and outer ion. Not only by post-polymerization but also by in situ ion exchange, the chemical and mechanical properties of PILs can be tuned. Lastly, owing to the high chemical activity and flexible architecture, PILs are the promising candidates for sensors and actuators, electroactive binders, solid and gel electrolytes, non-blocking matrix of nanocomposites, etc.« less

  16. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  18. Thin film composite electrolyte

    DOEpatents

    Schucker, Robert C.

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  19. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  20. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  1. Electrolyte Concentrates Treat Dehydration

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  2. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  3. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  4. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  5. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  6. A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Batisse, N.; Raymundo-Piñero, E.

    2017-04-01

    The development of safe flexible supercapacitors implies the use of new non-liquid electrolytes for avoiding device leakage which combine mechanical properties and electrochemical performance. In this sense, hydrogel electrolytes composed of a solid non-conductive matrix holding an aqueous electrolytic phase are a reliable solution. In this work, we propose a green physical route for producing self-standing hydrogel films from a PVA polymer based on the freezing/thawing method without using chemical cross-linking agents. Moreover, a neutral electrolytic phase as Na2SO4 is used for reaching higher cell voltages than in an acidic or basic electrolyte. Such new PVA-Na2SO4 hydrogel electrolyte, which also acts as separator, allows reaching voltages windows as high as 1.8 V in a symmetric carbon/carbon supercapacitor with optimal capacitance retention through thousands of cycles. Additionally, in reason of the fast mobility of the ions inside of the polymeric matrix, the hydrogel electrolyte based supercapacitor keeps the power density of the liquid electrolyte device.

  7. Gelcasting polymeric precursors for producing net-shaped graphites

    DOEpatents

    Klett, James W.; Janney, Mark A.

    2005-02-15

    The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.

  8. Gelcasting polymeric precursors for producing net-shaped graphites

    DOEpatents

    Klett, James W.; Janney, Mark A.

    2002-01-01

    The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.

  9. Preparation and characterization of polymer electrolyte membranes based on silicon-containing core-shell structured nanocomposite latex particles

    NASA Astrophysics Data System (ADS)

    Zhong, Shuangling; Sun, Chenggang; Gao, Yushan; Cui, Xuejun

    2015-09-01

    A series of silicon-containing core-shell structured polyacrylate/2-acrylamido-2-methyl-1-propanesulfonic acid (SiO2-CS-PA/A) nanocomposite latex particles are prepared by the emulsifier-free emulsion polymerization of acrylate monomers and various amount of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) with colloidal nanosilica particles as seed. The chemical and morphological structures of latex particles with high monomer conversion are determined using Fourier transform infrared (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The SiO2-CS-PA/A nanocomposite membranes are fabricated through pouring the latex onto a clean surface of glass and drying at 60 °C for 10 h and 120 °C for 2 h. The nanocomposite membranes possess good thermal and dimensional stability. In addition, in comparison to Nafion® 117, the nanocomposite membranes exhibit moderate proton conductivity, significantly better methanol barrier and selectivity. The methanol diffusion coefficient is in the range of 1.03 × 10-8 to 5.26 × 10-8 cm2 s-1 which is about two orders of magnitude lower than that of Nafion® 117 (2.36 × 10-6 cm2 s-1). The SiO2-CS-PA/A 5 membrane shows the highest selectivity value (2.34 × 105 S cm-3) which is approximately 11.0 times of that (2.13 × 104 S cm-3) of Nafion® 117. These results indicate that the nanocomposite membranes are promising candidates to be used as polymer electrolyte membranes in direct methanol fuel cells.

  10. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  11. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  12. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  13. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  14. Electrolytic oxide reduction system

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  15. Electrolytic pressure transduction system

    NASA Astrophysics Data System (ADS)

    Bryant, G. H.

    1985-12-01

    This invention is directed to a Wheatstone bridge circuit for measuring pressure in the distal esophageal sphincter (D.E.S.) as well as in other organs and bodily cavities. A flexible hollow tube having three spaced electrodes is lodged in the esophagus. The tube is partly filled with a saline solution to cover the electrodes, thereby producing two series connected, pressure sensitive resistors. The electrolytic resistors are coupled to two series connected fixed resistors to complete the bridge circuit. Electrical imbalances in the bridge circuit are measured in terms of the pressure corresponding to the pressure applied by the D.E.S.

  16. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  17. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  18. Fabrication and characterization of dry conducting polymer actuator by vapor phase polymerization of polypyrrole.

    PubMed

    Ramasamy, Madeshwaran Sekkarapatti; Mahapatra, Sibdas Singha; Cho, Jae Whan

    2014-10-01

    A trilayered dry conducting polymer actuator was fabricated via application of a polypyrrole (PPy) coating on both sides of a solid polymer electrolyte film using vapor phase polymerization (VPP). The solid polymer electrolyte film was prepared by incorporation of different weight ratios of dodecylbenzene sulfonic acid sodium salt in poly(vinyl alcohol) (PVA) by solvent casting. The successful polymerization of PPy was confirmed by Fourier transform infrared spectroscopy; a uniform PPy coating on the solid polymer electrolyte film surface was also observed by scanning electron microscopy. The dry PVA/PPy actuator demonstrated good actuation behavior at a low applied voltage of 1-3 V. The actuator bending displacement was found to increase with an increase in the applied voltage. The VPP approach in this study provides a very effective method for achieving a uniform polymer coating in the fabrication of a dry conducting polymer actuator.

  19. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  20. Nanostructured Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Odusanya, Omolola; Singh, Mohit; Balsara, Nitash

    2006-03-01

    We present results on work on polystyrene-b-polyethyleneoxide copolymer electrolyte membranes. The volume fraction of the ethylene oxide block is 0.38 and molecular weight of each block is 36 kg/mol and 25 kg/mol respectively for the polystyrene and ethyleneoxide blocks. These electrolytes were made by doping with lithium bis(trifluoromethylsulfonyl)imide salt with the ratio of Li ion / ethylene oxide units ranging from 0.02 to 0.1. The salt/polymer samples were pressed into 1.0mm thick and 4.0 mm ID pellets in an air-free environment and measurements were made from 80^oC to 120^oC. Transmission Electron Microscopy and Small Angle X-ray Scattering experiment results indicate that our samples have a perforated hexagonal morphology. Conductivity results using AC impedance spectroscopy show that we are able to achieve values of ˜ 0.0001 S/cm, well within the theoretical upper limit expected for these samples while maintaining a high mechanical integrity of about 0.1GPa as determined from rheology. Achieving the combination of high conductivity with mechanical strength, which we observe in our results, has been a major problem in the battery research community.

  1. Platelet additive solution - electrolytes.

    PubMed

    Azuma, Hiroshi; Hirayama, Junichi; Akino, Mitsuaki; Ikeda, Hisami

    2011-06-01

    Recent attention to solutions that replace most or all plasma in platelet concentrates, while maintaining satisfactory platelet function, is motivated by the potential of plasma reduction or depletion to mitigate various transfusion-related adverse events. This report considers the electrolytic composition of previously described platelet additive solutions, in order to draw general conclusions about what is required for platelet function and longevity. The optimal concentrations of Na(+) and Cl(-) are 69-115 mM. The presence of both K(+) and Mg(2+) in platelet suspension at nearly physiological concentrations (3-5mM and 1.5-3mM, respectively) is indispensable for good preservation capacity because both electrolytes are required to prevent platelet activation. In contrast to K(+) and Mg(2+), Ca(2+) may not be important because no free Ca(2+) is available in M-sol, which showed excellent platelet preservation capacity at less than 5% plasma concentration. The importance of bicarbonate (approximately 40 mM) can be recognized when the platelets are suspended in additive solution under less than 5% residual plasma concentration.

  2. Electrolytic pretreatment of urine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  3. Electrolytes - Technology review

    SciTech Connect

    Meutzner, Falk; Ureña de Vivanco, Mateo

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  4. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  5. Electrolytic decontamination of conductive materials

    SciTech Connect

    Nelson, T.O.; Campbell, G.M.; Parker, J.L.; Getty, R.H.; Hergert, T.R.; Lindahl, K.A.; Peppers, L.G.

    1993-10-01

    Using the electrolytic method, the authors have demonstrated removal of Pu from contaminated conductive material. At EG&G Rocky Flats, they electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging > 1,000,000 counts per minute (cpm) down to levels ranging from 1,500 to < 250 cpm with the electrolytic method. More recently, the electrolytic work has continued at LANL as a joint project with EG&G. Impressively, electrolytic decontamination experiments on removal of Pu from oralloy coupons have shown decreases in swipable contamination that initially ranged from 500,000 to 1,500,000 disintegrations per minute (dpm) down to 0--2 dpm.

  6. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  7. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  8. Polymerized and functionalized triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  9. Flame retardant polymeric materials

    SciTech Connect

    Lewin, M.; Atlas, S.M.; Pearce, E.M.

    1982-01-01

    The flame retardation of polyolefins is the focus of this volume. Methods for reduction of smoke and experimental evaluation of flammability parameters for polymeric materials are discussed. The flammability evaluation methods for textiles and the use of mass spectrometry for analysis of polymers and their degradation products are also presented.

  10. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  11. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  12. Electrolytes and thermoregulation

    NASA Technical Reports Server (NTRS)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  13. Electrolyte paste for molten carbonate fuel cells

    SciTech Connect

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  14. Synthesis and characterizations of novel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  15. INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING MOLTEN METAL INTO A 1,300 TON ELECTRIC HOLDING FURNACE OR MIXER. AN ELECTRONIC SCALE RECORDED THAT 50.5 TONS OF METAL WERE POURED INTO THE FURNACE DURING THIS POUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  16. A Statistical Treatment of Bioassay Pour Fractions

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Hughes, David W.

    2014-01-01

    The binomial probability distribution is used to treat the statistics of a microbiological sample that is split into two parts, with only one part evaluated for spore count. One wishes to estimate the total number of spores in the sample based on the counts obtained from the part that is evaluated (pour fraction). Formally, the binomial distribution is recharacterized as a function of the observed counts (successes), with the total number (trials) an unknown. The pour fraction is the probability of success per spore (trial). This distribution must be renormalized in terms of the total number. Finally, the new renormalized distribution is integrated and mathematically inverted to yield the maximum estimate of the total number as a function of a desired level of confidence ( P(pour fraction. The extension to recovery efficiency corrections is also presented. Now the product of recovery efficiency and pour fraction may be small enough that the likely value may be much larger than the usual calculation: the number of spores divided by that product. The use of this analysis would not be limited to microbiological data.

  17. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  18. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  19. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  20. Organic electrolytes for sodium batteries

    NASA Astrophysics Data System (ADS)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  1. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  2. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    SciTech Connect

    Sugiharto; Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-06-22

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing {sup 203}Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of {+-}2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  3. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  4. Polymer stability and function for electrolyte and mixed conductor applications

    NASA Astrophysics Data System (ADS)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  5. Polymeric ion conductors

    SciTech Connect

    Nagai, J.; Mizuhashi, M.; Kamimori, T.

    1990-12-31

    There are several requirements for (polymeric) ion conductors in electrochromic window applications: (1) they have high ionic conductivity (desirably, > 1 {times} 10{sup {minus}4} Scm{sup {minus}1}); (2) they have high chemical and electrochemical stabilities with respect to the wide usable potential window and thermal and UV stabilities; (3) they are transparent in a specific wavelength region, which is, however, dependent of applications; and (4) they have enough adhesiveness to the substrates and have acceptable mechanical properties. Many kinds of polymeric ionic conductors have since been reported and some of them were applied to electrochromic uses. In this chapter, electrochemical and physicochemical properties of these materials are reviewed. However, certain aspects such as crystallographic studies and conduction models in detail have been omitted, which are still controversial.

  6. Organometallic polymerization catalysts

    SciTech Connect

    Waymouth, R.M.

    1993-12-31

    Well-defined transition metal catalysts have resulted in exciting new opportunities in polymer synthesis. The stereochemistry of vinyl polymers can be rationally controlled with choice of the appropriate catalysts. Studies with optically active catalyst precursors have revealed considerable information on the absolute stereochemistry of olefin polymerization and have led to the synthesis of novel chiral polyolefins. The development of homogeneous olefin metathesis catalysts has also led to a variety of well-defined new polymer structures with controlled molecular weight and molecular weight distribution. Recent advances in understanding the mechanisms and stereochemistry of homogeneous transition metal catalyzed polymerization will be discussed. The ability to control polymer structure through catalyst design presents exciting opportunities in the synthesis of {open_quotes}tailor-made{close_quotes} macromolecules.

  7. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  8. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  9. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  10. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  11. Polymeric Microcapsule Arrays.

    DTIC Science & Technology

    1995-03-24

    support, microencapsulation and entrapment within a membrane/film or gel. The ideal enzyme immobilization method would (1) Employ mild chemical...yields hollow polymeric microcapsules of uniform diameter and length. These microcapsules are arranged in a high density array in which the...individual capsules protrude from a surface like the bristles of a brush. We have developed procedures for filling these microcapsules with high

  12. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  13. Frontal Polymerization in Microgravity

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    1999-01-01

    Frontal polymerization systems, with their inherent large thermal and compositional gradients, are greatly affected by buoyancy-driven convection. Sounding rocket experiments allowed the preparation of benchmark materials and demonstrated that methods to suppress the Rayleigh-Taylor instability in ground-based research did not significantly affect the molecular weight of the polymer. Experiments under weightlessness show clearly that bubbles produced during the reaction interact very differently than under 1 g.

  14. Developments in polymerization lamps.

    PubMed

    Jiménez-Planas, Amparo; Martín, Juan; Abalos, Camilo; Llamas, Rafael

    2008-02-01

    Polymerization shrinkage of composite resins and the consequent stress generated at the composite-tooth interface continue to pose a serious clinical challenge. The development of high-intensity halogen lamps and the advent of curing units providing higher energy performance, such as laser lamps, plasma arc units, and, most recently, light-emitting diode (LED) curing units, have revolutionized polymerization lamp use and brought major changes in light-application techniques. A comprehensive review of the literature yielded the following conclusions: (1) the most reliable curing unit for any type of composite resin is the high-density halogen lamp, fitted with a programming device to enable both pulse-delay and soft-start techniques; (2) if any other type of curing unit is used, information must be available on the compatibility of the unit with the composite materials to be used; (3) polymerization lamp manufacturers need to focus on the ongoing development of LED technology; (4) further research is required to identify the most reliable light-application techniques.

