Science.gov

Sample records for polymeric films obtained

  1. Characterization of biodegradable films obtained from cysteine-mediated polymerized gliadins.

    PubMed

    Hernandez-Munoz, Pilar; Kanavouras, Antonis; Villalobos, Ricardo; Chiralt, Amparo

    2004-12-29

    This study focuses on the effect exerted by interchain disulfide bonds on the functional properties of films made from gliadins when cross-linked with cysteine. Gliadins were extracted from commercial wheat gluten with 70% aqueous ethanol, and cysteine was added to the film-forming solution to promote cross-linking between protein chains. The formation of interchain disulfide bonds was assessed by SDS-PAGE analysis. Gliadin films treated with cysteine maintain their integrity in water and become less extensible while their tensile strength increases as a consequence of the development of a more rigid network. The glass transition temperature of cross-linked films shifts to slightly higher values. The plasticizing effects of glycerol and moisture are also demonstrated. The mechanical behavior of cysteine-cross-linked gliadin films was compared to that of polymeric glutenins. Cross-linked gliadins displayed tensile strength values similar to those of glutenin films but achieved slightly lower elongation values. Cysteine-cross-linked gliadin films present the advantage that they are ethanol soluble, facilitating film fabrication or their application as a coating for food or for any other film or surface.

  2. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    PubMed

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  3. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  4. Waterborne Polymeric Films.

    DTIC Science & Technology

    1981-02-01

    Parameters of Test Fluids I " 3. Energies of Vaporization and Molar Volumes of Some Acrylic Monomers 29 4. Physical Properties of Synthetic Polymers 31 S...Physical Properties of Synthetic Acrylic Aqueous Dispersions 33 6. Anionic Acrylic Clear-film Formulations 35 7 Fluid Resistance of Anionic Acrylic...41 11. Energeis of Vaporization and Molar Volumes of Some Polyurethanes 45 12. Solution Properties of Synthetic Polyurethanes 47 13. Aqueous

  5. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  6. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  7. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  8. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  9. Solid polymeric electrolytes obtained from modified natural polymers

    NASA Astrophysics Data System (ADS)

    Pawlicka, Agnieszka; Machado, G. O.; Guimaraes, K. V.; Dragunski, Douglas C.

    2003-10-01

    Polysaccharides like starch and cellulose derivatives, hydroxyethylcellulose (HEC) or hydroxypropylcellulose (HPC) were modified to obtain solid polymeric electrolytes. The chemical modifications were performed by the grafting of polymers with poly(ethylene oxide) mono and diisocyanates or JEFFAMINE (Shiff base). The physical modifications were made by the plasticization process of starch and cellulose derivatives with glycerol and ethylene glycol. All the samples obtained from polysaccharides were characterized by X-ray, thermal analysis (DSC) and impedance spectroscopy. The plasticized samples showed low glass transition temperatures (Tg); for HEC the value was about -60°C and for starch it was about -30°C. Tg values for grafted samples were of about -58°C for starch and -7°C for HPC. The low Tg values obtained are important to ensure good ionic conductivity that reached the values of about 10-5 Scm-1 for plasticized samples and 10-6 Scm-1 for grafted ones at room temperature. The good film forming and ionic conductivity properties of the samples of HEC, HPC and starch are very interesting candidates to be used as solid polymer electrolytes.

  10. Radiation-hardened polymeric films

    DOEpatents

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  11. Radiation-hardened polymeric films

    DOEpatents

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  12. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  13. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  14. Surface-initiated atom transfer radical polymerization from chitin nanofiber macroinitiator film.

    PubMed

    Yamamoto, Kazuya; Yoshida, Sho; Kadokawa, Jun-Ichi

    2014-11-04

    This paper reports the preparation of chitin nanofiber-graft-poly(2-hydroxyethyl acrylate) (CNF-g-polyHEA) films by surface-initiated atom transfer radical polymerization (ATRP) of HEA monomer from a CNF macroinitiator film. First, a CNF film was prepared by regeneration from a chitin ion gel with an ionic liquid. Then, acylation of the CNF surface with α-bromoisobutyryl bromide was carried out to obtain the CNF macroinitiator film having the initiating moieties (α-bromoisobutyrate group). The surface-initiated graft polymerization of HEA from the CNF macroinitiator film by ATRP was performed to produce the CNF-g-polyHEA film. The IR, XRD, and SEM measurements of the resulting film indicated the progress of the graft polymerization of HEA on surface of CNFs. The molecular weights of the grafted polyHEAs increased with prolonged polymerization times, which affected the mechanical properties of the films under tensile mode.

  15. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Dumitrascu, Nicoleta; Popa, Gheorghe

    2009-01-01

    Plasma polymers of acrylic acid were obtained using an atmospheric pressure discharge system. The plasma polymerization reactor uses a dielectric barrier discharge, with the polyethylene terephthalate dielectric acting as substrate for deposition. The plasma was characterized by specific electrical measurements, monitoring the applied voltage and the discharge current. Based on the spatially resolved optical emission spectroscopy, we analyzed the distribution of the excited species in the discharge gap, specific plasma temperatures (vibrational and gas temperatures) being calculated with the Boltzmann plot method. The properties of the plasma polymer films were investigated by contact angle measurements, infrared and UV-Vis spectroscopy, scanning electron microscopy. The films produced by plasma polymerization at atmospheric pressure showed a hydrophilic character, in correlation with the strong absorbance of OH groups in the FTIR spectrum. Moreover, the surface of the plasma polymers at micrometric scale is smooth and free of defects without particular features.

  16. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development.

    PubMed

    Altomare, L; Gadegaard, N; Visai, L; Tanzi, M C; Farè, S

    2010-06-01

    During tissue formation, skeletal muscle precursor cells fuse together to form multinucleated myotubes. To understand this mechanism, in vitro systems promoting cell alignment need to be developed; for this purpose, micrometer-scale features obtained on substrate surfaces by photolithography can be used to control and affect cell behaviour. This work was aimed at investigating how differently microgrooved polymeric surfaces can affect myoblast alignment, fusion and myotube formation in vitro. Microgrooved polymeric films were obtained by solvent casting of a biodegradable poly-l-lactide/trimethylene carbonate copolymer (PLLA-TMC) onto microgrooved silicon wafers with different groove widths (5, 10, 25, 50, 100microm) and depths (0.5, 1, 2.5, 5microm), obtained by a standard photolithographic technique. The surface topography of wafers and films was evaluated by scanning electron microscopy. Cell assays were performed using C2C12 cells and myotube formation was analysed by immunofluorescence assays. Cell alignment and circularity were also evaluated using ImageJ software. The obtained results confirm the ability of microgrooved surfaces to influence myotube formation and alignment; in addition, they represent a novel further improvement to the comprehension of best features to be used. The most encouraging results were observed in the case of microstructured PLLA-TMC films with grooves of 2.5 and 1microm depth, presenting, in particular, a groove width of 50 and 25microm.

  17. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  18. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  19. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C.J.; Reed, S.T.

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  20. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C. Jeffrey; Reed, Scott T.

    1984-01-01

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  1. Gliadins polymerized with cysteine: effects on the physical and water barrier properties of derived films.

    PubMed

    Hernández-Muñoz, Pilar; Lagarón, José M; López-Rubio, Amparo; Gavara, Rafael

    2004-01-01

    To study the effects of disulfide bonds on certain functional properties of films made from the wheat gluten proteins gliadin and glutenin, cysteine was used to promote the formation of interchain disulfide bridges between gliadins in 70% ethanolic solution. Disulfide-mediated polymerization of gliadins was confirmed by means of SDS-PAGE analysis. After chemical treatment of gliadins, films were solution cast and the effects of both glycerol (used as a plasticizer) and relative humidity were studied on water vapor permeability, moisture sorption isotherms at 23 degrees C, and the optical properties of the films. The results were compared with those obtained from analogous films made from untreated glutenin macromolecules. Cysteine-mediated polymerization of gliadins improved the water vapor resistance of films achieving values close to those obtained for glutenin films. Development of intra- and interchain disulfide bonds did not change the moisture sorption capacity of the films but transparency was slightly diminished.

  2. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  3. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  4. Pulsed DC discharge for synthesis of conjugated plasma polymerized aniline thin film

    NASA Astrophysics Data System (ADS)

    Barman, Tapan; Pal, Arup R.

    2012-10-01

    The polymerization of aniline in pulsed dc plasma is studied and the effects of variation of pressure, power, frequency and duty cycle on the chemical structure of the obtained film are examined. During the film deposition optical emission spectroscopy is used to investigate the molecular dissociation of aniline. The chemical structure of the films is characterized using Fourier transform infra-red spectroscopy. The surface morphology is studied using atomic force microscopy. Results show the retention of polyaniline like structure having conjugated nature at some particular discharge conditions. Moreover, it is observed that a strong dependence of film chemistry is obvious on the discharge power, reactor pressure, pulse repetition frequency and duty cycle. The advantages of the pulsed dc for deposition of conjugated plasma polymerizes thin film have been highlighted.

  5. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  6. Formation of poly(methyl methacrylate) thin films onto wool fiber surfaces by vapor deposition polymerization.

    PubMed

    Hassan, M Mahbubul; McLaughlin, J Robert

    2013-03-13

    Chemical vapor deposition (CVD) polymerization is a useful technique because of the possibility of forming very thin film of pure polymers on substrates with any geometric shape. In this work, thin films of poly(methyl methacrylate) or PMMA were formed on the surfaces of wool fabrics by a CVD polymerization process. Various polymerization initiators including dicumyl peroxide, tert-butyl peroxide, and potassium peroxydisulfate have been investigated to polymerize methyl methacrylate onto the surfaces of wool by the CVD polymerization. The wool fabrics were impregnated with initiators and were then exposed to MMA monomer vapor under vacuum at the boiling temperature of the monomer. Wool fabrics with vapor-deposited PMMA surfaces were characterized by elemental analysis, TGA, FTIR, disperse dye absorption, contact angles measurement, AFM, and SEM. PMMA-coated wool fabrics showed higher contact angle and absorbed more dyes than that of the control wool. It was evident from the results obtained by various characterization techniques that MMA was successfully polymerized and formed thin films on the surfaces of wool fabrics by all initiators investigated but the best results were achieved with tert-butyl peroxide.

  7. Bismuth thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  8. Coalescence of polymeric particles in latex films

    SciTech Connect

    Cabane, B.

    1996-01-01

    Common coatings such as paints or adhesives can be made from aqueous dispersions which are evaporated on the substrate to give a continuous film. The most widely studied systems are latex dispersions, which contain submicrometric particles of soft organic polymers dispersed in water. With such systems, the difficulty is to ensure that the resulting film will be resistant to water, despite the fact that it has been prepared as a stable aqueous dispersion. For this purpose the dispersion must pass through some irreversible transformations. A radical transformation is the coalescence of particles, which yields a continuous polymer film. This transformation will be described for surfactant-covered latex particles, which coalesce in the wet state, and for polyelectrolyte-covered particles, which coalesce in the dry state. The consequences of coalescence will be examined, in particular the expulsion of the surfactants towards the outer boundaries of the film. This may be detrimental to the adhesive properties of the film: thus alternative routes for maintaining resistance to water without using coalescence of the particles will also be examined. {copyright} {ital 1996 American Institute of Physics.}

  9. Controlled release of ethylene via polymeric films for food packaging

    NASA Astrophysics Data System (ADS)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  10. Preparation of polysaccharide supramolecular films by vine-twining polymerization approach.

    PubMed

    Kadokawa, Jun-ichi; Nomura, Shintaro; Hatanaka, Daisuke; Yamamoto, Kazuya

    2013-10-15

    In this study, we investigated the preparation of polysaccharide supramolecular films through the formation of inclusion complexes by amylose in vine-twining polymerization using carboxymethyl cellulose-graft-poly(ε-caprolactone) (CMC-g-PCL) as a new guest polymer. First, hydrogels were prepared by phosphorylase-catalyzed enzymatic polymerization in the presence of CMC-g-PCL according to the vine-twining polymerization manner. The XRD result of a powdered sample obtained by lyophilization of the resulting hydrogel indicated the presence of inclusion complexes of amylose with the PCL graft-chains between intermolecular (CMC-g-PCL)s, which acted as supramolecular cross-linking points for the hydrogelation. Then, the supramolecular films were obtained by adding water to the powdered samples, followed by drying. The mechanical properties of the selected films examined by tensile testing were superior to those of a CMC film. The effect of the supramolecular cross-linking structures on the mechanical properties of the films was evaluated further by several investigations.

  11. Novel Patterned Films by Free-Radical Polymerization Techniques

    NASA Astrophysics Data System (ADS)

    Ward, Jennifer H.; Peppas, Nicholas A.

    2000-03-01

    We have developed novel techniques for the preparation of micropatterned structures by the block copolymerization of thin layers using UV free-radical polymerizations. The process involves polymerizing the first layer in the presence of an iniferter (initiator-transfer agent-terminator) with a dithiocarbamate group to make a photosensitive polymer. Upon application of a second monomer layer on the first polymer layer and irradiation, a copolymer is formed between the two layers. Patterns are created on the films by applying a mask and selectively irradiating the surface. Applications of this type of material are in biomaterials and biosensors for the selective adhesion of cells and proteins. We have successfully polymerized poly(ethylene glycol) (PEG) onto a layer of poly(methyl methacrylate) (PMMA) in the presence of tetraethylthiuran disulfide. Cells will adhere to the exposed PMMA areas but not to the PEG surfaces. This work has been supported by National Science Foundation grant No. DGE-9972770.

  12. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  13. Waveguides in Thin Film Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Sakisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1996-01-01

    Results on the fabrication of integrated optical components in polymeric materials using photo printing methods will be presented. Optical waveguides were fabricated by spin coating preoxidized silicon wafers with organic dye/polymer solution followed by soft baking. The waveguide modes were studied using prism coupling technique. Propagation losses were measured by collecting light scattered from the trace of a propagation mode by either scanning photodetector or CCD camera. We observed the formation of graded index waveguides in photosensitive polyimides after exposure of UV light from a mercury arc lamp. By using a theoretical model, an index profile was reconstructed which is in agreement with the profile reconstructed by the Wentzel-Kramers-Brillouin calculation technique using a modal spectrum of the waveguides. Proposed mechanism for the formation of the graded index includes photocrosslinking followed by UV curing accompanied with optical absorption increase. We also developed the prototype of a novel single-arm double-mode interferometric sensor based on our waveguides. It demonstrates high sensitivity to the chance of ambient temperature. The device can find possible applications in aeropropulsion control systems.

  14. Method for providing mirror surfaces with protective strippable polymeric film

    DOEpatents

    Edwards, Charlene C.; Day, Jack R.

    1980-01-01

    This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.

  15. Method of forming graded polymeric coatings or films

    DOEpatents

    Liepins, Raimond

    1983-01-01

    Very smooth polymeric coatings or films graded in atomic number and density can readily be formed by first preparing the coating or film from the desired monomeric material and then contacting it with a fluid containing a metal or a mixture of metals for a time sufficient for such metal or metals to sorb and diffuse into the coating or film. Metal resinate solutions are particularly advantageous for this purpose. A metallic coating can in turn be produced on the metal-loaded film or coating by exposing it to a low pressure plasma of air, oxygen, or nitrous oxide. The process permits a metallic coating to be formed on a heat sensitive substrate without the use of elevated temperatures.

  16. Simulation of thin film membranes formed by interfacial polymerization.

    PubMed

    Oizerovich-Honig, Rachel; Raim, Vladimir; Srebnik, Simcha

    2010-01-05

    Interfacial polymerization is widely used today for the production of ultrathin films for encapsulation, chemical separations, and desalination. Polyamide films, in particular, are employed in manufacturing of reverse osmosis and nanofiltration membranes. While these materials show excellent salt rejection, they have rather low water permeability, both properties that apparently stem from the rigid cross-linked structure. An increasing amount of experimental research on membranes of different chemistries and membrane characterization suggests the importance of other factors (such as unreacted functional groups and surface roughness) in determining membrane performance. We developed a molecular simulation model to qualitatively study the effects of various synthesis conditions on membrane performance, in terms of its estimated porosity and permeability. The model is of an interfacial aggregation process of two types of functional monomers. Film growth with time and structural characteristics of the final film are compared with predictions of existing theories and experimental observations.

  17. Electrochemically polymerized conjugated polymer films: Stability improvement and surface functionalization

    NASA Astrophysics Data System (ADS)

    Wei, Bin

    Conjugated polymers have been widely used in various applications including organic solar cells, electrochromic devices, chemical sensors, and biomedical devices. Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have received considerable interest because of their low oxidation potential, relatively high chemical stability, and high conductivity. Electrochemical deposition is a convenient method for precisely fabricating conjugated polymer thin films. Here, we report the stability improvement and surface functionalization of electrochemically polymerized PEDOT films. The long-term performance of PEDOT coatings is limited by their relatively poor stability on various inorganic substrates. Two different methods were used to improve the stability of PEDOT coatings, one involved using carboxylic acid functionalized EDOT (EDOT-acid) as adhesion promoter. EDOT-acid molecules were chemically bonded onto activated metal oxide substrates via chemisorption. PEDOT was then polymerized onto the EDOT-acid modified substrates, forming covalently bonded coatings. An aggressive ultrasonication test confirmed the significantly improved adhesion of the PEDOT films on electrodes with EDOT-acid treatment over those without treatment. The other method was to use an octa-ProDOT-functionalized POSS derivative (POSSProDOT) as cross-linker. PEDOT copolymer films were electrochemically deposited with various concentrations of POSS-ProDOT. The optical, morphological and electrochemical properties of the copolymer films could be systematically tuned with the incorporation of POSS-ProDOT. Significantly enhanced electrochemical and mechanical stability of the copolymers were observed at intermediate levels of POSS-ProDOT content (3.1 wt%) via chronic stimulation tests. Surface functionalization of conducting polymer films provides a potential means for systematically tailoring their chemical and physical properties. We have synthesized, polymerized and characterized a dialkene

  18. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  19. A high-sensitivity torsional pendulum for polymeric films and fibres

    NASA Technical Reports Server (NTRS)

    Aghili-Kermani, H.; Obrien, T.; Armeniades, C. D.; Roberts, J. M.

    1976-01-01

    A free oscillation torsion pendulum is described, which has been designed to measure accurately the dynamic shear modulus and logarithmic decrement of polymeric thin films and fibers, at frequencies of 0.1 to 10 Hz and a temperature range of 4.2 to 450 K. The instrument can also provide in situ tensile deformations of up to 5%. The specimen geometry necessary to obtain reliable modulus measurements with thin films is discussed, and typical data are presented which exhibit hitherto unreported relaxation processes, discernible by this instrument.

  20. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films.

    PubMed

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-12-25

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold-enhanced fluorescence detection.

  1. Enhancement of Fluorescence-Based Sandwich Immunoassay Using Multilayered Microplates Modified with Plasma-Polymerized Films

    PubMed Central

    Yano, Kazuyoshi; Iwasaki, Akira

    2016-01-01

    A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144

  2. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  3. Impact of low-pressure glow-discharge-pulsed plasma polymerization on properties of polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2016-12-01

    This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.

  4. Mechanically Resilient Polymeric Films Doped with a Lithium Compound

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of mechanically resilient polymeric films, comprising rod-coil block polyimide copolymers, which are doped with a lithium compound providing lithium ion conductivity, that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consists of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  5. Photodynamic inactivation of bacteria using novel electrogenerated porphyrin-fullerene C60 polymeric films.

    PubMed

    Ballatore, M Belén; Durantini, Javier; Gsponer, Natalia S; Suarez, María B; Gervaldo, Miguel; Otero, Luis; Spesia, Mariana B; Milanesio, M Elisa; Durantini, Edgardo N

    2015-06-16

    A porphyrin-fullerene C60 dyad (TCP-C60) substituted by carbazoyl groups was used to obtain electrogenerated polymeric films on optically transparent indium tin oxide (ITO) electrodes. This approach produced stable and reproducible polymers, holding fullerene units. The properties of this film were compared with those formed by layers of TCP/TCP-C60 and TCP/ZnTCP. Absorption spectra of the films presented the Soret and Q bands of the corresponding porphyrins. The TCP-C60 film produced a high photodecomposition of 2,2-(anthracene-9,10-diyl)bis(methylmalonate), which was used to detect singlet molecular oxygen O2((1)Δg) production in water. In addition, the TCP-C60 film induced the reduction of nitro blue tetrazolium to diformazan in the presence of NADH, indicating the formation of superoxide anion radical. Moreover, photooxidation of L-tryptophan mediated by TCP-C60 films was found in water. In biological media, photoinactivation of Staphylococcus aureus was evaluated depositing a drop with 2.5 × 10(3) cells on the films. After 30 min irradiation, no colony formation was detected using TCP-C60 or TCP/TCP-C60 films. Furthermore, photocytotoxic activity was observed in cell suspensions of S. aureus and Escherichia coli. The irradiated TCP-C60 film produced a 4 log decrease of S. aureus survival after 30 min. Also, a 4 log reduction of E. coli viability was obtained using the TCP-C60 film after 60 min irradiation. Therefore, the TCP-C60 film is an interesting and versatile photodynamic active surface to eradicate bacteria.

  6. An investigation of plasma pretreatments and plasma polymerized thin films for titanium/polyimide adhesion

    NASA Astrophysics Data System (ADS)

    Difelice, Ronald Attilio

    adhesion of the PP acetylene to the Ti-6Al-4V substrate. The effects of a large number of plasma parameters, such as substrate pretreatment, carrier gas, input power, flow rate and film thickness were investigated. All samples failed at the PP film/Ti-6Al-4V interface or within the PP acetylene film, and thicker PP films yielded lower SLS strengths. PP films deposited at lower power exhibited higher hardness and reduced modulus than films deposited at higher power. Overall, thinner films exhibited higher hardness and reduced Young's modulus than thicker films. PP films of higher hardness yielded higher critical loads at debond (thickness normalized) during the nanoscratch test. Thin films were developed via the vapor plasma polymerization of titanium(IV) isobutoxide (TiiB). XPS results suggested that titanium was incorporated into the film as TiO2 clusters dispersed in an organic matrix. No evidence for Ti-C was obtained from the XPS spectra. PP films of TiiB were much more compliant than PP acetylene films. This behavior was attributed to decreased fragmentation and lower crosslinking that occurred during PP TiiB film deposition. These PP films did not exhibit sol-gel-like qualities, and because of the way titanium was incorporated into the films, a more appropriate name for these films might be "titanium dioxide-doped plasma polymerized films."

  7. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  8. Polymeric films loaded with vitamin E and aloe vera for topical application in the treatment of burn wounds.

    PubMed

    Pereira, Gabriela Garrastazu; Guterres, Sílvia Stanisçuaki; Balducci, Anna Giulia; Colombo, Paolo; Sonvico, Fabio

    2014-01-01

    Burns are serious traumas related to skin damage, causing extreme pain and possibly death. Natural drugs such as Aloe vera and vitamin E have been demonstrated to be beneficial in formulations for wound healing. The aim of this work is to develop and evaluate polymeric films containing Aloe vera and vitamin E to treat wounds caused by burns. Polymeric films containing different quantities of sodium alginate and polyvinyl alcohol (PVA) were characterized for their mechanical properties and drug release. The polymeric films, which were produced, were thin, flexible, resistant, and suitable for application on damaged skin, such as in burn wounds. Around 30% of vitamin E acetate was released from the polymeric films within 12 hours. The in vivo experiments with tape stripping indicated an effective accumulation in the stratum corneum when compared to a commercial cream containing the same quantity of vitamin E acetate. Vitamin E acetate was found in higher quantities in the deep layers of the stratum corneum when the film formulation was applied. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of burns.

  9. Polymeric Films Loaded with Vitamin E and Aloe vera for Topical Application in the Treatment of Burn Wounds

    PubMed Central

    Pereira, Gabriela Garrastazu; Guterres, Sílvia Stanisçuaki; Balducci, Anna Giulia; Colombo, Paolo

    2014-01-01

    Burns are serious traumas related to skin damage, causing extreme pain and possibly death. Natural drugs such as Aloe vera and vitamin E have been demonstrated to be beneficial in formulations for wound healing. The aim of this work is to develop and evaluate polymeric films containing Aloe vera and vitamin E to treat wounds caused by burns. Polymeric films containing different quantities of sodium alginate and polyvinyl alcohol (PVA) were characterized for their mechanical properties and drug release. The polymeric films, which were produced, were thin, flexible, resistant, and suitable for application on damaged skin, such as in burn wounds. Around 30% of vitamin E acetate was released from the polymeric films within 12 hours. The in vivo experiments with tape stripping indicated an effective accumulation in the stratum corneum when compared to a commercial cream containing the same quantity of vitamin E acetate. Vitamin E acetate was found in higher quantities in the deep layers of the stratum corneum when the film formulation was applied. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of burns. PMID:24524083

  10. Effects of LDEF flight exposure on selected polymeric films and thermal control coatings

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Young, Philip R.; Shen, James Y.

    1991-01-01

    The characterization of polymeric films and thermal control coatings which were exposed for five years and ten months to the low-Earth environment is reported. Changes in solar absorptance, thermal emittance, and transmission are compared to laboratory control specimens. Sputter-deposited metallic coatings are shown to eliminate atomic oxygen erosion of resin matrix composite materials. The effects of long-term atomic oxygen exposure to metallized FEP Teflon film is characterized. Chemical characterization of polymeric films indicates that although surface erosion occurs, the molecular structure of the basic polymeric film has not changed significantly in response to this exposure.

  11. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    NASA Astrophysics Data System (ADS)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  12. Enhancement of light collection through flexible polymeric films patterned using self-assembled photonic crystals

    NASA Astrophysics Data System (ADS)

    Haldar, Arpita; Srinivas Reddy, M.; Vijaya, R.

    2015-07-01

    Flexible nanopatterned polymeric thin films are fabricated by a simple and cost-effective soft imprint lithography technique. The use of low-cost self-assembled photonic crystals as structured masters is the highlight of this work. Two types of polymeric films, with and without a dye, are patterned. Both have shown very good anti-reflection properties and the dyed films have also shown a polarization-independent enhancement in the absorption for the normal incidence of light. The structures with smaller features have shown better anti-reflection properties. Angle-dependent reflection measurements show an improved reduction in reflection at larger incidence angles. A maximum reduction in reflection of 11% is obtained from the patterned film in comparison to the bare glass substrate when the light is incident at an angle of 60°. This is very useful in photovoltaic devices as wide-angle anti-reflection coating. The reflection calculated using the effective medium approximation supports the experimental results.

  13. Investigation of the feasibility of developing low permeability polymeric films

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1971-01-01

    The feasibility of reducing the gas permeability rate of Mylar and Kapton films without drastically effecting their flexibility characteristics at cryogenic temperatures was considered. This feasibility was established using a concept of diffusion bonding two layers of metallized films together forming a film-metal-film sandwich laminate. The permeability of kapton film to gaseous helium was reduced from a nominal ten = to the minus 9 power cc-mm/sq cm sec. cm Hg to ten to the minus 13 power cc-mm/ sq cm - sec. cm Hg with some values as low as ten to the minus 15 power cc - mm/sq cm m-sec - cm Hg being obtained. Similar reductions occurred in the liquid hydrogen permeability at -252 C. In the course of the program the permeability, flexibility and bond strength of plain, metalized and diffusion bond film were determined at +25 C, -195 C and -252 C. The cryogenic flexibility of Kapton film was reduced slightly due to the metallization process but no additional loss in flexibility resulted from the diffusion bonding process.

  14. Correlation between Adhesion Strength of Plasma-Polymerized Hexamethyldisiloxane Films to Polytetrafluoroethylene and Partial Discharge Resistance

    NASA Astrophysics Data System (ADS)

    Kusabiraki, Minoru; Aozasa, Masao

    1995-09-01

    Polytetrafluoroethylene (PTFE) films were coated with plasma-polymerized hexamethyldisiloxane (PPHMDS) films in a dc glow discharge system. The correlation between the adhesion of the PPHMDS films to the PTFE films and the partial discharge resistance of the composite films was investigated. The voltage endurance of the composite films in the presence of partial discharges increased with the adhesion of the PPHMDS films. From an observation of the deteriorated surface scars, it was shown that the deterioration is affected by the formation of cracks in the PPHMDS film.

  15. Effect of Degree of Imidization in Polyimide Thin Films Prepared by Vapor Deposition Polymerization on the Electrical Conduction

    NASA Astrophysics Data System (ADS)

    Ito, Yasuhiko; Hikita, Masayuki; Kimura, Toyoaki; Mizutani, Teruyosi

    1990-06-01

    Polyimide (PI) thin films of about 300 nm in thickness are fabricated by vapor deposition polymerization (VDP) from pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenylether (DDE). The structure of the films obtained is analyzed by means of infrared absorption spectra (IR spectra) and X-ray diffraction. The IR spectra show that the films are changed into PI by curing through the precursor, polyamic acid (PAA). The relation between the imidization of the films and the electrical conduction is examined. The results show that as imidization caused by curing the films proceeds, the current is decreased. It is therefore suggested that the residual PAA in PI thin films affects the electrical conduction. An attempt is also made to apply a model of ionic hopping conduction to the electrical conduction data.

  16. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  17. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids.

    NASA Astrophysics Data System (ADS)

    Benitez, Jose; Heredia-Guerrero, José; Guzman-Puyol, Susana; Barthel, Markus; Dominguez, Eva; Heredia, Antonio

    2015-08-01

    Free-standing polyesters films from mono and polyhydroxylated fatty acids (C16 and C18) have been obtained by non-catalyzed melt-condensation polymerization in air at 150°C. Chemical characterization by Fourier Transform Infrared Spectroscopy (FTIR) and 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR) has confirmed the formation of the corresponding esters and the occurrence of hydroxyl partial oxidation which extent depends on the type of hydroxylation of the monomer (primary or secondary). Generally, polyester films obtained are hydrophobic, insoluble in common solvents, amorphous and infusible as revealed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). In ?-polyhydroxy acids, esterification reaction with primary hydroxyls is preferential and, therefore, the structure can be defined as linear with variable branching depending on the amount of esterified secondary hydroxyls. The occurrence side oxidative reactions like the diol cleavage are responsible for chain cross-linking. Films are thermally stable up to 200-250°C though this limit can be extended up to 300°C in the absence of ester bonds involving secondary hydroxyls. By analogy with natural occurring fatty polyesters (i.e. cutin in higher plants) these polymers are proposed as biodegradable and non-toxic barrier films or coatings to be used, for instance, in food packing

  18. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  19. Er:YAB nanoparticles and vitreous thin films by the polymeric precursor method

    NASA Astrophysics Data System (ADS)

    Maia, Lauro J. Q.; Ibanez, Alain; Ortega, Luc; Mastelaro, Valmor R.; Hernandes, Antonio C.

    2008-12-01

    The synthesis of Y0.9Er0.1Al3(BO3)4 crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using d-sorbitol as complexant agent. The chemical reactions were described. Y0.9Er0.1Al3(BO3)4 composition presents good thermal stability with regard to crystallization. The Y0.9Er0.1Al3(BO3)4 crystallized phase can be obtained at 1,150 °C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to ˜ 800 nm) at 740 °C during 2 h onto silica substrates by spin coating with a gyrset technology.

  20. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers.

    PubMed

    Alvarez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Tejero, Rubén; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2016-04-01

    New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.

  1. Characterization of polymeric films subjected to lithium ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  2. Characterization of polymeric films subjected to lithium ion beam irradiation

    SciTech Connect

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  3. ESEM analysis of polymeric film in EVA-modified cement paste

    SciTech Connect

    Silva, D.A. . E-mail: denise@ecv.ufsc.br; Monteiro, P.J.M.

    2005-10-01

    Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.

  4. Detection of heavy metals in water using dye nano-complexants and a polymeric film.

    PubMed

    Hadar, Hodayah Abuhatzira; Bulatov, Valery; Dolgin, Bella; Schechter, Israel

    2013-09-15

    An optical analytical method, based on complexation reactions of organic azo-dyes with heavy metals, is proposed. It is based on a specially designed polymeric film that when submerged in water contaminated with heavy metals it changes its color. The azo-dyes are injected into the tested water, resulting in formation of nano-particles of insoluble complexes. The polymeric film embeds and dissolves these nano-particles and thus allows for spectral and/or visual analysis. This film consists of a PVC polymeric skeleton and an organic solvent, bis(2-ethylhexyl)phthalate, which possesses high affinity to the heavy metal nano-complexes. The method was exemplified for Cd, Ni and Co ions. The method is sensitive in the sub-ppm range. The mechanism and kinetics of the film coloration were reported.

  5. Polymeric prodrug-functionalized polypropylene films for sustained release of salicylic acid.

    PubMed

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M; Díaz-Gómez, Luis; Concheiro, Angel; Zavala-Lagunes, Edgar; Alvarez-Lorenzo, Carmen; Bucio, Emilio

    2016-09-10

    Medical devices decorated with salicylic acid-based polymer chains (polymeric prodrug) that slowly release this anti-inflammatory and anti-biofilm drug at the implantation site were designed. A "grafting from" method was implemented to directly grow chains of a polymerizable derivative of salicylic acid (2-methacryloyloxy-benzoic acid, 2MBA) onto polypropylene (PP). PP was modified both at bulk and on the surface with poly(2MBA) by means of an oxidative pre-irradiation method ((60)Co source), in order to obtain a grafted polymer in which salicylic acid units were linked by means of labile ester bonds. The grafting percent depended on absorbed dose, reaction time, temperature and monomer concentration. The functionalized films were analyzed regarding structure (FTIR-ATR, SEM-EDX, fluorescence microscopy), temperature stability (TGA), interaction with aqueous medium (water contact angle and swelling), pH-responsive release and cytocompatibility (fibroblasts). In the obtained poly(2MBA)-grafted biomaterial, poly(2MBA) behaved as a polymeric prodrug that regulates salicylic acid release once in contact with aqueous medium, showing pH-dependent release rate.

  6. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  7. Thermally and photoinduced polymerization of ultrathin sexithiophene films

    SciTech Connect

    Sander, Anke; Hammer, Rene; Duncker, Klaus; Förster, Stefan; Widdra, Wolf

    2014-09-14

    The thermally-induced polymerization of α-sexithiophene (6T) molecules on Ag(001) and Au(001) gives rise to long unbranched polymer chains or branched polymer networks depending on the annealing parameters. There, the onset temperature for polymerization depends on the strength of interaction with the underlying substrate. Similar polymerization processes are also induced by ultraviolet radiation with photon energies between 3.0 and 4.2 eV. Radical formation by an electronic excitation in the 6T molecule is proposed as the driving mechanism that necessitates the interplay with the metallic substrate.

  8. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    SciTech Connect

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; Li, Xin; Chatterjee, Sourav; Lusker, Kathie L.; Lu, Lu; Strzalka, Joseph; Ankner, John F.; Losovyj, Yaroslav; Garno, Jayne C.; Nesterov, Evgueni E.

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe the development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization

  9. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale

  10. Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted Interfacial Polymerization.

    PubMed

    Bossion, Amaury; Jones, Gavin O; Taton, Daniel; Mecerreyes, David; Hedrick, James L; Ong, Zhan Yuin; Yang, Yi Yan; Sardon, Haritz

    2017-02-28

    Polyurethanes (PUs) are considered ideal candidates for drug delivery applications due to their easy synthesis, excellent mechanical properties, and biodegradability. Unfortunately, methods for preparing well-defined PU nanoparticles required miniemulsion polymerization techniques with a nontrivial control of the polymerization conditions due to the inherent incompatibility of isocyanate-containing monomers and water. In this work, we report the preparation of soft PU nanoparticles in a one-pot process using interfacial polymerization that employs a non-isocyanate polymerization route that minimizes side reactions with water. Activated pentafluorophenyl dicarbonates were polymerized with diamines and/or triamines by interfacial polymerization in the presence of an anionic emulsifier, which afforded non-isocyanate polyurethane (NIPU) nanoparticles with sizes in the range of 200-300 nm. Notably, 5 wt % of emulsifier was required in combination with a trifunctional amine to achieve stable PU dispersions and avoid particle aggregation. The versatility of this polymerization process allows for incorporation of functional groups into the PU nanoparticles, such as carboxylic acids, which can encapsulate the chemotherapeutic doxorubicin through ionic interactions. Altogether, this waterborne synthetic method for functionalized NIPU soft nanoparticles holds great promise for the preparation of drug delivery nanocarriers.

  11. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  12. New electrochemical procedure for obtaining surface enhanced Raman scattering active polythiophene films on platinum

    NASA Astrophysics Data System (ADS)

    Bazzaoui, E. A.; Aeiyach, S.; Aubard, J.; Felidj, N.; Lévi, G.; Sakmeche, N.; Lacaze, P. C.

    1998-06-01

    A new electrochemical procedure for obtaining Surface Enhanced Raman Scattering (SERS) spectra of silver islands polybithiophene composite films is described. During the electropolymerization process which consists to use silver dodecylsulfate micellar aqueous solution mixed with bithiophene and LiClO4, silver cations are reduced, thus giving metallic silver particles embedded within the polybithiophene (PbT) film. Both doped and undoped PbT species display SERS spectra with exaltation factors varying between 40 and 200 with respect to the film prepared in sodium dodecylsulfate. Vibrational characterization of both doped and undoped species show that the amount of the polymer structural defects are more important in the oxidized species than in the reduced ones. This general method allows to synthesize various polymeric films displaying SERS effect and appears very promising for the structural study of these materials. Nous décrivons un procédé original pour synthétiser par voie électrochimique des films formés d'un composite de polybithiophène et d'îlots d'argent qui présentent des Spectres de Diffusion Raman Exaltée de Surface (DRES). Au cours de l'électropolymérisation d'une solution aqueuse micellaire de bithiophène en présence de dodécylsulfate d'argent (AgDS) et de LiClO4, les ions argent présents dans la solution se complexent avec le soufre du bithiophène et pénètrent dans le film polymère où ils sont réduits sous forme d'argent métallique. Les spectres Raman des deux formes réduite et oxydée du film ainsi obtenu présentent un effet DRES important avec un facteur d'exaltation variant entre 40 et 200 par rapport au même film électrosynthétisé en présence de dodécylsulfate de sodium (SDS). L'analyse vibrationnelle des deux formes redox montre que le taux de défauts est plus important dans la forme oxydée que dans la forme réduite. Cette méthode de polymérisation très générale, qui permet d'obtenir des polymères

  13. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  14. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  15. Hydrophobic coating of solid materials by plasma-polymerized thin film using tetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Hozumi, K.; Kitamura, K.; Kitade, T.

    1980-01-01

    Glass slides were coated with plasma-polymerized tetrafluoroethylene films of different thickness using the glow discharge technique in a tube-shaped chamber, and the plasma conditions, film growth rates, light permeability of the polymer films, and particle bond strength in the polymer films were studied. Ashed sections of mouse organs and ashed bacillus spores were also coated to give them hydrophobic treatment without damaging their shapes or appearance. The hydrophobic coating of the specimens was successful, and the fine ash patterns were strongly fixed onto the glass slides, making permanent preparations.

  16. Deposition of plasma polymerized perfluoromethylene-dominated films showing oil-repellency

    NASA Astrophysics Data System (ADS)

    Chase, J. E.; Boerio, F. J.

    2003-05-01

    Plasma polymerized fluorocarbon films were deposited onto polyethylene (PE) substrates to increase oil-repellency of PE. Depositions were performed using the monomer, 1H,1H,2H-perfluoro-1-dodecene in a parallel-plate, radio frequency (rf) reactor, with variable continuous-wave power ranging from 2 to 160 W. The film deposition rate and morphology were strongly dependent on the applied rf power. Most importantly, the chemical structure of the deposited films was also altered, resulting in changes in contact angles of various liquids and the surface energy. Films deposited at low power were composed mainly of perfluoromethylene (CF2) species (up to 67.2%), as shown by x-ray photoelectron spectroscopy (XPS). With an increase in rf power, CF2 content in the film decreased as further fragmentation of the monomer occurred. For each deposition at varying rf powers, even at powers as low as 2 W, the C=C and C-H bonds in the monomer were dissociated by the plasma and not incorporated into the films, as shown by Fourier transform infrared spectroscopy. Oil-repellency, as shown by increased contact angles of hydrocarbon liquids, was found to increase as the amount of CF2 species increased in the film structure. A low critical surface energy (2.7 mJ/m2) was calculated for the film deposited with only 2 W of rf power. Adhesion of the plasma-polymerized films to the PE was also evaluated and found to be poor for films with a high concentration of CF2 species, where cohesive failure within the film occurred. However, adhesion increased as a function of rf power, where the film structure showed more cross-linking. There was a compromise between producing a film with high oleophobicity (oil-repellency) while maintaining adhesion of the film to PE, as some disruption of the CF2 chains in the films was necessary for cohesion through cross-linking.

  17. Charge transport and structural dynamics in ultra-thin films of polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Cosby, Tyler; Berdzinski, Stefan; Strehmel, Veronica; Benson, Roberto; Sangoro, Joshua

    Ion conduction and structural dynamics in a series of ultra-thin films of imidazolium based polymerized ionic liquids are investigated using broadband dielectric spectroscopy, atomic force microscopy, and ellipsometry. No alteration in the characteristic charge transport rate is observed between bulk sample and films as thin as 12nm. These results are discussed within the recent approaches proposed to explain the confinement effects on structural dynamics in polymers and low molecular weight ionic liquids. NSF DRM Polymers Program.

  18. Method of obtaining intensified image from developed photographic films and plates

    NASA Technical Reports Server (NTRS)

    Askins, B. S. (Inventor)

    1978-01-01

    A method is explained of obtaining intensified images from silver images on developed photographic films and plates. The steps involve converting silver of the developed film or plate to a radioactive compound by treatment with an aqueous alkaline solution of an organo-S35 compound; placing the treated film or plate in direct contact with a receiver film which is then exposed by radiation from the activated film; and developing and fixing the resulting intensified image on the receiver film.

  19. Controlling the cell adhesion property of silk films by graft polymerization.

    PubMed

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  20. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  1. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    SciTech Connect

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L. Marra, F.

    2015-12-17

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  2. Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films

    DTIC Science & Technology

    1988-04-01

    LAr 9B L Appr 1~ forjIbi1893 2 8 I I IE2 Molecular Optics: Nonlinear Optical Processes in Organic and Polymeric Crystals and Films i Professor A. F...frequency dependent local field factors. While there are various prevalent models (Lorentz- Lorenz, Onsager ) all of them give the field factors in terms of

  3. Modeling of gas transmission properties of polymeric films used for MA packaging of fruits.

    PubMed

    Mangaraj, S; Goswami, T K; Panda, D K

    2015-09-01

    High value fruits namely, apple (cv. Royal Delicious), guava (cv. Baruipur) and litchi (cv. Shahi) harvested at their commercial maturity were considered for MA packaging to enhance storage life. Polymeric films namely LDPE, BOPP, PVC, PVDC of different thickness were used for MA packaging study and various film characteristics such as gas transmission rates, water vapour transmission rate, clarity, strength and durability were evaluated. Mathematical model was developed based on Arrhenius type equation to predict gas transmission rate (GTR) and the developed model was found to be very good fit with the mean relative deviation modulus value quite less than 10 %. The GTR of the films increased with the increase in storage temperature and the magnitude of the increase varied with the film type and thickness. Regression models have been suitably developed to predict the oxygen transmission rate and carbon dioxide transmission rate of selected polymeric films and combined film laminates as a function of temperatures. Since, none of the individual films could meet the gas transmission requirements of MAP for selected fruits, two different films were tailored to form laminates that sufficed the requirements for prolonged storage with maintaining original quality.

  4. Thickness dependent CARS measurement of polymeric thin films without depth-profiling.

    PubMed

    Choi, Dae Sik; Jeoung, Sae Chae; Chon, Byung-Hyuk

    2008-02-18

    Coherent anti-Stokes Raman scattering (CARS) microscopy is demonstrated to be a promising optical method for the characterization of polymer films with film thickness varying between 180 nm to 4300 nm. In case of PMMA films with a thickness of few hundreds of nanometers, the observed CARS signal was mainly associated with the interference effect of large nonresonant CARS field from glass substrate and the weak resonant field of PMMA. The dependence of resonant CARS intensity of PMMA film on film thickness is in good agreement with the theoretical prediction on a CARS field. The current work offers potential possibilities of noninvasive thickness measurement of polymeric thin film of thickness less than 180 nm by multiplex CARS microscopy without depth-profiling.

  5. Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response.

    PubMed

    Blaya, S; Carretero, L; Mallavia, R; Fimia, A; Madrigal, R F

    1999-02-20

    A method is reported that makes use of holography to study the kinetics of the radical photopolymerization of acrylamide in a polyvinyl alcohol when the Kogelnik theory is applied. A mechanism of unimolecular termination by the radicals that initiate the polymerization reaction is postulated to calculate the quantum yield, the molar-extinction coefficient, the index of refraction, and the thickness of the film. The conversion percentage of monomers is obtained along with the ratio of rate constants of the mechanism of polymerization from the nonlinear fit of the transmittance curves, their angular response, and the temporal evolution of diffraction efficiency. Compared with previous holographic techniques, this method has the advantage of predicting these chemical parameters using all the data points of the temporal diffraction efficiency variation rather than being restricted to the linear zone of these curves. In this way the whole reaction process, not just the initial process, is taken into account.

  6. Effect of nanoclay loading on the thermal decomposition of nanoclay polyurethane elastomers obtained by bulk polymerization

    NASA Astrophysics Data System (ADS)

    Quagliano, Javier; Bocchio, Javier

    2014-08-01

    Thermoplastic urethane (TPU) nanocomposite was prepared successfully by dispersion at high shear stress of the nanoclay in polyol and further bulk polymerization. Our results from DSC studies showed an increase in decomposition temperature when nanoclay was loaded at 3,5% on elastomeric PU made from TDI, PTMEG and BDO, while not when nanoclay content was lower (1,5%). The exotherms at 370-375°C could be adscribed to the decomposition of the hard segments according to previous work.

  7. Effect of solvent annealing on the tensile deformation mechanism of a colloidal crystalline polymeric latex film.

    PubMed

    Zhang, Jianqi; Yi, Zhiyong; Wang, Qiao; Liu, Zhenyu; Perlich, Jan; Gehrke, Rainer; Men, Yongfeng

    2011-10-04

    The influence of solvent annealing on microscopic deformational behavior of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile deformation was studied by small-angle X-ray scattering. It was demonstrated that the microscopic deformation mechanism of the latex films transformed from a nonaffine deformation behavior to an affine deformation behavior after solvent annealing. This was attributed to the interdiffusion of polymeric chains between adjacent swollen latex particles in the film. It turns out that solvent annealing is much more efficient than thermal annealing due to a much slow evaporation process after solvent annealing.

  8. Electrically induced transmissivity modulation in polymeric thin film Fabry-Perot etalons

    SciTech Connect

    Eldering, C.A.; Kowel, S.T.; Knoesen, A. )

    1989-10-15

    We report the observation of electrically induced changes in transmissivity in Fabry-Perot devices consisting of spin-cast azo-dye/polymer films deposited between gold mirrors. In poled samples the observed modulation shows a linear dependence on the applied modulating voltage. The ratio of the transmissivity modulation observed using incident transverse magnetic polarization to that observed using transverse electric polarization is used to demonstrate that the electrooptic effect dominates the modulation. This is, to our knowledge, the first reported use of a polymeric thin film linear electrooptic material in a Fabry-Perot structure and demonstrates the use of etalons to enhance electrooptic effects in very thin films.

  9. Long Duration Exposure Facility M0003-5 recent results on polymeric films

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Jones, Michele D.

    1992-01-01

    The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.

  10. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Du, Lei; Liu, Cui; Li, Yunchuan; Yang, ZhenZhen; Cao, Yuan-Cheng

    High photostable epoxy polymerized carbon quantum dots (C-dots) luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs). First, water soluble C-dots (λem = 543.60 nm) were synthesized. Poly (ethylene glycol) diglycidyl ether (PEG) and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm-1 and 1644 cm-1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays.

  11. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  12. Si film separation obtained by high energy proton implantation

    SciTech Connect

    Braley, C.; Mazen, F.; Papon, A.-M.; Rieutord, F.; Charvet, A.-M.; Ntsoenzok, E.

    2012-11-06

    High energy protons implantation in the 1-1.5 MeV range can be used to detach free-standing thin silicon films with thickness between 15 and 30 {mu}m. Recently, we showed that Si orientation has a strong effect on the layer separation threshold fluence and efficiency. While complete delamination of (111)Si films is achieved, (100)Si films separation is more challenging due to blistering phenomena or partial separation of the implanted layer. In this work, we study the fracture mechanism in (100) and (111)Si after high energy implantation in order to understand the origin of such a behavior. We notably point out that fracture precursor defects, i.e. the platelets, preferentially form on (111) planes, as a consequence of the low strain level in the damaged region in our implantation conditions. Fracture therefore propagates easily in (111)Si, while it requires higher fluence to overcome unfavorable precursors orientation and propagate in (100)Si.

  13. A novel polymerization of ultrathin sensitive imprinted film on surface plasmon resonance sensor.

    PubMed

    Dong, Jianwei; Peng, Yuan; Gao, Na; Bai, Jialei; Ning, Baoan; Liu, Ming; Gao, Zhixian

    2012-10-07

    A new surface-initiated polymerization based on pasting the initiator on a sensor chip surface was applied to prepare a malachite green (MG) imprinted ultrathin film on a surface plasmon resonance (SPR) sensor. First, the initiator (2,2-azoisobutyronitrile) was pasted on the gold surface using polyvinyl chloride (PVC). The initiator-covered gold chip was then soaked in a pre-polymerization solution prepared by dissolving methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and MG (template) in DMSO in a weighing bottle. Finally, the weighing bottle was placed in a vacuum oven and thermal-initiated polymerization was conducted at 60 °C for 16 h. This method was simple and time-saving compared with the commonly used surface-initiated polymerization. More importantly, the molecularly imprinted polymer (MIP) film prepared using this method was much thicker than that of commonly used methods; the adsorption quantity was also much larger. The MIP modified SPR sensor showed high sensitivity and selectivity as well as good stability in detecting MG. The results suggest that the ultrathin MIP film prepared using the new method in this study is suitable to serve as the recognition element of the SPR sensor.

  14. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  15. Advanced functionalization of organoclay nanoparticles by silylation and their polystyrene nanocomposites obtained by miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Ianchis, R.; Corobea, M. C.; Donescu, D.; Rosca, I. D.; Cinteza, L. O.; Nistor, L. C.; Vasile, E.; Marin, A.; Preda, S.

    2012-11-01

    Four types of alkoxysilanes with different organosilyl groups were used for the silylation of a commercial alkylammonium-modified montmorillonite (Cloisite 30B). TGA, XPS, DLS, FTIR, XRD, and contact angle measurements were performed for the characterization of the silylated clays. Furthermore, the behavior of these advanced hydrophobic clays in the miniemulsion polymerization process of styrene and the characterization of nanocomposites materials were followed. The hydrophobic nature is a combined result of the length of the organic chain and of the amount of silane groups grafted onto clay edges, reflected also in the final properties of the nanocomposite latexes.

  16. Electrochemical properties of carbons obtained from precursors of electrochemically polymerized polymers

    SciTech Connect

    Hashizume, Kenichi; Tsutsui, Miho; Kaneko, Tomohiko; Otani, Sugio; Yoshimura, Susumu

    1995-12-31

    Electrochemically polymerized polymers from pyrrole, fluoranthene and pyrene were heat-treated at temperatures between 600 to 3,000. The electrochemical properties of these heat-treated samples were examined by chronoamperometry using an electrolyte solution of 1M LiClO{sub 4} in propylene carbonate. Lithium doping capacities of carbons from fluoranthene and pyrrole polymer heat-treated at 3,000 C were 1.5 and 1.2 times that of the theoretical capacity of graphite as LiC{sub 6}, respectively.

  17. [The cultivation of bone marrow cells and cell lines on polymeric films].

    PubMed

    Dolgikh, M S; Livak, D N; Krasheninnikov, M E; Onishchenko, N A

    2011-01-01

    The cultivation of multipotent mesenchymal stromal bone marrow cells and cells of A-431, MDCK, Vero, 3T3 and Hep-G2 was performed on polymeric films (PVA) with different hydrophobic fatty acid residues. The cells of different types grew on these films with different intensity, but in the most cases comparable with the cultivation control on usual plastic. The examined films were nontoxic to cells and sufficiently adhesive. They did not changed pH of cultural media, were optically transparent under microscope and comfortable in the experimental work. These films can be used as a model for the artificial organ construction. The covalent binding of different fatty acids to PVA shows possibility of the adaptable changes of films properties (hydrophobity and adhesiveness), and therefore possibility of the creation of optimal conditions for different cell types attachement and growth.

  18. Polymer multilayer films obtained by electrochemically catalyzed click chemistry.

    PubMed

    Rydzek, Gaulthier; Thomann, Jean-Sébastien; Ben Ameur, Nejla; Jierry, Loïc; Mésini, Philippe; Ponche, Arnaud; Contal, Christophe; El Haitami, Alae E; Voegel, Jean-Claude; Senger, Bernard; Schaaf, Pierre; Frisch, Benoît; Boulmedais, Fouzia

    2010-02-16

    We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.

  19. Negative Thermal Expansion In Ultrathin Plasma Polymerized Films (Preprint)

    DTIC Science & Technology

    2007-03-01

    associated with expansion in some systems makes thermal contraction thermodynamically favorable.35 However, the nature of NTE in 4 PECVD thermal expansion...2006 [26] Grill , A. Cold Plasma in Materials Fabrication (IEEE Press, New York, 1994). [27] Biederman, H. Plasma Polymer Films (Imperial College Press

  20. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  1. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  2. Breath Figure Micromolding Approach for Regulating the Microstructures of Polymeric Films for Triboelectric Nanogenerators.

    PubMed

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming

    2017-02-08

    A triboelectric nanogenerator (TENG) is an innovative kind of energy harvester recently developed on the basis of organic materials for converting mechanical energy into electricity through the combined use of the triboelectric effect and electrostatic induction. Polymeric materials and their microstructures play key roles in the generation, accumulation, and retainment of triboelectric charges, which decisively determines the final electric performance of TENGs. Herein we report a simple and efficient breath figure (BF) micromolding approach to rapidly regulate the surface microstructures of polymeric films for the assembly of TENGs. Honeycomb porous films with adjustable pore size and dimensional architectures were first prepared by the BF technique through simply adjusting the concentration of the polymer solution. They were then used as negative molds for straightforward synthesis of polydimethylsiloxane (PDMS) films with different microlens arrays (MLAs) and lens sizes, which were further assembled for TENGs to investigate the influence of film microstructures. All MLA-based TENGs were found to have an obviously enhanced electric performance in comparison with a flat-PDMS-film-based TENG. Specifically, up to 3 times improvement in the electric performance can be achieved by the MLA-based TENG with optimal surface microstructures over flat-PDMS-film-based TENG under the same triggering conditions. A MLA-based TENG was further successfully used to harvest the waste mechanical energy generated by different human body motions, including finger tapping, hand clapping, and walking with a frequency ranging from 0.5 to 5.5 Hz.

  3. Deproteinized natural rubber film forming polymeric solutions for nicotine transdermal delivery.

    PubMed

    Pichayakorn, Wiwat; Suksaeree, Jirapornchai; Boonme, Prapaporn; Amnuaikit, Thanaporn; Taweepreda, Wirach; Ritthidej, Garnpimol C

    2013-01-01

    Film forming polymeric solutions were prepared from DNRL blended with MC, PVA, or SAG, together with dibutylphthalate or glycerine used as plasticizers. These formulations were easily prepared by simple mixing. In a preliminary step, in situ films were prepared by solvent evaporation in a Petri-dish. Their mechanical and physicochemical properties were determined. The in vitro release and skin permeation of nicotine dissolved in these blended polymers were investigated by a modified Franz diffusion cell. The formulations had a white milky appearance, and were homogeneous and smooth in texture. Their pH was suitable for usage in skin contact. The mechanical property of in situ films depended on the ingredients but all compatible films were in an amorphous phase. The DNRL/PVA was shown to be the most suitable mixture to form completed films. The in vitro release and skin permeation studies demonstrated a biphasic release that provided an initial rapid release followed by a constant release rate that fitted the Higuchi's model. Nicotine loaded DNRL/PVA series were selected for the stability test for 3 months. These formulations needed to be kept at 4°C in tight fitting containers. In conclusion, film forming polymeric solutions could be developed for transdermal nicotine delivery systems.

  4. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films

    PubMed Central

    Worfolk, Brian J.; Andrews, Sean C.; Park, Steve; Reinspach, Julia; Liu, Nan; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications. PMID:26515096

  5. Morphology and thermal properties of clay/PMMA nanocomposites obtained by miniemulsion polymerization.

    PubMed

    García-Chávez, Karla I; Hernández-Escobar, Claudia A; Flores-Gallardo, Sergio G; Soriano-Corral, Florentino; Saucedo-Salazar, Esmeralda; Zaragoza-Contreras, E Armando

    2013-06-01

    Miniemulsion polymerization was used as the synthetic method to produce clay/poly(methyl methacrylate) nanocomposites. Two kinds of interfacial interactions clay-polymer particle were observed by electron microscopy, one where the polymer particles are adhered on the surface of the larger fragments of clay, and another where nanometric fragments of clay are encapsulated by polymer particles. Variations in the glass transition temperature (T(g)) and thermomechanical properties of the matrix, as function of clay content, were observed. In particular, at the highest clay loading (1.0 wt%) depression of T(g) and thermomechanical properties were observed. The increased clay-polymer matrix interfacial area appears to be the conditioning factor that determines such behavior.

  6. Generalized ellipsometry analysis of anisotropic nanoporous media: Polymer-infiltrated nanocolumnar and inverse-column polymeric films

    NASA Astrophysics Data System (ADS)

    Liang, Dan

    Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.. The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer approach (HBLA) and anisotropic Bruggeman effective medium approximation (AB-EMA), to determine the changes in structural and optical properties of highly porous SCTFs upon polymer infiltration. Via spin-coating, poly(-methyl methacrylate) (PMMA) was infiltrated into the permalloy SCTFs prepared by glancing angle deposition (GLAD). The Mueller matrix GE measurements were conducted on the SCTFs before and after PMMA infiltration. The obtained film thickness and columnar slanting angle show changes due to infiltration which are in good agreement with scanning electron microscopy (SEM) analysis. The method effectively identifies the changes in birefringence and dichroism upon infiltration, and provides constituent fractions consistent with the performed experiments. GE analysis is further utilized to characterize the biaxial optical responses of the porous polymer thin films. The porous polymer films with inverse columnar structure (PMMA iSCTFs) were prepared via infiltrating polymer into the voids of the SCTF templates and selectively removing the columns. The AB-EMA was employed to analyze the GE data of the porous polymer films and SCTF templates to determine the structural and anisotropic optical properties. The structural

  7. Method of depositing a carbon film on a substrate and products obtained thereby

    SciTech Connect

    Lewin, G.; Nir, D.

    1984-12-04

    There is disclosed a method for depositing a diamond or diamond-like carbon film on at least one substrate employing a hydrocarbon gas and at least one gas which preferentially removes by chemical sputtering other forms of carbon, especially graphite from said film to thereby obtain useful carbon film coated products.

  8. Near-infrared and visible photoluminescence from argon plasma polymerized fullerene film

    SciTech Connect

    Xu, C.; Chen, G.; Xie, E.; Gong, J.

    1997-05-01

    Oxygenated polymeric fullerene films synthesized in argon plasma show strong photoluminescence in near-infrared and visible region (1.50{endash}2.36 eV) at room temperature excited by a 514.5 nm argon ion laser. After being annealed at different high temperatures, photoluminescence decreased in intensity. The generation and decrease of the photoluminescence were explained in terms of the change of the fullerene C{sub 60} symmetry. {copyright} {ital 1997 American Institute of Physics.}

  9. Structures and properties of poly(3-alkylthiophene) thin-films fabricated though vapor-phase polymerization.

    PubMed

    Back, Ji-Woong; Song, Eun-Ah; Lee, Keum-Joo; Lee, Youn-Kyung; Hwang, Chae-Ryong; Jo, Sang-Hyun; Jung, Woo-Gwang; Kim, Jin-Yeol

    2012-02-01

    Organic semiconducting polymer thin-films of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene, containing highly oriented crystal were fabricated by gas-phase polymerization using the CVD technique. These poly(3-alkylthiophene) films had a crystallinity up to 80%, and possessed a Hall mobility up to 10 cm2/Vs. The degree of crystalinity and the mobility values increased as the alkyl chain length increased. The crystal structure of the polymers was composed of stacked layers constructed by a side-by-side arrangement of alkyl chains and in-plane pi-pi stacking. These thin films are capable of being applied to organic electronics as the active materials used in thin-film transistors and organic photovoltaic cells.

  10. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    SciTech Connect

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-11-15

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to {approx}2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10{sup 10} cm{sup -3}. The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor.

  11. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    PubMed

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  12. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    PubMed

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts.

  13. Polymeric fibre optic sensor based on a SiO2 nanoparticle film for humidity sensing on wounds

    NASA Astrophysics Data System (ADS)

    Gomez, David; Morgan, Stephen P.; Hayes Gill, Barrie R.; Korposh, Serhiy

    2016-05-01

    Optical fibre sensors have the potential to be incorporated into wound dressings to monitor moisture and predict healing without the need to remove the dressing. A low cost polymeric optical fibre humidity sensor based on evanescent wave absorption is demonstrated for skin humidity measurement. The sensor is fabricated by coating the fibre with a hydrophilic film based on bilayers of Poly(allylamine hydrochloride) (PAH) and SiO2 mesoporous nanoparticles. The Layer-by-Layer method was used for the deposition of the layers. Multimode polymeric optical fibre with a cladding diameter of 250μm was covered by 7 layers of PAH/SiO2 film on the central region of an unclad fibre with a diameter of 190μm. The length of the sensitive region is 30mm. Experiment results show a decrease in light intensity when relative humidity increases due to refractive index changes of the fibre coating. The sensitivity obtained was 200mV/%RH and the sensor was demonstrated to provide a faster response to changes in the humidity of the skin microenvironment than a commercial sensor.

  14. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results.

    PubMed

    Kitadai, Norio

    2014-04-01

    Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.

  15. Process Condition Considered Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films for Organic Thin Film Transistor Application

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hyun; Lee, Boong-Joo; Lim, Young-Taek; Lim, Jae-Sung; Lee, Sunwoo; Ochiai, Shizuyasu; Yi, Jun-Sin; Shin, Paik-Kyun

    2012-02-01

    Plasma polymerized methyl methaclylate (ppMMA) thin films were prepared with various process conditions such as inductively coupled plasma (ICP) power, substrate bias power, working pressure, substrate heating temperature, substrate position, and monomer flow rate. Thickness, surface morphology, dielectric constant, and leakage current of the ppMMA thin films were investigated for application to organic thin film transistor as gate dielectric. Deposition rate of over 8.6 nm/min, dielectric constant of 3.4, and leakage current density of 8.9 ×10-9 A/cm-2 at electric field of 1 MV/cm were achieved for the ppMMA thin film prepared at the optimized process condition: plasma power of RF 100 W; Ar flow rate of 20 sccm; working pressure of 5 mTorr; substrate temperature of 100 °C substrate position of 100 mm. The ppMMA thin film was then applied to pentacene based organic thin film transistor (OTFT) device fabrication. The OTFT device with 80 nm thick pentacene semiconductor layer showed field effect mobility of 0.144 cm2 V-1 s-1 and threshold voltage of -1.72 V.

  16. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  17. Floating-Gate Type Organic Memory with Organic Insulator Thin Film of Plasma Polymerized Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Kim, Hee-sung; Lee, Boong-Joo; Kim, Gun-Su; Shin, Paik-Kyun

    2013-02-01

    To fabricate organic memory device by entirely dry process, plasma polymerized methyl methacrylate (ppMMA) thin films were prepared and they were used as both tunneling layer and gate insulator layer in a floating-gate type organic memory device. The ppMMA thin films were prepared with inductively coupled plasma (ICP) source combined with stabilized monomer vapor control. The ppMMA gate insulator thin film revealed dielectric constant of 3.75 and low leakage current of smaller than 10-9 A/cm. The floating-gate type organic memory device showed promising memory characteristics such as memory window value of 12 V and retention time of over 2 h, where 60 V of writing voltage and -30 V of erasing voltage were applied, respectively.

  18. Radiation tolerant polymeric films through the incorporation of small molecule dopants in the polymer matrix

    SciTech Connect

    Lenhart, Joseph L.; Cole, Phillip J.; Cole, Shannon M.; Schroeder, John L.; Belcher, Michael E.

    2008-01-15

    Radiation induced conductivity (RIC) in semicrystalline polyethylene terephthalate (PET) films can be reduced by incorporating small molecule electron traps into the polymer. The electron traps contained an aromatic core with strong electron withdrawing functionality pendant to the core and were incorporated into the PET film by immersing the polymer in a solution of dopant and solvent at elevated temperatures. The chemical functionality of the electron trapping molecule and the number of pendant functional groups had a strong impact on the equilibrium doping level and the most effective doping solvent. In addition, all of the electron traps exhibited effectiveness at reducing the RIC. The technique of incorporating small molecule dopants into the polymer matrix in order to reduce the RIC can potentially be exploited with other polymers films and coatings utilized in electronics devices such as encapsulants, conformal coatings, and polymeric underfills.

  19. Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support.

    PubMed

    Valério, Alexsandra; Nicoletti, Gabrieli; Cipolatti, Eliane P; Ninow, Jorge L; Araújo, Pedro H H; Sayer, Cláudia; de Oliveira, Débora

    2015-03-01

    With the objective to obtain immobilized Candida antarctica lipase B (CalB) with good activity and improved utilization rate, this study evaluated the influence of enzyme and crodamol concentrations and initiator type on the CalB enzyme immobilization in nanoparticles consisting of poly(methyl methacrylate) (PMMA) obtained by miniemulsion polymerization. The kinetic study of immobilized CalB enzyme in PMMA nanoparticles was evaluated in terms of monomer conversion, particle size, zeta potential, and relative activity. The optimum immobilization condition for CalB was compared with free enzyme in the p-NPL hydrolysis activity measurement. Results showed a higher CalB enzyme stability after 20 hydrolysis cycles compared with free CalB enzyme; in particular, the relative immobilized enzyme activity was maintained up to 40%. In conclusion, PMMA nanoparticles proved to be a good support for the CalB enzyme immobilization and may be used as a feasible alternative catalyst in industrial processes.

  20. Surface morphology of ultrathin graphene oxide films obtained by the SAW atomization

    NASA Astrophysics Data System (ADS)

    Balachova, Olga V.; Balashov, Sergey M.; Costa, Carlos A. R.; Pavani Filho, A.

    2015-08-01

    Lately, graphene oxide (GO) thin films have attracted much attention: they can be used as humidity-sensitive coatings in the surface acoustic wave (SAW) sensors; being functionalized, they can be used in optoelectronic or biodevices, etc. In this research we study surface morphology of small-area thin GO films obtained on Si and quartz substrates by deposition of very small amounts of H2O-GO aerosols produced by the SAW atomizer. An important feature of this method is the ability to work with submicrovolumes of liquids during deposition that provides relatively good control over the film thickness and quality, in particular, minimization of the coffee ring effect. The obtained films were examined using AFM and electron microscopy. Image analysis showed that the films consist of GO sheets of different geometry and sizes and may form discrete or continuous coatings at the surface of the substrates with the minimum thickness of 1.0-1.8 nm which corresponds to one or two monolayers of GO. The thickness and quality of the deposited films depend on the parameters of the SAW atomization (number of atomized droplets, a volume of the initial droplet, etc.) and on sample surface preparation (activation in oxygen plasma). We discuss the structure of the obtained films, uniformity and the surface coverage as a function of parameters of the film deposition process and sample preparation. Qualitative analysis of adhesion of GO films is made by rinsing the samples in DI water and subsequent evaluation of morphology of the remained films.

  1. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    PubMed Central

    Ghafoor, Bakhtawar; Ansari, Umar; Bhatti, Muhammad Faraz; Akhtar, Hafsah; Darakhshan, Fatima

    2016-01-01

    The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes. PMID:27965710

  2. Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities.

    PubMed

    Nostro, A; Scaffaro, R; D'Arrigo, M; Botta, L; Filocamo, A; Marino, A; Bisignano, G

    2012-11-01

    Polyethylene-co-vinylacetate (EVA) films with different concentrations (3.5 wt% and 7 wt%) of essential oil constituents, carvacrol or cinnamaldehyde, were prepared and characterized by mechanical, antibacterial and antibiofilm properties. The incorporation of the compounds into copolymer films affected their elastic modulus, tensile stress and elongation at break. Carvacrol and cinnamaldehyde act as plasticizers which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the film. The analysis of the surface characteristics demonstrated that essential oil constituents lowered the contact angle values without causing any remarkable variation of the surface roughness. The films allowed progressive diffusion of the bioactive molecules and the kinetic of release was correlated with the damaging effect on bacterial growth. The kill curves proved that the film with essential oil constituents (7 wt%) had a significant bactericidal effect (reduction of 4 and 2 log CFU) against Staphylococcus aureus and Escherichia coli and a bacteriostatic effect against Staphylococcus epidermidis and Listeria monocytogenes (reduction of about 1 log CFU). With regard to biofilm formation the biomass formed on polymeric films surface was significantly reduced if compared with the pure copolymer control. The results were confirmed by fluorescence microscopy images by Live/dead staining. The reduction in the surface tension coupled to an inherent bactericidal property of carvacrol and cinnamaldehyde could in turn affect the initial attachment phase of bacteria and compromise the normal biofilm development.

  3. Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization.

    PubMed

    Sasaki, Shogo; Ooya, Tooru; Kitayama, Yukiya; Takeuchi, Toshifumi

    2015-02-01

    We demonstrated the synthesis of molecularly imprinted polymers (MIPs) with binding affinity toward a target protein, ribonuclease A (RNase) by atom transfer radical polymerization (ATRP) of acrylic acid, acrylamide, and N,N'-methylenebisacrylamide in the presence of RNase. The binding activity of the MIPs was evaluated by surface plasmon resonance (SPR) of the MIP thin layers prepared on the gold-coated sensor chips. The MIPs prepared by ATRP (MIP-ATRP) had a binding affinity toward RNase with larger binding amount compared to MIPs prepared by conventional free radical polymerization methods (MIP-RP). Moreover, protein selectivity was evaluated using reference proteins (cytochrome c, myoglobin, and α-lactalbumin) and was confirmed in MIP-ATRP of optimum film thickness determined experimentally to be 15-30 nm; however, protein selectivity was not achieved in all MIP-RP. We have shown that ATRP is powerful technique for preparing protein recognition materials by molecular imprinting.

  4. High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization.

    PubMed

    Culebras, Mario; Cho, Chungyeon; Krecker, Michelle; Smith, Ryan; Song, Yixuan; Gómez, Clara M; Cantarero, Andrés; Grunlan, Jaime C

    2017-02-22

    In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 μm thick) infused with PEDOT is shown to achieve a power factor (PF = S(2)σ) of 155 μW/m K(2), which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 μW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.