  15. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  16. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  17. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  18. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  19. [Cancer and electrolytes imbalance].

    PubMed

    Shibata, Hiroyuki

    2010-06-01

    The electrolyte imbalance in advanced cancer patients, including hyperkalemia, hypercalcemia and hyponatremia, can be induced by various factors. Hyperkalemia is occasionally induced by chemotherapy for very large malignant tumors, due to tumor lysis syndrome. Hypercalcemia and hyponatremia are often observed in patients with breast cancer, renal cancer, prostate cancer, and the like, as a paraneoplastic syndrome. Some part of hypercalcemia results from osteolysis, but the majority is induced by hormonal factors, such as parathyroid hormone-related protein. One of the paraneoplastic causes of hyponatremia is antidiuretic hormone-producing tumor. These disorders could be morbid or even motile, resulting from encephalopathy or arrhythmia in some cases. However, it should be kept in mind that they could be improved or cured by prompt treatment. Recently, after approval of the molecular targeted drugs for epidermal growth factor receptors, such as cetuximab and panitumumab, the incidence of hypomagnesia with use of these monoclonal antibodies, is relatively frequent. In addition, small molecular targeted drugs, such as m-TORinhibitors and ABL kinase inhibitors, also exert adverse reactions including hypomagnesia and hypophosphatemia. Careful monitoring of the serum concentration of magnesium and phosphate ions, to which little attention was paid previously, is a key issue in these cases.

  20. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  1. A constitutive theory of reacting electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  2. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  3. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; ...

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  4. Fluid and Electrolyte Nutrition

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  5. Lubricating oil containing VII pour depressant

    SciTech Connect

    Hart, W.P.; Mays, D.L.

    1986-08-19

    Lubricating oils for internal combustion engines typically contain a multitude of additives which function as detergents, dispersants, viscosity index improvers, pour depressants, etc. in order to improve the properties of the oil. It is found that it is particularly necessary to improve the properties exhibited by lubricating oil compositions at low temperatures. It is an object of this invention to provide a lubricating oil containing an additive which provides improved properties at low temperatures.

  6. Hafnocene-Based Olefin Polymerizations

    NASA Astrophysics Data System (ADS)

    Diesner, T.; Troll, C.; Rieger, B.

    Zirconocenes have been used for a long time in the field of olefin polymerization using MAO as cocatalyst. The equivalent hafnocenes were seldom used due to a lack of productivity while using MAO activation. In the last few years borane and borate activation has come into the focus of research for olefin polymerization. A variety of different hafnocenes were used to investigate the polymerization mechanism and the different cocatalysts.

  7. Calculs ab initio de structures electroniques pour un meilleur design de polymeres photovoltaiques

    NASA Astrophysics Data System (ADS)

    Berube, Nicolas

    This thesis focuses on the role of density functional theory in the design of polymers for photovoltaic applications. Theoretical calculations are first studied in the characterization of polymers in the context of collaborations between theory and experiment. The stability and the energy levels of some organic molecules are studied before and after a sulfurization of their carbonyl groups, a process destined to lower the band gaps. The dynamics of the electronic processes and the Raman vibration spectra are also explored in a polycarbazole-based polymer. From then, the usefulness of theoretical calculations in the design of polymers before their syntheses is explored. Density functional theory calculations are studied under the Scharber model in order to predict the efficiency of organic solar cells. Then, a new approach for the design of low band gap polymer based on the aromatic or quinoid structures is established, whose efficiency surpasses the actual donor-acceptor approach. These studies are used in the exploration of the chemical space and several candidate for polymers with interesting electronic properties are presented.

  8. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  9. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  10. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  11. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  12. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  13. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  14. Sustainable polymerizations in recoverable microemulsions.

    PubMed

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions.

  15. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  16. Gratings in polymeric waveguides

    NASA Astrophysics Data System (ADS)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  17. Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2006-01-01

    Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing

  18. Diabetes mellitus and electrolyte disorders

    PubMed Central

    Liamis, George; Liberopoulos, Evangelos; Barkas, Fotios; Elisaf, Moses

    2014-01-01

    Diabetic patients frequently develop a constellation of electrolyte disorders. These disturbances are particularly common in decompensated diabetics, especially in the context of diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. These patients are markedly potassium-, magnesium- and phosphate-depleted. Diabetes mellitus (DM) is linked to both hypo- and hyper-natremia reflecting the coexistence of hyperglycemia-related mechanisms, which tend to change serum sodium to opposite directions. The most important causal factor of chronic hyperkalemia in diabetic individuals is the syndrome of hyporeninemic hypoaldosteronism. Impaired renal function, potassium-sparing drugs, hypertonicity and insulin deficiency are also involved in the development of hyperkalemia. This article provides an overview of the electrolyte disturbances occurring in DM and describes the underlying mechanisms. This insight should pave the way for pathophysiology-directed therapy, thus contributing to the avoidance of the several deleterious effects associated with electrolyte disorders and their treatment. PMID:25325058

  19. Diabetes mellitus and electrolyte disorders.

    PubMed

    Liamis, George; Liberopoulos, Evangelos; Barkas, Fotios; Elisaf, Moses

    2014-10-16

    Diabetic patients frequently develop a constellation of electrolyte disorders. These disturbances are particularly common in decompensated diabetics, especially in the context of diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. These patients are markedly potassium-, magnesium- and phosphate-depleted. Diabetes mellitus (DM) is linked to both hypo- and hyper-natremia reflecting the coexistence of hyperglycemia-related mechanisms, which tend to change serum sodium to opposite directions. The most important causal factor of chronic hyperkalemia in diabetic individuals is the syndrome of hyporeninemic hypoaldosteronism. Impaired renal function, potassium-sparing drugs, hypertonicity and insulin deficiency are also involved in the development of hyperkalemia. This article provides an overview of the electrolyte disturbances occurring in DM and describes the underlying mechanisms. This insight should pave the way for pathophysiology-directed therapy, thus contributing to the avoidance of the several deleterious effects associated with electrolyte disorders and their treatment.

  20. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  1. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  2. Towards Prognostics of Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Biswas, Gautam; Goegel, Kai

    2011-01-01

    A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors.

  3. FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 STATION INTO THREE VERTICAL MOLDS SUBMERGED IN A WATER-FILLED TANK BELOW THE CASTING FLOOR. THE CASTING CREW'S JOBS DURING THIS PHASE OF THE OPERATION INCLUDE REGULATING THE POURING RATE AND MONITORING THE VALVE RODS THAT CONTROL THE WATER SPRAYS ON THE MOLDS. DIFFERENT ALLOYS REQUIRE SPECIFIC POURING SPEEDS AND WATER PRESSURES. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  4. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  5. Thermoelectricity in Confined Liquid Electrolytes.

    PubMed

    Dietzel, Mathias; Hardt, Steffen

    2016-06-03

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which-for narrow channels-may cause thermovoltages larger in magnitude than for the classical Soret equilibrium.

  6. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  7. Platelet interaction with polymerizing fibrin.

    PubMed

    Niewiarowski, S; Regoeczi, E; Stewart, G J; Senyl, A F; Mustard, J F

    1972-03-01

    Interaction of washed pig, rabbit, or human platelets with fibrinogen was studied during its transition to fibrin using photometric, isotopic, and electron microscopic techniques. Untreated fibrinogen and fully polymerized fibrin had no detectable effect on platelets. Fibrinogen, incubated with low concentrations of reptilase or thrombin, formed intermediate products which readily became associated with platelets and caused their aggregation. Neutralization of the thrombin did not prevent this interaction. In the absence of fibrinogen, reptilase did not affect platelets. The interaction of polymerizing fibrin with platelets was accompanied by small losses of platelet constituents (serotonin, adenine nucleotides, platelet factor 4, and lactic dehydrogenase). This loss did not appear to be the result of the platelet release reaction. Inhibitors of the release reaction or of adenosine diphosphate (ADP)-induced aggregation did not prevent the interaction of platelets with polymerizing fibrin. Apyrase or prostaglandin E(1) (PGE(1)) reduced the extent of platelet aggregation by polymerizing fibrin, but the amount of protein associated with platelets was slightly increased. The interaction of polymerizing fibrin with platelets was completely inhibited by ethylenediaminetetraacetate (EDTA) or ethylene glycol bis (beta-aminoethyl ether) N, N,N',N'-tetraacetic acid (EGTA).Fibers formed in solutions of polymerizing fibrin were larger in the presence than in the absence of washed platelets, suggesting that platelets affect fibrin polymerization. The adherence of platelets to polymerizing fibrin may be responsible for the establishment of links between platelets and fibrin in hemostatic plugs and thrombi.

  8. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  9. Amplification of actin polymerization forces.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2016-03-28

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

  10. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  11. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect

    Keqin Huang

    2003-04-30

    A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

  12. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  13. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  14. Ion conductance in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Chandra, Amalendu; Bagchi, Biman

    1999-05-01

    We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on √c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.

  15. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  16. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  17. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  18. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  19. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  20. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  1. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  4. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  5. High temperature structural, polymeric foams from high internal emulsion polymerization

    SciTech Connect

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  6. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  7. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  8. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  9. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  10. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  11. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  12. Electrochromic Device with Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  13. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGES

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  14. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  15. Polymerized supramolecular assemblies and biocompatibility

    NASA Astrophysics Data System (ADS)

    O'Brien, David F.

    2001-03-01

    The creation of durable, biomembrane-mimetic coatings for inorganic and polymeric surfaces that are biocompatible, i.e. resistant to nonspecific protein adsorption, remains an important goal that is expected to impact numerous fields. It has already been shown that the physical stability of lipid bilayer vesicles can be dramatically enhanced by cross-linking polymerization of reactive lipids, such as phosphatidylcholines. Bilayers of these same lipids on clean silicon dioxide surfaces can be formed by fusion of small bilayer vesicles with the surface. Radical initiated polymerization of these supported bilayers yields a stable poly(lipid) film that is not perturbed upon exposure to surfactant. Moreover, the cross-linked bilayer film can be removed from water into air with retention of the poly(lipid) bilayer structure. These polymerized bilayer films could be repeatedly transferred from water to air to water with no obvious change in their biocompatibility. The supported bilayer films were equally resistant to non-specific protein adsorption before and after polymerization. This indicates that biocompatible nature of the phosphorylcholine head group of the lipids was not compromised by polymerization of the lipids. The ability to maintain surface biocompatibility of membranes while substantially increasing their stability would appear to extend the technological uses of supramolecular assemblies of lipids.

  16. Intestinal Transport of Weak Electrolytes

    PubMed Central

    Jackson, Michael J.; Shiau, Yih-Fu; Bane, Susan; Fox, Margaret

    1974-01-01

    A study has been made of the transmural fluxes of benzoic, phenylacetic, and pentanoic acids, benzylamine, hexylamine, and D-amphetamine across rat jejunum incubated in vitro. The M to S fluxes of the weak acids were greater than their corresponding S to M fluxes, and the S to M fluxes of the weak bases were larger than their M to S fluxes. These patterns of asymmetric movements were observed when the transmural electrical potential difference was clamped at 0 mV, and when the pH values of the mucosal and serosal fluids were identical. The effects of a weak acid on the fluxes of other weak electrolytes were qualitatively similar when the effector weak acid was added to the mucosal fluid, and when it was added to the serosal fluid. But the effects of a weak base on the fluxes of other weak electrolytes were dependent upon its location, and the interactions observed when the effector weak base was added to the mucosal fluid were qualitatively different than those seen when it was added to the serosal fluid. The interactions between weak electrolytes could readily be explained in terms of the function of a system of three compartments in series, in which the pH of the intermediate compartment is greater than that of the bulk phases. But these observations could not be explained in terms of an analogous system involving an intermediate compartment of low pH, or in terms of a carrier mediated system. The transport function of the three-compartment system can be described in the form of an equation, and it is found that a pH difference of less than 0.5 unit may explain our observations on weak electrolyte transport. PMID:4812635

  17. Sealed Lithium Inorganic Electrolyte Cell

    DTIC Science & Technology

    1976-03-01

    revere side it necoeery and idM,1117 "~ bfoh numiber) Inorganic Electrolyte Battery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium ...hardware corrosion in cold rolled steel cans, due to cathodic protection of the cans by the lithium . Recent data 4 showed that thionyl chloride is reduced...very slowly on the surface of nickel and stainless steel, when these materials were in contact with a lithium anode in the thionyl chloride

  18. Solid electrolyte oxygen regeneration system

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; See, G. G.; Schubert, F. H.; Powell, J. D.

    1976-01-01

    A program to design, develop, fabricate and assemble a one-man, self-contained, solid electrolyte oxygen regeneration system (SX-1) incorporating solid electrolyte electrolyzer drums was completed. The SX-1 is a preprototype engineering model designed to produce 0.952 kg (2.1 lb)/day of breathable oxygen (O2) from the electrolysis of metabolic carbon dioxide (CO2) and water vapor. The CO2 supply rate was established based on the metabolic CO2 generation rate for one man of 0.998 kg (2.2 lb)/day. The water supply rate (0.254 kg (0.56 lb)/day) was designed to be sufficient to make up the difference between the 0.952 kg (2.1 lb)/day O2 generation specification and the O2 available through CO2 electrolysis, 0.726 kg (1.6 lb)/day. The SX-1 was successfully designed, fabricated and assembled. Design verification tests (DVT) or the CO Disproportionators, H2 separators, control instrumentation, monitor instrumentation, water feed mechanism were successfully completed. The erratic occurrence of electrolyzer drum leakage prevented the completion of the CO2 electrolyzer module and water electrolyzer module DVT's and also prevented the performance of SX-1 integrated testing. Further development work is required to improve the solid electrolyte cell high temperature seals.