  5. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  6. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy.

    PubMed

    Ramanathan, Madhumati; Wang, Lin; Wild, James R; Meyerhoff, Mark E; Meyeroff, Mark E; Simonian, Aleksandr L

    2010-05-14

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1microM DFP.

  7. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  8. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene films: chemical characterization and evaluation of the protein adsorption.

    PubMed

    Zanini, Stefano; Riccardi, Claudia; Grimoldi, Elisa; Colombo, Claudia; Villa, Anna Maria; Natalello, Antonino; Gatti-Lafranconi, Pietro; Lotti, Marina; Doglia, Silvia Maria

    2010-01-01

    This work deals with the optimization of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) films in order to obtain surfaces with a reduced protein adsorption for possible biomedical applications. To this end, we examined the protein adsorption on the treated and untreated surfaces. The graft-polymerization process consisted of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. The efficiency of these processes was evaluated in terms of the amount of grafted polymer, coverage uniformity and substrates wettability. The process was monitored by contact angle measurements, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in Phosphate Buffer Saline (PBS) at 37 degrees C. The adsorption of fibrinogen and green fluorescent protein (GFP)--taken as model proteins--on the differently prepared surfaces was evaluated through a fluorescence approach using laser scanning confocal microscopy with photon counting detection. After plasma treatments of short duration, the protein adsorption decreases by about 60-70% with respect to that of the untreated film, while long plasma exposure resulted in a higher protein adsorption, due to damaging of the grafted polymer.

  9. Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film.

    PubMed

    Thampi, Sudhin; Nandkumar, A Maya; Muthuvijayan, Vignesh; Parameswaran, Ramesh

    2017-02-08

    Surface engineering of implantable devices involving polymeric biomaterials has become an essential aspect for medical implants. A surface enhancement technique can provide an array of unique surface properties that improve its biocompatibility and functionality as an implant. Polyurethane-based implants that have found extensively acclaimed usage as an implant in biomedical applications, especially in the area of cardiovascular devices, still lack any mechanism to ward off bacterial or platelet adhesion. To bring out such a defense mechanism we are proposing a surface modification technique. Graphene oxide (GO) in very thin film form was wrapped onto the electrospun fibroporous polycarbonate urethane (PCU) membrane (GOPCU) by a simple method of electrospraying. In the present study, we have developed a simple single-step method for coating a polymeric substrate with a thin GO film and evaluated the novel antiadhesive activity of these films. SEM micrographs after coating showed the presence of very thin GO films over the PCU membrane. On the GOPCU surface, the contact angle was shifted by ∼30°, making the hydrophobic PCU surface slightly hydrophilic, while Raman spectral characterization and mapping showed the presence and distribution of GO over 75% of the membrane. A reduced platelet adhesion on the GOPCU surface was observed; meanwhile, bacterial adhesion also got reduced by 85% for Staphylococcus aureus (Gram positive, cocci) and 64% for Pseudomonas aeruginosa (Gram negative, bacilli). A cell adhesion study conducted using mammalian fibroblast cells projected its proliferation percentage in a MTT assay, with 82% cell survival on PCU and 86% on GOPCU after 24 h culture, while a study for an extended period of 72 h showed 87% of survival on PCU and 88% on GOPCU. This plethora of functionalities by a simple modification technique makes thin GO films a self-sufficient surface engineering material for future biomedical applications.

  10. Molecular Orientation and Photocurrent of Alkyl-Aromatic Polyimide Films Prepared by Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Iida, Kazuo; Nohara, Tsukasa; Totani, Kazuyuki; Nakamura, Shuhei; Sawa, Goro

    1989-12-01

    Vapor deposition polymerization by a coevaporation of pyromellitic dianhydride and decamethylenediamine monomers has been employed for the preparation of polyamic acid as a precursor for polyimide films. By curing at temperatures of 200-250°C the polyamic acid became the polyimide with directional arrangement of the molecular chain in the normal to the substrate observed by wide-angle X-ray diffraction. The sample containing a large amount of oriented crystals showed a small photocurrent. It was concluded that the oriented chain containing a decamethylene moiety hinders the carrier transfer between pyromellitimide moieties, resulting in a decrease of current.

  11. Fabrication of superhydrophobic films with robust adhesion and dual pinning state via in situ polymerization.

    PubMed

    Raza, Aikifa; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-04-01

    Superhydrophobic films on glass substrate with robust adhesion and dual pinning to the water droplets were fabricated utilizing a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) having drooping aliphatic chains and incorporated SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the as-prepared composite films possess the robust adhesion to the glass substrate and superhydrophobic pinned state with water contact angle (WCA) of 150° and the non-pinned state with WCA approaching to 165°. Surface morphological studies have indicated that the wettability of the resultant films could be controlled by tuning the surface composition as well as the hierarchical structures. The key role of micro and sub-micro-sized structures and the nanometer sized voids is discussed by the investigation into static contact angle, contact angle hysteresis, droplet evaporation, and propensity for air pocket formation. The as-prepared films exhibited high adhesion toward the glass substrate with considerable durability in corrosive water and proved their simultaneous use in the transportation of micro-droplets, which could be helpful to design large-area and highly scalable superhydrophobic films.

  12. Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: Dependence on the radiofrequency power

    NASA Astrophysics Data System (ADS)

    Manaa, C.; Bouaziz, L.; Lejeune, M.; Kouki, F.; Zellama, K.; Benlahsen, M.; Mejatty, M.; Bouchriha, H.

    2015-06-01

    Optical properties of polymerized cyclohexane films deposited by radiofrequency plasma enhanced chemical vapor deposition technique at different radiofrequency powers onto glass and silicon substrates, are studied and correlated with the microstructure of the films, using a combination of atomic force microscopy, Raman and Fourier Transformer Infrared spectroscopy and optical measurements. The optical constants such as refractive index n, dielectric permittivity ɛ and extinction k and absorption α coefficients, are extracted from transmission and reflection spectra through the commercial software CODE. These constants lead, by using common theoretical models as Cauchy, Lorentz, Tauc and single effective oscillator, to the determination of the static refractive index ns and permittivity ɛs, the plasma frequency ωp , the carrier density to effective mass ratio N /me* , the optical conductivity σoc, the optical band gap Eg and the oscillation and dispersion energies E0 and Ed, respectively. We find that n, ɛs , ωp , N /me* , Ed , increase with radiofrequency power, while Eg and E0 decrease in the same range of power. These results are well correlated with those obtained from atomic force microscopy, Raman and infrared measurements. They also indicate that the increase of the radiofrequency power promotes the fragmentation of the precursor and increases the carbon C-sp2 hybridization proportion, which results in an improvement of the optoelectronic properties of the films.

  13. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

    NASA Astrophysics Data System (ADS)

    Kenanakis, G.; Vasilopoulos, K. C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.

    2016-09-01

    Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

  14. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    PubMed

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  15. Characterization and protein-adsorption behavior of deposited organic thin film onto titanium by plasma polymerization with hexamethyldisiloxane.

    PubMed

    Hayakawa, Tohru; Yoshinari, Masao; Nemoto, Kimiya

    2004-01-01

    Plasma polymerized hexamethyldisiloxane (HMDSO) thin film was deposited onto titanium using a radio-frequency apparatus for the surface modification of titanium. A titanium disk was first polished using colloidal silica at pH=9.8. Plasma-polymerized HMDSO films were firmly attached to the titanium by heating the titanium to a temperature of approximately 250 degrees C. The thickness of the deposited film was 0.07-0.35mum after 10-60min of plasma polymerization. The contact angle with respect to double distilled water significantly increased after HMDSO coating. X-ray photoelectron spectroscopy revealed that the deposited thin film consisted of Si, C, and O atoms. No Ti peaks were observed on the deposited surface. The deposited HMDSO film was stable during 2-weeks immersion in phosphate buffer saline solution. Fourier transform reflection-absorption spectroscopy showed the formation of Si-H, Si-C, C-H, and Cz.dbnd6;O bonds in addition to Si-O-Si bonds. Quartz crystal microbalance-dissipation measurement demonstrated that the deposition of HMDSO thin films on titanium has a benefit for fibronectin adsorption at the early stage. In conclusion, plasma polymerization is a promising technique for the surface modification of titanium. HMDSO-coated titanium has potential application as a dental implant material.

  16. Synthesis and characterization of high-performance polymeric materials: Part I. Silphenylene-siloxanes. Part II. Biodegradable films from gelatins

    NASA Astrophysics Data System (ADS)

    Zhang, Ruzhi

    Poly(tetramethyl-m-silphenylene-siloxane) (PTMMS) has been successfully synthesized from m-bis(dimethylhydroxysilyl)benzene in a step-growth polymerization using n-hexylamine 2-ethylhexoate as the catalyst. The glass transition temperature of PTMMS is -52 °C, but no melting temperature was detected by DSC. TGA measurements revealed excellent high-temperature properties under nitrogen or air. Random copolymers of tetramethyl-p-silphenylene-siloxane and tetramethyl-m-silphenylene-siloxane were synthesized through condensation copolymerization. Alternating copolymers were prepared through dehydrogenation polymerization. The physical properties can be adjusted from those of a crystalline polymer to those of an amorphous, elastomeric polymer by increasing the amount of the meta comonomer. Thermal studies revealed that these copolymers possess excellent thermal stability. PTMMS has been successfully cross-linked by UV irradiation under air or argon in the presence of benzophenone. Mechanical properties of PTMMS networks were studied by equilibrium stress-strain measurements, and the cross-link density was estimated by means of the Mooney-Rivlin equation. TGA studies revealed that PTMMS elastomers have excellent thermal and thermo-oxidative stabilities. Dehydrogenation polymerization of bis-silanes and disilanols to silphenylenesiloxane polymers through the formation of Si-O-Si bonds as mediated by a rhodium complex was successfully developed. Coordination polymerization using Wilkinson's catalyst provided high molecular weight polymers in high yield at room temperature in an open system. Octamethylcyclo-di(meta-silphenylenesiloxane) (cyclic meta-dimer) was synthesized as the dominant cyclic oligomer product from 1,3--bis(dimethylhydroxysilyl)benzene using 4-dimethylaminopyridine as the catalyst in a dilute THF solution. The X-ray structure of the cyclic meta-dimer was obtained and the Si-O-Si bond angle is 142.1°. The attempted ring-opening polymerization of cyclic

  17. Erbium oxide thin films on Si(100) obtained by laser ablation and electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Queralt, X.; Ferrater, C.; Sánchez, F.; Aguiar, R.; Palau, J.; Varela, M.

    1995-02-01

    Erbium oxide thin films have been obtained by laser ablation and electron beam evaporation techniques on Si(100) substrates. The samples were grown under different conditions of oxygen atmosphere and substrate temperature without any oxidation process after deposition. The crystal structure has been studied by X-ray diffraction. Films obtained by laser ablation are highly textured in the [ hhh] direction, although this depends on the conditions of oxygen pressure and substrate temperature. In order to study the depth composition profile of the thin films and the interdiffusion of erbium metal and oxygen towards the silicon substrates, X-ray photoelectron spectroscopy analyses have been carried out.

  18. The molecular structure of interfaces formed between plasma polymerized silica-like films and epoxy adhesives

    NASA Astrophysics Data System (ADS)

    Bengu, Basak

    The molecular structure of the interphase formed by curing a model adhesive system consisting of the diglycidyl ether of bisphenol-A (DGEBA) and dicyandiamide (DDA) against inorganic substrates, including mechanically polished aluminum, electrogalvanized steel (EGS) and plasma polymerized silica-like primer films, was determined using reflection--absorption infrared spectroscopy (RAIR) and X-ray photoelectron spectroscopy (XPS). RAIR analysis suggested that DGEBA/DDA mixtures created an interphase with a different molecular structure from the bulk of the adhesive when cured in contact with aluminum. The formation of this unique interphase was mainly due to interactions between DDA and the Al surface. XPS analysis indicated that aluminum ions exposed by heating the substrate surface were necessary for this interaction. DDA was found to adsorb onto the aluminum surface via the lone pair of electrons on the nitrogen atoms of the nitrile groups. A slight decrease in the nitrile stretching frequency indicated an additional back-bonding interaction between aluminum ions and the nitrile groups. Slight back donation of electrons from the metal to DDA resulted in a reduction product that led to the formation of the carbodiimide form of DDA. This specific reaction caused a decrease in the concentration of nitrile groups in the interphase and changed the network structure of the epoxy adhesive in the regions close to the oxide surface. The interaction of DDA with EGS surfaces followed a similar trend. However, the effects were much more pronounced with EGS and the path of the curing reaction and the network structure near the metal surface were strongly affected by EGS/DDA interactions. Two types of plasma polymerized silica-like films were prepared from hexamethyldisiloxane (HMDSO) monomer and oxygen by varying the gas compositions. One of the films was high and the other was low in hydroxyl content. XPS results showed that adjacent to the silica-like primer films, the

  19. Preparation and characterization of a novel pH-sensitive hydrogel obtained from UV light-induced polymerization

    NASA Astrophysics Data System (ADS)

    Tian, R. Q.; Zhao, Y. G.; Cui, Y. Q.; Zhang, X. Y.; Zhang, J.; Liang, X. Y.; Shang, Q.

    2015-05-01

    The main aim of this study was to develop a novel pH-sensitive hydrogel prepared via an UV light-induced polymerization. Single-factor experiments were performed to acquire the optimum formula of final poly(MAA-co-PEGMA) hydrogel. Fourier transform infrared spectroscopy (FTIR) spectra were employed to confirm the successful preparation of the designed copolymers. Inner morphologies of the polymeric hydrogels were observed via an S-4800 scanning electron microscope (SEM). Swelling and reversible swelling-shrinking studies were carried out in different phosphate buffer solution (PBS) with various pH values. Drug-loading tests were performed with bovine serum albumin (BSA) as a model drug. The in vitro release profile was also investigated in PBS with the pH values of 1.2 and 7.4. FTIR spectra confirmed the preparation of the poly(MAA-co-PEGMA) copolymers without any residual monomers. The typical space grid structures were observed from the SEM photographs of hydrogels. The obtained hydrogel showed an excellent pH-sensibility and reversible swelling-shrinking property. The maximum drug-loading (40.9 %) was gained from the BSA concentration of 50.0 mg/mL. During the releasing process, only 5.8 ± 0.9 % of BSA was released at pH 1.2, but 82.1 ± 6.2 % was diffused at pH 7.4. These data suggested that such medicated hydrogel could deliver BSA to alkaline conditions (e.g., intestinal environments) site-specifically, which protected BSA from destroying by gastric acid or pepsase. Therefore, such hydrogel had a significant meaning in theoretical research and practical application.

  20. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  1. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces.

    PubMed

    Boateng, Joshua S; Stevens, Howard N E; Eccleston, Gillian M; Auffret, Anthony D; Humphrey, Michael J; Matthews, Kerr H

    2009-08-01

    Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

  2. Novel low-molecular-weight hypromellose polymeric films for aqueous film coating applications.

    PubMed

    Bruce, Hollie F; Sheskey, Paul J; Garcia-Todd, Paula; Felton, Linda A

    2011-12-01

    The concentration of hypromellose (HPMC) is known to significantly impact the viscosity of coating solutions. The purpose of this study was to determine the viscosity of novel low-molecular-weight (LMW) HPMC products as a function of polymer concentration. The mechanical properties and water vapor permeability of free films prepared from these novel LMW HPMC polymers were also determined and the results were compared with films prepared with conventional HPMC. Solutions of LMW and conventional HPMC 2910 and 2906 containing up to 40% polyethylene glycol (PEG) 400 were prepared and the viscosities were measured using a Brookfield viscometer. Solutions were then cast onto glass plates and stored at 30?C and 50% relative humidity until films were formed. A Chatillon digital force gauge attached to a motorized test stand was used to quantify the mechanical properties of the films, whereas water vapor permeabilities were determined according to the ASTM E96 M-05 water method. As expected, the novel LMW polymer solutions exhibited significantly lower viscosities than the conventional comparators at equivalent polymer concentrations. Film strength of the LMW materials was lower than films prepared from the conventional HPMC solutions, although this effect was not as evident for the HPMC 2906 chemistry. Increasing concentrations of the plasticizer resulted in decreased tensile strength and Young?s modulus and increased elongation as well as increased water vapor permeability, irrespective of polymer type. No statistical difference was found between the tensile strength to Young?s modulus ratios of the F chemistry LMW and conventional HPMC polymer films.

  3. Safety and Pharmacokinetics of Quick-Dissolving Polymeric Vaginal Films Delivering the Antiretroviral IQP-0528 for Preexposure Prophylaxis

    PubMed Central

    Srinivasan, Priya; Zhang, Jining; Martin, Amy; Kelley, Kristin; McNicholl, Janet M.; Buckheit, Robert W.; Smith, James M.

    2016-01-01

    For human immunodeficiency virus (HIV) prevention, microbicides or drugs delivered as quick-dissolving films may be more acceptable to women than gels because of their compact size, minimal waste, lack of an applicator, and easier storage and transport. This has the potential to improve adherence to promising products for preexposure prophylaxis. Vaginal films containing IQP-0528, a nonnucleoside reverse transcriptase inhibitor, were evaluated for their pharmacokinetics in pigtailed macaques. Polymeric films (22 by 44 by 0.1 mm; providing 75% of a human dose) containing IQP-0528 (1.5%, wt/wt) with and without poly(lactic-co-glycolic acid) (PLGA) nanoparticle encapsulation were inserted vaginally into pigtailed macaques in a crossover study design (n = 6). With unencapsulated drug, the median (range) vaginal fluid concentrations of IQP-0528 were 160.97 (2.73 to 2,104), 181.79 (1.86 to 15,800), and 484.50 (8.26 to 4,045) μg/ml at 1, 4, and 24 h after film application, respectively. Median vaginal tissue IQP-0528 concentrations at 24 h were 3.10 (0.03 to 222.58) μg/g. The values were similar at locations proximal, medial, and distal to the cervix. The IQP-0528 nanoparticle-formulated films delivered IQP-0528 in vaginal tissue and secretions at levels similar to those obtained with the unencapsulated formulation. A single application of either formulation did not disturb the vaginal microflora or the pH (7.24 ± 0.84 [mean ± standard deviation]). The high mucosal IQP-0528 levels delivered by both vaginal film formulations were between 1 and 5 log higher than the in vitro 90% inhibitory concentration (IC90) of 0.146 μg/ml. The excellent coverage and high mucosal levels of IQP-0528, well above the IC90, suggest that the films may be protective and warrant further evaluation in a vaginal repeated low dose simian-human immunodeficiency virus (SHIV) transmission study in macaques and clinically in women. PMID:27139475

  4. Conductive Cu-TiO2 thin films obtained via MOCVD

    NASA Astrophysics Data System (ADS)

    Alvarez Y Quintavalle, F.; Battiston, G. A.; Casellato, U.; Fregona, D.; Gerbasi, R.; Loro, F.

    2002-06-01

    Growths of nanophased Cu, CuO, Cu-TiO2 and Cu2O-TiO2 thin films were performed by using titanium tetraisopropoxide Ti(OiPr)4, and copper(II)acetylacetonatehydrate Cu(acac)2.H2O in the temperature range 275- 370 °C. The composite Cu-TiO2 with very low percent of titanium dioxide (TiO2<5%) can be an alternative procedure to obtain well adherent, smooth and well connected Cu films. Cu2O-TiO2 were obtained by annealing of Cu-TiO2 thin films. Cu2O in a TiO2 matrix remains unaltered after repeated thermal treatments when the Cu:Ti metal ratio is equal or less than 15:1. The films exhibited semiconductor characteristics with a moderate transparency, 40-60% in the visible region.

  5. Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth

    SciTech Connect

    Schnitzler, Mariane C.; Zarbin, Aldo J.G.

    2009-10-15

    Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe{sub 3}(CO){sub 12}] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe{sub 3}(CO){sub 12}] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene. - Graphical abstract: Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air, and subsequently used as catalyst on the growth of carbon nanotubes.

  6. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  7. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Man; Yeh, Chou-Ming; Chung, Chi-Jen; He, Ju-Liang

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ωp) and para-xylene monomer flow rate (fp). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ωp or high fp, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ωp and fp. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  8. Fabrication of robust micro-patterned polymeric films via static breath-figure process and vulcanization.

    PubMed

    Li, Lei; Zhong, Yawen; Gong, Jianliang; Li, Jian; Huang, Jin; Ma, Zhi

    2011-02-15

    Here, we present the preparation of thermally stable and solvent resistant micro-patterned polymeric films via static breath-figure process and sequent vulcanization, with a commercially available triblock polymer, polystyrene-b-polyisoprene-b-polystyrene (SIS). The vulcanized honeycomb structured SIS films became self-supported and resistant to a wide range of organic solvents and thermally stable up to 350°C for 2h, an increase of more than 300K as compared to the uncross-linked films. This superior robustness could be attributed to the high degree of polyisoprene cross-linking. The versatility of the methodology was demonstrated by applying to another commercially available triblock polymer, polystyrene-b-polybutadiene-b-polystyrene (SBS). Particularly, hydroxy groups were introduced into SBS by hydroboration. The functionalized two-dimensional micro-patterns feasible for site-directed grafting were created by the hydroxyl-containing polymers. In addition, the fixed microporous structures could be replicated to fabricate textured positive PDMS stamps. This simple technique offers new prospects in the field of micro-patterns, soft lithography and templates.

  9. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    PubMed

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.

  10. Photooxidation of plasma polymerized polydimethylsiloxane film by 172 nm vacuum ultraviolet light irradiation in dilute oxygen

    SciTech Connect

    Ichikawa, S.

    2006-08-01

    Plasma polymerized polydimethylsiloxane films irradiated under different partial pressures of oxygen with a 172 nm vacuum ultraviolet light were investigated in order to clarify the roles of molecular oxygen and photons in photooxidation. The thickness, densities, surface roughness, elemental compositions, and molecular structures of the irradiated and unirradiated films were examined by using glazing incidence x-ray reflectivity, Rutherford backscattering, infrared, and x-ray absorption (XAS) spectroscopies. Photooxidation is hardly promoted by irradiation in a high vacuum of 1x10{sup -4} Pa, though photodesorption of the methyl group and formation of Si-H bonds were observed. Silica films thicker than 140 nm were formed at room temperature by irradiating them in low pressure oxygen gases. The degree of oxidation was smaller for the oxygen pressure of 10 kPa than for 83 Pa. Si K-edge XAS was performed to clarify the change of coordination environment of silicon by photooxidation in dilute oxygen flow containing less than 5 ppm of molecular oxygen.

  11. PTFE/polyamide thin-film composite membranes using PTFE films modified with ethylene diamine polymer and interfacial polymerization: preparation and pervaporation application.

    PubMed

    Yu, Chung-Hao; Kusumawardhana, Irdham; Lai, Juin-Yih; Liu, Ying-Ling

    2009-08-01

    Plasma polymerization of ethylene diamine (EDA) on PTFE film surfaces is applied to modify PTFE surfaces to become hydrophilic and to incorporate amino groups onto PTFE surfaces. The surface-modified PTFE films are utilized as substrates for interfacial polymerization of EDA and trimesoyl chloride to prepare PTFE/polyamide thin-film composite (TFC) membranes. The effect of plasma power for plasma polymerization on the morphology and performances of the PTFE/PA TFC membranes are examined and discussed. The presence of amino groups on the PTFE substrates provides chemical linkages between PTFE and PA layers in interfacial polymerization to make the PTFE/PA TFC membranes are stable for pervaporation separations. A high permeation flux of 1910 g/hm(2) and a separation factor of 290 are observed with the PTFE/PA TFC membranes for pervaporation dehydration on a 70 wt% isopropanol aqueous solution at 70 degrees C. This approach explores a new method to prepare PTFE-based TFC membranes via interfacial polymerizations. The prepared TFC membranes could be potentially utilized in pervaporation and nanofiltration separations.

  12. Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Pustan, M. S.; Bîrleanu, C.; Negrea, G.

    2014-08-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, the obtaining was realized when the substrates were at room temperature, and second, the obtaining was realized when the substrates were previously heated at 250 °C. The elaborated samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, roughness, friction force are some of the determined characteristics. The results marked out that the substrate which was previously heated at 250 °C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature.

  13. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV

    PubMed Central

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V.

    2017-01-01

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV–A and UV–B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV–C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment. PMID:28358138

  14. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV.

    PubMed

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V

    2017-03-30

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV-A and UV-B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV-C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.

  15. Study of the homogeneity of drug loaded in polymeric films using near-infrared chemical imaging and split-plot design.

    PubMed

    Alexandrino, Guilherme L; Poppi, Ronei J

    2014-08-01

    Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.

  16. Drude's Model Optical Parameters and the Color of TiNx Films Obtained Through Reflectivity Measurements

    NASA Astrophysics Data System (ADS)

    Alves, L. A.; Sagás, J. C.; Damião, A. J.; Fontana, L. C.

    2015-02-01

    Titanium nitride (TiN) has been applied as decorative coating due to its high reflectivity and goldish color, having high hardness and wear resistance. In the present work, TiNx films were deposited by grid-assisted magnetron sputtering. The color and reflectivity were investigated by spectrophotometry as a function of the working gas ratio N2/Ar used during films deposition. The crystalline phases were identified by X-ray diffraction pattern (XRD). The TiNx plasma frequency ( ω p) and the relaxation time ( τ) were determined by fitting the experimental reflectivity curves, according to the Drude model. The color parameters obtained by the CieLab method were used to compare TiNx films with gold film.

  17. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation.

    PubMed

    Antonini, V; Torrengo, S; Marocchi, L; Minati, L; Dalla Serra, M; Bao, G; Speranza, G

    2014-01-01

    Plasma enhanced physical vapor depositions are extensively used to fabricate substrates for cell culture applications. One peculiarity of the plasma processes is the possibility to deposit thin films with reproducible chemical and physical properties. In the present work, a combinatorial plasma polymerization process was used to deposit thin carbon based films to promote cell adhesion, in the interest of testing cell proliferation as a function of the substrate chemical properties. Peculiarity of the combinatorial approach is the possibility to produce in just one deposition experiment, a set of surfaces of varying chemical moieties by changing the precursor composition. A full characterization of the chemical, physical and thermodynamic properties was performed for each set of the synthesized surfaces. X-ray photoelectron spectroscopy was used to measure the concentration of carboxyl, hydroxyl and amine functional groups on the substrate surfaces. A perfect linear trend between polar groups' density and precursors' concentration was found. Further analyses reveled that also contact angles and the correspondent surface energies of all deposited thin films are linearly dependent on the precursor concentration. To test the influence of the surface composition on the cell adhesion and proliferation, two cancer cell lines were utilized. The cell viability was assessed after 24 h and 48 h of cell culture. Experiments show that we are able to control the cell adhesion and proliferation by properly changing the thin film deposition conditions i.e. the concentration and the kind of chemical moiety on the substrate surface. The results also highlight that physical and chemical factors of biomaterial surface, including surface hydrophobicity and free energy, chemical composition, and topography, can altered cell attachment.

  18. Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: Dependence on the radiofrequency power

    SciTech Connect

    Manaa, C.; Bouaziz, L.; Lejeune, M.; Zellama, K. Benlahsen, M.; Kouki, F.; Mejatty, M.; Bouchriha, H.

    2015-06-07

    Optical properties of polymerized cyclohexane films deposited by radiofrequency plasma enhanced chemical vapor deposition technique at different radiofrequency powers onto glass and silicon substrates, are studied and correlated with the microstructure of the films, using a combination of atomic force microscopy, Raman and Fourier Transformer Infrared spectroscopy and optical measurements. The optical constants such as refractive index n, dielectric permittivity ε and extinction k and absorption α coefficients, are extracted from transmission and reflection spectra through the commercial software CODE. These constants lead, by using common theoretical models as Cauchy, Lorentz, Tauc and single effective oscillator, to the determination of the static refractive index n{sub s} and permittivity ε{sub s}, the plasma frequency ω{sub p}, the carrier density to effective mass ratio N/m{sub e}{sup *}, the optical conductivity σ{sub oc}, the optical band gap E{sub g} and the oscillation and dispersion energies E{sub 0} and E{sub d}, respectively. We find that n, ε{sub s}, ω{sub p}, N/m{sub e}{sup *}, E{sub d}, increase with radiofrequency power, while E{sub g} and E{sub 0} decrease in the same range of power. These results are well correlated with those obtained from atomic force microscopy, Raman and infrared measurements. They also indicate that the increase of the radiofrequency power promotes the fragmentation of the precursor and increases the carbon C-sp{sup 2} hybridization proportion, which results in an improvement of the optoelectronic properties of the films.

  19. Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity.

    PubMed

    Tappertzhofen, Kristof; Weiser, Franziska; Montermann, Evelyn; Reske-Kunz, Angelika; Bros, Matthias; Zentel, Rudolf

    2015-08-01

    Herein we describe the synthesis of poly-L-lysine-b-poly[N-(2-hydroxypropyl)-metha-crylamide)] (poly[HPMA]) block copolymers by combination of solid phase peptide synthesis or polymerization of α-amino acid-N-carboxy-anhydrides (NCA-polymerization) with the reversible addition-fragmentation chain transfer polymerization (RAFT). In the presence of p-DNA, these polymers form polyplex micelles with a size of 100-200 nm in diameter (monitored by SDS-PAGE and FCS). Primary in vitro studies with HEK-293T cells reveal their cellular uptake (FACS studies and CLSM) and proof successful transfection with efficiencies depending on the length of polylysine. Moreover, these polyplexes display minimal toxicity (MTT-assay and FACS-measurements) featuring a p[HPMA] corona for efficient extracellular shielding and the potential ligation with antibodies.

  20. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  1. Photoconductivity on nanocrystalline ZnO/TiO2 thin films obtained by sol-gel

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Juárez-Arenas, R.

    2008-08-01

    In this paper we report results on the synthesis, characterization and photoconductivity behaviour of amorphous and nanocrystalline ZnO/TiO2 thin films. They were produced by the sol-gel process at room temperature by using the spin-coating method and deposited on glass substrates. The ZnO/TiO2 films were synthesized by using tetrabutyl orthotitanate and zinc nitrate hexahydrate as the inorganic precursors. The samples were sintered at 520°C for 1 hour. The obtained films were characterized by X-ray diffraction (XRD), optical absorption (OA), infrared spectroscopy (IR) and scanning electronic microscopy (SEM) studies. Photoconductivity studies were performed on amorphous and nanocrystalline (anatase phase) films to determine the charge transport parameters. The experimental data were fitted with straight lines at darkness and under illumination at 310 nm, 439 nm and 633 nm. This indicates an ohmic behavior. The Φμτ and Φl0 parameters were fitted by least-squares with straight lines (nanocrystalline films) and polynomial fits (amorphous films).

  2. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    PubMed

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1).

  3. Degradable polymeric nano-films and particles as delivery platforms for vaccines and immunotherapeutics

    NASA Astrophysics Data System (ADS)

    Su, Xingfang

    Degradable polymeric materials provide opportunities for the development of improved vaccines and immunotherapies by acting as platforms that facilitate the delivery of molecules to appropriate tissue and cellular locations to achieve therapeutic outcomes. To this end, we have designed and characterized nano-films and particles employing a hydrolytically degradable polymer for the delivery of vaccine antigens and immunotherapeutics. We first describe protein- and oligonucleotide-loaded layer-by-layer (LbL)-assembled multilayer thin films constructed based on electrostatic interactions between a cationic poly(beta-amino ester) (PBAE, denoted Poly-1) with a model protein antigen, ovalbumin (OVA), and/or immunostimulatory CpG oligonucleotides for transcutaneous delivery. Linear growth of nanoscale Poly-I/OVA bilayers was observed. Dried OVA protein-loaded films rapidly deconstructed when rehydrated in saline solutions, releasing OVA as non-aggregated/non-degraded protein, suggesting that the structure of biomolecules integrated into these multilayer films are preserved during release. Using confocal fluorescence microscopy and an in vivo murine ear skin model, we demonstrated delivery of OVA from LbL films into barrier-disrupted skin, uptake of the protein by skin-resident antigen-presenting cells (Langerhans cells), and transport of the antigen to the skin-draining lymph nodes. Dual incorporation of OVA and CpG oligonucleotides into the nanolayers of LbL films enabled dual release of the antigen and adjuvant with distinct kinetics for each component; OVA was rapidly released while CpG was released in a relatively sustained manner. Applied as skin patches, these films delivered OVA and CpG to Langerhans Cells in the skin. To our knowledge, this is the first demonstration of LbL films applied for the delivery of biomolecules into skin. This approach provides a new route for storage of vaccines and other immunotherapeutics in a solid-state thin film for subsequent

  4. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  5. Nanoindentation on carbon thin films obtained from a C 60 ion beam

    NASA Astrophysics Data System (ADS)

    Dall'Asén, A. G.; Verdier, M.; Huck, H.; Halac, E. B.; Reinoso, M.

    2006-09-01

    Raman spectra, atomic force microscope (AFM) images, hardness ( H) and Young's modulus ( E) measurements were carried out in order to characterize carbon thin films obtained from a C 60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ˜11 and ˜116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.

  6. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties.

    PubMed

    Marin, Luminita; Ailincai, Daniela; Mares, Mihai; Paslaru, Elena; Cristea, Mariana; Nica, Valentin; Simionescu, Bogdan C

    2015-03-06

    The paper reports the preparation of twelve imino-chitosan biopolymer films by acid condensation of the amino groups of chitosan with various aldehydes, in aqueous medium, followed by slow water removal. FTIR spectroscopy has shown drastic conformation changes of chitosan macromolecular chains—from a stiff coil to a straight one, while wide angle X-ray diffraction evidenced a layered morphology of the biopolymer films. Contact angle and surface free energy determination indicated a higher biocompatibility of the new biopolymers as compared to the chitosan parent, while the microbiological screening demonstrated their self-defense properties against common and virulent pathogen agents. It was concluded that the reversibility of imine forming promotes the self-assembling of imino-chitosan biopolymer films into a lamellar morphology and, on the other hand, the slow release of the antimicrobial aldehyde in the microbiological culture. The obtained results demonstrate that chitosan polyamine is a challenging workbench to functional biodynamic materials.

  7. Utilizing liquid crystal phases to obtain highly ordered thin films for organic electronics

    NASA Astrophysics Data System (ADS)

    Springer, Mike T.

    Organic electronic materials offer several advantages when compared to inorganic materials, but they suffer from low charge carrier mobility. Two major factors hindering effective charge transport in organic materials are: 1) effective wavefunction overlap in organic crystals and 2) the domain morphology of thin films. Charge transport in organic materials occurs via a hopping mechanism along the conjugated pi system. Often, rigid, aromatic organic materials crystallize in a herringbone, edge-to-face orientation, limiting pi-pi stacking and decreasing charge carrier mobility. Face-to-face orientation of aromatic rings decreases intermolecular pi-pi distances and increases wavefunction overlap. Control of the crystal structure can be achieved to some extent by tuning structural features of the molecule, like increasing the ratio of carbon atoms to hydrogen atoms in the aromatic rings; this is often achieved by introducing heteroatoms like sulfur and oxygen into the aromatic ring structure. Thin films of organic materials often contain many unaligned domains; this is caused by rapid crystallization. Control of the domain morphology of thin films has been shown to increase charge carrier mobility by 6 orders of magnitude for thin films of the same material. Liquid crystal phases allow a slow process of crystallization, whereby the molecules in a thin film can be slowly aligned into a monodomain before crystallization. The crystal-smectic phases, like smectic E, are particularly attractive for this strategy due to their high degree of intermolecular order. This project describes the synthesis and characterization of organic semiconductors designed to exhibit short pi-pi distances and highly ordered crystal-smectic phases to obtain thin films with high charge carrier mobility. The n,2-OBTTT series contains 15 newly designed and synthesized mesogens. The liquid crystal and solid crystal structures of these mesogens are examined and deposition conditions are optimized for

  8. Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine).