  19. APPARATUS FOR MELTING AND POURING METAL

    DOEpatents

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  20. Superionic solid-state polymer electrolyte membrane for high temperature applications

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  1. Polymeric materials for neovascularization

    NASA Astrophysics Data System (ADS)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  2. Polymeric materials in Space

    NASA Astrophysics Data System (ADS)

    Skurat, Vladimir

    Paper of short review type. It is the continuation of and addition to previous review papers "V. E. Skurat. Polymers in Space. In: Encyclopedia of aerospace engineering, vol. 4, Wiley and sons, 2010; Ibid., 2012 (on line)". Following topics are considered: (1) Destruction of polymers by solar radiation with various wavelengths in different spectral regions (visible-UV, vacuum UV (VUV), deep UV, soft and hard X-rays) are discussed. In difference with common polymer photochemistry induced by UV radiation, directions of various routs of polymer phototransformations and their relative yields are greatly dependent on wavelength of light (photon energy) during illuminations in VUV, deep UV and X-ray regions. During last twenty years, intensive spacecraft investigations of solar spectrum show great periodic and spontaneous variations of radiation intensities in short-wavelengths regions - up to one - two decimal orders of magnitude for X-rays. As a result, during solar flares the absorbed dose on the polymer surfaces from X-rays can be compared with absorbed dose from VUV radiation. (2) Some new approaches to predictions of reaction efficiencies of fast orbital atomic oxygen in their interaction with polymeric materials are considered. (3) Some aspects of photocatalitic destruction of polymers in vacuum conditions by full-spectrum solar radiation are discussed. This process can take place in enamels containing semiconducting particles (TiO2, ZnO) as pigments. (4) Contamination of spacecraft surfaces from intrinsic outer atmosphere play important role not only from the point of view of deterioration of optical and thermophysical properties. Layers of SiO2 contaminations with nanometer thicknesses can greatly diminish mass losses from perfluorinated polymers under VUV irradiation.

  3. Expanding Ring for the DWPF Melter Pour Spout

    SciTech Connect

    Imrich, K.J.

    2002-09-23

    The Materials Technology Section was requested to develop a novel concept, namely that of an expanding ring, to restore the upper knife edge in the DWPF melter pour spout. The expanding ring is a unit that, when deployed in the DPWF pour spout, will self-expand against the inner diameter of the 3-inch section of the pour spout providing a seal against glass leakage and a new knife edge that will mate with a Type 3A insert. This report provides a summary of the final design features of the expanding ring and an overview of its development.

  4. Inorganic-organic electrolyte materials for energy applications

    NASA Astrophysics Data System (ADS)

    Fei, Shih-To

    This thesis research is devoted to the development of phosphazene-based electrolyte materials for use in various energy applications. Phosphazenes are inorganic-organic materials that provide unusal synthetic advantages and unique process features that make them useful in energy research. This particular thesis consists of six chapters and is focused on four specific aspects: lithium battery, solar cell, and fuel cell electrolytes, and artificial muscles. Chapter 1 is written as an introduction and review of phosphazene electrolytes used in energy applications. In this introduction the basic history and characteristics of the phosphazenes are discussed briefly, followed by examples of current and future applications of phosphazene electrolytes related to energy. Notes are included on how the rest of the chapters relate to previous work. Chapters 2 and 3 discuss the conductivity and fire safety of ethyleneoxy phosphazene gel electrolytes. The current highly flammable configurations for rechargeable lithium batteries generate serious safety concerns. Although commercial fire retardant additives have been investigated, they tend to decrease the overall efficiency of the battery. In these two chapters the discussion is focused on ionically conductive, non-halogenated lithium battery additives based on a methoxyethoxyethoxyphosphazene oligomer and the corresponding high polymer, both of which can increase the fire resistance of a battery while retaining a high energy efficiency. Conductivities in the range of 10 -4 Scm-1 have been obtained for self-extinguishing, ion-conductive methoxyethoxyethoxyphosphazene oligomers. The addition of 25 wt% high polymeric poly[bis(methoxyethoxyethoxy)phosphazene] to propylene carbonate electrolytes lowers the flammability by 90% while maintaining a good ionic conductivity of 2.5x10--3 Scm -1 Chapter 2 is focused more on the electrochemical properties of the electrolytes and how they compare to other similar materials, while Chapter 3

  5. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  6. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  7. Chemical stability of γ-butyrolactone-based electrolytes for aluminum electrolytic capacitors

    NASA Astrophysics Data System (ADS)

    Ue, Makoto; Takeda, Masayuki; Suzuki, Yoko; Mori, Shoichiro

    γ-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/γ-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/γ-butyrolactoneelectrolytes decomposed by SN2 reactions giving alkyi benzoates and trialkylamines. The deterioration of the carboxylate salt/γ-butyrolactone electrolytes was accelerated by electrolysis.

  8. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  9. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  10. Perioperative Acid-Base and Electrolyte Disturbances.

    PubMed

    Beer, Kari Santoro; Waddell, Lori S

    2015-09-01

    Obtaining and interpreting blood gas and electrolyte levels is essential in the management of perioperative veterinary patients. Metabolic and electrolyte alterations are common in critically ill surgical patients, and can lead to alterations in cardiovascular function, neurologic status, respiratory function, and even response to various drug therapies. Several common perioperative conditions are discussed in this article, including metabolic disturbances, electrolyte abnormalities (hyponatremia and hypernatremia, hyperkalemia), and respiratory abnormalities.

  11. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  12. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L.

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  13. Fuel cell assembly with electrolyte transport

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  14. Electrolytic cell. [For separating anolyte and catholyte

    DOEpatents

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  15. Mechanically controlled radical polymerization initiated by ultrasound

    NASA Astrophysics Data System (ADS)

    Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer

    2016-10-01

    In polymer chemistry, mechanical energy degrades polymeric chains. In contrast, in nature, mechanical energy is often used to create new polymers. This mechanically stimulated growth is a key component of the robustness of biological materials. A synthetic system in which mechanical force initiates polymerization will provide similar robustness in polymeric materials. Here we show a polymerization of acrylate monomers initiated and controlled by mechanical energy provided by ultrasonic agitation. The activator for an atom-transfer radical polymerization is generated using piezochemical reduction of a Cu(II) precursor complex, which thus converts a mechanical activation of piezoelectric particles to the synthesis of a new material. This polymerization reaction has some characteristics of controlled radical polymerization, such as narrow molecular-weight distribution and linear dependence of the polymeric chain length on the time of mechanical activation. This new method of controlled radical polymerization complements the existing methods to synthesize commercially useful well-defined polymers.

  16. Rebalancing electrolytes in redox flow battery systems

    DOEpatents

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  17. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  18. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  19. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  20. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  1. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications.

  2. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  3. Transfert radiatif numerique pour un code SPH

    NASA Astrophysics Data System (ADS)

    Viau, Joseph Edmour Serge

    2001-03-01

    Le besoin de reproduire la formation d'etoiles par simulations numeriques s'est fait de plus en plus present au cours des 30 dernieres annees. Depuis Larson (1968), les codes de simulations n'ont eu de cesse de s'ameliorer. D'ailleurs, en 1977, Lucy introduit une autre methode de calcul venant concurrencer la methode par grille. Cette nouvelle facon de calculer utilise en effet des points a defaut d'utiliser des grilles, ce qui est une bien meilleure adaptation aux calculs d'un effondrement gravitationnel. Il restait cependant le probleme d'ajouter le transfert radiatif a un tel code. Malgre la proposition de Brookshaw (1984), qui nous montre une formule permettant d'ajouter le transfert radiatif sous la forme SPH tout en evitant la double sommation genante qu'elle implique, aucun code SPH a ce jour ne contient un transfert radiatif satisfaisant. Cette these presente pour la premiere fois un code SPH muni d'un transfert radiatif adequat. Toutes les difficultes ont pu etre surmontees afin d'obtenir finalement le transfert radiatif "vrai" qui survient dans l'effondrement d'un nuage moleculaire. Pour verifier l'integrite de nos resultats, une comparaison avec le nonisothermal test case de Boss & Myhill (1993) nous revele un resultat fort satisfaisant. En plus de suivre fidelement la courbe de l'evolution de la temperature centrale en fonction de la densite centrale, notre code est exempt de toutes les anomalies rencontrees par les codes par grille. Le test du cas de la conduction thermique nous a lui aussi servit a verifier la fiabilite de notre code. La aussi les resultats sont fort satisfaisants. Faisant suite a ces resultats, le code fut utilise dans deux situations reelles de recherche, ce qui nous a permis de demontrer les nombreuses possibilites que nous donne notre nouveau code. Dans un premier temps, nous avons tudie le comportement de la temperature dans un disque d'accretion durant son evolution. Ensuite nous avons refait en partie une experience de Bonnell

  4. Decodeurs rapides pour codes topologiques quantiques

    NASA Astrophysics Data System (ADS)

    Duclos-Cianci, Guillaume

    L'encodage topologique de l'information quantique a attire beaucoup d'attention, car c'est un modele qui semble propice a resister aux erreurs locales. Tout d'abord, le modele du calcul topologique est base sur la statistique anyonique non-Abelienne universelle et sur son controle. Des anyons indesirables peuvent apparaitre soudainement, en raison de fluctuations thermiques ou de processus virtuels. La presence de ces anyons peut corrompre l'information encodee, il est necessaire de les eliminer: la correction consiste a fusionner les defauts tout en preservant la topologie du systeme. Ensuite, dans le cas des codes topologiques, on doit aussi proteger l'information encodee dans la topologie. En effet, dans ces systemes, on n'a acces qu'a une fraction de l'information decrivant l'erreur. Elle est recueillie par des mesures et peut etre interpretee en termes de particules. Ces defauts peuplent le code et doivent etre annihiles adequatement dans le but de preserver l'information encodee. Dans ce memoire, nous proposons un algorithme efficace, appele decodeur, pouvant etre utilise dans les deux contextes decrits ci-haut. Pour y parvenir, cet algorithme s'inspire de methodes de renormalisation et de propagation de croyance. Il est exponentiellement plus rapide que les methodes deja existantes, etant de complexite O (ℓ2 log ℓ) en serie et, si on parallelise, O (log ℓ) en temps, contre O (ℓ6) pour les autres decodeurs. Le temps etant le facteur limitant dans le probleme du decodage, cette caracteristique est primordiale. De plus, il tolere une plus grande amplitude de bruit que les methodes existantes; il possede un seuil de ˜ 16.5% sur le canal depolarisant surpassant le seuil deja etabli de ˜ 15.5%. Finalement, il est plus versatile. En effet, en etant limite au code de Kitaev, on ne savait pas decoder les codes topologiques de maniere generale (e.g. codes de couleur). Or, le decodeur propose dans ce memoire peut traiter la grande classe des codes

  5. High performance electrolytes for MCFC

    DOEpatents

    Kaun, T.D.; Roche, M.F.

    1999-08-24

    A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

  6. High performance electrolytes for MCFC

    DOEpatents

    Kaun, Thomas D.; Roche, Michael F.

    1999-01-01

    A carbonate electrolyte of the Li/Na or CaBaLiNa system. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca.sub.2 CO.sub.3 and BaCO.sub.3, and preferably of equimolar amounts. The presence of both Ca and BaCO.sub.3 enables lower temperature fuel cell operation.

  7. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  8. Dual intercalating molten electrolyte batteries

    SciTech Connect

    Carlin, R.T.; Long, H.C. De; Fuller, J.; Lauderdale, W.J.; Naughton, T.; Trulove, P.C.; Bahn, C.S.

    1995-12-31

    Dual Intercalating Molten Electrolyte (DIME) electrodes and cells have been examined using a number of low-melting and room-temperature molten salts. A cell with a chloroaluminate melt achieved a cycling efficiency of 85% with a discharge voltage of 2.92 V. Coke-elastomer composite electrodes underwent cation reductive intercalation without experiencing the exfoliation and degradation seen for graphite rods. Theoretical studies for an imidazolium-graphite intercalate predicted the graphite layer spacing expands between 5.18 and 8.01 {angstrom} upon insertion of the imidazolium molecule into the graphite lattice.

  9. Polymer electrolyte membrane resistance model

    NASA Astrophysics Data System (ADS)

    Renganathan, Sindhuja; Guo, Qingzhi; Sethuraman, Vijay A.; Weidner, John W.; White, Ralph E.

    A model and an analytical solution for the model are presented for the resistance of the polymer electrolyte membrane of a H 2/O 2 fuel cell. The solution includes the effect of the humidity of the inlet gases and the gas pressure at the anode and the cathode on the membrane resistance. The accuracy of the solution is verified by comparison with experimental data. The experiments were carried out with a Nafion 112 membrane in a homemade fuel cell test station. The membrane resistances predicted by the model agree well with those obtained during the experiments.

  10. The counterintuitive impact of separator-electrolyte combinations on the cycle life of graphite-silicon composite electrodes

    NASA Astrophysics Data System (ADS)

    Schott, Tiphaine; Gómez-Cámer, Juan Luis; Bünzli, Christa; Novák, Petr; Trabesinger, Sigita

    2017-03-01

    Thin polymeric membranes such as Celgard are commonly used as separators in Li-ion batteries to ensure high volumetric energy density. Independently, for silicon-based electrodes fluoroethylene carbonate (FEC) is often added to the electrolyte to improve the cycling stability of the cell. Here we demonstrate that, counterintuitively, this separator-electrolyte combination negatively affects the performance of graphite-Si electrodes in half-cells. In a statistical evaluation of the cycling behavior of C-Si electrode cells with various separators and either with or without FEC addition, we show that by improving the solid electrolyte interphase on the silicon particles, FEC addition leads to inhomogeneous current distribution in the electrodes, therefore favoring lithium dendrite growth and leading to irreversible failure with Celgard. In contrast, self-recovery is observed with simple glass-fiber separators. Without FEC, neither dendrites nor failure are observed, but cells with Celgard suffer from poorer electrochemical performance, due to clogging by the thick polymeric layer formed using standard electrolytes, than cells with thicker and hydrophilic separators.