    PubMed

    Madkour, Sherif; Yin, Huajie; Füllbrandt, Marieke; Schönhals, Andreas

    2015-10-28

    Specific heat spectroscopy was used to study the dynamic glass transition of ultrathin poly(2-vinyl pyridine) films (thicknesses: 405-10 nm). The amplitude and the phase angle of the differential voltage were obtained as a measure of the complex heat capacity. In a traditional data analysis, the dynamic glass transition temperature Tg is estimated from the phase angle. These data showed no thickness dependency on Tg down to 22 nm (error of the measurement of ±3 K). A derivative-based method was established, evidencing a decrease in Tg with decreasing thickness up to 7 K, which can be explained by a surface layer. For ultrathin films, data showed broadening at the lower temperature side of the spectra, supporting the existence of a surface layer. Finally, temperature dependence of the heat capacity in the glassy and liquid states changes with film thickness, which can be considered as a confinement effect.

  9. Surface-initiated polymerizations on initiator anchored substrates: Synthesis and characterization of nanometer thick functional polymer films

    NASA Astrophysics Data System (ADS)

    Bao, Zhiyi

    We describe the surface-initiated ring-opening polymerization (ROP) of lactide from poly(2-hydroxyethyl methacrylate) (PHEMA) brushes anchored to Au substrates. The resulting comb polymers have a "bottle brush" architecture. During hydrolytic degradation of PLA in pH 7.4 buffer at 55°C, large, highly symmetric domains (˜50-100 mum) unexpectedly formed. The purpose of the research described in this chapter was to devise a model that describes their formation. Control experiments during degradation study link high lactide polymerization temperature to the formation of the defects. A likely mechanism is the scission of Au-S bonds at high temperatures, causing defects that swell when placed in the buffer solution. We demonstrated enhanced control over polymer brushes through variation of the areal density of the immobilized initiators used for their growth. Reaction of mercaptoundecanol monolayers on Au with both an acyl bromide initiator and a structurally similar acyl bromide diluent yields monolayers whose composition reflects the ratio of the acyl bromides in solution. Similarly, derivatization of SiO2 with an initiator and a diluent monochlorosilane also affords control over initiator density. The thickness of polymer films grown from these modified substrates drop dramatically when the fractional coverage of the surface by initiator decreases below 10% of a monolayer because the area per polymer chain increases. However, reduced termination at low initiator coverage results in substantial increases in initiator efficiency as measured by film growth rates normalized by the fractional coverage of the surface by initiator. Variation of chain density also affords control over film swelling. PHEMA films prepared with 0.1% initiator densities swell 20-fold more in water than films grown from monolayers containing only initiators. Such control should prove valuable in the use of brushes for immobilization of active, accessible biomacromolecules such as single

  10. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    PubMed

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  11. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  12. Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen.

    PubMed

    Xu, Sheng; Zhang, Rongli; Zhao, Wei; Zhu, Ye; Wei, Wei; Liu, Xiaoya; Luo, Jing

    2017-06-15

    In this work, a novel impedimetric immunosensor was developed based on electrophoretic deposition of polymeric self-assembled nanoparticles for the sensitive determination of carcino-embryonic antigen (CEA). Biocompatible polymeric nanoparticles γ-PGA-DA@CS were prepared by self-assembly of chitosan (CS) and dopamine modified poly(γ-glutamic acid) (γ-PGA-DA) under mild conditions. A dense and nanostructured nanoparticles film was obtained on the electrode surface by electrophoretic deposition of γ-PGA-DA@CS nanoparticles. Gold nanoparticles (Au NPs) were then tightly anchored on γ-PGA-DA@CS film with homogeneous dispersion due to numerous exposed dopamine adhesive dots present on the surface of γ-PGA-DA@CS. The obtained Au/γ-PGA-DA@CS nanocomposite film not only increases the electrode surface area in nanoscale dimension, but also provides a highly stable and biocompatible matrix for the convenient conjugation of antibody, thus providing a high-efficiency immunoassay platform. Monoclonal antibodies to carcinoembryonic antigen (CEA-Ab) were effectively immobilized on the Au/γ-PGA-DA@CS film and a label-free impedimetric immunosensor was fabricated successfully as the ultimate goal. Under optimal conditions, the resultant immunosensor exhibited a wide linear range from 2.0×10(-14)gmL(-1) to 2.0×10(-8)gmL(-1) for the detection of CEA with a low detection limit of 10fgmL(-1). To the best of our knowledge, this was the lowest detection limit compared with other counterparts of label-free impedimetric immunosensors. Moreover, the immunosensor showed high specificity, good stability and satisfactory reproducibility. As a proof of concept, the proposed strategy provided a promising and versatile platform for clinical immunoassay of other tumor markers and biomolecules.

  13. Adhesion of Poly(phenylene sulfide) Resin with Polymeric Film of Triazine Thiol on Aluminum Surface Modified by Anodic Oxidation.

    PubMed

    Chung, Eun Hyuk; Jang, Eun Kyung; Hong, Tae Eun; Kim, Jong Pil; Kim, Hyun Gyu; Jin, Jong Sung; Hyun, Myung Ho; Shin, Dong Su; Bae, Jong-Seong; Jeong, Euh Duck

    2015-01-01

    Various surface modifications have been applied to improve the adhesion properties of aluminum for the cap plate and sealing quality of electrolyte on Li ion batteries. In this study, we have tried to find the effective condition for the polymerization of triazine thiols (TT) on modified aluminum surfaces by anodic aluminum oxide. Characterization of polymerized films on aluminum was explored by scanning electron microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy analysis. Scanning electron microscopy results reveal that meaningful roughness was formed on aluminum surfaces by anodic oxidation. Secondary ion mass spectroscopy analysis results represent that the peel strength was found to depend on film thickness and the composition of the adhesion layer. As a result, Al/PPS (polyphenylene sulfide) resin assemblies developed in this study have superior adhesive property. Therefore, these assemblies might be a viable candidate for a sealing technique for Li ion batteries.

  14. Varying stress of SiOxCy thin films deposited by plasma polymerization.

    PubMed

    Liao, Wei-Bo; Chang, Ya-Chen; Jaing, Cheng-Chung; Cheng, Ching-Long; Lee, Cheng-Chung; Wei, Hung-Sen; Kuo, Chien-Cheng

    2017-02-01

    SiOxCy thin films were deposited by plasma polymerization. The stress of the deposited SiOxCy thin films can be modified by adjusting the beam current, the anode voltage, and the flow rate of hexamethyldisiloxane (HMDSO) gas and oxygen. Reducing the beam current or increasing the flow rate of HMDSO gas increased the linear/cage structure ratio and turned the stress of the SiOxCy thin films from compressive to tensile. The linear/cage structure ratio can be adjusted by changing the composite parameter, W[FM]c/[FM]m, to control the stress of the deposited plasma polymer films. Multilayers of TiO2/SiO2/TiO2 were coated on a SiOxCy plasma polymer film herein, reducing their stress by 70% from 0.06 to 0.018 GPa. The refractive index is 1.55, and the absorption coefficient is less than 10-4 at 550 nm of the SiOxCy films. Superior optical performances of SiOxCy thin films make their use in optical thin films.

  15. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.

    PubMed

    Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad

    2015-02-25

    The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.

  16. A model of gravity-induced distribution of material in plasma polymerized aerosols and films

    NASA Astrophysics Data System (ADS)

    Zyn, V. I.

    2008-01-01

    A mathematical model of the volumetric part of plasma polymerization influenced by gravity is presented. Plasma-activated adhesion of monomer molecules to a surface of a germinal particle is assumed as a basic mechanism of particulate growth. The continuity equation for the flow of matter through the discharge has been formulated and solved in two extreme asymptotic approximations --for small and major duration of the process. Several non-equilibrium distribution functions of the polymer were obtained, for instance, an amount of the particles as a function of their size or time of fall. Within the adopted model this function demonstrates a sharp downward increase inside a discharge. In addition it contains such parameters as the free fall acceleration or reaction rate coefficients, variations of which enable control of the discharge and properties of the disperse medium.

  17. Design of UV-Absorbing Polypropylene Films with Polymeric Benzotriaziole Based Nano- and Microparticle Coatings.

    PubMed

    Cohen, Sarit; Haham, Hai; Pellach, Michal; Margel, Shlomo

    2017-01-11

    UV-absorbing nanoparticles (NPs) and microparticles (MPs) were prepared by emulsion and dispersion copolymerization of the vinylic monomer 2-(2'-hydroxy-5'-methacryloxyethylphenyl)-2H-benzotriazole (Norbloc (NB)) with the crosslinking monomer divinylbenzene. The effect of the initiator concentration on the size and size distribution of the polyNB (PNB) particles was elucidated. Thin coatings of the formed PNB NPs or MPs of 19 ± 2 and 200 ± 25 nm dry diameter, respectively, onto polypropylene (PP) films were then prepared and characterized. Increasing the concentration or thickness of the PNB NP or MP thin coatings on the PP films decreased their UV transmittance, up to complete UV blocking with just 2 μm of a 4% NP coating. Migration of the UV-absorbing agents from the coated PP films was not observed during three years of storage at room temperature, offering a unique solution to current problems of migration of UV-absorbing additives. The thin coatings obtained by the PNB NPs were superior to those of the PNB MPs, in that no UV transmittance or loss of optical properties of the PP films were observed for the NP coatings, while the coatings produced by the PNB MPs resulted in damaged optical properties, particularly increasing the haze, and achieved incomplete UV blocking.

  18. p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors.

    PubMed

    Latorre-Sánchez, Marcos; Primo, Ana; Atienzar, Pedro; Forneli, Amparo; García, Hermenegildo

    2015-02-25

    Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 °C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B)G-(N)G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B)G-(N)G films. Upon irradiation with a xenon lamp of aqueous solutions of H(2) PtCl(6) and MnCl(2) in contact with the heterojunction, preferential electron migration from (B)G to (N)G with preferential location of positive holes on (B)G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N)G and MnO(2) NP on (B)G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B)G-(N)G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B)G (15% enhancement) and (N)G (55% enhancement) components.

  19. RETRACTED: Size-controlled spherical polymer nanoparticles: synthesis with tandem acoustic emulsification followed by soap-free emulsion polymerization and one-step fabrication of colloidal crystal films of various colors.

    PubMed

    Hirai, Yuki; Nakabayashi, Koji; Kojima, Maya; Atobe, Mahito

    2014-11-01

    We have developed a novel synthesis method for size-controlled polymer nanoparticles using soap-free emulsion polymerization. This new synthetic method involves sequential ultrasonic irradiation (20kHz→500kHz→1.6MHz→2.4MHz) for acoustic emulsification of a water-insoluble monomer such as methylmethacrylate (MMA) in an aqueous medium, followed by emulsion polymerization in the obtained solution without using any surfactants. The sequential ultrasonication (tandem acoustic emulsification) could provide a clear and stable emulsified solution containing monomer droplets with relatively narrow size distribution in the nanometer range. The subsequent polymerization in this solution yielded size-controlled polymethylmethacrylate (PMMA) nanoparticles and monodisperse PMMA nanoparticles of different sizes. Furthermore, colloidal crystal films could be easily prepared from the as-polymerized nanoparticle solution using the fluidic-cell method. Moreover, we succeeded to modify the structural color of colloidal crystal films by the addition of a small amount of organic solvent to the as-polymerized nanoparticle solution for the fluidic-cell method.

  20. Characterization thin films TiO2 obtained in the magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Kamiński, Maciej; Firek, Piotr; Caban, Piotr

    2016-12-01

    The aim of the study was to elucidate influence parameters of magnetron sputtering process on growth rate and quality of titanium dioxide thin films. TiO2 films were produced on two inch silicon wafers by means of magnetron sputtering method. Characterization of samples was performed using ellipsometer and atomic force microscope (AFM). Currentvoltage (I-V) and capacitance-voltage (C-V) measurements were also carried out. The results enable to determine impact of pressure, power, gases flow and process duration on the physical parameters obtained layers such as electrical permittivity, flat band voltage and surface topography. Experiments were designed according to orthogonal array Taguchi method. Respective trends impact were plotted.

  1. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes.

    PubMed

    Ozaydin-Ince, Gozde; Coclite, Anna Maria; Gleason, Karen K

    2012-01-01

    Polymers with their tunable functionalities offer the ability to rationally design micro- and nano-engineered materials. Their synthesis as thin films have significant advantages due to the reduced amounts of materials used, faster processing times and the ability to modify the surface while preserving the structural properties of the bulk. Furthermore, their low cost, ease of fabrication and the ability to be easily integrated into processing lines, make them attractive alternatives to their inorganic thin film counterparts. Chemical vapor deposition (CVD) as a polymer thin-film deposition technique offers a versatile platform for fabrication of a wide range of polymer thin films preserving all the functionalities. Solventless, vapor-phase deposition enable the integration of polymer thin films or nanostructures into micro- and nanodevices for improved performance. In this review, CVD of functional polymer thin films and the polymerization mechanisms are introduced. The properties of the polymer thin films that determine their behavior are discussed and their technological advances and applications are reviewed.

  2. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes

    NASA Astrophysics Data System (ADS)

    Ozaydin-Ince, Gozde; Coclite, Anna Maria; Gleason, Karen K.

    2012-01-01

    Polymers with their tunable functionalities offer the ability to rationally design micro- and nano-engineered materials. Their synthesis as thin films have significant advantages due to the reduced amounts of materials used, faster processing times and the ability to modify the surface while preserving the structural properties of the bulk. Furthermore, their low cost, ease of fabrication and the ability to be easily integrated into processing lines, make them attractive alternatives to their inorganic thin film counterparts. Chemical vapor deposition (CVD) as a polymer thin-film deposition technique offers a versatile platform for fabrication of a wide range of polymer thin films preserving all the functionalities. Solventless, vapor-phase deposition enable the integration of polymer thin films or nanostructures into micro- and nanodevices for improved performance. In this review, CVD of functional polymer thin films and the polymerization mechanisms are introduced. The properties of the polymer thin films that determine their behavior are discussed and their technological advances and applications are reviewed.

  3. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin.

    PubMed

    Frederiksen, Kit; Guy, Richard H; Petersson, Karsten

    2015-04-01

    Polymeric film-forming systems (FFSs) are potential drug delivery systems for topical application to the skin. The FFSs form thin and transparent polymeric films in situ upon solvent evaporation. Their application convenience and cosmetic attributes, superior to conventional semi-solids, may offer improved patient compliance. This study represents the first phase of an investigation into the use of FFSs for prolonged dermal drug delivery. FFS formulations were distinguished based on their ability to sustain the release of betamethasone 17-valerate (BMV) in vitro over 72 h. The effect of film-forming polymer (hydrophilic: hydroxypropyl cellulose (Klucel™ LF); hydrophobic: polymethacrylate copolymers (Eudragit® NE and Eudragit® RS), and polyacrylate copolymer (Dermacryl® 79) was first determined, and then the impact of incorporation of plasticisers (triethyl citrate, tributyl citrate, and dibutyl sebacate) was examined. The Klucel film released a significantly higher amount of BMV than the hydrophobic FFS, 42 versus 4 μg/cm(2), respectively. The release was increased when a plasticiser was incorporated, and with higher enhancement ratios achieved with the more lipophilic plasticisers. In conclusion, the results show that FFSs can sustain drug release (hence representing useful systems for prolonged dermal therapy) and emphasise the importance of the formulation on drug delivery, with the type of polymer being of greatest significance.

  4. Microstructures and properties of superconducting Y-Er-BaCu-O thin films obtained from disordered Y-Er-BaF2-Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Messi, R.; Paoluzi, L.; Scopa, L.; Tripodi, P.

    1990-01-01

    Since the first reports on superconducting thin films obtained by evaporating BaF2, Cu and Y(sup 1), or Yb or Er(sup 2), several others have followed. All these reports describe thin films prepared by means of molecular beam cells or electron guns. Researchers show that films with similar properties can be obtained by radio frequency sputtering of a single mosaic target composed by Y-Er, BaF2 and Cu. Process steps are described.

  5. Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating.

    PubMed

    Bulgarevich, Kirill; Sakamoto, Kenji; Minari, Takeo; Yasuda, Takeshi; Miki, Kazushi

    2017-02-22

    Surface hydrophobization by self-assembled monolayer formation is a powerful technique for improving the performance of organic field-effect transistors (OFETs). However, organic thin-film formation on such a surface by solution processing often fails due to the repellent property of the surface against common organic solvents. Here, a scalable unidirectional coating technique that can solve this problem, named self-assisted flow-coating, is reported. Producing a specially designed lyophobic-lyophilic pattern on the lyophobic surface enables organic thin-film formation in the lyophobic surface areas by flow-coating. To demonstrate the usefulness of this technique, OFET arrays with an active layer of poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) are fabricated. The ideal transfer curves without hysteresis behavior are obtained for all OFETs. The average field-effect hole mobility in the saturation regime is 0.273 and 0.221 cm(2)·V(-1)·s(-1) for the OFETs with the channels parallel and perpendicular to the flow-coating direction, respectively, and the device-to-device variation is less than 3% for each OFET set. Very small device-to-device variation is also obtained for the on-state current, threshold voltage, and subthreshold swing. These results indicate that the self-assisted flow-coating is a promising coating technique to form spatially uniform thin films of polymeric organic semiconductors on lyophobic gate insulator surfaces.

  6. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    SciTech Connect

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I.

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  7. Preparation of graphene sheets/polyimide nanocomposite films by in-situ polymerization

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Zhang, Yihe; Yu, Li; Lv, Fengzhu; Shang, Jiwu

    2011-11-01

    Graphene sheets were carbon materials with high surface area, and excellent electrical properties. One of the most promising applications of those materials is in polymer nanocomposites. Their multifunctional properties may create new applications of polymer nanocomposites. In this paper, graphene sheets were prepared by oxidation-reduction method. The graphite was oxidized by potassium permanganate and sulphuric acid. The graphene oxide nanosheets, which were exfoliated from graphite oxide by ultrasound in water, were reduced by hydrazine hydrate, and the graphene nanosheets were obtained. Thereafter, the graphene sheets were dispersed in N,N-dimethylacetamide by simple sonication treatment. The graphene sheets/polyimide nanocomposites were synthesized by in situ polymerization using N,N'-dimethylformamide, graphene sheets and pyromellitic dianhydride. It was observed from transmission electron microscopy of graphene oxide sheets and graphene sheets that the very thin sheets were obtained by exfoliation of graphite. The result of FT-IR spectral analysis for graphene sheets shows the functional groups on the graphene sheets surface were almost the same as graphite, and that means the graphene sheets were complete reduced by hydrazine hydrate. A homogeneous dispersion of graphene sheets was achieved in polyimide as evidenced by scanning electron microscopy.

  8. Preparation of graphene sheets/polyimide nanocomposite films by in-situ polymerization

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Zhang, Yihe; Yu, Li; Lv, Fengzhu; Shang, Jiwu

    2012-04-01

    Graphene sheets were carbon materials with high surface area, and excellent electrical properties. One of the most promising applications of those materials is in polymer nanocomposites. Their multifunctional properties may create new applications of polymer nanocomposites. In this paper, graphene sheets were prepared by oxidation-reduction method. The graphite was oxidized by potassium permanganate and sulphuric acid. The graphene oxide nanosheets, which were exfoliated from graphite oxide by ultrasound in water, were reduced by hydrazine hydrate, and the graphene nanosheets were obtained. Thereafter, the graphene sheets were dispersed in N,N-dimethylacetamide by simple sonication treatment. The graphene sheets/polyimide nanocomposites were synthesized by in situ polymerization using N,N'-dimethylformamide, graphene sheets and pyromellitic dianhydride. It was observed from transmission electron microscopy of graphene oxide sheets and graphene sheets that the very thin sheets were obtained by exfoliation of graphite. The result of FT-IR spectral analysis for graphene sheets shows the functional groups on the graphene sheets surface were almost the same as graphite, and that means the graphene sheets were complete reduced by hydrazine hydrate. A homogeneous dispersion of graphene sheets was achieved in polyimide as evidenced by scanning electron microscopy.

  9. Controlling Optical Properties of Electrodes With Stacked Metallic Thin Films for Polymeric Light-Emitting Diodes and Displays

    NASA Astrophysics Data System (ADS)

    Wu, Elbert Hsing-En; Li, Sheng-Han; Chen, Chieh-Wei; Li, Gang; Xu, Zheng; Yang, Yang

    2005-09-01

    A semi-transparent metallic film and a high optical absorbing film were constructed with stacking metallic films. Both films were used as cathodes for polymeric light-emitting diodes (PLEDs). The semi-transparent film was made of gold/aluminum/gold thin multilayers with its optical transparency of the device reaches as high as ~70% in the visible region without capping layer, and the electrical sheet resistance reduces below 10 Omega/square. During illumination of the PLED, there was approximately 47% of light emitting from the top of the cathode surface, and 53% of light from the ITO side. The high optical absorbing film, also refer to as the black cathode, was constructed with four alternating layers of aluminum-silver, each aluminum or silver layer is 4 nm thick. The PLED with this black cathode demonstrated 126% enhancement of contrast under 1000 lx ambient illumination. The physical properties of these two cathodes were characterized by current-voltage measurement and atomic force microscopy. Ultraviolet-visible transmission spectroscopy and X-ray photoemission spectroscopy were also used to characterize the semi-transparent cathode and the black cathode respectively. For polymer light-emitting device,it is believed that morphology modification at each interface of the cathode plays a crucial role in determining the optical properties and conductivity of the over cathode.

  10. Single-walled carbon nanotube modification on photograft-polymerized nation films via covalent and ionic bonding.

    PubMed

    Yamaguchi, Yoshifumi; Nakashima, Naotoshi

    2009-01-01

    Acrylic acid (AAc) and diallyldimethylammonium chloride (DADMAc) were photograft-polymerized onto the surfaces of perfluorosulfonic acid (Nafion) membranes using 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamide (ACMP) or Mohr's salt as a polymerization initiator. The degree of photografting changed from 1 wt% to 13.7 wt% depending on the experimental conditions (monomer, initiator and UV-light irradiation time). Shortened single-walled carbon nanotubes (s-SWNTs) prepared by a mixed acid treatment were immobilized in the grafted Nafion films by two different methods (methods A and B). Method A is a covalent-modification of the s-SWNTs with an acrylic acid (AAc)-photografted Nafion membrane in the presence of a diamine and a condensation reagent. Method B uses ion-complexation between the s-SWNTs with an anionic charge and a DADMAc-photografted Nafion film with a cationic charge. Based on the characterization of the hybrid materials by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), it was found the s-SWNTs were immobilized into the photografted-Nafion films by both methods.

  11. Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials.

    PubMed

    Lee, Jeonyoon; Stein, Itai Y; Kessler, Seth S; Wardle, Brian L

    2015-04-29

    The energy losses and geometric constraints associated with conventional curing techniques of polymeric systems motivate the study of a highly scalable out-of-oven curing method using a nanostructured resistive heater comprised of aligned carbon nanotubes (A-CNT). The experimental results indicate that, when compared to conventional oven based techniques, the use of an "out-of-oven" A-CNT integrated heater leads to orders of magnitude reductions in the energy required to process polymeric layered structures such as composites. Integration of this technology into structural systems enables the in situ curing of large-scale polymeric systems at high efficiencies, while adding sensing and control capabilities.

  12. Micro-FTIR and micro-raman studies of a carbon film prepared from furfuryl alcohol polymerization.

    PubMed

    Bertarione, S; Bonino, F; Cesano, F; Jain, S; Zanetti, M; Scarano, D; Zecchina, A

    2009-08-06

    The synthesis of a carbon film by the acid-catalyzed polymerization and resinification of furfuryl alcohol with a diluted solution of HCl is studied by combining micro-FTIR and micro-Raman spectroscopies. The detailed study of the evolution of spectra as a function of dosage of furfuryl alcohol and temperature shows that neutral and protonated species are formed at 80 degrees C, while upon gradually increasing the temperature up to 600 degrees C, the viscous polyfurfuryl alcohol resin is transformed into a carbon phase, containing a heterogeneous distribution of pores, with a size in the 100-2000 nm range, as shown by SEM and AFM analyses.

  13. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    PubMed Central

    Matteucci, Marco; Heiskanen, Arto; Zór, Kinga; Emnéus, Jenny; Taboryski, Rafael

    2016-01-01

    We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education. PMID:27801809

  14. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry.

    PubMed

    Matteucci, Marco; Heiskanen, Arto; Zór, Kinga; Emnéus, Jenny; Taboryski, Rafael

    2016-10-27

    We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

  15. Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films.

    PubMed

    Zuyderhoff, Emilienne M; Dupont-Gillain, Christine C

    2012-01-31

    The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell

  16. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    PubMed

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films.

  17. Triblock Terpolymers by Simultaneous Tandem Block Polymerization (STBP).

    PubMed

    Freudensprung, Ines; Klapper, Markus; Müllen, Klaus

    2016-02-01

    A route of synthesizing triblock terpolymers in a one-pot, "one-step" polymerization approach is presented. The combination of two distinct polymerization techniques through orthogonal catalyst/initiator functionalities attached to a polymeric linker furnishes novel pathways to ABC-terpolymers. Both polymerizations have to be compatible regarding mechanisms, chosen monomers, and solvents. Here, an α,ω-heterobifunctional poly(ethylene glycol) serves as poly-meric catalyst/initiator to obtain triblock terpolymers of poly(norbornene)-b-poly(ethylene glycol)-b-poly(L-lactic acid) PNB-PEG-PLLA via simultaneous ring opening metathesis poly-merization and ring opening polymerization in a fast one-pot polymerization. Structural characterization of the polymers is provided via (1)H-, DOSY-, and (1)H,(1)H-COSY-NMR, while solution and thin film self-assembly are investigated by dynamic light scattering and atomic force microscopy.

  18. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.

    PubMed

    Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Li, Chenxi; Zhang, Huiqi

    2010-11-15

    A new and efficient approach to obtaining molecularly imprinted polymers (MIPs) with both pure water-compatible (i.e., applicable in the pure aqueous environments) and stimuli-responsive binding properties is described, whose proof-of-principle is demonstrated by the facile modification of the preformed MIP microspheres via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAAm). The presence of poly(NIPAAm) (PNIPAAm) brushes on the obtained MIP microspheres was confirmed by FT-IR as well as the water dispersion and static contact angle experiments, and some quantitative information including the molecular weights and polydispersities of the grafted polymer brushes, the thickness of the polymer brush layers, and their grafting densities was provided. In addition, the binding properties of the ungrafted and grafted MIPs/NIPs in both methanol/water (4/1, v/v) and pure water solutions were also investigated. The introduction of PNIPAAm brushes onto the MIP microspheres has proven to significantly improve their surface hydrophilicity and impart stimuli-responsive properties to them, leading to their pure water-compatible and thermo-responsive binding properties. The application of the facile surface-grafting approach, together with the versatility of RAFT polymerization and the availability of many different functional monomers, makes the present methodology a general and promising way to prepare water-compatible and stimuli-responsive MIPs for a wide range of templates.

  19. Structural characterization and thermal properties of polyamide 6.6/Mg, Al/adipate-LDH nanocomposites obtained by solid state polymerization

    SciTech Connect

    Herrero, M.; Benito, P.; Labajos, F.M.; Rives, V.; Zhu, Y.D.; Allen, G.C.; Adams, J.M.

    2010-07-15

    A new nanocomposite was obtained by dispersing an adipate-modified layered double hydroxide (Ad-LDH) with adipic acid and hexamethylene diamine. These samples were polymerized in the solid phase under a nitrogen flow for 200 min at 190 {sup o}C. The structural and compositional details of the nanocomposite were determined by powder X-ray diffraction (PXRD), fourier transform infrared (FTIR) spectroscopy, focused ion beam (FIB), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The PXRD patterns and FIB images show a partially intercalated and partially exfoliated dispersion of layered crystalline materials in the polyamide 6.6 matrix. The best dispersion level is achieved in polyamide 6.6/LDH nanocomposites with low LDH loading. Some residual tactoids and particle agglomerates are also evident at high concentration. The best thermal stability of the nanocomposites is shown by the sample with 0.1% LDH content, for which it is higher than that of pure polyamide. - Graphical abstract: A new nanocomposite was obtained by compounding an adipate-modified layered double hydroxides (LDH) with adipic acid and hexamethylene diamine. These samples were polymerized in the solid phase under a nitrogen flow for 200 min at 190 {sup o}C. The nanodispersion of LDH in polyamide 6.6 may be qualitatively estimated from the analysis and PXRD patterns and FIB images. The decomposition temperature in the nanocomposite with 0.1 % LDH increases significantly compared to that for pristine PA6.6. .

  20. Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance

    PubMed Central

    Xu, Chao; Zou, Peichao; Lin, Ziyin; Xu, Chenjie; Yang, Cheng; Kang, Feiyu; Wong, Ching-Ping

    2016-01-01

    Three-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-driven aqueous solution deposition process and then used as the electrode scaffold for the vapor-phase polymerization of 3,4-ethylenedioxythiophene (EDOT). Benefiting from the unique 3D open porous structure of the NNA that provided a highly conductive and oriented backbone for facile electron transfer and fast ion diffusion, the as-obtained poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited an ultra-long cycle life (95.7% retention of specific capacitance after 20 000 charge/discharge cycles at 5 A/g) and superior capacitive performance. Furthermore, two electrodes were fabricated into an aqueous symmetric supercapacitor, which delivered a high energy density (30.38 Wh/kg at 529.49 W/kg) and superior long-term cycle ability (13.8% loss of capacity after 20 000 cycles). Based on these results, the vapor-phase polymerization of EDOT on metal nanowire array current collectors has great potential for use in supercapacitors with enhanced performance. PMID:27861534

  1. Vapor-Phase Polymerized Poly(3,4-Ethylenedioxythiophene) on a Nickel Nanowire Array Film: Aqueous Symmetrical Pseudocapacitors with Superior Performance.

    PubMed

    Xie, Qisen; Xu, Yang; Wang, Zhipeng; Xu, Chao; Zou, Peichao; Lin, Ziyin; Xu, Chenjie; Yang, Cheng; Kang, Feiyu; Wong, Ching-Ping

    2016-01-01

    Three-dimensional (3D) nanometal scaffolds have gained considerable attention recently because of their promising application in high-performance supercapacitors compared with plain metal foils. Here, a highly oriented nickel (Ni) nanowire array (NNA) film was prepared via a simple magnetic-field-driven aqueous solution deposition process and then used as the electrode scaffold for the vapor-phase polymerization of 3,4-ethylenedioxythiophene (EDOT). Benefiting from the unique 3D open porous structure of the NNA that provided a highly conductive and oriented backbone for facile electron transfer and fast ion diffusion, the as-obtained poly(3,4-ethylenedioxythiophene) (PEDOT) exhibited an ultra-long cycle life (95.7% retention of specific capacitance after 20 000 charge/discharge cycles at 5 A/g) and superior capacitive performance. Furthermore, two electrodes were fabricated into an aqueous symmetric supercapacitor, which delivered a high energy density (30.38 Wh/kg at 529.49 W/kg) and superior long-term cycle ability (13.8% loss of capacity after 20 000 cycles). Based on these results, the vapor-phase polymerization of EDOT on metal nanowire array current collectors has great potential for use in supercapacitors with enhanced performance.

  2. Synthesis and characterization of polyester thin film composite membrane via interfacial polymerization: Fouling behaviour of uncharged solute

    NASA Astrophysics Data System (ADS)

    Mah, K. H.; Yussof, H. W.; Seman, M. N. A.; Mohammad, A. W.

    2016-11-01

    Most hydrolysis studies on biomass in Malaysia produce high amount of xylose and glucose compared to other monosaccharides and most of them are acidic. Thin film composite (TFC) membrane developed via interfacial polymerization using triethanolamine (TEOA) and trimesoyl chloride (TMC) as monomers allows separation at low pH to occur without damaging its performance. Comparative studies were carried out on membranes with and without the thin film layer formed via interfacial polymerization on the polyethersulfone (PES) support. The surfaces of the membranes were characterized by field emission scanning electronic microscopy (FESEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and hydrophilicity via contact angle measurement. In addition, the performance and uncharged solute fouling behaviour of TFC membrane were also investigated. The TFC membrane used for characterization purposes was prepared at TEOA concentration of 4 % w/v in 1 × 10-6 M sodium hydroxide solution, TMC concentration of 0.25 % w/v in pure hexane, reaction time of 45 minutes, and cured at temperature of 60 °C. Characterization results showed a huge different between the synthesized TFC membrane and the un-synthesized PES membrane in term of surface properties and morphology. Nanofiltration results indicate that the formation of thin layer on top of PES support membrane improved the separation performance compared to PES support membrane. The synthesised polyester TFC membrane have irreversible fouling of 11.02 (±5.60) % and reversible fouling of 5.59 % using water as cleaning agent.

  3. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  4. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  5. Microscopic evaluation of polymeric film properties of anhydrous sunscreen compositions and their relation to absorption and water resistance.

    PubMed

    Prettypaul, Donald; Fares, Hani

    2012-01-01

    The aim of this study was to investigate the mechanism by which a VA/butyl maleate/isobornyl acrylate copolymer increases the SPF and water resistance of sunscreen formulations. Anhydrous sunscreen formulations with and without polymer were applied on polymethyl methacrylate (PMMA) plates and absorbance spectra were generated. Before immersion, the areas under the curve for the control and test samples were 98.49 and 117.09, respectively, and were 94.63 and 118.22, after immersion. Static and after-immersion, in vivo SPF values confirmed a boost in SPF and an increase in water resistance for the formulation containing the polymer (VA/butyl maleate/isobornyl acrylate copolymer). Digital imaging of sunscreen films combined with image analysis and contact angle measurements suggest that the polymer conformation changes upon exposure to water. The polymer forms a protective barrier over the sunscreen film upon exposure to water, which explains the enhancement in water resistance. The polymeric film formed has a different refractive index than the sunscreen film. The change in refractive indices causes diffraction of incident light, thus increasing its pathlength, leading to an increase in SPF.

  6. Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition.

    PubMed

    Socol, G; Torricelli, P; Bracci, B; Iliescu, M; Miroiu, F; Bigi, A; Werckmann, J; Mihailescu, I N

    2004-06-01

    We extended for the first time pulsed laser ablation to the deposition of octacalcium phosphate Ca8H2(PO4)6.5H2O (OCP) thin films. The depositions were performed with a pulsed UV laser source (lambda=248 nm, tau> or =20 ns) in a flux of hot water vapors. The targets were sintered from crystalline OCP powder and the laser ablation fluence was set at values of 1.5-2 J/cm2. During depositions the collectors, Si or Ti substrates, were maintained at a constant temperature within the range 20-200 degrees C. The resulting structures were submitted to heat treatment in hot water vapors for up to 6 h. The best results were obtained at a substrate temperature of 150 degrees C during both deposition and post-deposition treatment. High-resolution electron microscopy and XRD at grazing incidence indicated that the coatings obtained were made of nanocrystalline OCP. Cross-section TEM investigations showed that the coatings contained droplets stacked on Ti substrates as well as distributed across the entire thickness of the arborescence-like structure layers. The results of WST-1 assay, cell adherence, DNA replication, and caspase-1 activity confirmed the good biocompatibility of the coatings.