  11. POURING IRON FROM BULL LADLE INTO MOBILE LADLES USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING IRON FROM BULL LADLE INTO MOBILE LADLES USED TO FILL MOLDS ON CONVEYOR LINES AFTER FERRO-SILICON IS ADDED TO ENHANCE DUCTILITY AND FLUIDITY. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  12. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  13. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  14. 6. VIEW LOOKING WEST FROM THE POURING AISLE OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW LOOKING WEST FROM THE POURING AISLE OF THE ELECTRIC FURNACE BUILDING AT ELECTRIC FURNACE X-3. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM HAD BEEN ADDED TO GENERATE DUCTILE IRON WHEN IT COOLS IN THE MOLD. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  16. 45. EXPOSEDAGGREGATE CONCRETE AT NICHE, NORTH BOUNDARY, SEVERAL TEXTURES POURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. EXPOSED-AGGREGATE CONCRETE AT NICHE, NORTH BOUNDARY, SEVERAL TEXTURES POURED AT ONE TIME, October 1987 - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC

  17. 13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. MASS OF POURED CONCRETE IN IRREGULAR STEPPED LAYERS AT THE BASE OF THE LEFT (EAST) BUTTRESS. CAMERA FACING SOUTHWEST. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  18. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  19. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  20. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    PubMed Central

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572

  1. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic ‑EO‑ based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm‑1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  2. Epoxidised Natural Rubber Based Composite Polymer Electrolyte Systems For Use In Electrochemical Device Applications

    SciTech Connect

    Idris, Razali; Tasnim, Anis; Mahbor, Kamisah Mohamad; Hakim, Mas Rosemal; Mohd, Dahlan Hj.; Ghazali, Zulkafli

    2009-09-14

    Composite polymer electrolyte (CPE) comprising epoxy-fimctionalized rubber (ENR), HDDA monomer, mixed plasticizer-propylene carbonate/ethylene carbonate, silica filler and lithium bis(trifluoromethanesulfonylimide), Li[(CF{sub 3}SO{sub 2}){sub 2}N]have been prepared using photo-induced polymerization by UV irradiation technique. The irradiated samples of filled and non-filled silica of composites electrolytes have formed dry solid-flexible and transparent films in the self-constructed Teflon mould. Thermal behaviors, FTIR, morphology and ionic conductivity were performed on such ENR based PE polymer composites having varied compositions. The thermal stability has improved slightly in the temperature range 120-200 deg. C with optimized composition. FTIR measurements data revealed that the interaction of lithium with the epoxy groups of the un-bonded electrons within polymer occurred. The results suggest that the variation of conductivity with temperature indicates that the silica filled composite has achieved optimal ionic conductivity 10{sup -4} S cm{sup -1} and retained high percent of plasticizer. The ionic conductivity behavior of the silica-filled ENR based composite polymer electrolyte is consistent at elevated temperature compared to non-filled CPE system. This finding opens a new pathway for further investigation to diffusion of ions in the complex polymer electrolyte systems.

  3. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  4. Radiation effects on the electrode and electrolyte of a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; Lyons, Daniel J.; Pan, Ke; Leung, Kwan Yee; Chuirazzi, William C.; Canova, Marcello; Co, Anne C.; Cao, Lei R.

    2016-06-01

    The performance degradation and durability of a Li-ion battery is a major concern when it is operated under radiation conditions, for instance, in deep space exploration, in high radiation field, or rescuing or sampling equipment in a post-nuclear accident scenario. This paper examines the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase. A60Co irradiator (34.3 krad/h) was used to provide 0.8, 4.1, and 9.8 Mrad dose to LiFePO4 electrodes and 0.8, 1.6, and 5.7 Mrad to 1 M LiPF6 in 1:1 wt% EC:DMC electrolytes. This study shows that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca. 14%). A significant battery capacity fade post irradiation was observed. The electrolyte also shows a darkened color a few weeks or months after irradiation. The discovery of this latent effect may be significant because a battery may degrade significantly even showing no sign of degradation immediately after exposure. We investigated electrolyte composition by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy prior and post irradiation. Polymerization reactions and HF formation are considered as the cause of the discoloration.

  5. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries.

    PubMed

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-21

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm(-1) are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li(+)), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  6. A thermal and electrochemical properties research on gel polymer electrolyte membrane of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Li, Libo; Ma, Yue; Wang, Wentao; Xu, Yanping; You, Jun; Zhang, Yonghong

    2016-12-01

    N-methyl-N-propyl-piperidin-bis(trifluoromethylsulfonyl)imide/bis(trifluoromethylsulfonyl) imide lithium base/polymethyl methacrylate(PP13TFSI/LiTFSI/PMMA) gel polymer electrolyte (GPE) membrane was prepared by in situ polymerization. The physical and chemical properties were comprehensively discussed. The decomposition characteristics were emphasized by thermogravimetric (TG-DTG) method in the nitrogen atmosphere at the different heating rates of 5, 10, 15 and 20 °C min-1, respectively. The activation energy was calculated with the iso-conversional methods of Ozawa and Kissinger, Friedman, respectively, and the Coats-Redfern methods were adopted to employ the detailed mechanism of the electrolyte membrane. The equation f(α)=3/2[(1-α)1/3-1] was quite an appropriate kinetic mechanisms to describe the thermal decomposition process with an activation energy (Eα) of 184 kJ/mol and a pre-exponential factor (A) of 1.894×1011 were obtained.

  7. Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries.

    PubMed

    Zhao, Hui; Jia, Zhe; Yuan, Wen; Hu, Heyi; Fu, Yanbao; Baker, Gregory L; Liu, Gao

    2015-09-02

    A composite lithium electrolyte composed of polyelectrolyte-grafted nanoparticles and polyethylene glycol dimethyl ether (PEGDME) is synthesized and characterized. Polyanions immobilized by the silica nanoparticles have reduced anion mobility. Composite nanoparticles grafted by poly(lithium 4-styrenesulfonate) only have moderate conductivity at 60 °C. Almost an order increase of the conductivity to ∼10(-6) S/cm is achieved by co-polymerization of the poly(ethylene oxide) methacrylate with sodium 4-styrenesulfonate, which enhances dissociation between lithium cation and polyanion and facilitates lithium ion transfer from the inner part of the polyelectrolyte layer. This composite electrolyte has the potential to suppress lithium dendrite growth and enable the use of lithium metal anode in rechargeable batteries.

  8. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2015-01-13

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  9. On-demand photoinitiated polymerization

    DOEpatents

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  10. Plasma electrolytic oxidation of AMCs

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  11. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.

    PubMed

    Evenhuis, Christopher J; Guijt, Rosanne M; Macka, Miroslav; Marriott, Philip J; Haddad, Paul R

    2005-11-01

    Polymers are important as materials for manufacturing microfluidic devices for electrodriven separations, in which Joule heating is an unavoidable phenomenon. Heating effects were investigated in polymer capillaries using a CE setup. This study is the first step toward the longer-term objective of the study of heating effects occurring in polymeric microfluidic devices. The thermal conductivity of polymers is much smaller than that of fused silica (FS), resulting in less efficient dissipation of heat in polymeric capillaries. This study used conductance measurements as a temperature probe to determine the mean electrolyte temperatures in CE capillaries of different materials. Values for mean electrolyte temperatures in capillaries made of New Generation FluoroPolymer (NGFP), poly-(methylmethacrylate) (PMMA), and poly(ether ether ketone) (PEEK) capillaries were compared with those obtained for FS capillaries. Extrapolation of plots of conductance versus power per unit length (P/L) to zero power was used to obtain conductance values free of Joule heating effects. The ratio of the measured conductance values at different power levels to the conductance at zero power was used to determine the mean temperature of the electrolyte. For each type of capillary material, it was found that the average increase in the mean temperature of the electrolyte (DeltaT(Mean)) was directly proportional to P/L and inversely proportional to the thermal conductivity (lambda) of the capillary material. At 7.5 W/m, values for DeltaT(Mean) for NGFP, PMMA, and PEEK were determined to be 36.6, 33.8, and 30.7 degrees C, respectively. Under identical conditions, DeltaT(Mean) for FS capillaries was 20.4 degrees C.

  12. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  13. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  14. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  15. Evaluation of Electrochemical Methods for Electrolyte Characterization

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.

  16. Temperature effects on the 27Al NMR spectra of polymeric aluminum hydrolysis species

    NASA Astrophysics Data System (ADS)

    Fitzgerald, John J.; Johnson, Loren E.; Frye, James S.

    27Al NMR studies at 39.10 MHz of highly hydrolyzed, concentrated aluminum chlorohydrate (ACH) solutions ( overlinen = [ OH]/[ Al] = 2.50 , "Al 2 (OH) 5Cl") from 2.5 to 0.2 M Al in various supporting electrolytes at room temperature (RT) and 82°C are reported. The complex 27Al NMR resonance features for ACH solutions, attributed to two unique polymeric species of unknown structure, are dependent upon concentration, temperature, and the nature and concentration of the supporting electrolyte anion. Major differences are observed in the 27Al NMR of fresh and "aged" 1.0 M ACH solutions obtained at RT, at 82°C, and at RT following temperature elevation to 82°C. These latter NMR spectra exhibit dramatic and irreversible resonance changes in comparison with RT NMR data obtained for fresh ACH solutions prior to elevation to 82°C. These 27Al NMR results, together with gel filtration chromatography data, provide evidence for the irreversible depolymerization of large molecular weight polycationic species to intermediate sized molecular weight polymeric species following dilution, aging, or temperature elevation. This depolymerization reaction is concentration, temperature, and anion dependent and provides a clearer understanding of the kinetic processes occurring for the polymeric aluminum species in ACH solutions.

  17. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    SciTech Connect

    Puguan, John Marc C.; Chinnappan, Amutha; Kostjuk, Sergei V.; Kim, Hern

    2015-09-15

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO{sub 2} and LiCF{sub 3}SO{sub 3}. • ZrO{sub 2} increased electrolyte conductivity by two orders of magnitude. • ZrO{sub 2} doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO{sub 2}-NC) and lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO{sub 2} and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10{sup −4} S cm{sup −1}). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10{sup −4} S cm{sup −1} at 13.04 wt% ZrO{sub 2}-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO{sub 2}-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO{sub 2}-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices.

  18. Low vibration polymeric composite engine

    NASA Astrophysics Data System (ADS)

    Guimond, David P.; Muench, Rolf K.

    1994-12-01

    An internal combustion engine is constructed with metallic parts in its regions which are subjected to high stress (temperature, pressure) during combustion and polymeric materials in its regions which are subjected to relatively lower stresses. The integrated construction helps realize increased power densities and reductions on engine noise without compromising engine performance. V-configuration Diesel engines particularly benefit from this construction.

  19. Ballistic Resistance of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Snyder, Chad

    2005-03-01

    Ballistic-resistant body armor has been credited with saving more than 2,500 lives, but new materials are constantly being developed, and there currently exists no method for evaluating armor over time to ensure the continued effectiveness of the protection. We report on progress towards development of a standard test method for reliability of the active polymeric materials that comprise them.

  20. Novel polymeric materials from triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  1. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  2. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  3. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  4. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  5. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  6. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  7. Versatile cation transport in imidazolium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel

    Polymerized ionic liquids (PIL) with tethered imidazolium groups are able to conduct a diverse array of cations relevant for energy applications. The well-known complexation of imidazolium with transition metals is exploited to bind ions such as H +, Li+, Cu2+, and Ni2+ by doping the neutral PIL with the appropriate Cation-TFSI- salt. Conductivities were first determined via AC impedance indicating that H+ salts lead to the highest conductivity (due to low ion mass and potential Grotthus mechanism) followed by Cu2+, Li+, Ag+, and Ni2+. The equilibrium constant for imidazolium complexation is larger for Cu2+ relative to Li-, Ag-, and Ni-imidazolium complexes leading to greater salt dissociation and higher conductivities. For LiTFSI and CuTFSI2 salts, metallic lithium or copper electrodes were employed in battery cells to pass a steady DC current and confirm that the cations are in fact carrying current. Interestingly, the divalent Cu2+ also ionically crosslinks the polymer leading to a plateau in the viscosity. Thus, divalent ions provide an unique route to high conductivity, high modulus polymeric electrolytes. Future studies involving ZnTFSI2 and MgTFSI2 for battery applications are proposed to examine how versatile the PIL platform is for cation transport.

  8. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning.

    PubMed

    Du, Xin; Li, Linxian; Li, Junsheng; Yang, Chengwu; Frenkel, Nataliya; Welle, Alexander; Heissler, Stefan; Nefedov, Alexei; Grunze, Michael; Levkin, Pavel A

    2014-12-17

    UV irradiation is demonstrated to initiate dopamine polymerization and deposition on different surfaces under both acidic and basic pH. The observed acceleration of the dopamine polymerization is explained by the UV-induced formation of reactive oxygen species that trigger dopamine polymerization. The UV-induced dopamine polymerization leads to a better control over polydopamine deposition and formation of functional polydopamine micropatterns.