  7. High-quality GaN films obtained by air-bridged lateral epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiko; Kidoguchi, Isao; Sugahara, Gaku; Ban, Yuzaburoh

    2000-12-01

    High-quality GaN films with low dislocation density and low wing tilt of c-axis orientation have been successfully obtained by a promising technique of selected area growth, namely air-bridged lateral epitaxial growth (ABLEG). A GaN film was grown from the exposed (0 0 0 1) top facet of the ridged GaN seed structures, whose side walls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor-phase epitaxy. The ridge-stripe structures of the GaN seed were constructed in the 1 1¯00 GaN direction. At the optimum growth temperature of 950°C, only the 1 1 2¯ 0 and {0 0 0 1} facets were obtained. Continuing the growth led to fabricating the air-bridged structure, where the coalescence of the wing region occurred. From the transmission electron microscopy study, it was found that most of the vertical dislocations along the c-axis were confined to the seed region, while the horizontal dislocations were newly generated in the vicinity of coalescence boundary. The densities of the vertical dislocations were about 9×10 8 cm -2 in the seed region, while below 1×10 6 cm -2 in other regions. The densities of the horizontal dislocations were about 1×10 6 cm -2 in the wing region and 4×10 7 cm -2 in the vicinity of the coalescence boundary, respectively. The X-ray diffraction (XRD) measurements revealed that the tilt angle of c-axis relative to underlying seed GaN was about 297 arcsec (0.083°), and the full-width at half-maximum of the XRD curve for the wing region was 138 arcsec, indicating that the wing region has high uniformity of c-axis orientation. Both of the wing and the coalescence boundary region exhibited atomically smooth surfaces with stepped terraces, whose root mean square roughness was found to be 0.089 nm by atomic force microscopy measurements.

  8. Study of nanocrystalline thin cobalt films with perpendicular magnetic anisotropy obtained by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Kozłowski, Witold; Balcerski, Józef; Szmaja, Witold

    2017-02-01

    We have performed a detailed investigation of the morphological and magnetic domain structures of nanocrystalline thin cobalt films with perpendicular magnetic anisotropy. The films were thermally evaporated at an incidence angle of 0° in a vacuum of about 10-5 mbar and possessed thicknesses in the range from 60 nm to 100 nm. The films were studied by X-ray photoelectron spectroscopy (XPS), electron diffraction of transmission electron microscopy (TEM), atomic force microscopy (AFM), magnetic force microscopy (MFM) and the Fresnel mode of TEM. The films are polycrystalline and consist of very densely packed grains with sizes at the nanometer range. The grains are roundish in shape and generally exhibit no geometric alignment. The films are mainly composed of the hexagonal close-packed (HCP) phase of cobalt and possess preferential orientation of the cobalt grains with the hexagonal axis perpendicular to the film surface. 70 nm thick films and thicker have fully perpendicular magnetization, while 60 nm thick films possess clearly dominating perpendicular magnetization component. The magnetic domain structure is in the form of stripe domains forming a maze pattern. When the film thickness increases from 60 nm to 100 nm, the average grain size increases from 28.9 nm to 31.5 nm and the average domain width increases from 79.4 nm to 98.7 nm.

  9. Synthesis of novel precursors for PMN powders and the thin films obtained from them

    SciTech Connect

    Boyle, T.J.; Dimos, D.B.; Moore, G.J.

    1995-03-01

    Sol-gel processing has been widely used in the preparation of lead zirconate titanate (PZT) thin films. The authors have applied this methodology to the formation of lead magnesium niobate (PMN) spin-cast deposited thin films. Since there is a limited number of soluble, commercially available compounds, the authors have recently synthesized a series of novel metal alkoxides for use as precursors for generation of PMN thin films and powders. The process for generation of the perovskite phase of these PMN powders and films are reported.

  10. Structural characterization and thermal properties of polyamide 6.6/Mg, Al/adipate-LDH nanocomposites obtained by solid state polymerization

    NASA Astrophysics Data System (ADS)

    Herrero, M.; Benito, P.; Labajos, F. M.; Rives, V.; Zhu, Y. D.; Allen, G. C.; Adams, J. M.

    2010-07-01

    A new nanocomposite was obtained by dispersing an adipate-modified layered double hydroxide (Ad-LDH) with adipic acid and hexamethylene diamine. These samples were polymerized in the solid phase under a nitrogen flow for 200 min at 190 °C. The structural and compositional details of the nanocomposite were determined by powder X-ray diffraction (PXRD), fourier transform infrared (FTIR) spectroscopy, focused ion beam (FIB), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The PXRD patterns and FIB images show a partially intercalated and partially exfoliated dispersion of layered crystalline materials in the polyamide 6.6 matrix. The best dispersion level is achieved in polyamide 6.6/LDH nanocomposites with low LDH loading. Some residual tactoids and particle agglomerates are also evident at high concentration. The best thermal stability of the nanocomposites is shown by the sample with 0.1% LDH content, for which it is higher than that of pure polyamide.

  11. CuInSe2 films and solar cells obtained by selenization of evaporated Cu-In layers

    NASA Astrophysics Data System (ADS)

    Basol, Bulent M.; Kapur, Vijay K.

    1989-05-01

    CuInSe2 films of various stoichiometries have been prepared by the two-stage process. In this method, Cu-In layers were first evaporated onto Mo-coated glass substrates in the form of stacks, and then they were selenized in a H2Se atmosphere at 400 °C to form the compound. CdZnS/CuInSe2 heterojunction solar cells were fabricated on these films and conversion efficiencies close to 7% were obtained.

  12. Optical properties of multilayer bimetallic films obtained by laser deposition of colloidal particles

    NASA Astrophysics Data System (ADS)

    Antipov, A.; Arakelian, S.; Vartanyan, T.; Gerke, M.; Istratov, A.; Kutrovskaya, S.; Kucherik, A.; Osipov, A.

    2016-11-01

    The optical properties of multilayer bimetallic films composed of silver and gold nanoparticles have been investigated. The dependence of the transmission spectra of the films on their morphology is demonstrated. A finite-difference time-domain (FDTD) simulation has confirmed that there is a dependence of the transmission spectra on the average distance between particles and the number of deposited layers.

  13. Spectral transmittance of organic dye-doped glass films obtained by the solgel method

    NASA Astrophysics Data System (ADS)

    Nemoto, Shojiro; Hirokawa, Naoyuki

    1996-06-01

    The spectral transmittance of colored glass films synthesized by the solgel method is presented. The film was formed on a glass slide by dipping it into an organic dye-doped solution and, thereafter, by putting it into a furnace for solidification. Three dyes, Methylene Blue, Eosin, and Uranine, were used that exhibit transparent blue, pink, and yellow colors, respectively, when they are dissolved in the starting solution. We clarify how the spectral transmittance of the films varies with the solidification temperature. The films doped with two of the three dyes that exhibit violet, orange, and green colors are also synthesized, and their transmittance is measured. Moreover, the chemical durability of the films and the transmittance change caused by aging and illumination are examined. organic dye, solgel method.

  14. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.

  15. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.

  16. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  17. Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties.

    PubMed

    Nebogatikova, N A; Antonova, I V; Prinz, V Ya; Kurkina, I I; Vdovin, V I; Aleksandrov, G N; Timofeev, V B; Smagulova, S A; Zakirov, E R; Kesler, V G

    2015-05-28

    In the present study, we have examined the interaction between a suspension of graphene in dimethylformamide and an aqueous solution of hydrofluoric acid, which was found to result in partial fluorination of suspension flakes. A considerable decrease in the thickness and lateral size of the graphene flakes (up to 1-5 monolayers in thickness and 100-300 nm in diameter) with increasing duration of fluorination treatment is found to be accompanied by a simultaneous transition of the flakes from the conducting to the insulating state. Smooth and uniform insulating films with a roughness of ∼2 nm and thicknesses down to 20 nm were deposited from the suspension on silicon. The electrical and structural properties of the films suggest their use as insulating elements in thin-film nano- and microelectronic device structures. In particular, it was found that the films prepared from the fluorinated suspension display rather high breakdown voltages (field strength of (1-3) × 10(6) V cm(-1)), ultralow densities of charges in the film and at the interface with the silicon substrate in metal-insulator-semiconductor structures (∼(1-5) × 10(10) cm(-2)). Such excellent characteristics of the dielectric film can be compared only to well-developed SiO2 layers. The films from the fluorinated suspension are cheap, practically feasible and easy to produce.

  18. Binding of Pentachloroiridite to Plasma Polymerized Vinylpyridine Films and Electrocatalytic Oxidation of Ascorbic Acid

    DTIC Science & Technology

    1981-12-21

    Po.pirt) 18. SUP;-- WEENTARY NOTES 19. KEY WORDS (C#1;IinA.. On IPOV&P.. aid. IfneC&aaary and 10"Wri~ by bletkn ? electrocatalysis , plasma polymer...16). The electrocatalysis described here grew out of our investigations of electrodes coated using RF plasma polymerization reactions (15,17,18) and...with expectable ferrocene -ferricenium electrochemical reactivity (15,17,18). Having used the solventocomplex [IrCl5(acetonato)] 2 " for coordiation

  19. Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Ying-Tao; Ouyang, Shi-Hong; Wang, Dong-Ping; Zhu, Da-Long; Xu, Xin; Tan, Te; Fong, Hon-Hang

    2015-09-01

    An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol (4-FTP) self-assembled monolayers (SAM) to chemically treat the silver source-drain (S/D) contacts while the silicon oxide (SiO2) dielectric interface is further primed by either hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm2·V-1·s-1 to 0.91 cm2·V-1·s-1. Project supported by the National Basic Research Program of China (Grant No. 2013CB328803).

  20. Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition

    SciTech Connect

    Sorescu, Monica; Diamandescu, L.; Swaminathan, R.; McHenry, M.E.; Feder, M.

    2005-05-15

    Laser ablation deposition has been used to synthesize nanoscale ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon(100) substrates. Films produced by laser ablation at room temperature were annealed at 550 deg. C for 1 h. Other films were deposited directly at a 550 deg. C substrate temperature without subsequent annealing. Complementary x-ray diffraction and superconducting quantum interference device magnetometry measurements helped identify the optimum laser ablation deposition conditions for obtaining the desired nanoferrite structures. From the hysteresis loops at 300 and 10 K we identified the paramagnetic or ferromagnetic behavior of the films. The zero field cooled-field cooled (ZFC-FC) magnetization, M(T), curves yielded the value of the blocking temperature in both NiZn and Zn ferrite systems.

  1. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion.

    PubMed

    Azevedo, Viviane Machado; Borges, Soraia Vilela; Marconcini, José Manoel; Yoshida, Maria Irene; Neto, Alfredo Rodrigues Sena; Pereira, Tamara Coelho; Pereira, Camila Ferreira Gonçalves

    2017-02-10

    The aim of this study was to evaluate the effect of replacing corn starch by whey protein isolated (WPI) in biodegradable polymer blends developed by extrusion. X-ray diffraction showed the presence of a Vh-type crystalline arrangement. The films were homogeneous, indicating strong interfacial adhesion between the protein and the thermoplastic starch matrix (TPS) as observed in scanning electron microscopy. The addition of WPI on TPS matrix promoted an increase in the thermal stability of the materials. It was observed 58.5% decrease in the water vapor permeability. The effect of corn starch substitution by WPI on mechanical properties resulted in a more resistant and less flexible film when compared the TPS film. The addition of WPI caused greenish yellow color and less transparent films. The substitution of corn starch by WPI made it possible to obtain polymer blends with improved properties and represents an innovation for application as a packaging material.

  2. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  3. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction.

    PubMed

    Wang, Zhijuan; Wu, Shixin; Zhang, Juan; Chen, Peng; Yang, Guocheng; Zhou, Xiaozhu; Zhang, Qichun; Yan, Qingyu; Zhang, Hua

    2012-02-29

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements.

  4. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction

    NASA Astrophysics Data System (ADS)

    Wang, Zhijuan; Wu, Shixin; Zhang, Juan; Chen, Peng; Yang, Guocheng; Zhou, Xiaozhu; Zhang, Qichun; Yan, Qingyu; Zhang, Hua

    2012-02-01

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements.

  5. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction

    PubMed Central

    2012-01-01

    The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements. PMID:22373422

  6. Modeling of stresses in cylindrically wound capacitors: Characterization and the influence of stress on dielectric breakdown of polymeric film

    NASA Astrophysics Data System (ADS)

    Tandon, Shalabh

    This dissertation investigates the elastic constants of the polypropylene (PP) film, the radial and circumferential stress states of the layers in the wound roll and the influence of compressive stress on the dielectric breakdown of the metalized polypropylene film. The metalized polypropylene film was mechanically and thermally characterized to determine 7 of its 9 elastic constants and 3 linear coefficients of thermal expansion. The results show that the in-plane tensile moduli (Esb{11} = 2.7 GPa, Esb{22} = 5.7 GPa) of the film are quite different and smaller than the out-of-plane modulus (Esb{33} = 13.0 GPa) of the film. Similarly, the out-of-plane thermal expansion coefficient (CTE) of the film is much larger than the in-plane CTE (alphasb3 ≈ 10 alphasb2). This large anisotropy in the moduli and the expansion coefficients will influence the winding and thermal stresses generated in the wound rolls. The radial and circumferential stresses in the layers of the wound roll were evaluated using the elastic constants of the film obtained in chapter 2. Expressions were derived to determine the influence of elastic constants of the film and the core on the radial and circumferential stresses in the roll. Stresses generated due to the thermal expansion of the assembly during operating temperature changes were also evaluated. The analysis showed that because of the applied winding stress, the layers near the core have compressive radial stresses. The circumferential stresses in the layers also decrease, becoming compressive in some cases for the layers near the core. The influence of the interfacial pressure (compressive stress) on the dielectric behavior of the film was the subject of chapter 4. Applying interfacial pressure, parallel to the electric field, changes the apparent dielectric breakdown strength of the film. At pressures of 0-4 MPa, the PP film has a catastrophic failure at 40% lower potential than its intrinsic breakdown potential. However, for slightly

  7. Titanium oxide thin films obtained with physical and chemical vapour deposition methods for optical biosensing purposes.

    PubMed

    Dominik, M; Leśniewski, A; Janczuk, M; Niedziółka-Jönsson, J; Hołdyński, M; Wachnicki, Ł; Godlewski, M; Bock, W J; Śmietana, M

    2017-07-15

    This work discusses an application of titanium oxide (TiOx) thin films deposited using physical (reactive magnetron sputtering, RMS) and chemical (atomic layer deposition, ALD) vapour deposition methods as a functional coating for label-free optical biosensors. The films were applied as a coating for two types of sensors based on the localised surface plasmon resonance (LSPR) of gold nanoparticles deposited on a glass plate and on a long-period grating (LPG) induced in an optical fibre. Optical and structural properties of the TiOx thin films were investigated and discussed. It has been found that deposition method has a significant influence on optical properties and composition of the films, but negligible impact on TiOx surface silanization effectiveness. A higher content of oxygen with lower Ti content in the ALD films leads to the formation of layers with higher refractive index and slightly higher extinction coefficient than for the RMS TiOx. Moreover, application of the TiOx film independently on deposition method enables not only for tuning of the spectral response of the investigated biosensors, but also in case of LSPR for enhancing the ability for biofunctionalization, i.e., TiOx film mechanically protects the nanoparticles and induces change in the biofunctionalization procedure to the one typical for oxides. TiOx coated LSPR and LPG sensors with refractive index sensitivity of close to 30 and 3400nm/RIU, respectively, were investigated. The ability for molecular recognition was evaluated with the well-known complex formation between avidin and biotin as a model system. The shift in resonance wavelength reached 3 and 13.2nm in case of LSPR and LPG sensors, respectively. Any modification in TiOx properties resulting from the biofunctionalization process can be also clearly detected.

  8. Study on corrections of dose images obtained with Gafchromic EBT3 films for measurements in phantoms irradiated with proton beams

    SciTech Connect

    Gambarini, Grazia; Regazzoni, Veronica; Massari, Eleonora; Mirandola, Alfredo; Ciocca, Mario

    2015-07-01

    The response of Gafchromic EBT3 films depends on the LET of radiation. Some EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with the calculated profiles. As expected, a consistent reduction of the response in the Bragg peak region was observed. The ratio of measured and calculated values was evaluated, along dose profiles, for some energies of the incident proton beam. A method for correcting the dose images obtained with EBT3 films has been proposed and tested. The results confirm that the proposed method can be advantageous for achieving spatial distribution of the absorbed dose in proton therapy and deserves to be exhaustively developed. (authors)

  9. Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry.

    PubMed

    Maerten, Clément; Garnier, Tony; Lupattelli, Paolo; Chau, Nguyet Trang Thanh; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-12-15

    Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate.

  10. Fundamental investigation of ultraviolet radiation effects in polymeric film-forming materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.; Llewellen, P.; Gilligan, J.

    1974-01-01

    A literature search from 1958 to present was conducted on the effect of ultraviolet radiation on polymeric materials, with particular emphasis on vacuum photolysis, mechanisms of degradation, and energy transfer phenomena. The literature from 1958 to 1968 was searched manually, while the literature from 1968 to present was searched by using a computerized keyword system. The primary objective was to provide the necessary background information for the design of new or modified materials with improved stability to the vacuum-radiation environment of space.

  11. Effects of Electrons, Protons, and Ultraviolet Radiation on Thermophysical Properties of Polymeric Films

    NASA Technical Reports Server (NTRS)

    Russell, Dennis A.; Connell, John W.; Fogdall, Lawrence B.; Winkler, Werner W.

    2001-01-01

    The response of coated thin polymer films to ultraviolet (UV), electron and proton radiation simultaneously has been evaluated, with selected measurements in situ. Exposure was intended to simulate the electron and proton radiation environment near the Earth-Sun Lagrangian points (LI and L2) for five years and approximately 1000 equivalent solar hours (ESH) UV. These orbital environments are relevant to several potential missions such as the Next Generation Space Telescope and Geomagnetic Storm Warning, both of which may use thin film based structures for a sunshade and solar sail, respectively. The thin film candidates (12.5 micrometers thick) consisted of commercially available materials (Kapton(R) E, HN, Upilex(R) S, CP-1, CP-2, TOR-RC, and TOR-LMBP) that were metalized on one side with vapor deposited aluminum. All of the films are aromatic polyimides, with the exception of TORLMBP, which is a copoly(arylene ether benzimidazole). The films were exposed as second surface mirrors and the effects of the exposure on solar absorptance, thermal emittance, and tensile properties were determined. The in situ changes in solar absorptance from Kapton(R) and Upilex(R) were less than 0. 1, whereas the solar absorptance of TOR and CP films increased by more than 0.3 without saturating. The thermal emittance measurements also showed that the Kapton(R) and Upilex(R) materials increased only 1-2%, but the remaining materials increased 5-8%. Based on tensile property measurements made in air following the test, the failure stress of every type of polymer film decreased as a result of irradiation. The polymers most stable in reflectance, namely Upilex(R) and Kapton(R), were also the strongest in tension before irradiation, and they retained the greatest percentage of tensile strength. The films less stable in reflectance were also weaker in tension, and lost more tensile strength as a result of irradiation. The apparent failure strain (as a percent of original gage length) of

  12. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  13. Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Altıokka, Barış; Baykul, Mevlana Celalettin; Altıokka, Mehmet Rıza

    2013-12-01

    Thin films of polycrystalline lead sulfide (PbS) have been deposited on glass substrates at 303±1 K using chemical bath deposition (CBD). The precipitation of PbS on solid surfaces under four different reaction conditions was performed using a sodium sulfite (Na2SO3) compound as an inhibitor. The kinetics model for the reaction between Pb2+ and S2- was developed according to the amounts of Pb2+ concentrations measured by atomic absorption spectroscopy (AAS) during the precipitation of PbS. The surface morphologies of PbS thin films were studied with a Scanning Electron Microscope (SEM). It was found that the precipitation rate effects the formation of pinhole. To obtain a good quality of thin films the optimum concentration of lead nitrate (Pb(NO3)2), sodium hydroxide (NaOH), thiourea (CS(NH2)2) and Na2SO3 in the final solution was determined to be 0.0089, 0.1460, 0.510 and 0.00023 M, respectively. The film structures were characterized by X-ray diffractometer (XRD). The XRD results showed that the films formed galena cubic structures which represent the natural mineral of PbS. The crystallite sizes of the films were found to be between 23 and 37 nm.

  14. Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide.

    PubMed

    Cheon, Kwang Hee; Cho, Jangwhan; Kim, Yun-Hi; Chung, Dae Sung

    2015-07-01

    In this work, we fabricated a diketopyrrolopyrole-based donor-acceptor copolymer composite film. This is a high-mobility semiconductor component with a functionalized-graphene-oxide (GO) gas-adsorbing dopant, used as an active layer in gas-sensing organic-field-effect transistor (OFET) devices. The GO content of the composite film was carefully controlled so that the crystalline orientation of the semiconducting polymer could be conserved, without compromising its gas-adsorbing ability. The resulting optimized device exhibited high mobility (>1 cm(2) V(-1) s(-1)) and revealed sensitive response during programmed exposure to various polar organic molecules (i.e., ethanol, acetone, and acetonitrile). This can be attributed to the high mobility of polymeric semiconductors, and also to their high surface-to-volume ratio of GO. The operating mechanism of the gas sensing GO-OFET is fully discussed in conjunction with charge-carrier trap theory. It was found that each transistor parameter (e.g., mobility, threshold voltage), responds independently to each gas molecule, which enables high selectivity of GO-OFETs for various gases. Furthermore, we also demonstrated practical GO-OFET devices that operated at low voltage (<1.5 V), and which successfully responded to gas exposure.

  15. Consequence of oxidant to monomer ratio on optical and structural properties of Polypyrrole thin film deposited by oxidation polymerization technique

    NASA Astrophysics Data System (ADS)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Kamat, Sandip V.; Patil, Vaishali S.; Mahadik, D. B.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2015-05-01

    This paper reports the effect of oxidant to monomer (O/M) ratio on optical and structural properties of Polypyrrole (PPy) thin film deposited by chemical oxidation polymerization technique. Noticeable changes have observed in the properties of PPy thin films with O/M ratio. Cauliflower structure have been observed in FE-SEM images, wherein grain size is observed to decrease with increase in O/M ratio. AFM results are in good agreement with FE-SEM results. From FTIR spectra it is found that, PPy is in highly oxidized form at low O/M ratio but oxidation decreased with increase in O/M ratio. Also C-C stretching vibrations of PPy ring is decreased whereas C=C stretching is increased with ratio. Absorption peak around 450 nm corresponds to π-π* transition and around 800 nm for polarons and bipolarons. The intensity of such peaks confirms the conductivity of PPy, which is observed maximum at low O/M ratio and found to decrease with increase in ratio. Optical band gap (BG) is found to increase from 2.07 eV to 2.11 eV with increase in the O/M ratio.

  16. Optical chloride sensor based on dimer-monomer equilibrium of indium(III) octaethylporphyrin in polymeric film.

    PubMed

    Zhang, Wei; Rozniecka, Ewa; Malinowska, Elzbieta; Parzuchowski, Pawel; Meyerhoff, Mark E

    2002-09-01

    A novel transduction chemistry for preparing optical anion-selective polymeric films that respond reversibly and selectively to chloride ion activity is demonstrated. The chloride sensors are prepared by casting thin (5-10 microm) plasticized PVC films containing indium(III) octaethylporphyrin hydroxide, along with optimized levels of a lipophilic tetraphenylborate salt, onto glass slides. When bathed in low-pH buffered solutions void of chloride, the porphyrin species spontaneously forms a hydroxide ion-bridged dimer, with the added lipophilic borate species serving as the counteranion for this complex. The maximum for the Soret absorption band of this dimeric species is shifted to 390 nm, from 410 nm for the initial monomeric porphyrin. Increases in chloride ion levels in the bathing solution results in chloride extraction and ligation to the In(III) center, and concomitant breaking of the dimer into monomeric porphyrin species, yielding a decrease in absorbance at 390 nm and an increase in optical signal at 410 nm. Under optimized conditions, optical selectivity coefficients toward chloride over a wide range of other anions (NO3-, ClO4-, SCN-, SO4(2-), F-, Br-, H2PO4-) are measured to be < 10(-3). Of all anions tested, only salicylate yields a slightly greater response than chloride. This selectivity is shown to be adequate for reversible and accurate sensing of chloride levels in diluted serum samples.

  17. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    NASA Astrophysics Data System (ADS)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  18. Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Badre, C.; Pauporté, T.; Turmine, M.; Dubot, P.; Lincot, D.

    2008-05-01

    Zinc oxide (ZnO) films with well-controlled morphologies have been prepared by electrochemical deposition. A seed layer of nanocrystallites of ZnO was prepared from which ZnO nanowires were grown from a low concentration of ZnCl 2. The nanowires are rough and dense and their superhydrophilicity is enhanced. A treatment with an alkylsilane (octadecylsilane) yields superhydrophobic surfaces with very high advancing and receding contact angles 173°/172° and a very low roll-off angle. Our superhydrophobic films are stable for more than 6 months.

  19. Superconducting thin films of Bi-Sr-Ca-Cu-O obtained by laser ablation processing

    SciTech Connect

    Kim, B.F.; Bohandy, J.; Phillips, T.E.; Green, W.J.; Agostinelli, E.; Adrian, F.J.; Moorjani, K.; Swartzendruber, L.J.; Shull, R.D.; Bennett, L.H.; and others

    1988-07-25

    Thin films of Bi-Sr-Ca-Cu-O, deposited on (100) cubic zirconia by laser ablation from a bulk superconducting target of nominal composition BiSrCaCu/sub 2/ O/sub x/ , have been investigated by dc resistance and magnetically modulated microwave absorption measurements. The latter technique reveals important features regarding the phase purity of superconducting samples that are masked in the dc resistance measurements. The superconducting behavior of the films, as a function of the substrate temperature during deposition and the post-deposition annealing conditions, is discussed.

  20. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    DOEpatents

    Norwood, David P.

    1989-01-01

    A standard thin film circuit containing Ta.sub.2 N (100 ohms/square) resirs is fabricated by depositing on a dielectric substrate successive layers of Ta.sub.2 N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standeard TFN manufacturing process enables the formation of Ta.sub.2 N+Ti (10 ohms/square) and Ta.sub.2 N+Ti+Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.

  1. Flame Aerosol Deposition of TiO2 Nanoparticle Films on Polymers and Polymeric Microfluidic Devices for On-Chip Phosphopeptide Enrichment.

    PubMed

    Rudin, Thomas; Tsougeni, Katerina; Gogolides, Evangelos; Pratsinis, Sotiris E

    2012-09-01

    Direct and fast (10s of seconds) deposition of flame-made, high surface-area aerosol films on polymers and polymeric microfluidic devices is demonstrated. Uniform TiO2 nanoparticle films were deposited on cooled Poly(methyl methacrylate) (PMMA) substrates by combustion of titanium(IV) isopropoxide (TTIP) - xylene solution sprays. Films were mechanically stabilized by in-situ annealing with a xylene spray flame. Plasma-etched microfluidic chromatography columns, comprising parallel microchannels were also coated with such nanoparticle films without any microchannel deformation. These microcolumns were successfully used in metal-oxide affinity chromatography (MOAC) to selectively trap phosphopeptides on these high surface-area nanostructured films. The chips had a high capacity retaining 1.2 μg of standard phosphopeptide. A new extremely fast method is developed for MOAC microchip stationary phase fabrication with applications in proteomics.

  2. Flame Aerosol Deposition of TiO2 Nanoparticle Films on Polymers and Polymeric Microfluidic Devices for On-Chip Phosphopeptide Enrichment

    PubMed Central

    Rudin, Thomas; Tsougeni, Katerina; Gogolides, Evangelos; Pratsinis, Sotiris E.

    2013-01-01

    Direct and fast (10s of seconds) deposition of flame-made, high surface-area aerosol films on polymers and polymeric microfluidic devices is demonstrated. Uniform TiO2 nanoparticle films were deposited on cooled Poly(methyl methacrylate) (PMMA) substrates by combustion of titanium(IV) isopropoxide (TTIP) – xylene solution sprays. Films were mechanically stabilized by in-situ annealing with a xylene spray flame. Plasma-etched microfluidic chromatography columns, comprising parallel microchannels were also coated with such nanoparticle films without any microchannel deformation. These microcolumns were successfully used in metal-oxide affinity chromatography (MOAC) to selectively trap phosphopeptides on these high surface-area nanostructured films. The chips had a high capacity retaining 1.2 μg of standard phosphopeptide. A new extremely fast method is developed for MOAC microchip stationary phase fabrication with applications in proteomics. PMID:23729946

  3. Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications

    NASA Astrophysics Data System (ADS)

    Gu, Jin-Hua; Si, Jia-Le; Wang, Jiu-Xiu; Feng, Ya-Yang; Gao, Xiao-Yong; Lu, Jing-Xiao

    2015-11-01

    The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4×10-4 Ω·m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H. Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050501).

  4. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material.

    PubMed

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G; Schmidt, Georg

    2016-02-10

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10(-5) is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10(-5) is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials.

  5. Emission Dependent on composition of Si-rich-SiNX Films obtained by PECVD

    NASA Astrophysics Data System (ADS)

    Jaramillo Gomez, J. A.; Torchynska, T. V.; Casas Espinola, J. L.; Bentosa Gutiérrez, J. A.; Khomenkova, L.; Slaoui, A.

    2017-02-01

    Silicon-rich silicon nitride films with different stoichiometry were grown on silicon substrate using the plasma-enhanced chemical vapor deposition. The excess silicon content in the films was monitored via a variation of the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Morphology and luminescence properties of the films were studied by means of atomic force microscopy (AFM) and photoluminescence (PL) methods. High-temperature annealing was employed to produce the silicon nanocrystals in the films and to enhance the photoluminescence in the range of 1.6-3.0 eV. The PL spectrum was found to be complex due to the contribution of several radiative channels in emission process. It was determined that their competition leads to the non-monotonous variation of total PL peak position with the increase of the Si excess content. It was observed that the shape of PL spectra depends on an excitation wavelength. The ways to control the PL emission is proposed based on the discussion of the PL mechanism.

  6. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material

    PubMed Central

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg

    2016-01-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10−5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10−5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials. PMID:26860816

  7. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material

    NASA Astrophysics Data System (ADS)

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg

    2016-02-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10‑5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10‑5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials.

  8. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  9. Direct optical carbon dioxide sensing based on a polymeric film doped with a selective molecular tweezer-type ionophore.

    PubMed

    Xie, Xiaojiang; Pawlak, Marcin; Tercier-Waeber, Mary-Lou; Bakker, Eric

    2012-04-03

    A novel optical method for the determination of CO(2) concentration in aqueous and gaseous samples of plasticized PVC film is presented. The detection principle makes use of a direct molecular recognition of the carbonate ion by a molecular tweezer-type ionophore, which has previously been demonstrated to exhibit excellent carbonate selectivity. The carbonate ion is extracted together with hydrogen ions into a polymeric film that contains the anion exchanger tridodecylmethylammonium chloride, a lipophilic, electrically charged, and highly basic pH indicator, which is used for the readout in absorbance mode, in addition to the lipophilic carbonate ionophore. According to known bulk optode principles, such an optical sensor responds to the product of the carbonate ion activity and the square of hydrogen ion activity. This quantity is thermodynamically linked to the activity of carbon dioxide. This allows one to realize a direct carbon dioxide sensor that does not make use of the traditional Severinghaus sensing principle of measuring a pH change upon CO(2) equilibration across a membrane. A selectivity analysis shows that common ions such as chloride are sufficiently suppressed for direct PCO(2) measurements in freshwater samples at pH 8. Chloride interference, however, is too severe for direct seawater measurements at the same pH. This may be overcome by placing a gas-permeable membrane over the optode sensing film. This is conceptually confirmed by establishing that the sensor is equally useful for gas-phase PCO(2) measurements. As expected, humid air samples are required for proper sensor functioning, as dry CO(2) gas will not cause any signal change. The sensor showed acceptable response times and good reproducibility under both conditions.

  10. Synthesis, vapor growth, polymerization, and characterization of thin films of novel diacetylene derivatives of pyrrole. The use of computer modeling to predict chemical and optical properties of these diacetylenes and poly(diacetylenes)

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abeledeyem, H.; Mcmanus, S. P.; Zutaut, S. E.

    1992-01-01

    In the present work two diacetylene derivatives of pyrrole which are predicted by semiempirical AM1 calculations to have very different properties, are synthesized; the polymerizability of these diacetylenes in the solid state is determined, and the results are compared to the computer predictions. Diacetylene 1 is novel in that the monomer is a liquid at room temperature; this may allow for the possibility of polymerization in the liquid state as well as the solid state. Thin poly(diacetylene) films are obtained from compound 1 by growing films of the monomer using vapor deposition and polymerizing with UV light; these films are then characterized. Interestingly, while the poly(diacetylene) from 1 does not possess good nonlinear optical properties, the monomer exhibits very good third-order effects (phase conjugation) in solution. Dilute acetone solutions of the monomer 1 give intensity-dependent refractive indices on the order of 10 exp -6 esu; these are 10 exp 6 times better than for CS2.

  11. Infrared Spectra and Structure of Poly(Vinylalcohol) Films Obtained From Aqueous Solutions with Potassium Iodide Additive

    NASA Astrophysics Data System (ADS)

    Sushko, N. I.; Zagorskaya, S. A.; Tretinnikov, O. N.

    2013-11-01

    The crystallinity and H-bonds in poly(vinylalcohol) films obtained from aqueous solutions with potassium iodide additive were investigated by IR spectroscopy. It was established that addition of KI caused the degree of polymer crystallinity to increase. The band of hydroxyl stretching vibrations (νOH) shifted toward higher frequency in spectra of films with KI additive. This indicated a change in the system of H-bonds in the polymer. The dependences of both the degree of crystallinity and the shift of the νOH band on the salt concentration were qualitatively different in shape.

  12. Second-Harmonic Generation and Relaxation in Polyurea Thin Films Prepared by Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Hikita, Masayuki; Yamada, Sinichi; Mizutani, Teruyosi

    1993-06-01

    Aromatic polyurea thin (PU) films were fabricated by means of coevaporation of 4,4'-diphenylmethane diisocyanate (MDI) and either 4,4'-diamino diphenyl methane (DDM) or 4,4'-diamino diphenyl ether (DDE). For the two PU films, second-harmonic generation (SHG) caused by corona poling and the subsequent isothermal decay were investigated. The second-order nonlinear coefficient d33 was estimated to be 5.3 and 6.3 pm/V for PU(DDM) and PU(DDE), respectively, and proved to exhibit almost no decay with time up to 2000 h. It was also found that annealing prior to the poling process caused no additional increase of SHG. This result was interpreted in terms of increase in the packing density of molecules, leading to suppression of the molecular orientation. PU films containing excess residual isocyanate groups showed a large SHG decay to about 60% of the initial value within 10 min. It was concluded that the residual isocyanate groups in as-deposited PU films greatly affects the behavior of SHG relaxation.

  13. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  14. Reverse atom transfer radical polymerization (RATRP) for anti-clotting PU-LaCl3-g-P(MPC) films

    NASA Astrophysics Data System (ADS)

    Lu, Chunyan; Zhou, Ninglin; Xiao, Yinghong; Tang, Yida; Jin, Suxing; Wu, Yue; Shen, Jian

    2013-01-01

    Low grafting density is a disadvantage both in reverse atom transfer radical polymerization (RATRP) and ATRP. In this work, the surfaces of polyurethane (PU) were treated by LaCl3·6H2O to obtain modified surfaces with hydrated layers. The reaction of surface-initiated RATRP was carried out easily, which may be attributed to the enriched hydroxyl groups on the hydrated layers. An innovation found in this work is that some free lanthanum ions (La3+) reacted with the silane coupling agent (CPTM) and the product served as mixed ligand complex. The mixed ligand complex instead of conventional 2,2‧-bipyridine was adopted to serve as a ligand in the process of RATRP. As a result, PU surfaces grafted with well-defined polymer brushes (MPC) were obtained. PU substrates before and after modification were characterized by FTIR, XPS, AFM, SEM, SCA, respectively. The results showed that zwitterionic brushes were successfully fabricated on the PU surfaces (P(MPC)), and the content of the grafted layer increased gradually with polymerization time with the grafting density as high as 97.9%. The blood compatibility of the PU substrates was evaluated by plasma recalcification profiles test and platelet adhesion tests in vitro. It was found that all PU functionalized with zwitterionic brush showed improved resistance to nonspecific protein adsorption and platelet adhesion.

  15. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  16. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications.

  17. Nanocharacterization of TiN films obtained by Ion Vapor deposition

    NASA Astrophysics Data System (ADS)

    Lara, O. L.; Jerez, A. M.; Morantes, M. L.; Plata, A.; Torres, Y.; Lasprilla, M.; Zhabon, V.

    2011-01-01

    We evaluate and characterize the surface at the nanoscale level and take into account the temperature variation effect in the process of plasma ion deposition for H13 steel samples coated by Titanium Nitride (TiN). The interferometric microscopy and atomic force microscopy (AFM) were used to measure the film to analyze the variation of structural and morphological properties of nanofilms that depend on the temperature of sustrate.

  18. Design, Ultrastructure and Dynamics of Nonlinear Optical Interactions in Polymeric Thin Films

    DTIC Science & Technology

    1990-10-04

    experimental value, 1500 a.u., of Ward and Elliott. We augment the valence set with diffuse s, p and two cartesian d sets, or subsets of these. The results are...molecule was calculated using the Self-Consistent Field method (SCF) as well as with its Moeller- Plesset correction in the second order (MP-2). Then the...isotherms of which exhibit a horizontal plateau indicative of a phase change occurring on- 14compression. Langmuir-B!-.:z.tt monolayer films

  19. Electrochemical properties of thin films of polythiophene polymerized on Basal plane platinum electrodes in nonaqueous media.

    PubMed

    Suarez-Herrera, Marco F; Feliu, Juan M

    2009-02-19

    In this paper the electrochemical properties of polythiophene thin films synthesized on single-crystal platinum electrodes are studied. It was found that the electrochemical properties, ion transport kinetics, and morphology of the polythiophene films depend on the surface orientation of the single-crystal platinum electrode used for their electropolymerization. Different oxidation levels, regarded as neutral, polaron, bipolaron, and metallic states, are usually found in conjugated heterocyclic polymers. However, the transitions between the different oxidation levels were never clearly observed in cyclic voltammetry. Instead the voltammograms usually show broad oxidation and reduction peaks with some shoulders. With the use of single-crystal platinum electrodes, it was found that polythiophene has a well-defined redox process at low potential, not observed before, possibly related to the conversion from the neutral state to polarons. On the other hand, two well-defined consecutive steps were found during the ion exchange reaction of thin films of polymer, both characterized by nucleation kinetics. This is the first report of two consecutive nucleation processes during the ion exchange process of a conducting polymer. The results presented here could further illuminate the mechanism in which the electron is transported in organic semiconductor materials.

  20. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  1. Technological development of cylindrical and flat shaped high energy density capacitors. [using polymeric films

    NASA Technical Reports Server (NTRS)

    Zelik, J. A.; Parker, R. D.

    1977-01-01

    Cylindrical wound metallized film capacitors rated 2 micron F 500 VDC that had an energy density greater than 0.3 J/g, and flat flexible metallized film capacitors rated at 2 micron F 500 VDC that had an energy density greater than 0.1 J/g were developed. Polysulfone, polycarbonate, and polyvinylidene fluoride (PVF2) were investigated as dielectrics for the cylindrical units. PVF2 in 6.0 micron m thickness was employed in the final components of both types. Capacitance and dissipation factor measurements were made over the range 25 C to 100 C, and 10 Hz to 10 kHz. No pre-life-test burning was performed, and six of ten cylindrical units survived a 2500 hour AC plus DC lift test. Three of the four failures were infant mortality. All but two of the flat components survived 400 hours. Finished energy densities were 0.104 J/g at 500 V and 0.200 J/g at 700 V, the energy density being limited by the availability of thin PVF2 films.

  2. Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/SnS/ZnS stack

    NASA Astrophysics Data System (ADS)

    Sánchez, T. G.; Mathew, X.; Mathews, N. R.

    2016-07-01

    Cu2ZnSnS4 (CZTS) thin films were obtained by the sequential thermal evaporation of metal binary sulfides in the order CuS/SnS/ZnS, followed by annealing in Ar/S atmosphere. The as-grown films were annealed at different temperatures ranging between 350 and 600 °C, for 10 min. Based on the preliminary results, the temperatures 550 °C and 600 °C were selected for further optimization and a second batch of films were annealed for different time durations (10 min, 30 min and 60 min) at these temperatures in order to identify the conditions to obtain phase-pure CZTS films. The structural properties and chemical compositions at each temperature were investigated in order to optimize the phase purity and film stoichiometry. We have identified adequate and reproducible conditions to obtain the elemental ratio Cu/(Zn+Sn) and Zn/Sn close to 0.78 and 1.19 respectively, which is in the range of material composition required for promising solar cells. In addition the optimized material showed excellent optical and electrical properties to be used as a photovoltaic absorber layer. The optical band gap was found to be about 1.52 eV, and the carrier concentration, hall mobility, and resistivity were in the range of 8.372×1015 cm-3, 3.103 cm2/Vs and 340.3 Ω-cm respectively. Three traps with activation energies 4.39, 8.1, and 34 meV were detected.

  3. Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

    PubMed

    Xu, Lixin; Huang, Lingqi; Ye, Zhibin; Meng, Nan; Shu, Yang; Gu, Zhiyong

    2017-02-01

    In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus-leaf-like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus-leaf-like superhydrophobic films with solution-grown polymer-crystal-decorated carbon nanotubes.

  4. Characterizations of Plasticized Polymeric Film Coatings for Preparing Multiple-Unit Floating Drug Delivery Systems (muFDDSs) with Controlled-Release Characteristics

    PubMed Central

    Chen, Ying-Chen; Wang, Yu-Chun; Ho, Hsiu-O; Sheu, Ming-Thau

    2014-01-01

    Effervescent multiple-unit floating drug delivery systems (muFDDSs) consisting of drug (lorsartan)- and effervescent (sodium bicarbonate)-containing pellets were characterized in this study. The mechanical properties (stress and strain at rupture, Young’s modulus, and toughness) of these plasticized polymeric films of acrylic (Eudragit RS, RL, and NE) and cellulosic materials (ethyl cellulose (EC), and Surelease) were examined by a dynamic mechanical analyzer. Results demonstrated that polymeric films prepared from Surelease and EC were brittle with less elongation compared to acrylic films. Eudragit NE films were very flexible in both the dry and wet states. Because plasticizer leached from polymeric films during exposure to the aqueous medium, plasticization of wet Eudragit RS and RL films with 15% triethyl citrate (TEC) or diethyl phthalate (DEP) resulted in less elongation. DEP might be the plasticizer of choice among the plasticizers examined in this study for Eudragit RL to provide muFDDSs with a short time for all pellets to float (TPF) and a longer period of floating. Eudragit RL and RS at a 1∶1 ratio plasticized with 15% DEP were optimally selected as the coating membrane for the floating system. Although the release of losartan from the pellets was still too fast as a result of losartan being freely soluble in water, muFDDSs coated with Eudragit RL and RS at a 1∶1 ratio might have potential use for the sustained release of water-insoluble or the un-ionized form of drugs from gastroretentive drug delivery systems. PMID:24967594

  5. Comparative study of structure and permeability of porous oxide films on aluminum obtained by single- and two-step anodization.

    PubMed

    Petukhov, Dmitrii I; Napolskii, Kirill S; Berekchiyan, Mikhail V; Lebedev, Alexander G; Eliseev, Andrey A

    2013-08-28

    A comparative study of the structure and transport properties of porous aluminum oxide films obtained by single- and two-step anodization was carried out. It is shown that the oxidation regime significantly affect the number of dead-ended channels, which results in more than twice the variation in membrane permeability. The effect is explained by multiple branching of channels on the initial stages of organization of the porous structure. Branching also occurs on later stages governing mass transport properties of porous anodic alumina films. A model describing transport properties of anodic aluminum oxide membranes based on pore branching on domain boundaries was suggested to fit experimental results of permeance of membranes obtained by both single- and two-step anodization.

  6. Cracking the chocolate egg problem: polymeric films coated on curved substrates

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro

    2015-11-01

    Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.

  7. All-optical subdiffraction multilevel data encoding onto azo-polymeric thin films.

    PubMed

    Savoini, Matteo; Biagioni, Paolo; Duò, Lamberto; Finazzi, Marco

    2009-03-15

    By exploiting photoinduced reorientation in azo-polymer thin films, we demonstrate all-optical polarization-encoded information storage with a scanning near-field optical microscope. In the writing routine, five-level bits are created by associating different bit values to different birefringence directions, induced in the polymer after illumination with linearly polarized light. The reading routine is then performed by implementing polarization-modulation techniques on the same near-field microscope in order to measure the encoded birefringence direction.

  8. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  9. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  10. Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus

    ERIC Educational Resources Information Center

    Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.

    2006-01-01

    A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…

  11. Nano-exploration of organic conditioning film formed on polymeric surfaces exposed to drinking water.

    PubMed

    Francius, Grégory; El Zein, Racha; Mathieu, Laurence; Gosselin, Florence; Maul, Armand; Block, Jean-Claude

    2017-02-01

    Adsorption of organic macromolecules onto surfaces in contact with waters forms a so-called conditioning film and induces modifications of the surface properties. Here, we characterized conditioning films formed onto two hydrophobic materials (used as pipe liner) and immersed for 24 h in tap water. Using combination of atomic force microscopy (AFM), and chemical force microscopy (CFM), we detected some changes in roughness and hydrophilic/hydrophobic balance of the surface of the tested coupons, and also the deposition of numerous organic polymers (few millions/cm(2)) randomly distributed on the surface. The maximum molecular extension of these organic polymers was in the range of 250-1250 nm according to the tested materials. Systematic analysis of the force curves with the theoretical models (WLC and FJC) allowed determining the proportion of rupture events related to the unfolding of both polysaccharide and polypeptide segments, which represented 75-80% and 20-25% of the analyzed curves, respectively. The number of autochthonous drinking water bacteria, which attached to the material within the same period of time was 10000-folds lower than the detected number of polymers attached to the surface. Even in drinking water systems with relatively low organic matter (dissolved organic carbon < 1.1 mg/L), the potential of formation of a conditioning biofilm is important.

  12. Characterizing the NLO chromophore orientation of polymeric film by electroabsorption spectroscopy[Nonlinear Optical

    SciTech Connect

    Yang, K.; Wang, X.; Kim, W.; Jain, A.; Li, L.; Kumar, J.; Tripathy, S.

    1998-07-01

    The dispersion of third-order nonlinear coefficients {chi}{sub 1133}{sup (3)} and {chi}{sub 3333}{sup (3)} of three different NLO (nonlinear optical) polymer films were determined by electroabsorption spectroscopy. The first material investigated is an epoxy-based polymer BP-2A-NT, with azobenzene NLO chromophore 4-[((4-nitrophenyl)(azo)phenyl)azo]aniline in its side chain. The other materials are two polydiacetylenes, poly(BPOD) and poly(4-BCMU), in which the delocalized polymer chains contribute to the third-order nonlinearity. The complex spectrum of {chi}{sub 3333}{sup (3)} of each material is very similar in shape to corresponding {chi}{sub 1133}{sup (3)} spectrum. The ratio of {chi}{sub 3333}{sup (3)} to {chi}{sub 1133}{sup (3)} is 3.2 for BP-2A-NT, 1.5 for both poly(BPOD) and poly(4-BCMU). These ratios indicate that the distribution of the side-chain NLO chromophores of BP-2A-NT is very close to three-dimensional isotropy, and the distribution of the main-chain chromophores of poly(BPOD) and poly(4-BCMU) is concentrated on the film plane.

  13. Angiogenic tube formation of bovine aortic endothelial cells grown on patterns formed by H2/He plasma treatment of the plasma polymerized hexamethyldisiloxane film.

    PubMed

    Park, Jisoo; Ha, Myunghoon; Lee, Hye-Rim; Park, Heonyong; Yu, Jung-Hoon; Boo, Jin-Hyo; Jung, Donggeun

    2015-06-27

    Angiogenesis, the process to generate new vessels, is necessary for normal development in children as well as the wound healing and the tumor growth in adults. Therefore, it is physiologically and/or pathophysiologically significant to monitor angiogenesis. However, classical in vitro methods to evaluate angiogenesis take a long time and are expensive. Here, the authors developed a novel method to analyze the angiogenesis in a simple and economical way, using patterned films. In this study, the authors fabricated a plasma polymerized hexamethyldisiloxane (PPHMDSO) thin film deposited by capacitively coupled plasma chemical vapor deposition system with various plasma powers. The patterned PPHMDSO film was plasma treated by 10:90 H2/He mixture gas through a metal shadow mask. The films were characterized by water contact angle, atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses. Our results show that the PPHMDSO film suppresses the cell adhesion, whereas surface modified PPHMDSO film enhances the cell adhesion and proliferation. From cell culture experiments, the authors found that the patterned film with 300 μm line interval was most efficient to evaluate the tube formation, a sapient angiogenic indicator. This patterned film will provide an effective and promising method for evaluating angiogenesis.

  14. Humidity-independent conducting polyaniline films synthesized using advanced atmospheric pressure plasma polymerization with in-situ iodine doping

    NASA Astrophysics Data System (ADS)

    Park, Choon-Sang; Kim, Do Yeob; Kim, Dong Ha; Lee, Hyung-Kun; Shin, Bhum Jae; Tae, Heung-Sik

    2017-01-01

    This study reports on the synthesis and characterization of conducting polyaniline (PANI) thin films when using advanced atmospheric pressure plasma jets (APPJs). A simple method for synthesizing conducting polymers (CPs) with humidity-independent characteristics is introduced using advanced APPJs and an in-situ iodine doping method. In the case of ex-situ I2 doping, a humidity effect study showed that increasing the relative humidity produced significant changes in the electrical resistance (R) of the PANI, indicating strong humidity-dependent characteristics similar to conventional CPs. In contrast, in the case of in-situ I2 doping, the R and sensitivity of the PANI remained essentially unchanged when increasing the relative humidity, except for a very low sensitivity of 0.5% under 94% relative humidity. In addition, the R for the PANI with in-situ I2 doping showed no aging effect, while the R for the ex-situ-doped PANI increased dramatically over time. Thus, it is anticipated that the use of in-situ doping during plasma polymerization can be widely used to design stable and high-performance CPs with humidity-independent characteristics for a variety of applications.

  15. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate.

    PubMed

    Xie, He-Lou; Jie, Chang-Kai; Yu, Zhen-Qiang; Liu, Xuan-Bo; Zhang, Hai-Liang; Shen, Zhihao; Chen, Er-Qiang; Zhou, Qi-Feng

    2010-06-16

    The liquid-crystalline (LC) phase structures and transitions of a combined main-chain/side-chain LC polymer (MCSCLCP) 1 obtained from radical polymerization of a 2-vinylterephthalate, poly(2,5-bis{[6-(4-butoxy-4'-oxybiphenyl) hexyl]oxycarbonyl}styrene), were studied using differential scanning calorimetry, one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD), and polarized light microscopy. We have found that 1 with sufficiently high molecular weight can self-assemble into a hierarchical structure with double orderings on the nanometer and subnanometer scales at low temperatures. The main chains of 1, which are rodlike as a result of the "jacketing" effect generated by the central rigid portion of the side chains laterally attached to every second carbon atom along the polyethylene backbone, form a 2D centered rectangular scaffold. The biphenyl-containing side chains fill the space between the main chains, forming a smectic E (SmE)-like structure with the side-chain axis perpendicular to that of the main chain. This biaxial orientation of 1 was confirmed by our 2D WAXD experiments through three orthogonal directions. The main-chain scaffold remains when the SmE-like packing is melted at elevated temperatures. Further heating leads to a normal smectic A (SmA) structure followed by the isotropic state. We found that when an external electric field was applied, the main-chain scaffold greatly inhibited the motion of the biphenyls. While the main chains gain a sufficiently high mobility in the SmA phase, macroscopic orientation of 1 can be achieved using a rather weak electric field, implying that the main and side chains with orthogonal directions can move cooperatively. Our work demonstrates that when two separate components, one offering the "jacketing" effect to the normally flexible backbone and the other with mesogens that form surrounding LC phases, are introduced simultaneously into the side chains, the polymer obtained can be described as an

  16. Organic Thin-Film Transistors Fabricated on Plastic Substrates with a Polymeric Gate Dielectrics

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hun; Kim, Seong Hyun; Kim, Gi Heon; Lim, Sang Chul; Jang, Jin; Zyung, Taehyoung

    2003-05-01

    An organic thin-film transistor using pentacene as an active layer was fabricated on plastic substrate. An organic layer such as thermal curable polymer (JSS-362, Japan Synthetic Rubber (JSR)) was used as the gate dielectrics. The JSS-362 may act not only as a dielectric layer but also as a surface smoothing layer. From the electrical measurement, typical ID-VD characteristics of the field-effect transistor (FET) were observed. The field effect mobility μ was calculated to be 0.12 cm2\\cdotV-1\\cdots-1, while the threshold voltage VT was approximately -15 V. The on/off ratio was above 104 when VG was scanned from -75 V to +0 V.

  17. Tunable spin-wave frequency gap in anisotropy-graded FePt films obtained by ion irradiation

    NASA Astrophysics Data System (ADS)

    Tacchi, S.; Pini, M. G.; Rettori, A.; Varvaro, G.; di Bona, A.; Valeri, S.; Albertini, F.; Lupo, P.; Casoli, F.

    2016-07-01

    The effect of graded anisotropy on static and dynamic magnetic properties of Ar+-irradiated FePt films has been investigated by static magnetometry, magnetic force microscopy, and Brillouin light scattering from thermally excited spin waves. A gradual variation of magnetic anisotropy with film thickness was obtained by Ar+ irradiation. The irradiation incidence angle influences the anisotropy profile: on decreasing α , a decreasing thickness of the hard L 10 phase and an increasing thickness of the soft A1 phase were obtained. Accordingly, the zero-field spin-wave frequency gap was found to decrease. In the sample with the highest soft-phase thickness the spin-wave frequency gap takes a substantial value (ν0≈6 GHz), which could be reproduced assuming the presence of a nonzero "rotatable" anisotropy (i.e., any direction in the film plane can be established as the easy axis by the application of a saturating magnetic field along this direction). The hypothesis is supported by both magnetometry and magnetic force microscopy data.

  18. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  19. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G.; Girtan, M.; Stefan, N.

    2016-06-01

    Heterostructures based on zinc phthalocyanine (ZnPc), magnesium phthalocyanine (MgPc) and 5,10,15,20-tetra(4-pyrydil)21H,23H-porphine (TPyP) were deposited on ITO flexible substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Organic heterostructures containing (TPyP/ZnPc(MgPc)) stacked or (ZnPc(MgPc):TPyP) mixed layers were characterized by X-ray diffraction-XRD, photoluminescence-PL, UV-vis and FTIR spectroscopy. No chemical decomposition of the initial materials was observed. The investigated structures present a large spectral absorption in the visible range making them suitable for organic photovoltaics applications (OPV). Scanning electron microscopy-SEM and atomic force microscopy-AFM revealed morphologies typical for the films prepared by MAPLE. The current-voltage characteristics of the investigated structures, measured in dark and under light, present an improvement in the current value (∼3 order of magnitude larger) for the structure based on the mixed layer (Al/MgPc:TPyP/ITO) in comparison with the stacked layer (Al/MgPc//TPyP/ITO). A photogeneration process was evidenced in the case of structures Al/ZnPc:TPyP/ITO with mixed layers.

  20. Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute

    PubMed Central

    Salehi, Sahar; Fathi, Mohammadhossein; Javanmard, Shaghayegh Haghjooy; Barneh, Farnaz; Moshayedi, Mona

    2015-01-01

    Background: Biodegradable elastomeric materials such as poly glycerol sebacate (PGS) have gained much current attention in the field of soft tissue engineering. The present study reports the synthesis of PGS with molar ratios of 1:1, 2:3, and 3:2 of glycerol and sebacic acid via polycondensation reaction and tests the effect of PGS on human corneal epithelial (HCE) cells viability in vitro. Materials and Methods: PGS films were prepared by the casting method. We tried to fabricate PGS with different compositions and various properties as being a viable alternative to the corneal stroma in cornea tissue engineering. The chemical properties of the prepared polymer were investigated by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR) analysis and the in vitro cytotoxicity was investigated by the Alamarblue method. Results: The functional groups observed in the PGS FTIR spectrums of PGS with various molar ratios were the same. However, the main difference was the time of completing the cross-linking reaction. The PGS prepared by 2:3 ratio as a molar ratio had the fastest and the 3:2 ratio had the lowest cross-linking rate because of the higher amount of sebacic acid. Results of the Alamarblue cytotoxicity test assay showed no deleterious effect on HCE cell viability and proliferation. Conclusions: PGS is a potentially good candidate material for corneal tissue engineering because of its lack of in vitro HCE cell toxicity. PMID:25625115

  1. Probabilistic distributions of pinhole defects in atomic layer deposited films on polymeric substrates

    SciTech Connect

    Yersak, Alexander S. Lee, Yung-Cheng

    2016-01-15

    Pinhole defects in atomic layer deposition (ALD) coatings were measured in an area of 30 cm{sup 2} in an ALD reactor, and these defects were represented by a probabilistic cluster model instead of a single defect density value with number of defects over area. With the probabilistic cluster model, the pinhole defects were simulated over a manufacturing scale surface area of ∼1 m{sup 2}. Large-area pinhole defect simulations were used to develop an improved and enhanced design method for ALD-based devices. A flexible thermal ground plane (FTGP) device requiring ALD hermetic coatings was used as an example. Using a single defect density value, it was determined that for an application with operation temperatures higher than 60 °C, the FTGP device would not be possible. The new probabilistic cluster model shows that up to 40.3% of the FTGP would be acceptable. With this new approach the manufacturing yield of ALD-enabled or other thin film based devices with different design configurations can be determined. It is important to guide process optimization and control and design for manufacturability.

  2. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  3. Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2015-09-14

    Castor oil (CO), which is a readily available, relatively inexpensive, and environmentally benign nonedible oil, has been successfully used as matrix material to prepare biocompatible and biodegradable nanocomposite films filled with chitosan (CS)-modified ZnO nanoparticles. The biocomposites were synthesized via a simple and versatile solution mixing and casting method. The morphology, structure, thermal stability, water absorption, biodegradability, cytocompatibility, barrier, mechanical, viscoelastic, antibacterial, and wound healing properties of the films have been analyzed. FT-IR spectra were used to obtain information about the nanoparticle-matrix interactions. The thermal stability, hydrophilicity, degree of porosity, water absorption, water vapor transmission rate (WVTR), oxygen permeability (Dk), and biodegradability of the films increased with the CS-ZnO loading. The WVTR and Dk data obtained are within the range of values reported for commercial wound dressings. Tensile tests demonstrated that the nanocomposites displayed a good balance between elasticity, strength, and flexibility under both dry and simulated body fluid (SBF) environments. The flexibility increased in a moist atmosphere due to the plasticization effect of absorbed water. The nanocomposites also exhibited significantly enhanced dynamic mechanical performance (storage modulus and glass transition temperature) than neat CO under different humidity conditions. The antibacterial activity of the films against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus bacteria was investigated in the presence and the absence of UV light. The biocide effect increased progressively with the CS-ZnO content and was systematically stronger against Gram-positive cells. Composites with nanoparticle loading ≤5.0 wt % exhibited very good in vitro cytocompatibility and enabled a faster wound healing than neat CO and control gauze, hence showing great potential to be applied as antibacterial

  4. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation.

    PubMed

    Chonkar, Ankita D; Rao, J Venkat; Managuli, Renuka S; Mutalik, Srinivas; Dengale, Swapnil; Jain, Prateek; Udupa, N

    2016-06-01

    Lercanidipine is a vasoselective dihydropyridine calcium antagonist, mainly used for the treatment of hypertension and angina pectoris. However, it suffers from food dependent absorption, poor solubility, low permeability and considerable first pass metabolism, resulting in highly variable and low bioavailability of 10%. Nanoparticles of lercanidipine were incorporated in fast dissolving oral films (FDO) via preparation of nanosuspension by evaporative antisolvent precipitation method. Prepared nanosuspensions were incorporated in FDO without lyophilizing or spray drying. Two nanosuspensions containing PEG 400 and TPGS 1000 as stabilizers, were selected further for incorporation in FDO. Physicochemical and mechanical properties of the optimized films were observed to be within acceptance criteria. SEM images as well as FTIR chemical images of oral films show uniform distribution of nanoparticles in polymeric matrix. The DSC and XRD results proved the poorly crystalline nature of lercanidipine. However thermal processing of film induces crystallinity in hypromellose which results in embedding of amorphous drug nanoparticles in semicrystalline polymeric matrix. Superior dissolution and permeability properties of nanoparticles were confirmed by in vitro dissolution studies and about 4.5-folds higher ex vivo drug permeation was observed from formulation through porcine buccal mucosa. This may give the clue for enhancement of bioavailability in vivo via improving orotransmucosal absorption.

  5. Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations.

    PubMed

    Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S

    2016-08-01

    The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.

  6. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    NASA Astrophysics Data System (ADS)

    Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H.

    2008-11-01

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  7. Fluoride Selective Optical Sensor Based on Aluminum(III)-Octaethylporphyrin in Thin Polymeric Film: Further Characterization and Practical Application

    PubMed Central

    Badr, Ibrahim H. A.; Meyerhoff, Mark E.

    2008-01-01

    More detailed analytical studies of a new fluoride selective optical sensor based on the use of aluminum(III)-octaethylporphyrin and a lipophilic pH indicator (4′,5′-dibromofluorescein octadecyl ester; ETH-7075) within a thin plasticized poly(vinyl chloride) film are reported. The sensor exhibits extraordinary optical selectivity for fluoride over a wide range of other anions, including anions with far more positive free energies of hydration (e.g., perchlorate, thiocyanate, nitrate, etc.). UV-VIS spectrophotometric studies of the sensing films indicate that fluoride interacts with the Al(III) center of the porphyrin structure, yielding both a change in the Soret band λmax of the porphyrin as well as a change in the protonation state of the pH indicator within the film. The same change in spectral properties of the metalloporphyrin occurs in the absence of added pH indicator or with added tetraphenylborate derivative anionic sites, but optical responses to fluoride in these cases are shown to be irreversible. The presence of the pH indicator and the simultaneous fluoride/proton coextraction equilibrium chemistry is shown to greatly enhance the reversibility of fluoride binding to the Al(III) porphyrin. Optical response toward fluoride can be observed in the range of 0.1 μM to 1.6 mM. Optical selectivity coefficients of < 10−6 for common anions (e.g., sulfate, chloride, nitrate etc.) and < 10−4 for perchlorate and thiocyanate are obtained. Measurements of fluoride in drinking water via the new optical sensor are shown to correlate well with values obtained for the same samples using a classical LaF3 based fluoride ion-selective electrode method. PMID:16223262

  8. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  9. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, James H.

    1995-01-01

    A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.

  10. On the Optical Memory of a Thin-Film plnSb-nCdTe Heterojunction Obtained by Laser Pulsed Deposition

    DTIC Science & Technology

    2002-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012661 TITLE: On the Optical Memory of a Thin - Film plnSb-nCdTe...Proc. Vol. 692 © 2002 Materials Research Society H9.38 On the Optical Memory of a Thin - Film pInSb-nCdTe Heterojunction Obtained by Laser Pulsed...Armenia; *Yerevan Physics Institute, Yerevan, 375036, Armenia. ABSTRACT Thin film pInSb-nCdTe heterojunctions (HJs) were produced using pulsed laser

  11. Acid-Base Properties Of Glass Substrate And SiO2 - Bi2O3 Thin-Film Systems Obtained On It

    NASA Astrophysics Data System (ADS)

    Mal'chik, A. G.; Litovkin, S. V.; Filonov, A. V.; Ulyanova, O. V.; Gromov, V. E.

    2017-01-01

    The article describes an experimental research as a result of which SiO2 - Bi2O3 films have been synthesized of film-forming solutions based on tetraethoxysilane and bismuth nitrate (III). Acid-base properties of a glass substrate and SiO2 - Bi2O3 films obtained on it have been studied. The dependency of physical and chemical properties of SiO2 - Bi2O3 composites on their percentage composition have been revealed.

  12. Y0.9 Er0.1 Al3(BO3)4 thin films prepared by the polymeric precursor method for integrated optics.

    PubMed

    Maia, Lauro J Q; Ibanez, Alain; Fick, Jochen; Sanz, Nathalie; Hernandes, Antonio C; Mastelaro, Valmor R

    2007-10-01

    This work reports on the optimization of Yo.9 Er0.1 Al3(BO3)4 thin films for integrated optics. The films were deposited on silica and silicon substrates using the spin-coating technique involving solutions previously prepared by the polymeric precursor method. These deposits, 400-800 nm thick, were prepared by a 5-10 multi-layer process and heat treatments at different temperatures from glass transition to crystallization temperature, using heating rates of 2 or 5 degrees C/min. The structural characterizations were performed using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). Water and/or hydroxyl contents were also evaluated from FT-IR spectra. Microstructural evolution in term of annealing temperatures was analyzed by high resolution scanning electronic microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and thickness through the envelope method of the films. Finally, the film guiding and optical properties were studied by m-line spectroscopy. The best film showed a good waveguiding with high light-coupling efficiency close to the theoretical limit.

  13. Improved selenization procedure to obtain CuInSe{sub 2} thin films from sequentially electrodeposited precursors

    SciTech Connect

    Guillen, C.; Herrero, J.

    1996-02-01

    A new approach for CuInSe{sub 2} formation by sequential electrodeposition of Cu and In-Se layers and subsequent heat-treatment with elemental selenium in Ar and Ar + H{sub 2} flows is presented. The nature of the precursors and their evolution as a function of the selenization parameters have been studied by X-ray diffraction and X-ray photoelectron spectroscopy analysis. Sample temperature, Se-source temperature, and H{sub 2}/Ar volume ratio in the flow were the subject for optimization. A sample temperature above 400 C is needed to obtain single-phase CuInSe{sub 2} films. An increase in the film crystallinity has been reached by maintaining the Se-source temperature above 400 C. The introduction of H{sub 2} in the selenizing atmosphere has proven to be unsuitable, H{sub 2}Se formation must be avoided because it is more poisonous and less reactive than the elemental selenium vapor.

  14. Antimicrobial polymer films for food packaging

    NASA Astrophysics Data System (ADS)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  15. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  16. Waterborne Polymeric Films.

    DTIC Science & Technology

    1979-12-01

    alodine chromate treatment. A successful candidate must resist 500 hours of 5 percent salt fog and -10- La i. and 720 hours of 100 percent humidity...emulsions exhibited near acceptable fluid resistance and flexibility. One member of the class of water-reducible alkyds exceeded the performance of...indicate that the class of aqueous polyurethane dispersions would be most likely to meet the required fluid resistance and flexibility. Aqueous acrylic

  17. CuO/ZnO coupled oxide films obtained by the electrodeposition technique and their photocatalytic activity in phenol degradation under solar irradiation.

    PubMed

    Paz, Diego S; Foletto, Edson L; Bertuol, Daniel A; Jahn, Sérgio L; Collazzo, Gabriela C; da Silva, Syllos S; Chiavone-Filho, Osvaldo; do Nascimento, Claudio A O

    2013-01-01

    CuO/ZnO coupled oxide films were electrodeposited onto an aluminum substrate and tested as photocatalysts in degradation of phenol molecules in aqueous solution under sunlight. The obtained films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the photocatalytic activity of films was significant, especially to coupled oxide film with a CuO/ZnO ratio equal to 0.697, which presented about 70% degradation of the aromatic molecules and 42% of total organic carbon (TOC) removal at 300 min under solar irradiation. Therefore, this work highlights the potential application of CuO/ZnO coupled oxide films obtained by electrodeposition onto aluminum substrate in the field of photocatalysis.

  18. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.

    PubMed

    Sangsanoh, Pakakrong; Waleetorncheepsawat, Suchada; Suwantong, Orawan; Wutticharoenmongkol, Patcharaporn; Weeranantanapan, Oratai; Chuenjitbuntaworn, Boontharika; Cheepsunthorn, Poonlarp; Pavasant, Prasit; Supaphol, Pitt

    2007-05-01

    The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.

  19. CuInS 2 thin films obtained through the annealing of chemically deposited In 2S 3-CuS thin films

    NASA Astrophysics Data System (ADS)

    Peña, Y.; Lugo, S.; Calixto-Rodriguez, M.; Vázquez, A.; Gómez, I.; Elizondo, P.

    2011-01-01

    In this work, we report the formation of CuInS 2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In 2S 3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS 2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10 -8 to 3 Ω -1 cm -1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.

  20. Hard three-dimensional sp 2 carbon-bonded phase formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films

    NASA Astrophysics Data System (ADS)

    Baptista, D. L.; Foerster, C. E.; Lepienski, C. M.; Zawislak, F. C.

    2004-06-01

    The formation of new carbon amorphous phase through the ion irradiation of fullerene, a-C and polymeric a-C:H films is presented. The carbon films were subjected to N irradiation at 400 keV in the fluence range from 10 13 to 3 × 10 16 N cm -2. Modifications in the carbon structure, as function of the irradiation fluence, were investigated using the Rutherford backscattering spectrometry, nuclear reaction analysis, Fourier transform infrared, Raman spectroscopy, UV-VIS-NearIR spectrophotometry and nanoindentation techniques. After high fluence, the three carbon samples were transformed into very similar hard (≈14 GPa) and non-hydrogenated amorphous carbon layers with very low optical gaps (≈0.2 eV) and an unusual sp 2 rich-bonded atomic network. The mechanical properties of the irradiated films correlated with the bonding topologies of this new sp 2 carbon phase are analyzed in terms of the constraint-counting model. The results show that the unusual rigidity was achieved by the distortion of the sp 2 carbon bond angles, giving origin to a constrained three-dimensional sp 2 carbon bonded network.

  1. Phenomenological analysis of the light intensity dependence of the photoalignment process in azo-containing polymeric films.

    PubMed

    Thieghi, L T; Batalioto, F; Bechtold, I H; Evangelista, L R; Zucolotto, V; Balogh, D T; Oliveira, O N; Oliveira, E A

    2006-07-01

    A phenomenological model is proposed to analyze the influence of the incident light intensity on the photoinduced anisotropy of an azobenzene-containing polymer film. The optical anisotropy was generated in the films by the incidence of linearly polarized light and monitored by transmittance measurements.

  2. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  3. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition.

    PubMed

    Podhorodecki, A; Zatryb, G; Misiewicz, J; Wojcik, J; Wilson, P R J; Mascher, P

    2012-11-30

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  4. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Zatryb, G.; Misiewicz, J.; Wojcik, J.; Wilson, P. R. J.; Mascher, P.