  9. Nonaqueous Electrolyte Systems Ionic Transport in Nonaqueous Media.

    DTIC Science & Technology

    ALUMINATES, *IONIC CURRENT), (*ELECTROLYTES, ALUMINA), (*SULFITES, ELECTROLYTES), SODIUM COMPOUNDS, ELECTRICAL CONDUCTIVITY, TRANSPORT PROPERTIES, SOLUTIONS(MIXTURES), PERCHLORATES, FLUOBORATES , LITHIUM COMPOUNDS, VISCOSITY

  10. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  11. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  12. In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries

    PubMed Central

    Chai, Jingchao; Ma, Jun; Wang, Jia; Liu, Xiaochen; Liu, Haisheng; Zhang, Jianjun; Chen, Liquan

    2016-01-01

    Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electrolyte is presented via a facile in situ polymerization process in this paper. It is manifested that poly (vinylene carbonate) based solid polymer electrolyte possess a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 9.82 × 10−5 S cm−1 at 50 °C. Moreover, it is demonstrated that high voltage LiCoO2/Li batteries using this solid polymer electrolyte display stable charge/discharge profiles, considerable rate capability, excellent cycling performance, and decent safety characteristic. It is believed that poly (vinylene carbonate) based electrolyte can be a very promising solid polymer electrolyte candidate for high energy density lithium batteries. PMID:28251055

  13. In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries.

    PubMed

    Chai, Jingchao; Liu, Zhihong; Ma, Jun; Wang, Jia; Liu, Xiaochen; Liu, Haisheng; Zhang, Jianjun; Cui, Guanglei; Chen, Liquan

    2017-02-01

    Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electrolyte is presented via a facile in situ polymerization process in this paper. It is manifested that poly (vinylene carbonate) based solid polymer electrolyte possess a superior electrochemical stability window up to 4.5 V versus Li/Li(+) and considerable ionic conductivity of 9.82 × 10(-5) S cm(-1) at 50 °C. Moreover, it is demonstrated that high voltage LiCoO2/Li batteries using this solid polymer electrolyte display stable charge/discharge profiles, considerable rate capability, excellent cycling performance, and decent safety characteristic. It is believed that poly (vinylene carbonate) based electrolyte can be a very promising solid polymer electrolyte candidate for high energy density lithium batteries.

  14. Electrolyte for an electrochemical cell

    DOEpatents

    Bates, J.B.; Dudney, N.J.

    1997-01-28

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  15. Electrolyte for an electrochemical cell

    DOEpatents

    Bates, John B.; Dudney, Nancy J.

    1997-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  16. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  17. A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability

    NASA Astrophysics Data System (ADS)

    Pan, Qiyun; Chen, Yazhou; Zhang, Yunfeng; Zeng, Danli; Sun, Yubao; Cheng, Hansong

    2016-12-01

    We report an outstanding electrochemical performance of a gel type lithium ion battery with long cycle life enabled by a dense transparent polymeric single ion conductor. The polymer electrolyte was synthesized by a side chain grafting method with 4-amino-4'-trifluoromethyl bis(benzene sulfonyl)imide grafted on side chains of poly(ethylene-alt-maleic anhydride) with a grafting ratio of 50%. Blending lithiated iononmers with poly(vinylidene fluoride-co-hexafluoropropylene) via a solution cast method results in a dense transparent film. The fabricated blend polymer electrolyte film has an ionic conductivity of 0.104 mS cm-1 at room temperature, a tensile strength of 15.5 MPa and percent elongation at break of 5%. A gel type single ion conductive polymeric lithium ion battery was assembled using the blend film as the separator as well as the electrolyte, LiFePO4/C mixed with ionomers as the cathode and a lithium foil as the anode. The battery delivers a reversible discharge capacity of 100 mAh g-1 at 1 C under room temperature for 1000 cycles without obvious decay. The stable cyclic imide and comb-like structure of the polymer is largely responsible for the excellent battery performance. The side chain grafted single ion conducting polymer electrolyte is well suited for large-scale production.

  18. Polymerization in highly compressed nitrogen (Review Article)

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2016-01-01

    The results of experimental and theoretical studies of the thermodynamic properties of new polymeric phases of nitrogen at ultra-high pressures, as well as computer modeling of the structure and properties of polymeric nitrogen based on the potential models of interaction of atoms and molecules are reviewed. The location of the phase transition lines for the transitions between the molecular and polymeric crystals, molecular and polymeric fluids as well as the position of the melting line for the polymeric nitrogen in the phase diagram are discussed.

  19. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  20. Glue analysis and behavior in copper electrolyte

    NASA Astrophysics Data System (ADS)

    Blechta, V. K.; Wang, Z. Z.; Krueger, D. W.

    1993-04-01

    Animal glue in combination with other chemicals is often used as a leveling agent in the copper electroplating industry. The control of the glue concentration in the electrolyte is critical to the quality of copper produced. A quantitative galvanostatic technique for glue analysis in copper electrolyte containing lignin sulfonate and Cl- was developed. The kinetics of glue hydrolysis in industrial electrolytes was studied and found to follow first-order reaction kinetics, with sulfuric acid acting as a catalyst. The dependence of the glue hydrolysis rate constant on temperature follows the Arrhenius equation. By adding fresh glue to the electrolyte, the glue activity first rises and then falls. This effect can be explained by the presence of long-chain molecules in the glue which are less active but hydrolyze into the more active medium-sized molecules. A mathematical model of this process shows good agreement with experimental data. The bulk of the electrolyte flow in the INCO commercial electrolytic plating cell bypasses the electrodes, probably across the bottom of the cell. The electrolyte circulation between electrodes is not very intense. A simple equation for the glue concentration calculation in the cell inlet and outlet, depending on the glue addition rate, was derived.

  1. Investigation of waste glass pouring behavior over a knife edge

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work.

  2. Gas evolution in aluminum electrolytic capacitors

    SciTech Connect

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  3. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Chen, Lie; Chen, Yiwang; Tong, Yongfen

    2012-03-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF3SO3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10-3 S cm-1) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li+, and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO4 is up to 156 mAh g-1.

  4. Polyethylene glycol as a solid polymer electrolyte

    SciTech Connect

    Cha, D.K.; Park, S.M.

    1997-12-01

    Polymer electrolytes were prepared from polyethylene glycol (PEG)-lithium perchlorate complexes and characterized at a stainless steel electrode using a variety of electrochemical techniques. The charge transfer process was affected by the oxide film on the stainless steel electrode surface in the early stages of redox processes. The polymer electrolytes showed a transference number of 0.2 for Li{sup +}. The conductivity of the PEG-10000 electrolyte has been determined to be 4.7 {times} 10{sup {minus}5} S/cm. This rather high value is attributed to the anionic end groups increasing the polarity of the matrix.

  5. Washer with electrolytic water dissociation. Final report

    SciTech Connect

    Morello, M.

    1984-01-01

    The development of a washing machine with turbo-electrolytic pre-wash facility is described. This process involves a preliminary electro-chemical process which is characterized by an overall reduction in energy consumption during the wash cycle. Comparative studies between the turbo-electrolytic washing machine and a standard washing machine have been carried out. Although the production cost of the turbo-electrolytic machine is greater, savings on energy costs will give rise to a net reduction in costs over the lifetime of the machine.

  6. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  7. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  8. Polymeric anti-HIV therapeutics.

    PubMed

    Danial, Maarten; Klok, Harm-Anton

    2015-01-01

    The scope of this review is to highlight the application of polymer therapeutics in an effort to curb the transmission and infection of the human immunodeficiency virus (HIV). Following a description of the HIV life cycle, the use of approved antiretroviral drugs that inhibit critical steps in the HIV infection process is highlighted. After that, a comprehensive overview of the structure and inhibitory properties of polymeric anti-HIV therapeutic agents is presented. This overview will include inhibitors based on polysaccharides, synthetic polymers, dendritic polymers, polymer conjugates as well as polymeric DC-SIGN antagonists. The review will conclude with a section that discusses the applications of polymers and polymer conjugates as systemic and topical anti-HIV therapeutics.

  9. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  10. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  11. Polymeric nanofibers in tissue engineering.

    PubMed

    Dahlin, Rebecca L; Kasper, F Kurtis; Mikos, Antonios G

    2011-10-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed.

  12. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 2 carbon atoms of mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by sequentially treating an inert solid support material in an inert solvent with (i) a dihydrocarbyl magnesium compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a vanadium compound, and (iv) a Group IIIa metal halide. The process as above is described wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides.

  13. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-04-14

    A process is described for the polymerization of ethylene and alphaolefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by treating an inert support material in an inert solvent with (i) a dihydrocarbyl magnesium compound or a complex or mixture of an organic dihydrocarbyl magnesium compound and an aluminum compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a Group IIIa metal halide, (iv) at least one vanadium compound, and as the last step a second treatment with a Group IIIa metal halide.

  14. Radiation-hardened polymeric films

    DOEpatents

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  15. Stability of Polymeric Crystalline Polymorphs

    NASA Astrophysics Data System (ADS)

    Sinkovits, Daniel W.; Kumar, Sanat K.

    2014-03-01

    In the search for polymeric materials with novel properties, such as high dielectric constant and low loss, an important attribute of a material is its crystal structure. Most polymers can crystallize into multiple polymorphs whose properties vary. Therefore, the question of which polymorphs are thermodynamically preferred under what conditions is of great importance. We generate polymorphs using atomistic molecular dynamics simulations and tackle the question of stability using a combination of molecular dynamics and Monte Carlo techniques. Multidisciplinary University Research Initiative (MURI).

  16. Macrokinetic characteristics of isobutylene polymerization

    SciTech Connect

    Minsker, K.S.; Berlin, A.A.; Enikolopyan, N.S.; Prochukhan, Y.A.; Svinkov, A.G.

    1986-08-01

    This paper describes a method of obtaining oligo and polyisobutylene with a molecular mass of 112-50,000: the cationic polymerization of isobutylene carried out in the presence of AlCl/sub 3/, in an environment of hydrocarbons (butanes, etc.) or chlorinated hydrocarbons (ethyl chloride, methyl chloride, etc.) at a temperature of 173-353 K/sub 3/ and in mixer-reactors of complicated design with a volume of 1.5-30 m.

  17. Radiation-hardened polymeric films

    DOEpatents

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  18. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide.

    PubMed

    Liu, Xing-Rui; Wang, Lin; Wan, Li-Jun; Wang, Dong

    2015-05-13

    High lithium salt concentration strategy has been recently reported to be an effective method to enable various organic solvents as electrolyte of Li-ion batteries. Here, we utilize in situ atomic force microscopy (AFM) to investigate the interfacial morphology on the graphite electrode in dimethyl sulfoxide (DMSO)-based electrolyte of various concentrations. The significant differences in interfacial features of the graphite in electrolytes of different concentrations are revealed. In the concentrated electrolyte, stable films form primarily at the step edges and defects on the graphite surface after initial electrochemical cycling. On the other hand, in the dilute electrolyte, DMSO-solvated lithium ions constantly intercalate into graphite layers, and serious decomposition of solvent accompanied by structural deterioration of the graphite surface is observed. The in situ AFM results provide direct evidence for the concentration-dependent interface reactions between graphite electrode and DMSO-based electrolyte.

  19. Electrochemical properties of carbons obtained from precursors of electrochemically polymerized polymers

    SciTech Connect

    Hashizume, Kenichi; Tsutsui, Miho; Kaneko, Tomohiko; Otani, Sugio; Yoshimura, Susumu

    1995-12-31

    Electrochemically polymerized polymers from pyrrole, fluoranthene and pyrene were heat-treated at temperatures between 600 to 3,000. The electrochemical properties of these heat-treated samples were examined by chronoamperometry using an electrolyte solution of 1M LiClO{sub 4} in propylene carbonate. Lithium doping capacities of carbons from fluoranthene and pyrrole polymer heat-treated at 3,000 C were 1.5 and 1.2 times that of the theoretical capacity of graphite as LiC{sub 6}, respectively.

  20. 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives

    NASA Astrophysics Data System (ADS)

    Xu, Jingkun; Hou, Jian; Zhou, Weiqiang; Nie, Guangming; Pu, Shouzhi; Zhang, Shusheng

    2006-03-01

    The existence of N sbnd H bond according to the hydrogen nuclear magnetic resonance ( 1H NMR) spectra of polyindole and its derivatives, such as poly(5-bromoindole), poly(5-cyanoindole), poly(5-nitroindole), poly(5-methylindole), proved polymerization of high-quality polyindoles, which were electrosynthesized from middle strong Lewis acid boron trifluoride diethyl etherate (BFEE) and its mixed electrolytes with additional diethyl ether, occurred at 2,3-position. The elongation of the conjugation length made the chemical shift of all the protons of polyindoles to lower field in comparison with those of monomers.

  1. Ablation laser pour la microélectronique plastique

    NASA Astrophysics Data System (ADS)

    Alloncle, A.-P.; Thomas, B.; Grojo, D.; Delaporte, Ph.; Sentis, M.; Sanaur, S.; Barret, M.; Collot, Ph.

    2006-12-01

    La microélectronique plastique connaît un développement sans précédent dans le domaine de la recherche. Cette étude s'intéresse à l'utilisation des lasers impulsionnels pour la réalisation de composants organiques sur supports souples. Les deux aspects plus particulièrement étudiés sont d'une part la gravure de polymère pour réaliser un canal entre la source et le drain, et d'autre part le développement d'un procédéde dépôt appelé LIFT pour Laser Induced Forward Transfer. Ce dernier pourrait notamment permettre dedéposer des composés organiques non solubles.

  2. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  3. Polymeric nanocomposites: compounding and performance.

    PubMed

    Utracki, L A

    2008-04-01

    Polymeric nanocomposites (PNC) are binary mixtures of strongly interacting, inorganic platelets dispersed in a polymeric matrix. For full exfoliation, the thermodynamic miscibility is required. There are three basic methods of organically-modified clay dispersion that might result in PNC: (1) in polymer solution (followed by solvent removal), (2) in a monomer (followed by polymerization), and (3) in molten polymer (compounding). Most commercial PNC are produced by the second method, but it is the third one that has the greatest promise for the plastics industry. Similarly as during the manufacture of polymer blends, the layered silicates must be compatibilized by intercalation with organic salts and/or addition of functionalized macromolecules. Compounding affects the kinetics of dispersion process, but rarely the miscibility. Melt compounding is carried out either in a single-screw (SSE) or a twin-screw extruder (TSE). Furthermore, an extensional flow mixer (EFM) might be attached to an extruder. Two versions of EFM were evaluated: (1) designed for polymer homogenization and blending, and (2) designed for dispersing nano-particles. In this review, the dispersion of organoclay in polystyrene (PS), polyamide-6 (PA-6) or in polypropylene (PP) is discussed. The PNC based on PS or PA-6 contained two components (polymer and organoclay), whereas those based on PP in addition had a compatibilizer mixture of two maleated polypropylenes. Better dispersion was found compounding PNC's in a SSE + EFM than in TSE with or without EFM. The mechanical performance (tensile, flexural and impact) was examined.

  4. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-03-28

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  5. Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Amaral, Fábio A.; Dalmolin, Carla; Canobre, Sheila C.; Bocchi, Nerilso; Rocha-Filho, Romeu C.; Biaggio, Sonia R.

    Polymeric gel electrolytes have been extensively studied for application in lithium ion batteries, since the electrolyte can be fabricated as a thin film leading to major performance improvements. This is mainly due to the higher ionic mobility and the higher concentration of charge carriers, yielding ionic conductivities of about 10 -3 S cm -1 at room temperature and sufficient mechanical strength. PAN-based gels have been studied together with a wide range of plasticizers and tested in lithium battery systems with excellent results. Based on these results, we developed PAN-based gels with EC:PC and EC:DMC mixtures as plasticizers, LiClO 4 or LiBF 4 as the ionic salt and the copolymer PAN-PVA as the polymeric matrix to be used as separator and electrolyte in lithium ion batteries. The choice of the copolymer was made due to its hydrophobic properties, low cost and easy access, since it is widely used in textile industries as precursor for acrylic fibers manufacture. These new electrolytes were characterized by electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in order to determine their stability window and conductivity. The charge/discharge performance of the PAN-PVA-based gel electrolytes was investigated for two different systems: Li/gel/LiMn 2O 4 and Li/gel/Pani (Pani = polyaniline). FT-IR analyses showed that PAN-PVA is not a passive polymer host but an active component in the gel, where Li + ions are located close to C dbnd O groups of the plasticizers and C tbnd N groups of PAN. In addition to ionic conductivities higher than 10 -3 S cm -1, these gels presented excellent electrochemical and chemical stabilities, which means a slight increased performance when compared to PAN-based gels only, and suitable charge/discharge profiles.

  6. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  7. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  8. Electrolytic silver ion cell sterilizes water supply

    NASA Technical Reports Server (NTRS)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  9. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  10. Gel electrolyte candidates for electrochromic devices (ECDs)

    NASA Astrophysics Data System (ADS)

    Legenski, Susan E.; Xu, Chunye; Liu, Lu; Le Guilly, Marie O.; Taya, Minoru

    2004-07-01

    A comparison of key parameters of seven different gel electrolytes for use in electrochromic devices (ECD) is reported. The ionic conductivity, transmittance, and stability of the gel electrolytes are important considerations for smart window applications. The gel electrolytes were prepared by combining polymethylmethacrylate (PMMA) with a salt and a solvent combination. Two different salts, lithium perchlorate (LiClO4) and trifluorosulfonimide (LiN(CF3SO2)2), and three solvent combinations, acetonitrile and propylene carbonate (ACN and PC), ethylene carbonate and propylene carbonate (EC and PC), and Gamma-butyrolactone and propylene carbonate (GBL and PC) were investigated. Results show that gel electrolytes composed of a LiClO4 and GBL+PC combination and a LiClO4 and EC+PC combination are the best candidates for a smart window device based on its high conductivity over time and various temperatures, as well as its electrochemical stability and high transmittance.

  11. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    SciTech Connect

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  12. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    PubMed

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  13. Influence of electrolytes and non-electrolytes on growth and differentiation of Trypanosoma cruzi.

    PubMed

    Osuna, A; Adroher, F J; Lupiáñez, J A

    1990-05-01

    The influence of electrolytes and non-electrolytes, especially NaCl and sorbitol, on the metacyclogenesis and growth of Trypanosoma cruzi has been studied. The addition of 50 or 100 mEq/l NaCl to the culture media significantly increased the development of metacyclic forms. Other electrolytes and non-electrolytes had no effect on epimastigote-metacyclic differentiation. The growth rate was never modified to any extent. The influence of sodium concentration, osmotic pressure, among other factors, are discussed. Electrophoresis showed proteins bands which could be related either to the adaptation of T. cruzi to the new culture media or to the initiation of differentiation processes.

  14. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  15. Handheld Microneedle-Based Electrolyte Sensing Platform.

    SciTech Connect

    Miller, Philip R.; Rivas, Rhiana; Johnson, David; Edwards, Thayne L.; Koskelo, Markku; Shawa, Luay; Brener, Igal; Chavez, Victor H.; Polsky, Ronen

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  16. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  17. Fuel cell with electrolyte matrix assembly

    DOEpatents

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  18. Portable electrophoresis apparatus using minimum electrolyte

    NASA Technical Reports Server (NTRS)

    Stevens, M. R.; Vickers, J. M. (Inventor)

    1976-01-01

    An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.

  19. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  20. Fluctuating Hydrodynamics of Electrolytes Solutions

    NASA Astrophysics Data System (ADS)

    Peraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    In this work, we develop a numerical method for multicomponent solutions featuring electrolytes, in the context of fluctuating hydrodynamics as modeled by the Landau-Lifshitz Navier Stokes equations. Starting from a previously developed numerical scheme for multicomponent low Mach number fluctuating hydrodynamics, we study the effect of the additional forcing terms induced by charged species. We validate our numerical approach with additional theoretical considerations and with examples involving sodium-chloride solutions, with length scales close to Debye length. In particular, we show how charged species modify the structure factors of the fluctuations, both in equilibrium and non-equilibrium (giant fluctuations) systems, and show that the former is consistent with Debye-Huckel theory. We also discuss the consistency of this approach with the electroneutral approximation in regimes where characteristic length scales are significantly larger than the Debye length. Finally, we use this method to explore a type of electrokinetic instability. This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,.

  1. Safer Electrolytes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Kejha, Joe; Smith, Novis; McCloseky, Joel

    2004-01-01

    A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.

  2. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  3. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  4. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  5. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  6. Lithium-Air Batteries with Hybrid Electrolytes.

    PubMed

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  7. Algorithmes et architectures pour ordinateurs quantiques supraconducteurs

    NASA Astrophysics Data System (ADS)

    Blais, A.

    2003-09-01

    'utilisation de qubits basés sur les jonctions Josephson. On présente entre autres une approche originale pour l'interaction entre qubits. Cette approche est très générale puisqu'elle peut être appliquée à différents designs de qubits. Finalement, on s'intéresse à la lecture des qubits supraconducteurs de flux. Le détecteur suggéré ici a l'avantage de pouvoir être découplé du qubit lorsqu'il n'y a pas de mesure en cours.

  8. Polymeric slot waveguide for photonics sensing

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Uherek, F.

    2016-12-01

    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  9. RADIATION-INDUCED POLYMERIZATION OF POLYFUNCTIONAL VINYLSILOXANE,

    DTIC Science & Technology

    the molecular weights and characteristic viscosities of these polymers the hypothesis that polymer molecules are soluble microgels was arrived at. The...present work examines some properties of polymerization of these monomers. The hypotheses were confirmed. The polymer is a soluble microgel . The...possibility of inducing polymerization of vinyl monomers with microgels of polyvinylsiloxanes was established, and radiolysis and polymerization of polyfunctional vinylsiloxanes were studied. (Author)

  10. STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR UNDER WEATHER SHELTER DURING COLD WINTER. NOTE ABUNDANCE OF BEAMS; THE FLOOR WILL SUPPORT HEAVY LOADS. INL NEGATIVE NO. 1175. Unknown Photographer, 12/20/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Le sumatriptan intranasal pour la migraine chez les enfants

    PubMed Central

    Goldman, Ran D.; Meckler, Garth D.

    2015-01-01

    Résumé Question Je vois de plus en plus d’enfants et d’adolescents qui souffrent de céphalées pouvant se classer dans la catégorie des migraines. J’ai fait des lectures sur le sumatriptan par voie intranasale comme thérapie abortive. Est-ce un traitement efficace? Réponse La migraine aiguë chez les enfants et les adolescents est fréquente et difficile à traiter. Le sumatriptan intranasal est une option sûre et généralement efficace pour les enfants et les adolescents. La dose actuellement recommandée est de 20 mg pour les enfants qui pèsent plus de 40 kg et de 10 mg pour ceux dont le poids se situe entre 20 et 39 kg. Il faudrait faire des études de plus grande envergure pour contrecarrer les limitations des échantillons de petite taille et mieux comprendre la faible concentration plasmique et les effets placebo observés dans les études jusqu’à présent.

  12. First Concrete Poured for NSLS-II Ring Building

    SciTech Connect

    2009-07-20

    The first bits of the National Synchrotron Light Source II (NSLS-II) ring building are now taking shape after the concrete-pouring process for the new, world-class facility began on Monday, July 20. Once complete, the 400,000 square-foot building will house the accelerator ring, the largest component of the machine.

  13. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  14. Marketing NASA Langley Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Flynn, Diane M.

    1995-01-01

    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  15. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  16. Polymeric materials science and engineering

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on the use of polymers in enhanced oil recovery. Topics considered at the conference included polymer flow in porous media, hydrophobically associating polymers, mobility control,rheology, the direct determination of high molecular weights, size characterization of enhanced oil recovery polymers, MWD systems, light scattering, the use of size exclusion chromatography to study the degradation of water-soluble polymers for hydraulic fracturing fluids, polymer concentration in sandstone, electron microscopy, high salinity conditions, polymerization, and viscosity.

  17. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  18. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  19. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.; Etherton, B.P.; Kaus, M.J.

    1989-09-12

    This patent describes a polymerization process. It comprises polymerizing ethylene, alpha-olefins of 3 to 20 carbon atoms or mixtures of ethylene and the alpha-olefins in the presence of a catalyst system. The system comprising: an organo aluminum compound of the formula AIR'''/sub eta/X'''/sub 3-eta/ wherein R''' is hydrogen, hydrocarbyl, or substituted hydrocarbyl having from 1 to 20 carbon atoms, X''' is a halogen and eta is a number from 1 to 3, and a transition metal-containing catalyst component. The component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent with an organonmetallic compound represented by the formula R/sup 1/MgR/sup 2/ wherein R/sup 1/ and R/sup 2/, which may be the same of different,contain 1 to 20 carbon atoms and are selected from alkyl group, aryl group, cycloalkyl group, aralkyl group, alkadienyl group of group; an alcohol; an acyl halide; a titanium halide; Cl/sub 2/, and prereducing the transition metal-containing product with an aluminum alkyl, with the proviso that the first two ingredients can be added to the inert solid simultaneously, as the reaction product of the first two steps or treatment with step two immediately precedes treatment with step one.

  20. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compound of the formula ALR''/sub n/X''/sub 3-n/ wherein R is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and is a number from 1 to 3, and (b) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with (A) an organometallic compounds of a Group IIa, IIb or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, (B) an oxygen containing compound selected from ketones, aldehydes, alcohols or mixtures thereof, (C) an acyl halide, (D) at least one transition metal compound of a Group IVb, Vb, VIb or VIII metal, and (E) a group IIIa metal hydrocarbyl dihalide.

  1. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compound of the formula AIR''/sub n/X''/sub 3-n/ wherein R'' is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and n is a number from 1 to 3, and (B) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with, optionally (A) Cl/sub 2/, Br/sub 2/, an interhalogen or mixtures thereof, (B) an organometallic compound of a Group IIa, IIb or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, (C) an oxygen containing compound selected from ketones, aldehydes, alcohols or mixtures thereof, (D) an acyl halide, (E) at least one transition metal compound of a Group IVb, VB, VIb or VIII metal, and (F) Cl/sub 2/, Br/sub 2/, an interhalogen or mixtures thereof.

  2. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compounds of the formula AIR''/sub n/X''/sub 3-n/ wherein R'' is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and n is a number from 1 to 3, and (b) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with (A) an organometallic compound of a Group IIa, IIb, or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, optionally (B) an oxygen containing compound selected from ketones, aldehydes, alcohols, siloxanes or mixtures thereof, (C) at least one transition metal compound of a Group IVb, Vb, VIb or VIII metal, and (D) a group IIIa metal hydrocarbyl dihalide.

  3. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  4. Practical stability limits of magnesium electrolytes

    SciTech Connect

    Lipson, Albert L.; Han, Sang -Don; Pan, Baofei; See, Kimberly A.; Gewirth, Andrew A.; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2016-08-13

    The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steel electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.

  5. Practical stability limits of magnesium electrolytes

    DOE PAGES

    Lipson, Albert L.; Han, Sang -Don; Pan, Baofei; ...

    2016-08-13

    The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steelmore » electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.« less

  6. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  7. Acute Symptomatic Seizures Caused by Electrolyte Disturbances.

    PubMed

    Nardone, Raffaele; Brigo, Francesco; Trinka, Eugen

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage.

  8. Acute Symptomatic Seizures Caused by Electrolyte Disturbances

    PubMed Central

    Nardone, Raffaele; Brigo, Francesco

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage. PMID:26754778

  9. Theoretical and experimental study of mixed solvent electrolytes. Final report

    SciTech Connect

    P.T. Cummings; J.P. O'Connell

    1995-01-31

    The goals of the research program evolved into six areas: Molecular simulation of phase equilibria in aqueous and mixed solvent electrolyte solutions. Molecular simulation of solvation and structure in supercritical aqueous systems. Extension of experimental database on mixed solvent electrolytes. Analysis of the thermodynamic properties of mixed solvent electrolyte solutions and mixed electrolyte solutions using fluctuation solution theory. Development of analytic expressions for thermodynamic properties of mixed solvent electrolyte solutions using analytically solved integral equation approximations. Fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories.

  10. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  11. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  12. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  13. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  14. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  15. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  16. A Systematic Review of the Free-Pour Assessment: Implications for Research, Assessment and Intervention.