    2012-11-01

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  5. Influence of the surface properties of polymeric insulators on the electrical stability of 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Baang, Sungkeun; Lee, Hyeonju; Ham, Youngjin; Zhang, Xue; Park, Jaehoon; Lee, Ho Won; Kim, Young Kwan; Piao, Shang Hao; Choi, Hyoung Jin

    2015-12-01

    We investigated the electrical stabilities of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin-film transistors (TFTs) fabricated with cross-linked polymeric insulators, i.e., poly(4-vinylphenol) (PVP) and poly(4-vinylphenol-co-methyl methacrylate) (PVP- co-PMMA). Compared to the cross-linked PVP insulator, the TIPS-pentacene TFTs containing a cross-linked PVP- co-PMMA insulator exhibit less hysteresis upon reversal of the gate-voltage sweep direction and a lower shift in the threshold voltage during consecutive operations, which is ascribed to the relatively hydrophobic surface of the cross-linked PVP- co-PMMA insulator. When these polymer solutions are mixed with yttrium-oxide nanoparticles, the rough surfaces of both nanocomposite insulators lead to larger shifts in the threshold voltage during consecutive operations, but its effect on the hysteretic behavior in the transfer characteristics of the TIPS-pentacene TFTs is negligible. Thus, the influence of the surface properties of the polymeric insulators on the electrical stability of TIPS-pentacene TFTs can be explained through hole-trapping and the delayed-depletion of the holes at the insulator/semiconductor interface.

  6. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  7. Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering

    NASA Astrophysics Data System (ADS)

    Bagmut, A. G.; Beresnev, V. M.

    2017-01-01

    The structure and electron beam induced crystallization kinetics of amorphous ZrO2 films obtained via ion-plasma and laser sputtering were compared. The studies were performed by electron diffraction and transmission electron microscopy with recording video films in situ. The effect of an electron beam on an amorphous film in a vacuum was accompanied by the formation of zirconia microcrystals with an FCC lattice. For laser evaporation, the density of crystallization nuclei was β 109 cm-2, and the characteristic length unit was D 0 0.48 μm. For ion-plasma evaporation, β 1010 cm-2, and D 0 0.06 μm. The kinetic curves of the crystallization of amorphous films were analyzed using the β-variant of the Kolmogorov model as a basis.

  8. Thermal effect on the optical and morphological properties of TiO2 thin films obtained by annealing a Ti metal layer

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Fomchenkov, S. A.

    2017-01-01

    Titanium metal layers of different thicknesses were deposited on optical glass, quartz and ceramic at 50 °C and 150 °C substrate temperatures with the help of magnetron deposition. The metal layers were converted into a rutile phase of TiO2 at different annealing temperatures. The effect of thermal annealing on the morphology and the refractive index of the thin film was investigated. The film's quality and roughness were found to depend on the substrate's temperature during metal film deposition and on the annealing temperature. The TiO2 thin films obtained on ceramic and glass substrates were seem to show less surface roughness at low substrate temperature as compared to the quartz substrate.

  9. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  10. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  11. Modification of surface properties of bell metal by radiofrequency plasma polymerization

    NASA Astrophysics Data System (ADS)

    Chutia, Joyanti; Choudhury, Arup Jyoti; Pal, Arup Ratan; Gogoi, Dolly

    2012-11-01

    Radiofrequency (RF) plasma polymerization is a convenient thin film deposition process as it facilitates the synthesis of polymer films with stable physico-chemical properties suitable for various applications in microelectronic, optical, and biomedical fields. The unique properties of these plasma polymerized films as compared to the conventional ones are strongly related to the proper adjustment of the external plasma discharge parameters and selection of suitable monomer. It is also important to study the fundamental chemistry of RF plasma polymerization process, so that one can successfully correlate the internal features of the discharge with the film properties and explore their possible technological applications. The possibility of using styrene-based plasma polymer (SPP) films on bell metal as protective coatings is explored in this work. Depositions of the films are carried out in RF Ar/styrene discharge at working pressure of 1.2 × 10-1 mbar and at the RF power range of 20 to 110 W. Optical emission spectroscopy (OES) is used to study the active species generated during plasma polymerization, while Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) are used to analyze the internal chemical structures of the films. The protective performances of the SPP films are attempted to correlate with the results obtained from OES, FT-IR, and XPS analyses.

  12. Protein microarrays on hybrid polymeric thin films prepared by self-assembly of polyelectrolytes for multiple-protein immunoassays.

    PubMed

    Zhou, Xichun; Zhou, Jizhong

    2006-03-01

    We report here the development and characterization of protein microarrays fabricated on nanoengineered 3-D polyelectrolyte thin films (PET) deposited on glass slide by consecutive adsorption of polyelectrolytes via self-assembly technique. Antibodies or antigens were immobilized in the PET-coated glass slides by electrostatic adsorption and entrapment of porous structure of the 3-D polymer film and thus establishing a platform for parallel analysis. Both antigen and antibody microarrays were fabricated on the PET-coated slides, and direct and indirect immunoassays on protein microarrays for multiple-analyte detection were demonstrated. Microarrays produced on these PET-coated slides have consistent spot morphology and provide performance features needed for proteomic analysis. The protein microarrays on the PET films provide LOD as low as 6 pg/mL and dynamic ranges up to three orders of magnitude, which are wider than the protein microarrays fabricated on aldehyde and poly-L-lysine functionalized slides. The PET films constructed by self-assembly technique in aqueous solution is green chemistry based, cost-effective method to generate 3-D thin film coatings on glass surface, and the coated slide is well suited for immobilizing many types of biological molecules so that a wide variety of microarray formats can be developed on this type of slide.

  13. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.

    PubMed

    Yang, Zhilu; Wang, Jin; Luo, Rifang; Maitz, Manfred F; Jing, Fengjuan; Sun, Hong; Huang, Nan

    2010-03-01

    For an improved hemocompatibility of 316L stainless steel (SS), we develop a facile and effective approach to fabricating a pulsed-plasma polymeric allylamine (P-PPAm) film that possesses a high cross-linking degree and a high density of amine groups, which is used for subsequent bonding of heparin. The P-PPAm film as a stent coating shows good resistance to the deformation behavior of compression and expansion of a stent. Using deionized water as an aging medium, it is demonstrated that the heparin-immobilized P-PPAm (Hep-P-PPAm) surface has a good retention of heparin. The systematic in vitro hemocompatibility evaluation reveals lower platelet adhesion, platelet activation and fibrinogen activation on the Hep-P-PPAm surface, and the activated partial thromboplastin time prolongs for about 15 s compared with 316L SS. The P-PPAm surface significantly promotes adhesion and proliferation of endothelial cells (ECs). For the Hep-P-PPAm, although EC adhesion and proliferation is slightly suppressed initially, after cultivation for 3 days, the growth behavior of ECs is remarkably improved over 316L SS. In vivo results indicate that the Hep-P-PPAm surface successfully restrain thrombus formation by growing a homogeneous and intact shuttle-like endothelium on its surface. The Hep-P-PPAm modified 316L SS shows a promising application for vascular devices.

  14. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material.

    PubMed

    Caputo, Roberto; De Sio, Luciano; Veltri, Alessandro; Umeton, Cesare; Sukhov, Andrey V

    2004-06-01

    We present a new kind of UV-cured holographic grating that consists of polymer slices alternated with pure nematic films. By preventing the appearance of the nematic phase during the curing process, it is possible to avoid the formation of liquid-crystal droplets and obtain a sharp and uniform morphology, which reduces scattering losses and increases diffraction efficiency.

  15. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  16. Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization “click”-reactions

    PubMed Central

    Goll, Miriam; Ruff, Adrian; Muks, Erna; Goerigk, Felix; Omiecienski, Beatrice; Ruff, Ines; González-Cano, Rafael C; Lopez Navarrete, Juan T; Ruiz Delgado, M Carmen

    2015-01-01

    Summary The electrocopolymerization of 3,4-ethylenedioxythiophene (EDOT) with the branched thiophene building block 2,2′:3′,2″-terthiophene (3T) is presented as a versatile route to functional polymer films. Comparisons to blend systems of the respective homopolymers PEDOT and P3T by in situ spectroelectrochemistry and Raman spectroscopy prove the successful copolymer formation and the access to tailored redox properties and energy levels. The use of EDOT-N3 as co-monomer furthermore allows modifications of the films by polymer analogous reactions. Here, we exemplarily describe the post-functionalization with ionic moieties by 1,3-dipolar cycloaddition (“click”-chemistry) which allows to tune the surface polarity of the copolymer films from water contact angles of 140° down to 40°. PMID:25815088

  17. Optical fluoride sensor based on monomer-dimer equilibrium of scandium(III)-octaethylporphyrin in a plasticized polymeric film.

    PubMed

    Kang, Youngjea; Kampf, Jeff W; Meyerhoff, Mark E

    2007-08-29

    A fluoride-selective optical sensor based on scandium(III)-octaethylporphyrin (Sc(III)OEP) as an ionophore within a plasticized PVC film is described. The presence of fluoride ion in the aqueous sample phase increases the formation of a difluoro-bridged Sc(III)OEP dimer species in the polymer film. The ability of the Sc(III) porphyrin to form the dimeric structure in the presence of fluoride is confirmed by UV-vis spectroscopy and X-ray crystallography. For more practical sensing applications, a pH chromoionophore (ETH 7075) is added to the plasticized PVC film along with Sc(III)OEP and the observed optical response is based on coextraction of protons with sample phase fluoride to create the dimeric porphyrin and a protonated chromoionophore species. The selectivity pattern observed is F- > ClO4(-), SCN-, NO3(-) > Br-, Cl-. Only organic salicylate is a significant interferent. Fast and reversible fluoride response is observed over the range of 10(-4) to 10(-2) M fluoride, allowing use of the sensing film in a waveguide configuration for flow-injection measurements.

  18. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  19. In Vitro Antibacterial Activity of Nano Silver Ion Substituted Poly Acrylic Acid Films on Titanium by Plasma Polymerization.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kook, Joong-Ki; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    Antibacterial activity of oral pathogens such as Streptococcus mutans, Streptococcus sobrinus when silver ion immobilized on commercially pure (CP) titanium (Ti) surface was investigated in this study. Plasma-polymerized acrylic acid to have carboxyl group was deposited on CP-Ti surface and then ion-exchanged with Ag+ ions in 0.1 N AgNO3. In anti-adherent experiment, antibacterial activity was tested using broth culture methods. The biofilm formation assay was performed using semi-defined biofilm medium with sucrose. The silver coated CP-Ti completely inhibited the growth of S. mutans and S. sobrinus. In addition, the biofilm formation was significantly inhibited in silver-coated CP-Ti group.

  20. Quantitative Analysis of Laser Interferometer Waveforms Obtained during Oxygen Reactive-Ion Etching of Thin Polymer Films

    DTIC Science & Technology

    1989-05-12

    reduction factor for reflection from the plasma-polymer (1-2) interface and accounts for spreading of the interface into a transition region. R is a ...the reflectance of the bare substrate after the film is completely removed. The optical effect of f < 1 is a reduction in amplitude of oscillation of R ...also deflects energy out of the specular directions and introduces additional corrections into R . As a first approximation, these corrections can be

  1. Temporal characteristics of polarization holographic gratings formed in a photosensitive polymeric film containing N-benzylideneaniline derivative side groups

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Shoho, Takashi; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-04-01

    A polarization holographic grating was recorded in a transparent thin film formed from polymethacrylate with N-benzylideneaniline (NBA) derivative side groups. We measured the real time diffraction properties. The data were analyzed based on a theoretical model that accounted for the distribution of optical anisotropy caused by molecular reorientation as well as for surface relief (SR) deformation caused by molecular motion. Optical anisotropy rapidly increased and then slowly decreased, with increasing recording time. This phenomenon was described based on photoisomerization and photocleavage reactions of the NBA side groups. SR deformation was also induced in the film by polarization holographic recording, without any subsequent processes. The photoinduced optical anisotropy and SR deformation were retained after the recording was turned off.

  2. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  3. Temporal characteristics of polarization holographic gratings formed in a photosensitive polymeric film containing N-benzylideneaniline derivative side groups

    SciTech Connect

    Sasaki, Tomoyuki Shoho, Takashi; Noda, Kohei; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2014-04-21

    A polarization holographic grating was recorded in a transparent thin film formed from polymethacrylate with N-benzylideneaniline (NBA) derivative side groups. We measured the real time diffraction properties. The data were analyzed based on a theoretical model that accounted for the distribution of optical anisotropy caused by molecular reorientation as well as for surface relief (SR) deformation caused by molecular motion. Optical anisotropy rapidly increased and then slowly decreased, with increasing recording time. This phenomenon was described based on photoisomerization and photocleavage reactions of the NBA side groups. SR deformation was also induced in the film by polarization holographic recording, without any subsequent processes. The photoinduced optical anisotropy and SR deformation were retained after the recording was turned off.

  4. Polymerized supramolecular assemblies and biocompatibility

    NASA Astrophysics Data System (ADS)

    O'Brien, David F.

    2001-03-01

    The creation of durable, biomembrane-mimetic coatings for inorganic and polymeric surfaces that are biocompatible, i.e. resistant to nonspecific protein adsorption, remains an important goal that is expected to impact numerous fields. It has already been shown that the physical stability of lipid bilayer vesicles can be dramatically enhanced by cross-linking polymerization of reactive lipids, such as phosphatidylcholines. Bilayers of these same lipids on clean silicon dioxide surfaces can be formed by fusion of small bilayer vesicles with the surface. Radical initiated polymerization of these supported bilayers yields a stable poly(lipid) film that is not perturbed upon exposure to surfactant. Moreover, the cross-linked bilayer film can be removed from water into air with retention of the poly(lipid) bilayer structure. These polymerized bilayer films could be repeatedly transferred from water to air to water with no obvious change in their biocompatibility. The supported bilayer films were equally resistant to non-specific protein adsorption before and after polymerization. This indicates that biocompatible nature of the phosphorylcholine head group of the lipids was not compromised by polymerization of the lipids. The ability to maintain surface biocompatibility of membranes while substantially increasing their stability would appear to extend the technological uses of supramolecular assemblies of lipids.

  5. Impact of In doping on GeTe phase-change materials thin films obtained by means of an innovative plasma enhanced metalorganic chemical vapor deposition process

    NASA Astrophysics Data System (ADS)

    Szkutnik, P. D.; Aoukar, M.; Todorova, V.; Angélidès, L.; Pelissier, B.; Jourde, D.; Michallon, P.; Vallée, C.; Noé, P.

    2017-03-01

    We investigated the deposition and the phase-change properties of In-doped GeTe thin films obtained by plasma enhanced metalorganic chemical vapor deposition and doped with indium using a solid delivery system. The sublimated indium precursor flow rate was calculated as a function of sublimation and deposition parameters. Indium related optical emission recorded by means of optical emission spectroscopy during deposition plasma allowed proposing the dissociation mechanisms of the [In(CH3)2N(CH3)2]2 solid precursor. In particular, using an Ar + H2 + NH3 deposition plasma, sublimated indium molecules are completely dissociated and do not induce by-product contamination by addition of nitrogen or carbon in the films. X-ray photoelectron spectroscopy evidences the formation of In-Te bonds in amorphous as-deposited In-doped GeTe films. The formation of an InTe phase after 400 °C annealing is also evidenced by means of X-ray diffraction analysis. The crystallization temperature Tx, deduced from monitoring of optical reflectivity of In-doped GeTe films with doping up to 11 at. % slightly varies as a function of the In dopant level with a decrease of Tx down to a minimum value for an In doping level of about 6-8 at. %. In this In doping range, the structure of crystallized In-GeTe films changes and is dominated by the presence of a crystalline In2Te3 phase. Finally, the Kissinger activation energy for crystallization Ea is showing to monotonically decrease as the indium content in the GeTe film is increased indicating a promising effect of In doping on crystallization speed in memory devices while keeping a good thermal stability for data retention.

  6. An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme.

    PubMed

    Muguruma, Hitoshi; Shibayama, Yu; Matsui, Yasunori

    2008-01-18

    We report on an amperometric biosensor that is based on a nanocomposite of carbon nanotubes (CNT), a nano-thin plasma-polymerized film (PPF), and glucose oxidase (GOx) as an enzyme model. A mixture of the GOx and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOx, CNT was treated with nitrogen or oxygen plasma. The resulting device showed that the oxidizing current response due to enzymatic reaction was 4-16-fold larger than that with only CNT or PPF, showing that the PPF and/or plasma process is an enzyme-friendly platform for designing electrochemical communication from the reaction center of GOx to the electrode via CNTs. The optimized glucose biosensor showed high sensitivity (sensitivity of 42 microA mM(-1)cm(-2), correlation coefficient of 0.992, linear response range of 0.025-2.2 mM, and a detection limit of 6 microM at signal/noise ratio of 3, +0.8 V versus Ag/AgCl), high selectivity (almost no interference by 0.5 mM ascorbic acid) for glucose quantification, and rapid response (<4 s to reach 95% of maximum response). Additionally, the devices showed a small and stable background current (0.35+/-0.013 microA) compared with the glucose response (ca. 10 microA at 10mM glucose) and suitable reproducibility from sample-to-sample (<3%, n=4).

  7. Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Wang, Meng-Jiy

    2016-01-01

    Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

  8. Polymeric Microcapsule Arrays.

    DTIC Science & Technology

    1995-03-24

    support, microencapsulation and entrapment within a membrane/film or gel. The ideal enzyme immobilization method would (1) Employ mild chemical...yields hollow polymeric microcapsules of uniform diameter and length. These microcapsules are arranged in a high density array in which the...individual capsules protrude from a surface like the bristles of a brush. We have developed procedures for filling these microcapsules with high

  9. Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by a Polymerized Film of an Alkynyl-Substituted Rhenium(I) Complex

    PubMed Central

    Portenkirchner, Engelbert; Gasiorowski, Jacek; Oppelt, Kerstin; Schlager, Stefanie; Schwarzinger, Clemens; Neugebauer, Helmut; Knör, Günther; Sariciftci, Niyazi Serdar

    2013-01-01

    The alkynyl-substituted ReI complex [Re(5,5′-bisphenylethynyl-2,2′-bipyridyl)(CO)3Cl] was immobilized by electropolymerization onto a Pt-plate electrode. The polymerized film exhibited electrocatalytic activity for the reduction of CO2 to CO. Cyclic voltammetry studies and bulk controlled-potential electrolysis experiments were performed by using a CO2-saturated acetonitrile solution. The CO2 reduction, determined by cyclic voltammetry, occurs at approximately −1150 mV versus the normal hydrogen electrode (NHE). Quantitative analysis by GC and IR spectroscopy was used to determine a Faradaic efficiency of approximately 33 % for the formation of CO. Both values of the modified electrode were compared to the performance of the homogenous monomer [Re(5,5′-bisphenylethynyl-2,2′-bipyridyl)(CO)3Cl] in acetonitrile. The polymer formation and its properties were studied by using SEM, AFM, and attenuated total reflectance (ATR) FTIR and UV/Vis spectroscopy. PMID:23956800

  10. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-04-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn-Sn-O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer.

  11. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    NASA Astrophysics Data System (ADS)

    Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.

    2016-09-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.

  12. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  13. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model.

    PubMed

    Brisbois, Elizabeth J; Bayliss, Jill; Wu, Jianfeng; Major, Terry C; Xi, Chuanwu; Wang, Stewart C; Bartlett, Robert H; Handa, Hitesh; Meyerhoff, Mark E

    2014-10-01

    Nitric oxide (NO) has many biological roles (e.g. antimicrobial agent, promoter of angiogenesis, prevention of platelet activation) that make NO releasing materials desirable for a variety of biomedical applications. Localized NO release can be achieved from biomedical grade polymers doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-glycolic acid) (PLGA). In this study, the optimization of this chemistry to create film/patches that can be used to decrease microbial infection at wound sites is examined. Two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2±0.7wt.%) and Tecophilic SP-60D-20 (22.5±1.1wt.%)) were doped with 25wt.% DBHD/N2O2 and 10wt.% of PLGA with various hydrolysis rates. Films prepared with the polymer that has the higher water uptake (SP-60D-20) were found to have higher NO release and for a longer duration than the polyurethane with the lower water uptake (SG-80A). The more hydrophilic polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more acidic environment that increases the rate of NO release from the NO donor. The optimal NO releasing and control SG-80A patches were then applied to scald burn wounds that were infected with Acinetobacter baumannii. The NO released from these patches applied to the wounds is shown to significantly reduce the A. baumannii infection after 24h (∼4 log reduction). The NO release patches are also able to reduce the level of transforming growth factor-β in comparison to controls, which can enhance re-epithelialization, decrease scarring and reduce migration of bacteria. The combined DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically throughout the wound healing process, demonstrate the potential to reduce risk of bacterial infection and promote the overall wound healing process.

  14. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model

    PubMed Central

    Brisbois, Elizabeth J.; Bayliss, Jill; Wu, Jianfeng; Major, Terry C.; Xi, Chuanwu; Wang, Stewart C.; Bartlett, Robert H.; Handa, Hitesh; Meyerhoff, Mark E.

    2014-01-01

    Nitric oxide (NO) has many biological roles (e.g., antimicrobial agent, promoter of angiogenesis, prevention of platelet activation, etc.) that make NO releasing materials desirable for a variety of biomedical applications. Localized NO release can be achieved from biomedical grade polymers doped with diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) and poly(lactic-co-glycolic acid) (PLGA). In this study, the optimization of this chemistry to create film/patches that can be used to decrease microbial infection at wound sites is examined. Two polyurethanes with different water uptakes (Tecoflex SG-80A (6.2 ± 0.7 wt %) and Tecophillic SP-60D-20 (22.5 ± 1.1 wt%)) were doped with 25 wt% DBHD/N2O2 and 10 wt% of PLGA with various hydrolysis rates. Films prepared with the polymer that has the higher water uptake (SP-60D-20) were found to have higher NO release and for a longer duration than the polyurethane with lower water uptake (SG-80A). The more hydrophilic polymer enhances the hydrolysis rate of the PLGA additive, thereby providing a more acidic environment that increases the rate of NO release from the NO donor. The optimal NO releasing and control SG-80A patches were then applied to scald burn wounds that were infected with Acinetobacter baumannii. The NO released from these patches applied to the wounds is shown to significantly reduce the A. baumannii infection after 24 h (~4 log reduction). The NO release patches are also able to reduce the TGF-β levels, in comparison to controls, which can enhance reepithelialization, decrease scarring, and reduce migration of bacteria. The combined DBHD/N2O2 and PLGA-doped polymer patches, which could be replaced periodically throughout the wound healing process, demonstrate the potential to reduce risk of bacterial infection and promote the overall wound healing process. PMID:24980058

  15. Peculiarities in electrical and optical properties of Cu2Zn1- x Mn x SnS4 films obtained by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Orletskii, I. G.; Mar'yanchuk, P. D.; Solovan, M. N.; Maistruk, E. V.; Kozyarskii, D. P.

    2016-03-01

    Thin films of Cu2Zn1- x Mn x SnS4 (0 ≤ x ≤ 1) solid solutions have been obtained for the first time by the spray pyrolysis of aqueous salt solutions (copper, zinc, manganese, and tin chlorides and thiourea) at a temperature of T S = 563 K. The films possess specific electric conductivities within σ ≈ 35-422 Ω-1 cm-1 and optical bandgap width E g op that increases with the manganese content from 1.54 eV ( x = 0) to 2.25 eV ( x = 1). Electrical and optical properties of the obtained films have been studied and analyzed based on a model of polycrystalline materials with grain boundaries. The energy barriers Eb between grains have been determined. The dependence of the bandgap of Cu2Zn1- x Mn x SnS4 (0 ≤ x ≤ 1) solid solutions on the composition has been established using the results of measurements of the optical transmission and absorption coefficients.

  16. SU-E-T-44: A Micro-Raman Spectroscopy Study of the Dose-Dependence of EBT3 GafChromicTM Films for Quantifying the Degree of Molecular Polymerization

    SciTech Connect

    Callens, M; Van Den Abeele, K; Crijns, W; Depuydt, T; Maes, F; Haustermans, K; Simons, V; De Wolf, I; D’hooge, J; D’Agostino, E; Pfeiffer, H

    2015-06-15

    Purpose: Radiochromic films, such as the poly-diacetylene-based EBT3 GafChromic{sup TM} films (Ashland Specialty Ingredients, Wayne, NY, USA), are widely used for dosimetry applications because of their clear energy independence, high spatial resolution, near tissue equivalence and easy handling. The films undergo a slight color change by radiation-induced polymerization of diacetylene monomers. But more importantly, the film becomes optically less transparent with increasing radiation dose, with a saturation starting between 10 and 20 Gy, i.e. a common SBRT dose level. In contrast to the chromatic properties, less attention has been given to the underlying molecular mechanism that induces this partial color change and strongly reduces the transparency. Therefore, the current work investigates the variation of the molecular composition of the active layer of EBT3 films for an SBRT dose range. Method: Uncoated EBT3 films were irradiated with a 6 MV photon beam using dose levels between 0 and 20 Gy. The relative variation of the polymer content as a function of the applied radiation dose was studied using micro-Raman spectroscopy. Raman spectroscopy with a 633 nm probe laser incident on the active layer allowed to identify the film constituents and to estimate the amount of poly-diacetylenes from the intensities of the unique molecular vibrations of the molecule. Results: The normalized intensity of all polymeric vibrations, and most notably the polymeric triple and double carbon-carbon bonds at 2058 cm{sup −1} and 1446 cm{sup −1} respectively, increase with increasing dose up to a saturation level starting at about 10 Gy, indicating a corresponding increase and saturation of the amount of polymers. This molecular saturation process is the main cause of the non-linear dose response (i.e. a transparency reduction) and of the limited dose range of the studied films. Conclusion: Raman spectroscopy provides new and more fundamental insights in the mechanism of the

  17. Immobilization of lysozyme on polyvinylalcohol films for active packaging applications.

    PubMed

    Conte, A; Buonocore, G G; Bevilacqua, A; Sinigaglia, M; Del Nobile, M A

    2006-04-01

    A new technique for the immobilization of lysozyme onto the surface of polyvinylalcohol films is presented. The active compound was sprayed along with a suitable bonding agent onto the surface of the cross-linked polymeric matrix. Active compound release tests determined the amount of lysozyme immobilized on the film surface. With the use of Micrococcus lysodeikticus, the antimicrobial activity of the films was determined and the results correlated with the amount of immobilized lysozyme. This new technique was effective for immobilizing the enzyme, and the developed films were active against the test microorganism. Results were compared with those obtained with a different immobilizing technique, in which the active compound was bound into the bulk of the polymeric film. As expected, the surface-immobilized lysozyme films have a higher antimicrobial activity than bulk-bound films.

  18. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    PubMed Central

    Petcu, Cristian; Purcar, Violeta; Spătaru, Cătălin-Ilie; Alexandrescu, Elvira; Şomoghi, Raluca; Trică, Bogdan; Niţu, Sabina Georgiana; Panaitescu, Denis Mihaela; Donescu, Dan; Jecu, Maria-Luiza

    2017-01-01

    Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS) and tetramethoxysilane (TMOS) (1:4 molar ratio) as precursors. After coating, silica nanoparticles (SiO2 NPs) functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS) were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR). The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8) has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°), compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness. PMID:28336881

  19. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol.

    PubMed

    Braithwaite, Miles C; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Du Toit, Lisa C; Pillay, Viness

    2016-11-01

    Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D3). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (Cmax) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D3, compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.

  20. Gaseous benzene degradation by photocatalysis using ZnO + Zn2TiO4 thin films obtained by sol-gel process.

    PubMed

    Hernández-García, F A; Torres-Delgado, G; Castanedo-Pérez, R; Zelaya-Ángel, O

    2016-07-01

    The benzene pollutant in gaseous phase was successfully degraded by using ZnO + Zn2TiO4 multicomponent oxide thin films as photocatalysts. The films were obtained with different Ti/Zn ratios (0, 0.20, 0.40, 0.45, 0.50, 0.67, 0.84, and 1) by the sol-gel route. The initial level of benzene concentration was 110 ± 10 ppm. The process was carried out under different conditions of relative humidity (RH): 25, 50, and 80 % in a batch-type reactor, at room temperature. The results show benzene degradation near to 95 % at t = 240 min, where the multicomponent oxide semiconductor has a Ti/Zn ratio of 0.67. Meanwhile, with the TiO2 thin films, only a degradation of 70 % was reached at the same measurement conditions. This synergistic effect on the photocatalytic activity is a result of the coupling of both semiconductor oxides. An adverse effect on the photocatalytic activity was observed as the relative humidity increases.

  1. Custom-made morphologies of ZnO nanostructured films templated by a poly(styrene-block-ethylene oxide) diblock copolymer obtained by a sol-gel technique.

    PubMed

    Sarkar, Kuhu; Rawolle, Monika; Herzig, Eva M; Wang, Weijia; Buffet, Adeline; Roth, Stephan V; Müller-Buschbaum, Peter

    2013-08-01

    Zinc oxide (ZnO) nanostructured films are synthesized on silicon substrates to form different morphologies that consist of foamlike structures, wormlike aggregates, circular vesicles, and spherical granules. The synthesis involves a sol-gel mechanism coupled with an amphiphilic diblock copolymer poly(styrene-block-ethylene oxide), P(S-b-EO), which acts as a structure-directing template. The ZnO precursor zinc acetate dihydrate (ZAD) is incorporated into the poly(ethylene oxide) block. Different morphologies are obtained by adjusting the weight fractions of the solvents and ZAD. The sizes of the structure in solution for different sol-gels are probed by means of dynamic light scattering. Thin-film samples with ZnO nanostructures are prepared by spin coating and solution casting followed by a calcination step. On the basis of various selected combinations of weight fractions of the ingredients used, a ternary phase diagram is constructed to show the compositional boundaries of the investigated morphologies. The evolution and formation mechanisms of the morphologies are addressed in brief. The surface morphologies of the ZnO nanostructures are studied with SEM. The inner structures of the samples are probed by means of grazing incidence small-angle X-ray scattering to complement the SEM investigations. XRD measurements confirm the crystallization of the ZnO in the wurtzite phase upon calcination of the nanocomposite film in air. The optical properties of ZnO are analyzed by FTIR and UV/Vis spectroscopy.

  2. Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film.

    PubMed

    Zhang, Ying; Yang, Ronghua; Liu, Feng; Li, Ke'an

    2004-12-15

    A new zinc(II) porphyrin conjugate with an appended pyrene subunit has been synthesized and shown to exhibit significant and analytical usefulness for fluorescence sensing toward imidazole derivatives. The molecular recognition was based on the bridging interaction of the imidazole ring of analyte with the zinc(II) center of the porphyrin, while the transduction signal for the recognition process was the pyrene excimer fluorescence. The sensor was constructed and applied for fluorescence assay of histidine in aqueous solution by immobilizing the sensing material in a plasticized PVC membrane. When the membrane was bathed in an alkaline solution void of histidine, zinc(II) porphyrin was present in the monomer form, and pyrene emitted monomer fluorescence at 378 and 397 nm. With the presence of histidine in the sample solution, histidine was extracted into the membrane phase and bridged with the Zn(II) center of the porphyrin, causing the monomer porphyrin to be converted to its dimeric species. Since the formation of porphyrin dimer was accompanied by the enhancement of pyrene excimer emission at 454 nm, the chemical recognition process could be directly translated into a fluorescent signal. With the optode membrane M1 described, histidine in sample solution from 6.76 x 10(-7) to 5.01 x 10(-3) M can be determined. The limit of detection was 1.34 x 10(-7) M. The optical selectivity coefficient obtained for histidine over biologically relevant amino acids and anions met the selectivity requirements for the determination of histidine in biological samples. Serum histidine values obtained by the optode membrane fell in the normal range of the content reported in the literature and were in good agreement with those obtained by HPLC.

  3. Interface Electrical Properties of Al2O3 Thin Films on Graphene Obtained by Atomic Layer Deposition with an in Situ Seedlike Layer.

    PubMed

    Fisichella, Gabriele; Schilirò, Emanuela; Di Franco, Salvatore; Fiorenza, Patrick; Lo Nigro, Raffaella; Roccaforte, Fabrizio; Ravesi, Sebastiano; Giannazzo, Filippo

    2017-03-01

    High-quality thin insulating films on graphene (Gr) are essential for field-effect transistors (FETs) and other electronics applications of this material. Atomic layer deposition (ALD) is the method of choice to deposit high-κ dielectrics with excellent thickness uniformity and conformal coverage. However, to start the growth on the sp(2) Gr surface, a chemical prefunctionalization or the physical deposition of a seed layer are required, which can effect, to some extent, the electrical properties of Gr. In this paper, we report a detailed morphological, structural, and electrical investigation of Al2O3 thin films grown by a two-steps ALD process on a large area Gr membrane residing on an Al2O3-Si substrate. This process consists of the H2O-activated deposition of a Al2O3 seed layer a few nanometers in thickness, performed in situ at 100 °C, followed by ALD thermal growth of Al2O3 at 250 °C. The optimization of the low-temperature seed layer allowed us to obtain a uniform, conformal, and pinhole-free Al2O3 film on Gr by the second ALD step. Nanoscale-resolution mapping of the current through the dielectric by conductive atomic force microscopy (CAFM) demonstrated an excellent laterally uniformity of the film. Raman spectroscopy measurements indicated that the ALD process does not introduce defects in Gr, whereas it produces a partial compensation of Gr unintentional p-type doping, as confirmed by the increase of Gr sheet resistance (from ∼300 Ω/sq in pristine Gr to ∼1100 Ω/sq after Al2O3 deposition). Analysis of the transfer characteristics of Gr field-effect transistors (GFETs) allowed us to evaluate the relative dielectric permittivity (ε = 7.45) and the breakdown electric field (EBD = 7.4 MV/cm) of the Al2O3 film as well as the transconductance and the holes field-effect mobility (∼1200 cm(2) V(-1) s(-1)). A special focus has been given to the electrical characterization of the Al2O3-Gr interface by the analysis of high frequency capacitance

  4. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  5. Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: Synthesis and characterization of polymeric imidazolium ionic liquids.

    PubMed

    González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Pello-Palma, Jairo; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María Dolores

    2013-08-30

    Two polymeric ionic liquids, 3-(but-3″-en-1″-yl)-1-[2'-hydroxycyclohexyl]-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide (IL-1) and 1-(2'-hydroxycyclohexyl)-3-(4″-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide (IL-2), have been synthesized by a free radical polymerization reaction and used as coatings for solid-phase microextraction (SPME). These new fibers exhibit good film stability, high thermal stability (270-290°C) and long lifetimes, and are used for the extraction of volatile compounds in lemon beer using gas chromatography separation and flame ionization detection. The scanning electron micrographs of the fiber surface revealed a polymeric ionic liquid (PIL) film, which is distributed homogeneously on the fiber. The developed PIL fiber showed good linearity between 50 and 2000μg/L with regression coefficients in the range of 0.996-0.999. The relative standard deviations (RSD) obtained in the peak area were found to vary between 1% and 12%, which assured that adequate repeatability was achieved. The spiked recoveries for three beer samples ranged from 78.4% to 123.6%. Experimental design has been employed in the optimization of extraction factors and robustness assessment. The polymeric IL-1 butenyl fiber showed a greater efficiency compared to the PDMS-DVB (65μm) and CAR-PDMS (75μm) for the extraction of all of the analytes studied.

  6. Novel polymeric sulfonium photoacid generator and its application for chemically amplified photoresists

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Qiao, Yu; Wang, Liyuan

    2014-03-01

    Chemically amplified resists (CARs) which involved the photoacid generator (PAG) have been widely used because of the high sensitivity. The inherent incompatibility between the polymer matrix and small molecular PAGs leads to problems including PAG phase separation, non-uniform initial PAG and photoacid distribution, as well as acid migration during the post-exposure baking (PEB) processes. The polymeric PAGs based resist systems which incorporated the PAG units into the main chain showed improved lithographic performance, such as faster photospeed and higher stability, lower outgassing, and lower LER than corresponding blend resists. In this paper, a novel type of polymeric PAGs based on poly (4-hydroxylstyrene) (PHS) was discussed. Chemically amplified photorssists were formed by the polymeric PAG and other film forming material containing acid labile groups. The polymeric PAGs showed advantage over the common small molecular PAG and patterns with 180 nm resolution was obtained in the 248-nm lithography.