    PubMed

    Schultz, Nicole R; Kohn, Carolynn S; Schmerbauch, Megan; Correia, Christopher J

    2017-03-13

    Excessive alcohol consumption is a major concern. Alcohol consumption data are typically collected via self-report questionnaires. However, research has suggested that individuals are unable to identify a standard drink size and that their self-report may be influenced by certain environmental conditions, calling into question the reliability and validity of self-report. The free-pour is an objective measure that may provide a clearer picture of current alcohol consumption trends, individuals' knowledge of standard drink sizes, and accuracy of self-report. This systematic review of existing free-pour assessment methods suggests that individuals are unable to identify and pour standard drink sizes, with the largest discrepancies occurring for liquor and wine pours and pours into larger and wider glasses. Additional variables that appear to influence pouring behavior are gender, pouring location (e.g., home or laboratory), pouring task (e.g., selecting a line or physically pouring), and drinking history; however, additional research is necessary to better understand the effects of these variables on pouring behavior. These findings have important implications for the accuracy of self-report measures, as well as clinical implications for alcohol use screenings, alcohol education courses, and brief interventions for alcohol use. The systematic review concludes with recommendations for practical applications and future research of the free-pour assessment. (PsycINFO Database Record

  17. Escalation of polymerization in a thermal gradient.

    PubMed

    Mast, Christof B; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-05-14

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.

  18. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  19. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  20. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  1. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  2. Secondary calcium solid electrolyte high temperature battery

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Schumacher, B.

    1986-01-01

    The application of polycrystalline Ca(2+) conducting beta-double prime alumina solid electrolytes to a new type of high temperature battery is investigated, experimentally. The negative electrode in the battery consisted of a calcium-silicon alloy whose redox electrochemistry was mediated by the solid electrolyte via molten salt eutectic CaCl2 (51.4 m/o), and CaI2 (mp 550 C). The molten salt and the calcium alloy material were separated from the positive active material via the Ca2 Ca(2+) conducting polycrystalline electrolyte. The positive electrode consisted of a solid-state matrix having related crystallographic structure. The electrochemical reversibility of the cells was measured at 580 C. The charge-discharge characteristics of the cells are plotted vs. time in a graph.

  3. Method of fabrication of electrodes and electrolytes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  4. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  5. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  6. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  7. Solid electrolytes strengthened by metal dispersions

    DOEpatents

    Lauf, Robert J.; Morgan, Chester S.

    1983-01-01

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  8. Theory of electrohydrodynamic instabilities in electrolytic cells

    NASA Technical Reports Server (NTRS)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  9. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  10. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    DOE PAGES

    Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...

    2015-03-25

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  11. Pressure induced polymerization of Formates

    NASA Astrophysics Data System (ADS)

    Tschauner, Oliver

    2004-03-01

    The discovery of pressure induced polymerization of CO2 inspired us to search for C-O based chain structures forming at high pressure. We used salts of carboxylic acids as starting materials and exposed them to pressures between 10 and 30 GPa. Upon heating to temperatures above 1800 K we observed deprotonation and significant changes in the Raman shifts of C-O streching modes. Structure analysis based on powder diffraction patterns collected at sector 16 of the APS showed formation of extended C-O chain structures with the cations of the salts residing in the interchain spaces. These new high pressure polymers are interesting by their mechanical strength and provide basic molecular patterns of organic metallic conductors.

  12. Molecular and polymeric ceramic precursors

    SciTech Connect

    Sneddon, L.G.

    1991-08-01

    The development of new methods for the production of complex materials is one of the most important problems in modern solid state chemistry and materials science. This project is attempting to apply the synthetic principles which have evolved inorganic and organometallic chemistry to the production of technologically important non-oxide ceramics, such as boron nitride, boron carbide and metal borides. Our recent work has now resulted in the production of new polymer systems, including poly(B-vinylborazine), polyvinylpentaborane and polyborazylene, that have proven to be high yield precursors to boron-based ceramic materials. Current work is now directed toward the synthesis of new types of molecular and polymeric boron-containing species and on exploration of the solid state properties of the ceramics that have been produced in these studies.

  13. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  14. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  15. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  16. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  17. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  18. Novel reversible and switchable electrolytes based on magneto-rheology

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G.; Li, Weihua

    2015-10-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties.

  19. Lithium-ion batteries having conformal solid electrolyte layers

    DOEpatents

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. Novel reversible and switchable electrolytes based on magneto-rheology

    PubMed Central

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G.; Li, Weihua

    2015-01-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties. PMID:26493967

  1. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  2. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  3. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  4. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  5. Conductive polymeric compositions for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  6. Influence of delayed pouring on irreversible hydrocolloid properties.

    PubMed

    Rodrigues, Stéfani Becker; Augusto, Carolina Rocha; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2012-01-01

    The aim of this study was to evaluate the physical properties of irreversible hydrocolloid materials poured immediately and after different storage periods. Four alginates were tested: Color Change (Cavex); Hydrogum (Zhermack); Hydrogum 5 (Zhermack); and Hydro Print Premium (Coltene). Their physical properties, including the recovery from deformation (n = 3), compressive strength (n = 3), and detail reproduction and gypsum compatibility (n = 3), were analyzed according to ANSI/ADA specification no. 18. Specimens were stored at 23ºC and humidity and were then poured with gypsum immediately and after 1, 2, 3, 4, and 5 days. The data were analyzed by two-way analysis of variance (ANOVA) and Tukey's test at p < 0.05. All of the alginate impression materials tested exhibited detail reproduction and gypsum compatibility at all times. Hydro Print Premium and Hydrogum 5 showed recovery from deformation, as established by ANSI/ADA specification no. 18, after 5 days of storage. As the storage time increased, the compressive strength values also increased. Considering the properties of compounds' recovery from deformation, compressive strength, and detail reproduction and gypsum compatibility, irreversible hydrocolloids should be poured immediately.

  7. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    SciTech Connect

    Fan, Fei; Wang, Yangyang; Hong, Tao; Heres, Maximilian F.; Saito, Tomonori; Sokolov, Alexei P.

    2015-07-17

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviation from the ideal line increases upon approaching the glass transition temperature (Tg). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.

  8. Ion Transport in Polymerized Ionic Liquid Block and Random Copolymers

    NASA Astrophysics Data System (ADS)

    Elabd, Yossef; Ye, Yuesheng; Choi, Jae-Hong; Winey, Karen

    2012-02-01

    Polymerized ionic liquid (PIL) block copolymers, a new type of solid-state polymer electrolyte, are of interest for energy conversion and storage devices, such as fuel cells, batteries, supercapacitors, and solar cells. In this study, a series of PIL diblock and random copolymers with various PIL compositions were synthesized. These consisted of an IL monomer and a non-ionic monomer, 1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (MEBIm-TFSI) and methyl methacrylate (MMA), and 1-[(2-acryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (AEBIm-TFSI) and styrene (S), respectively, were synthesized. The anion conductivity (ion transport) and morphology were measured in all of the polymers with EIS, SAXS/WAXS, and TEM. Ion transport in block copolymers are significantly higher than random copolymers at the same PIL composition and are highly dependent on the block copolymer nanostructure. The relationship between ion transport mechanisms and the phase behavior of these materials will be discussed.

  9. ESR studies of semicontinuous emulsion polymerization

    SciTech Connect

    Lau, W.; Westmoreland, D.G.

    1993-12-31

    Electron spin resonance (ESR) is used in the detection and quantification of propagating radicals during a semicontinuous emulsion polymerization. The propagating radical concentration is crucial for the determination of kinetic parameters of the emulsion polymerization process. A flow reactor was built which involves a closed-loop flow system that circulates latex from the polymerization reactor through the ESR cavity for free-radical measurements and back to the reactor. With the continuous measurement of the radical concentrations during a polymerization of methyl methacrylate (MMA), {bar n} (average number of radicals per particle) and k{sub p} (propagating rate constant), are measured throughout the entire polymerization. For the polymerization of the MMA system studied, the authors observed a gradual increased in n and decrease in k{sub p} during the run, suggesting a diffusionally controlled process and that the polymerization is not occurring homogeneously throughout the polymer particles. In the glassy pMMA matrix, radicals can be {open_quotes}trapped{close_quotes} within a minimum volume and remain unterminated.

  10. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  11. Ionometry in the analysis of electrolyte solutions (review)

    SciTech Connect

    Petrukhin, O.M.; Rogatinskaya, S.L.; Shipulo, E.V.

    1995-04-01

    The potential usefulness of ionometry in the analytical control of plating electrolytes, etching solutions, and waste effluents has been considered. Complete ionometric analysis of plating electrolytes and determination of metal cyanide complexes have been presented as examples. Ion-selective field-effect transistors (IEFT), semiconductor electrodes, and ISE pairs have been shown to have potential usefulness for the potentiometric titration of plating electrolytes.

  12. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  13. Battery electrolytes. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Young, C. G.

    1980-05-01

    Many types of solid, liquid and gaseous battery electrolytes are described and analyzed in the cited abstracts. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery life, efficiency, and maintenance characteristics are also delineated. Included are 196 citations.

  14. [Influence of weightlessness on water and electrolytes balance in body].

    PubMed

    Shen, X Y

    2000-02-01

    The balance of water and electrolytes plays an important role in enabling the human body to adapt to spaceflight. This paper introduced the research methods, and changes in water and electrolytes balance during and after space flight. The mechanism and the hazard of the disorder of water and electrolytes caused by weightlessness were discussed.

  15. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    DOEpatents

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  16. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  17. Energetics of the Semiconductor-Electrolyte Interface.

    ERIC Educational Resources Information Center

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  18. Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.

    2006-01-01

    A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.

  19. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  20. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  1. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  2. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  3. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect

    Keqin Huang

    2001-04-30

    A thorough literature survey on low-temperature electrolyte and electrode materials for solid oxide fuel cells (SOFC) is presented. Preliminary results of co-sintering LaGaO{sub 3} (LSGM) film on the cathode substrate were also reported. The chemical stability of LSGM in various SOFC environments was thermodynamically assessed and verified by the molten-salt technique.

  4. Ionic conductivity in crystalline polymer electrolytes.

    PubMed

    Gadjourova, Z; Andreev, Y G; Tunstall, D P; Bruce, P G

    2001-08-02

    Polymer electrolytes are the subject of intensive study, in part because of their potential use as the electrolyte in all-solid-state rechargeable lithium batteries. These materials are formed by dissolving a salt (for example LiI) in a solid host polymer such as poly(ethylene oxide) (refs 2, 3, 4, 5, 6), and may be prepared as both crystalline and amorphous phases. Conductivity in polymer electrolytes has long been viewed as confined to the amorphous phase above the glass transition temperature, Tg, where polymer chain motion creates a dynamic, disordered environment that plays a critical role in facilitating ion transport. Here we show that, in contrast to this prevailing view, ionic conductivity in the static, ordered environment of the crystalline phase can be greater than that in the equivalent amorphous material above Tg. Moreover, we demonstrate that ion transport in crystalline polymer electrolytes can be dominated by the cations, whereas both ions are generally mobile in the amorphous phase. Restriction of mobility to the lithium cation is advantageous for battery applications. The realization that order can promote ion transport in polymers is interesting in the context of electronically conducting polymers, where crystallinity favours electron transport.

  5. Composite Solid Electrolyte for Li Battery Applications

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  6. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1981-01-01

    performed on four commercially available electrolytes; namely, -methanedisulfonic acid - sulfoacetic acid -10-dl-camphorsulfonic acid -and...hydrocarbon chain can increase the stability of aliphatic sulfonic acids . Sulfoacetic and dl-10-camphorsulfonic acids were tested and found to decompose...thermally. 0 Sulfoacetic acid thermally decomposes at 180 C apparently due to decarboxylation. This is substantially below the 245 C reported by previous

  7. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1980-04-01

    available electrolytes; namely, -methanedisulfonic acid - sulfoacetic acid -10-dl-camphorsulfonic acid -and pentadecafluorooctanoic acid . These four...in the hydrocarbon chain can increase the stability of aliphatic sulfonic acids . Sulfoacetic and dl-10-camphorsulfonic acids were tested and found to...decompose thermally. 6 Sulfoacetic acid thermally decomposes at 180 C apparently due to decarboxylation. This is substantially 6 below the 245 C

  8. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    PubMed Central

    Lim, Chur Hoan; Han, Ji Hyun; Jin, Joon; Yu, Ji Eun; Cho, Dong Hyeok; Chung, Dong Jin; Chung, Min Young

    2015-01-01

    Background We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. Methods In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. Results In patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46), 26.9% (n=21), 35.9% (n=28), 47.4% (n=37), and 23.1% (n=18), respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05). Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH) and growth hormone (GH) levels (all P<0.05). Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05), and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01). Conclusion Electrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease. PMID:26485467

  9. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  10. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  11. Polymeric nanoparticles: the future of nanomedicine.

    PubMed

    Banik, Brittany L; Fattahi, Pouria; Brown, Justin L

    2016-01-01

    Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.

  12. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  13. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  14. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  15. Supersaturated Electrolyte Solutions: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo

    1995-01-01

    Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal

  16. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  17. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  18. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes.

    PubMed

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A; Li, Qiuyan; Shao, Yuyan; Helm, Monte L; Borodin, Oleg; Graff, Gordon L; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J; Liu, Jun; Xiao, Jie

    2017-03-08

    Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li(+) cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the battery's life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI layer and prevents its continuous growth and therefore may lead to largely improved performance for LIBs.

  19. Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways.

    PubMed

    D'Angelo, Anthony J; Panzer, Matthew J

    2017-02-02

    Lithium-ion solvate ionic liquids (SILs), consisting of complexed Li(+) cations and a weakly basic anion, represent an emergent class of nonvolatile liquid electrolytes suitable for lithium-based electrochemical energy storage. In this report, solid-state, flexible solvate ionogel electrolytes are synthesized via UV-initiated free radical polymerization/cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in situ within the [Li(G4)][TFSI] electrolyte, which is formed by an equimolar mixture of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and tetraglyme (G4). Ion diffusivity measurements reveal enhanced Li(+) diffusion in PEGDA-supported solvate ionogels, as compared to poly(methyl methacrylate)-supported gels that lack ethylene oxide chains. At 21 vol% PEGDA, a maximum Li(+) transport number of 0.58 and a room temperature ionic conductivity of 0.43 mS/cm have been achieved in a solvate ionogel electrolyte that exhibits an elastic modulus of 0.47 MPa. These results demonstrate the importance of polymer scaffold selection on solvate ionogel electrolyte performance for advanced lithium-based batteries.

  20. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    NASA Astrophysics Data System (ADS)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  1. Polymeric Coatings for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  2. Properties of an indirect composite material polymerized with two different laboratory polymerizing systems.

    PubMed

    Satsukawa, Hidetada; Koizumi, Hiroyasu; Tanoue, Naomi; Nemoto, Mika; Ogino, Tomohisa; Matsumura, Hideo

    2005-09-01

    The purpose of the current study was to evaluate the performance of two laboratory light polymerization systems used to polymerize an indirect composite (Sinfony). A two-step polymerization system (Visio-Alfa and Beta) and a halogen-metal halide unit (Twinkle MIII) were assessed. The composite was polymerized either with the Visio units or with the MIII unit for different exposure periods. Knoop hardness, water sorption, and solubility in water of the composite polymerized with the following modes were determined: Visio, 15 minutes; MIII, 30, 60, 90, 120, and 180 seconds. Extension of light exposure time to the MIII unit improved the hardness of the composite from 30.5 (30 s) to 40.7 (180 s), whereas hardness obtained with the Visio units resulted in 24.8 (15 minutes). Water sorption and solubility of the composite were greater when it was polymerized with the Visio units than with the MIII unit.

  3. Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: fabrication of gradient and patterned polymer brushes.

    PubMed

    Shida, Naoki; Koizumi, Yuki; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2015-03-23

    We report the first ever use of electrochemically mediated atom transfer radical polymerization (eATRP) employing a bipolar electrochemical method for the fabrication of both gradient and patterned polymer brushes. A potential gradient generated on a bipolar electrode allowed the formation of a concentration gradient of a Cu(I) polymerization catalyst through the one-electron reduction of Cu(II) , resulting in the gradient growth of poly(NIPAM) brushes from an initiator-modified substrate surface set close to a bipolar electrode. These polymer brushes could be fabricated in three-dimensional gradient shapes with control over thickness, steepness, and modified area by varying the electrolytic conditions. Moreover, by site-selective application of potential during bipolar electrolysis, a polymer brush with a circular pattern was successfully formed. Polymerization was achieved using both a polar monomer (NIPAM) and a nonpolar monomer (MMA) with the eATRP system.

  4. Non-aqueous electrolytes for lithium ion batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  5. Electrochromic switchable mirror glass fabricated using adhesive electrolyte layer

    NASA Astrophysics Data System (ADS)

    Tajima, Kazuki; Hotta, Hiromi; Yamada, Yasusei; Okada, Masahisa; Yoshimura, Kazuki

    2012-12-01

    We have developed a simple process for fabricating electrochromic switchable mirror glass using an adhesive electrolyte layer. The adhesive electrolyte layer was a mixture of polyethyleneimine electrolyte and polyvinyl butyral adhesive dissolved in gamma-butyrolactone. The device was formed from two substrates; the adhesive electrolyte layer was applied to one of the substrates before they were stuck together. The applied voltage required to change the state of the device was smaller than that of a conventional device with a solid electrolyte layer deposited by sputtering. Our method is simple, fast, and efficient and can be used to fabricate large devices.

  6. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    NASA Astrophysics Data System (ADS)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  7. Method and apparatus for storage battery electrolyte circulation

    DOEpatents

    Inkmann, Mark S.

    1980-09-09

    An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

  8. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  9. A Comparative Study of Electrolyte Flow and Slime Particle Transport in a Newly Designed Copper Electrolytic Cell and a Laboratory-Scale Conventional Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-08-01

    An innovative copper electrolytic cell was designed with its inlet at the cell top and its outlet near the cell bottom, in opposite to conventional electrolytic cells. It was modeled in COMSOL Multiphysics to simulate copper electrorefining process. Unlike conventional electrorefining cells, downward electrolyte flows are more dominant in the fluid flow field in this cell, which leads to faster settlement of slime particles and less contamination to the cathode. Copper concentration profiles, electrolyte flow velocity field, slime particle movements, and slime particle distributions were obtained as simulation results, which were compared with those in a laboratory-scale conventional electrolytic cell. Advantages of the newly designed electrolytic cell were found: copper ions are distributed more uniformly in the cell with a thinner diffusion layer near the cathode; stronger convection exists in the inter-electrode domain with dominant downward flows; and slime particles have larger possibilities to settle down and are less likely to reach the cathode.

  10. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  11. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1988-01-01

    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  12. Highly elastic conductive polymeric MEMS

    PubMed Central

    Ruhhammer, J; Zens, M; Goldschmidtboeing, F; Seifert, A; Woias, P

    2015-01-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations. PMID:27877753

  13. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  14. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  15. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  16. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  17. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  18. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  19. Hydrogel polymerization in microgravity for contact lenses

    NASA Astrophysics Data System (ADS)

    Shcherbakova, Oksana; Kostarev, Konstantin; Kondyurin, Alexey

    Contact lenses become widely used for vision correction. The modern contact lenses made of polymer materials have to satisfy a number of requirements: biocompatibility and non-toxicity, low elastic module, high oxygen permeability, good wettability, mechanical strength and stable shape. To following all these requirements, special polymer compositions and polymerization techniques are in development. One of the unique technology is based on polymerization process in microgravity. The synthesis of the polymer structures proceeds in low concentration solution and Earth gravity has a great influence on the polymerization kinetics and final properties of the gel. The microgravity conditions give a possibility to get a regular polymer network with specific macromolecular structure. The experiments on board of space station and theoretical models of the polymerization processes are considered for contact lenses application.

  20. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  1. Polymerization of actin by positively charged liposomes

    PubMed Central

    1988-01-01

    By cosedimentation, spectrofluorimetry, and electron microscopy, we have established that actin is induced to polymerize at low salt concentrations by positively charged liposomes. This polymerization occurs only at the surface of the liposomes, and thus monomers not in direct contact with the liposome remain monomeric. The integrity of the liposome membrane is necessary to maintain actin in its polymerized state since disruption of the liposome depolymerizes actin. Actin polymerized at the surface of the liposome is organized into two filamentous structures: sheets of parallel filaments in register and a netlike organization. Spectrofluorimetric analysis with the probe N- pyrenyl-iodoacetamide shows that actin is in the F conformation, at least in the environment of the probe. However, actin assembly induced by the liposome is not accompanied by full ATP hydrolysis as observed in vitro upon addition of salts. PMID:3360852

  2. Adhesion of Poly(phenylene sulfide) Resin with Polymeric Film of Triazine Thiol on Aluminum Surface Modified by Anodic Oxidation.

    PubMed

    Chung, Eun Hyuk; Jang, Eun Kyung; Hong, Tae Eun; Kim, Jong Pil; Kim, Hyun Gyu; Jin, Jong Sung; Hyun, Myung Ho; Shin, Dong Su; Bae, Jong-Seong; Jeong, Euh Duck

    2015-01-01

    Various surface modifications have been applied to improve the adhesion properties of aluminum for the cap plate and sealing quality of electrolyte on Li ion batteries. In this study, we have tried to find the effective condition for the polymerization of triazine thiols (TT) on modified aluminum surfaces by anodic aluminum oxide. Characterization of polymerized films on aluminum was explored by scanning electron microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy analysis. Scanning electron microscopy results reveal that meaningful roughness was formed on aluminum surfaces by anodic oxidation. Secondary ion mass spectroscopy analysis results represent that the peel strength was found to depend on film thickness and the composition of the adhesion layer. As a result, Al/PPS (polyphenylene sulfide) resin assemblies developed in this study have superior adhesive property. Therefore, these assemblies might be a viable candidate for a sealing technique for Li ion batteries.

  3. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-02-03

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  4. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-02-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  5. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  6. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  7. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  8. New Polybenzimidazole Architectures by Diels Alder Polymerization

    DTIC Science & Technology

    2012-02-14

    REPORT New Polybenzimidazole Architectures By Diels Alder Polymerization. Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Due to their high...substituents to improve processability, are desirable. This project was a proof of principle study to determine if Diels - Alder polymerization of monomers...AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Polybenzimidazole, Diels Alder

  9. UV Polymerization of Hydrodynamically Shaped Fibers

    DTIC Science & Technology

    2011-01-01

    parallel.17 One other example of non-round fibers was originally reported in 199518 and was produced by co -extrusion of polymers with different...ordinary as there is a minimum required exposure to initiate polymerization as shown with other polymers .25 It was desirable to maintain the same exposure...UV polymerization of hydrodynamically shaped fibers† Abel L. Thangawng, Peter B. Howell, Jr, Christopher M. Spillmann, Jawad Naciri and Frances S

  10. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  11. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  12. Micro-electro-mechanics of ionic polymeric gels as electrically controllable artificial muscles

    SciTech Connect

    Shahinpoor, M.

    1994-12-31

    A polymer gel is defined as a cross-linked polymer network swollen in a liquid medium. These gels possess an ionic structure in the sense that they are generally composed of a number of fixed ions pertaining to sites of various polymer cross-links and segments and mobile ions (counter ions) due to the presence of a solvent which is electrolytic. Ionic polymeric gels are three-dimensional networks of cross-linked macromolecular polyelectrolytes that swell or shrink in aqueous solutions on addition of alkali or acids, respectively. Linear reversible dilation and contraction of the order of more than 1,000 percent have been observed in the laboratory for polyacrylonitrile (PAN) fibers. Furthermore, it has been experimentally observed that swelling and shrinking of ionic gels can also be induced electrically. Thus, direct computer control of large expansions and contractions of ionic polymeric gels by means of a voltage gradient appears to be possible. A mechanism is presented for the reversible nonhomogeneous large deformations and in particular bending of strips of ionic polymeric gels in the presence of an electric field. Exact expressions are given relating the deformation characteristics of the gel to the electric field strength or voltage gradient, gel dimensions and other physical parameters such as the resistance and the capacitance of the gel strip. It is concluded that direct voltage control of such nonhomogeneous large deformations in ionic polymeric gels is possible. These electrically controlled deformations may find unique applications in robotics, artificial muscles, large motion actuator designs, drug delivery systems and smart materials, adaptive structures and systems.

  13. Anion Solvation in Carbonate-Based Electrolytes

    SciTech Connect

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; Peng, Jing; Russell, Selena M.; Wikner, Emily; Fu, Adele; Hu, Libo; Lee, Hung-Sui; Zhang, Zhengcheng; Yang, Xiao-Qing; Greenbaum, Steven; Amine, Khalil; Xu, Kang

    2015-11-16

    The correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  14. Electrolyte and Fluid Transport in Mesothelial Cells

    PubMed Central

    Ji, Hong-Long; Nie, Hong-Guang

    2008-01-01

    Mesothelial cells are specialized epithelial cells, which line the pleural, pericardial, and peritoneal cavities. Accumulating evidence suggests that the monolayer of mesothelial cells is permeable to electrolyte and fluid, and thereby govern both fluid secretion and re-absorption in the serosal cavities. Disorders in these salt and fluid transport systems may be fundamental in the pathogenesis of pleural effusion, pericardial effusion, and ascites. In this review, we discuss the location, physiological function, and regulation of active transport (Na+-K+-ATPase) systems, cation and anion channels (Na+, K+, Cl−, and Ca2+ channels), antiport (exchangers) systems, and symport (co-transporters) systems, and water channels (aquaporins). These secretive and absorptive pathways across mesothelial monolayer cells for electrolytes and fluid may provide pivotal therapeutical targets for novel clinical intervention in edematous diseases of serous cavities. PMID:19169368

  15. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  16. Properties of SOC12 electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Salomon, M.

    1982-06-01

    A number of types of lithium secondary and primary nonaqueous batteries are under development in the power sources division at Fort Monmouth. Military applications for portable power sources range from communications to laser designators and night vision devices. For the latter two applications, the lithium-thionyl chloride battery has been identified as a highly promising system. The battery was initially shown to be capable of providing very high energy densities at various rates of discharge. Since there are virtually no detailed studies on the general physical chemistry of electrolyte solutions in SOC12, the initial phase of the program to develop new electrolytes was to determine those factors which govern both conductivities and solubilities.

  17. Electrolyte compositions for lithium ion batteries

    SciTech Connect

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  18. Anion Solvation in Carbonate-Based Electrolytes

    DOE PAGES

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; ...

    2015-11-16

    The correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate,more » PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.« less

  19. Luminescence and decay times of Eu(III) and Nd(III) in polymer electrolytes

    SciTech Connect

    Carlos, L.D.; Assuncao, M.

    1996-08-01

    Time resolved spectroscopy of poly(ethylene) oxide (PEO) and poly(propylene) oxide (PPO) electrolytes containing different concentrations of Eu{sup 3+} and Nd{sup 3+} ions is reported. A description of the main luminescence features of the Nd{sup 3+} electrolytes is also presented. Lifetimes regarding the main transitions of the luminescence spectra ({sup 5}D{sub 0}{r_arrow}{sup 7}F{sub 1,2} and {sup 4}D{sub 3/2}{r_arrow}{sup 4}I{sub 11/2} for Eu{sup 3+} and Nd{sup 3+}, respectively) are determined and are presented as a function of temperature in the range of 13 to 310 K. The order of magnitude of the values obtained at room temperature (0.2{endash}0.6 ms and {approx_equal}0.7 ms for Eu{sup 3+} and Nd{sup 3+}, respectively), is a further indication of the technological potential of these new polymeric materials. For the Eu{sup 3+} ion the thermally activated quenching of the {sup 5}D{sub 0}{r_arrow}{sup 7}F{sub 2} luminescence is discussed in terms of the observed energy superposition between the {sup 5}D{sub 0,1} levels and the ligands-to-metal charge-transfer states. {copyright} {ital 1996 Materials Research Society.}

  20. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.