  7. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  8. Polymeric Microelectronics

    DTIC Science & Technology

    1983-06-01

    direction, only the component of the light polarized in that direction will be affected. 17 GLASS SPACER GLASS INSULATING FILM SIGNAL...STATE MOLECULES ALIGNED HORIZONTALLY IN OFF STATE @ GLASS ® INSULATION FILM © TRANSPARENT ELECTRODES ® LIQUID CRYSTAL Figure 4-3. FOUR-STAGE...film 29 A thick and 0.72 mm wide. Electrodes are covered with an insulating layer of silicon dioxide. The two pieces of glass were separated by a

  9. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  10. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  11. UV radiation induced surface modulation time evolution in polymeric materials

    NASA Astrophysics Data System (ADS)

    Apostol, I.; Apostol, D.; Damian, V.; Iordache, I.; Hurduc, N.; Sava, I.; Sacarescu, L.; Stoica, I.

    2010-11-01

    The reorganization processes at submicron level of the polymeric materials have been investigated because of their applications in optoelectronics and bio-science. We have obtained surface relief modulation in single step processing on the photo resist and polysiloxane films. But for technical applications the time evolution and stability of the induced surface structure is an important parameter and is a problem to be discussed. In case of single step surface relief formation on polymeric materials the process is connected with the photochromic behavior of the materials. As it is known the UV light induced effects on the material structure are reversible under the action of visible light, but with different speeds. In this report is analyzed the time evolution of the surface modulation obtained under the action of the UV light for azopolymers with different structures.

  12. Polymeric matrix materials for infrared metamaterials

    SciTech Connect

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  13. Studies in reactive extrusion processing of biodegradable polymeric materials

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  14. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  15. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  16. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06850a Click here for additional data file.

    PubMed Central

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Imbuluzqueta, Edurne; Arruebo, Manuel; Santamaría, Jesús

    2016-01-01

    A new strategy to nanoengineer multi-functional polymer–metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography. PMID:26612770

  17. Biokompatible Polymere

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  18. Hydrophobicity enhancement of Al2O3 thin films deposited on polymeric substrates by atomic layer deposition with perfluoropropane plasma treatment

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Choi, Kyung-Hyun; Kim, Chang Young; Doh, Yang Hoi; Jo, Jeongdai

    2014-06-01

    The optoelectronics devices such as organic light emitting diodes are greatly vulnerable to moisture, which reduces their functionality and life cycle. The Al2O3 thin films are mostly used as barrier coatings in such electronic devices to protect them from water vapors. The performance of the Al2O3 barrier films can be improved by enhancing their hydrophobicity. Greater the hydrophobicity of the barrier films, greater will be their protection against water vapors. This paper reports on the enhancement of hydrophobicity of Al2O3 thin films through perfluoropropane (C3F8) plasma treatment. Firstly, good quality Al2O3 films have been fabricated through atomic layer deposition (ALD) on polyethylene naphthalate (PEN) substrates at different temperatures. The fabricated films are then plasma treated with C3F8 to enhance their hydrophobicity. Hydrophobic Al2O3 thin films have shown good morphological and optical properties. Low average arithmetic roughness (Ra) of 1.90 nm, 0.93 nm and 0.88 nm have been recorded for the C3F8 plasma treated films deposited at room temperature (RT), 50 °C and 150 °C, respectively. Optical transmittance of more than 90% has been achieved for the C3F8 plasma treated films grown at 50 °C and 150 °C. The contact angle has been increased from 48° ± 3 to 158° ± 3 for the films deposited at RT and increased from 41° ± 3 to 148° ± 3 for the films deposited at 150 °C.

  19. Correlation between the structural, morphological, optical, and electrical properties of In2O3 thin films obtained by an ultrasonic spray CVD process

    NASA Astrophysics Data System (ADS)

    Bouhdjer, A.; Attaf, A.; Saidi, H.; Bendjedidi, H.; Benkhetta, Y.; Bouhaf, I.

    2015-08-01

    Indium oxide (In2O3) thin films are successfully deposited on glass substrate at different deposition times by an ultrasonic spray technique using Indium chloride as the precursor solution; the physical properties of these films are characterized by XRD, SEM, and UV-visible. XRD analysis showed that the films are polycrystalline in nature having a cubic crystal structure and symmetry space group Ia3 with a preferred grain orientation along the (222) plane when the deposition time changes from 4 to 10 min, but when the deposition time equals 13 min we found that the majority of grains preferred the (400) plane. The surface morphology of the In2O3 thin films revealed that the shape of grains changes with the change of the preferential growth orientation. The transmittance improvement of In2O3 films was closely related to the good crystalline quality of the films. The optical gap energy is found to increase from 3.46 to 3.79 eV with the increasing of deposition time from 4 to 13 min. The film thickness was varied between 395 and 725 nm. The film grown at 13 min is found to exhibit low resistivity (10-2 Ω·cm), and relatively high transmittance (˜ 93%).

  20. The ice repellency of plasma polymerized hexamethyldisiloxane coating

    NASA Astrophysics Data System (ADS)

    Foroughi Mobarakeh, L.; Jafari, R.; Farzaneh, M.

    2013-11-01

    A superhydrophobic thin film was deposited on an aluminium oxide substrate by low pressure plasma polymerization of hexamethyldisiloxane (HMDSO). The coating was determined to be superhydrophobic due to its high water contact angle (∼158°) and low contact angle hysteresis. The aim of this work is to verify the icephobic properties of the HMDSO thin films obtained under simulated atmospheric conditions in a wind tunnel at sub-zero temperature and subsequent centrifugal adhesion test. The results obtained showed that the ice adhesion strength of the superhydrophobic HMDSO coating was 3.5 times lower than that on an aluminium substrate as reference tests. Although ice adhesion strength of the surface increased after 15 times icing/de-icing cycles, the surface kept its icephobic properties (ice adhesion strength 1.4 times lower than untreated aluminium).

  1. Laser interferometry studies of polymeric membrane formation

    SciTech Connect

    Tan, Li; Greenberg, A.R.; Krantz, W.B.

    1993-12-31

    The various processes by which polymeric membranes are formed all involve the solidification of an initially homogenous liquid phase. In order to validate a predictive model for these formation processed, it is necessary to make real-time noninvasive measurements of important process parameters. Although techniques have been described recently for the acquisition of mass and temperature data, no procedures have been reported for the measurement of instantaneous film thickness even though this is a particularly critical process variable. In response to this need, the authors have developed a novel laser interferometry technique which permits changes as small as 0.2 microns in film thickness to be measured. Utilizing this technique, real-time film thickness data for the cellulose acetate-acetone-water system have been obtained and compared with the dry-cast process model developed by the authors` group. It has been found that the experimental results and the model predictions are in good agreement. The theoretical basis for interference measurements, the experimental considerations in the utilization of a laser light source and the general applicability of the experimental technique also will be discussed.

  2. Procedure for the formation of a coating on an object by polymerization by luminescent discharge

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The object to be coated was placed in a reaction area located in a luminescent discharge chamber. By introducing the polymerizable material in this reaction area and applying an electrical field to this reaction, a polymerized film was obtained on the coating object under controlled conditions. By the use of thermomechanical treatment on the object, the undesirable effects of discoloration, brittleness, and viscosity can be controlled.

  3. Facile synthesis of poly(3,4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells.

    PubMed

    Yin, Xiong; Wu, Fan; Fu, Nianqing; Han, Jing; Chen, Dongliang; Xu, Peng; He, Meng; Lin, Yuan

    2013-09-11

    A high-performance Pt-free counter electrode (CE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) film for plastic dye-sensitized solar cells (DSCs) has been developed via a facile solid-state polymerization (SSP) approach. The polymerization was simply initiated by sintering the monomer, 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT), at the temperature of 80 °C, which can be applied on the plastic substrate. The cyclic voltammetry measurements revealed that the catalytic activity of the SSP-PEDOT CE for triiodide reduction is comparable with that of the Pt CE. Under optimized conditions, the power conversion efficiency of a DSC with a N719-sensitized TiO2 photoanode and the SSP-PEDOT CE is 7.04% measured under standard 1 sun illumination (100 mW cm(-2), AM 1.5), which is very close to that of the device fabricated under the same conditions with a conventional thermally deposited Pt CE (7.35%). Furthermore, taking advantage of the compatibility of the SSP-PEDOT with the plastic substrates, a full plastic N719-sensitized TiO2 solar cell was demonstrated, and an efficiency of 4.65% was achieved, which is comparable with the performance of a plastic DSC with a sputter-deposited Pt CE (5.38%). These results demonstrated that solid-state polymerization initiated at low temperature is a facile and low-cost method of fabricating the high-performance Pt-free CEs for plastic DSCs.

  4. Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

    PubMed Central

    Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    Summary We investigate the effect of the thickness of the silicon nitride (SiNx) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol–gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiNx diffusion barrier. Increasing the thickness of the SiNx diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol–gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiNx barrier diffusion. The SiNx barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed. PMID:26665074

  5. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  6. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  7. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  8. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  9. Physical properties of Zn /SUB x/ Cd /SUB 1-x/ S films obtained by chemical deposition from the vapor phase in a hydrogen flux

    SciTech Connect

    Razykov, T.M.

    1984-01-01

    The crystal-physics, electrophysical, and photoelectric properties of films of Zn /SUB x/ Cd /SUB 1-x/ S solid solutions over the whole range 0 less than or equal to x less than or equal to 1 are discussed.

  10. Spectroscopy of new Sm(III) orange emitting phosphors of the type Na[Sm(SP)4], Na[Sm(WO)4] (where SP = C6H5S(O)2NP(O)(OCH3)2-; WO = CCl3C(O)NP(O)(OCH3)2-) and the polymeric materials obtained on their base

    NASA Astrophysics Data System (ADS)

    Cybińska, Joanna; Guzik, Małgorzata; Gerasymchuk, Yuriy; Trush, Victor A.; Lisiecki, Radosław; Legendziewicz, Janina

    2017-01-01

    Among a wide variety of solid state materials lanthanide beta-diketonates, their derivatives and polymeric materials based on them have become essential for advance technologies. Thus they are the subject of extensive spectroscopic studies. Using appropriate lanthanide chelates for the emission layer one can achieve electroluminescence covering the spectrum from blue to infrared. Moreover, compounds with proper chromophores can be the best way to excite and enhance the emission although the f-f transitions have forbidden character. Two types of new Sm(III) chelates; phosphoro and sulfono-derivatives of beta-diketones and polymeric materials on their base were obtained and characterized by the high resolution photoluminescence spectroscopy at 293, 77 and 4 K, as well as by luminescence decay times. Those new type of phosphors shows strong orange emission after excitation at 404 nm Sm(III) states and 280 nm ligand bands. Radiative transition probabilities were calculated from absorption spectra and Judd- Ofelt parameters evaluated. Effects of the temperature, rigidity of polymeric lattice and the energy of excitation on intensities of the Sm(III) fluorescence were studied. The paths of energy transfer are analysed and mechanism of this process is proposed.

  11. High temperature structural, polymeric foams from high internal emulsion polymerization

    SciTech Connect

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  12. Deposition and characterization of high temperature superconducting YBa2Cu3O7-δ films obtained by DC magnetron sputtering and thermal annealing modification

    NASA Astrophysics Data System (ADS)

    Beshkova, M.; Blagoev, B.; Kovacheva, D.; Mladenov, G.; Nurgaliev, T.

    2008-05-01

    C-axis oriented 100-nm thick YBCO films were deposited on LaAlO3 (100) substrates at substrate temperature of 780°C in a mixed oxygen/argon atmosphere (1:3) of 0.3 Torr by DC off-axis magnetron sputtering. The samples deposited were thermally annealed in oxygen ambient of 600 Torr at 530°C for 40 min. Superconductivity with zero resistance 89.1K was observed for the YBCO films after annealing. These results show that thermal annealing is an important technique for improving the parameters of thin superconducting films. A correlation between the YBCO layers properties before and after annealing was established.

  13. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film.

    PubMed

    Voběrková, Stanislava; Hermanová, Soňa; Hrubanová, Kamila; Krzyžánek, Vladislav

    2016-03-01

    The influence of biofilm formation as the mode of microorganism growth on degradation of synthetic polymers represents an important research topic. This study focuses on the effect of biofilm developed by Bacillus subtilis (BS) cultivated submerged under various nutrition conditions on biodeterioration of poly(ε-caprolactone) film. Polymer in the film form (thickness 0.7 mm) was incubated for 21 days either continuously or by regularly renewed system. The scission of polyester chain bonds took place in all biotic media and was enhanced by biofilm formation in nutrient-rich media.

  14. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging.

    PubMed

    Iseppi, Ramona; Pilati, Francesco; Marini, Michele; Toselli, Maurizio; de Niederhäusern, Simona; Guerrieri, Elisa; Messi, Patrizia; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata; Bondi, Moreno

    2008-04-30

    In this study, Enterocin 416K1, a bacteriocin produced by Enterococcus casseliflavus IM 416K1, was entrapped in an organic-inorganic hybrid coating applied to a LDPE (low-density polyethylene) film for its potential use in the active food packaging field. The antibacterial activity of the coated film was evaluated against Listeria monocytogenes NCTC 10888 by qualitative modified agar diffusion assay, quantitative determination in listeria saline solution suspension and direct contact with artificially contaminated food samples (frankfurters and fresh cheeses) stored at room and refrigeration temperatures. All investigations demonstrated that enterocin-activated coatings have a good anti-listeria activity. Qualitative tests showed a clear zone of inhibition in the indicator lawn in contact with and around the coated film. During the quantitative antibacterial evaluation the L. monocytogenes viable counts decreased to 1.5 log units compared to the control. The inhibitory capability was confirmed also in food-contact assays. In all food samples packed with coated films we observed a significant decrease in L. monocytogenes viable counts in the first 24 h compared to the control. This difference was generally maintained up to the seventh day and then decreased, with the exception of the cheese samples stored at refrigeration temperature.

  15. Cost-efficient entrapment of β-glucosidase in nanoscale latex and silicone polymeric thin films for use as stable biocatalysts.

    PubMed

    Javed, Muhammad Rizwan; Buthe, Andreas; Rashid, Muhammad Hamid; Wang, Ping

    2016-01-01

    β-Glucosidase is an ubiquitous enzyme which has enormous biotechnological applications. Its deficiency in natural enzyme preparations is often overcome by exogenous supplementation, which further increases the enzyme utilization cost. Enzyme immobilization offers a potential solution through enzyme recycling and easy recovery. In the present work Aspergillus niger β-glucosidase is immobilized within nanoscale polymeric materials (polyurethane, latex and silicone), through entrapment, and subsequently coated onto a fibrous support. Highest apparent activity (90 U g(-1) polymer) was observed with latex, while highest entrapment efficiency (93%) was observed for the silicone matrix. Immobilization resulted in the thermo-stabilization of the β-glucosidase with an increase in optimum temperature and activation energy for cellobiose hydrolysis. Supplementation to cellulases also resulted in an increased cellulose hydrolysis, while retaining more than 70% functional stability. Hence, the current study describes novel preparations of immobilized β-glucosidase as highly stable and active catalysts for industrial food- and bio-processing applications.

  16. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C. Jeffrey; Keefer, Keith D.; Lenahan, Patrick M.

    1987-01-01

    A method of coating a substrate with a thin film of a polymer of predetermined porosity comprises depositing the thin film on the substrate from a non-gelled solution comprising at least one hydrolyzable metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base, prior to depositing the film, controlling the structure of the polymer for a given composition of the solution exclusive of the acid or base component and the water component, (a) by adjusting each of the water content, the pH, and the temperature to obtain the desired concentration of alkoxide, and then adjusting the time of standing of the solution prior to lowering the temperature of the solution, and (b) lowering the temperature of the solution after the time of standing to about 15 degrees C. or lower to trap the solution in a state in which, after the depositing step, a coating of the desired porosity will be obtained, and curing the deposited film at a temperature effective for curing whereby there is obtained a thin film of a polymer of a predetermined porosity and corresponding pore size on the substrate.

  17. The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus

    PubMed Central

    Mwale, Fackson; Petit, Alain; Tian Wang, Hong; Epure, Laura M; Girard-Lauriault, Pierre-Luc; Ouellet, Jean A; Wertheimer, Michael R; Antoniou, John

    2008-01-01

    We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated “PPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes. PMID:19478889

  18. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  19. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    SciTech Connect

    Martinez, H.M.; Torres, J.; Lopez Carreno, L.D.; Rodriguez-Garcia, M.E.

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.

  20. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    NASA Astrophysics Data System (ADS)

    Ping, Xiang; Wang, Mozhen; Ge, Xuewu

    2011-05-01

    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and 1H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature ( Tg) and cold-crystallization temperature ( Tcc) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  1. UV-cured polymeric films containing ZnO and silver nanoparticles with UV-vis light-assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C.

    2016-07-01

    Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic (1H (13C) NMR, FTIR, UV-vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57-90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10-2 s-1) and visible irradiation (2.9 × 10-2 min-1). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10-2 min-1). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  2. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    PubMed Central

    Figueiredo, Andrea G. P. R.; Figueiredo, Ana R. P.; Alonso-Varona, Ana; Fernandes, Susana C. M.; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J. D.; Pascoal Neto, Carlos; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications. PMID:24093101

  3. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.

    PubMed

    Figueiredo, Andrea G P R; Figueiredo, Ana R P; Alonso-Varona, Ana; Fernandes, Susana C M; Palomares, Teodoro; Rubio-Azpeitia, Eva; Barros-Timmons, Ana; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.

  4. Chitosan/Mimosa tenuiflora films as potential cellular patch for skin regeneration.

    PubMed

    Valencia-Gómez, Laura Elizabeth; Martel-Estrada, Santos Adriana; Vargas-Requena, Claudia; Rivera-Armenta, José Luis; Alba-Baena, Noe; Rodríguez-González, Claudia; Olivas-Armendáriz, Imelda

    2016-12-01

    Bio-composites films were prepared by casting and drying of aqueous solutions containing different weight ratios of chitosan and bark of Mimosa tenuiflora. The physico-chemical and functional properties of the films were characterized by scanning electron microscopy, dynamical mechanical analysis, wettability, cytotoxicity and in vitro antibacterial activities. The morphology studies confirmed that the presence of Mimosa tenuiflora change the surface of films. Moreover, the incorporation of Mimosa tenuiflora improved the thermal stability of the films, as it was indicated by the changes in the glass temperatures obtained. Water-uptake ability changed in relation to polymeric composition of film. This property increased by the addition of Mimosa tenuiflora to the film. Improved antibacterial properties were measured against Escherichia Coli and Micrococcus lysodeikticus or luteus. Finally, cytotoxicity was studied by MTT assay and the films were non-toxic. These preliminary results provide a cheap way to prepare chitosan/Mimosa tenuiflora films for wound healing and skin regeneration.

  5. Dry film refractive index as an important parameter for ultra-low fouling surface coatings.

    PubMed

    Brault, Norman D; Sundaram, Harihara S; Li, Yuting; Huang, Chun-Jen; Yu, Qiuming; Jiang, Shaoyi

    2012-03-12

    Here we demonstrate that the film refractive index (RI) can be an even more important parameter than film thickness for identifying nonfouling polymer films to undiluted human blood plasma and serum. The film thickness and RI are two parameters obtained from ellipsometry. Previously, film thickness has been correlated to ultra-low fouling properties. Practically, the film RI can be used to characterize polymer density but is often overlooked. By varying the water content in the surface-initiated atom transfer radical polymerization of zwitterionic carboxybetaine, a minimum of ∼1.5 RI units was necessary to achieve <5 ng/cm(2) of adsorption from undiluted human serum. A model of the film structure versus water content was also developed. These results point to an important parameter and simple approach for identifying surface coatings suitable for real-world applications involving complex media. Therefore, ultra-low fouling using a thin film is possible if it is densely packed.

  6. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  7. Porous polymers by controlling phase separation during vapor deposition polymerization.

    PubMed

    Tao, Ran; Anthamatten, Mitchell

    2013-11-01

    A template-free method is described to fabricate continuous-phase, porous polymer films by simultaneous phase separation during vapor deposition polymerization. The technique involves concurrent polymerization, crosslinking, and phase separation of condensed species and reaction products. Deposited films form open-cell, macroporous structures consisting of crosslinked and glassy poly(glycidyl methacrylate). By limiting phase separation during vapor phase deposition, spatially dependent morphologies, such as layered morphologies, can be grown. Results show that combining vapor deposition polymerization with phase separation establishes morphological control, which may be applied to applications including cellular scaffolds, thin cushions and vibration dampers, and membranes for separations.

  8. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  9. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    PubMed

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  10. Growth promoting hormonal implant pellets coated with a polymeric, porous film promote weight gain by grazing beef heifers and steers for up to 200 days.

    PubMed

    Cleale, R M; Edmonds, J D; Edmonds, M; Hunsaker, B D; Kraft, L A; Smith, L L; Yazwinski, T A

    2015-04-01

    Two studies evaluated growth promoting effects of implant pellets (IP), each containing 3.5 mg estradiol benzoate (EB) and 25 mg trenbolone acetate (TBA), to which a polymeric, porous coating was applied. Trial 1 evaluated performance of heifers (n = 70/treatment, initial BW = 188 ± 2.2 kg) and steers (n = 70/treatment, initial BW = 194 ± 2.2 kg) implanted subcutaneously in the ear with 0 (SC), 2 (2IP), 4 (4IP), or 6 (6IP) pellets that delivered EB/TBA (mg/mg) doses of 0/0, 7/50, 14/100, and 21/150, respectively, over grazing periods of 202 d (heifers) or 203 d (steers). Animals received experimental treatments on d 0 and over the grazing period were managed as single groups by sex in a rotational grazing system. When pasture forage availability became limited, cattle were supplemented with preserved forage but not concentrate supplements. Weight gains by heifers treated with 2IP, 4IP, and 6IP were greater (P < 0.05) than SC heifers but not different from each other. Weight gains by steers treated with 2IP, 4IP, and 6IP were greater than SC steers (P < 0.05), and ADG by steers treated with 6IP was greater (P < 0.05) than steers given 2IP or 4IP. Trial 2 was a multisite grazing study performed with heifers and steers to compare ADG after treatment with one 6-pellet, coated implant delivering 21 mg EB and 150 mg TBA (6IP) to sham treated negative controls (SC) over a grazing period of at least 200 d. A completely random design was used at each site, with the goal to treat 70 cattle per site, treatment, and sex; data were pooled across sites. Heifers (n = 558, initial BW = 229 ± 16 kg) and steers (n = 555, initial BW = 235 ± 20 kg) grazed in rotational programs consistent with regional practices for an average of 202 d. When necessary, cattle were supplemented with preserved forage, but no concentrate supplements were fed. Over 202 d, ADG by heifers treated with 6IP was 11.3% greater (P = 0.0035) than SC heifers (0.64 ± 0.06 kg/d), and ADG by steers treated with

  11. Properties of an indirect composite material polymerized with two different laboratory polymerizing systems.

    PubMed

    Satsukawa, Hidetada; Koizumi, Hiroyasu; Tanoue, Naomi; Nemoto, Mika; Ogino, Tomohisa; Matsumura, Hideo

    2005-09-01

    The purpose of the current study was to evaluate the performance of two laboratory light polymerization systems used to polymerize an indirect composite (Sinfony). A two-step polymerization system (Visio-Alfa and Beta) and a halogen-metal halide unit (Twinkle MIII) were assessed. The composite was polymerized either with the Visio units or with the MIII unit for different exposure periods. Knoop hardness, water sorption, and solubility in water of the composite polymerized with the following modes were determined: Visio, 15 minutes; MIII, 30, 60, 90, 120, and 180 seconds. Extension of light exposure time to the MIII unit improved the hardness of the composite from 30.5 (30 s) to 40.7 (180 s), whereas hardness obtained with the Visio units resulted in 24.8 (15 minutes). Water sorption and solubility of the composite were greater when it was polymerized with the Visio units than with the MIII unit.

  12. Data reduction of digitized images processed from calibrated photographic and spectroscopic films obtained from terrestial, rocket and space shuttle telescopic instruments

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.

    1990-01-01

    The Microvax 2 computer, the basic software in VMS, and the Mitsubishi High Speed Disk were received and installed. The digital scanning tunneling microscope is fully installed and operational. A new technique was developed for pseudocolor analysis of the line plot images of a scanning tunneling microscope. Computer studies and mathematical modeling of the empirical data associated with many of the film calibration studies were presented. A gas can follow-up experiment which will be launched in September, on the Space Shuttle STS-50, was prepared and loaded. Papers were presented on the structure of the human hair strand using scanning electron microscopy and x ray analysis and updated research on the annual rings produced by the surf clam of the ocean estuaries of Maryland. Scanning electron microscopic work was conducted by the research team for the study of the Mossbauer and Magnetic Susceptibility Studies on NmNi(4.25)Fe(.85) and its Hydride.

  13. Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties

    NASA Astrophysics Data System (ADS)

    Sekkat, Zouheir; Knoll, Wolfgang

    1995-10-01

    It was shown recently that the application of a dc field across a polymer film containing polar azo dye chromophores at a temperature far below that of its glass transition leads to an appreciable polar order when the azo dyes undergo cis \\left-right-double-arrow trans isomerization. We present a detailed theoretical study of this phenomenon based on the enhanced mobility of the azo chromophores during the isomerization process. The equations representing this phenomenological theory are solved by recurrence relations of Legendre polynomials, and both the steady state and the dynamics are investigated. Analytical expressions are derived for the photoinduced polar order and its related anisotropy for both cis and trans molecular distributions.

  14. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  15. Research on interfacial polymerization of pyrrole assist with Span80 system

    NASA Astrophysics Data System (ADS)

    Yang, Q. H.; Tu, Z. Y.; Zhao, N. Y.

    2016-07-01

    With assistance of surfactants, self-assembled Polypyrrole (PPy) film was prepared via oil / water interfacial polymerization. The chemical structure and morphologies of the obtained samples have been characterized by Fourier transform infrared (FT-IR) and Scanning Electron Microscope (SEM), respectively. The electrochemical performance recorded on an electrochemical workstation, mainly includes cyclic voltammetry (CV) tests. The prepared PPy film has its own extremely vesicular structures from results and indicates by using different concentration surfactant Span80. The PPy film prepared 25 °C with 3.32 g/L Span80 (surpass its critical micelle concentration) as a surfactant possess a supernal specific capacitance of 368.18 F/g at a scan rate 50 mV/s in 1 M NaNO3 aqueous solution at.

  16. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  17. Self-assembly of block copolymers on topographically patterned polymeric substrates

    SciTech Connect

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  18. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  19. Preparation of a Functionally Graded Fluoropolymer Thin Film and Its Application to Antireflective Coating

    NASA Astrophysics Data System (ADS)

    Senda, Kazuo; Matsuda, Tsuyoshi; Kawanishi, Takumi; Tanaka, Kuniaki; Usui, Hiroaki

    2013-05-01

    Fluoropolymer thin films were prepared by the ion-assisted vapor deposition polymerization (IAD) of 2-(perfluorohexyl) ethylacrylate (Rf-6) under Ar ion irradiation. The ion acceleration voltage Va largely affected the film characteristics. With increasing Va, the adhesion strength between the film and the substrate improved, while the surface energy and the refractive index increased. To attain a high adhesion strength, a low surface energy, and a low optical reflectivity simultaneously, a functionally graded film was prepared by varying Va from 300 to 0 V continually in the course of film growth. As a consequence, an antireflective coating with good adhesion and low surface energy was obtained. The optical reflectivity of a glass substrate was reduced from 4.9 to 0.55% at a wavelength of 400 nm by depositing a 100-nm-thick single-layer functionally graded fluoropolymer film. The surface energy of this film was 8.5 mJ/m2.

  20. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    NASA Astrophysics Data System (ADS)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  1. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  2. Flip-chip integration of Si bare dies on polymeric substrates at low temperature using ICA vias made in dry film photoresist

    NASA Astrophysics Data System (ADS)

    Vásquez Quintero, Andrés; Briand, Danick; de Rooij, Nico F.

    2015-04-01

    In this paper, a low temperature flip-chip integration technique for Si bare dies is demonstrated on flexible PET substrates with screen-printed circuits. The proposed technique is based on patterned blind vias in dry film photoresist (DP) filled with isotropic conductive adhesive (ICA). The DP material serves to define the vias, to confine the ICA paste (80 µm-wide and potentially 25 µm-wide vias), as an adhesion layer to improve the mechanical robustness of the assembly, and to protect additional circuitry on the substrate. The technique is demonstrated using gold-bumped daisy chain chips (DCCs), with electrical vias resistances in the order to hundreds of milliohms, and peel/shear adhesion strengths of 0.7 N mm-1 and 3.2 MPa, respectively, (i.e. at 1.2 MPa of bonding pressure). Finally, the mechanical robustness to bending forces was optimized through flexural mechanics models by placing the neutral plane at the DCC/DP adhesive interface. The optimization was performed by reducing the Si thickness from 400 to 37 µm, and resulted in highly robust integrated assemblies withstanding 10 000 cycles of dynamic bending at 40 mm of radius, with relative changes in vias resistance lower than 20%. In addition, the electrical vias resistance and adhesion strengths were compared to samples integrated with anisotropic conductive adhesives (ACAs). Besides the low temperature and high integration resolution, the proposed method is compatible with large area fabrication and multilayer architectures on foil.

  3. Macrokinetic characteristics of isobutylene polymerization

    SciTech Connect

    Minsker, K.S.; Berlin, A.A.; Enikolopyan, N.S.; Prochukhan, Y.A.; Svinkov, A.G.

    1986-08-01

    This paper describes a method of obtaining oligo and polyisobutylene with a molecular mass of 112-50,000: the cationic polymerization of isobutylene carried out in the presence of AlCl/sub 3/, in an environment of hydrocarbons (butanes, etc.) or chlorinated hydrocarbons (ethyl chloride, methyl chloride, etc.) at a temperature of 173-353 K/sub 3/ and in mixer-reactors of complicated design with a volume of 1.5-30 m.

  4. Polymeric Materials Resistant to Erosion by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Thibeault, Sheila A.

    2004-01-01

    Polymer-matrix composites are ideally suited for space vehicles because of high strength to weight ratios. The principal component of the low earth orbit (LEO) is atomic oxygen. Atomic oxygen causes surface erosion to polymeric materials. Polymer films with an organometallic additive showed greater resistance to atomic oxygen than the pure polymer in laboratory experiments and in the OPM/MIR experiment. In MISSE, the film with the organometallic additive was still intact after the pure film had completely eroded.

  5. Photopolymerization of conductive polymeric metal nanoparticles.

    PubMed

    Cai, Xichen; Anyaogu, Kelechi C; Neckers, Douglas C

    2009-11-01

    5-Mercapto-2,2'-bithiophene functionalized metal nanoparticles BTSMs [M: copper (Cu), silver (Ag), and gold (Au)] of different diameters (2-8 nm) were synthesized. Conductive polymeric metal nanoparticles were formed from BTSM by UV irradiation. The photopolymerization mechanism was investigated using transient absorption measurements. Intramolecular electron transfer from the ligand to the metal nano-core was confirmed. Nanoparticle size, as well as plasmon electronic interactions, are important factors. The smaller the nanoparticle and the stronger the electronic interactions, the faster the electron transfer is. The three-dimensional structure of the polymerized BTSM was identified using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The conductivity of polymerized BTSM measured in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) film is higher than that of the nonpolymerized BTSM.

  6. Attempting a classification for electrical polymeric actuators

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; López Cascales, J.; Fernández-Romero, A. J.

    2007-04-01

    Polymeric actuators, electroactive polymer actuators, electromechanical polymeric actuators, artificial muscles, and other, are usual expressions to name actuators developed during the last 15-20 years based on interactions between the electric energy and polymer films. The polymeric actuators can be divided into two main fields: electromechanical actuators working by electrostatic interactions between the polymer and the applied electric fields, and electrochemomechanical actuators, or reactive actuators, working by an electrochemical reaction driven by the flowing electric current. The electromechanical actuators can be classified into electrostrictive, piezoelectric, ferroelectric, electrostatic and electrokinetic. They can include a solvent (wet) or not (dry), or they can include a salt or not. Similitude and differences related to the rate and position control or to the possibility or not to include sensing abilities are discussed.

  7. UV recording with vinyl acetate and muicle dye film

    NASA Astrophysics Data System (ADS)

    Toxqui-Lopez, S.; Olivares-Pérez, A.; Santacruz-Vazquez, V.; Fuentes-Tapia, I.; Ordoñez-Padilla, J.

    2015-03-01

    Nowadays, there are many types of holographic recording medium some of them are photopolymer systems that generally consist of a polymeric host matrix, photopolymerizable momomer, photosensitizing dye and charge transfer agent but some of them have an undesirable feature, the toxicity of their components. Therefore, the present research study material recording, vinyl acetate is selected as polymeric matrix and natural dye from "muicle plant" is used as the photoinitiation these components are not toxic. The films are fabricated using gravity settling method at room temperature by this method, uniform films is obtained with good optical quality. To characterize the medium, been obtained when the coherent reed light (632.8 nm) was sent normally to the grating.

  8. Detection Of Gas-Phase Polymerization in SiH4 And GeH4

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.

    1990-01-01

    Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.

  9. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    PubMed

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  10. Atmospheric pressure plasma polymerization using double grounded electrodes with He/Ar mixture

    SciTech Connect

    Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang; Tae, Heung-Sik; Shin, Bhum Jae; Seo, Jeong Hyun

    2015-09-15

    In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CH species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.

  11. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance.

    PubMed

    Haaj, Sihem Bel; Thielemans, Wim; Magnin, Albert; Boufi, Sami

    2014-06-11

    Latex/starch nanocrystal (SNC) nanocomposite dispersions were successfully synthesized via a one-step surfactant-free Pickering emulsion polymerization route using SNC as the sole stabilizer. The effect of the SNC content, initiator type and comonomer on the particle size, colloidal stability, and film properties were investigated. Both HCl and H2SO4-hydrolysed starch nanocrystals, each bearing different surface charges, were used as Pickering emulsion stabilizing nanoparticles. SNCs from HCl hydrolysis were found to provide a better stabilization effect, giving rise to a polymer dispersion with a lower average particle size. The mechanistic aspects of the Pickering emulsion polymerization were also discussed. Nanocomposites formed by film-casting the polymer Pickering emulsions showed better mechanical properties and optical transparency than those obtained by blending the polymer emulsion with a nanocrystal dispersion, showing the one-pot route to nanocomposite precursors to be doubly advantageous. Therefore, this in situ polymerization technique not only facilitates the use of SNC nanoparticles, it also provides a valuable nanocomposite with enhanced mechanical properties and high transparency level.

  12. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  13. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  14. Supramolecular polymerization at the interface: layer-by-layer assembly driven by host-enhanced π-π interaction.

    PubMed

    Yang, Hui; Ma, Zhan; Yuan, Bin; Wang, Zhiqiang; Zhang, Xi

    2014-10-04

    Host-enhanced π-π interaction as a new driving force was used for fabricating layer-by-layer (LbL) films. This kind of LbL assembly can be regarded as a sort of supramolecular polymerization at the interface and its degree of supramolecular polymerization can be controlled efficiently by adjusting layer pairs similar to living polymerization in solution.

  15. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  16. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 2 carbon atoms of mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by sequentially treating an inert solid support material in an inert solvent with (i) a dihydrocarbyl magnesium compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a vanadium compound, and (iv) a Group IIIa metal halide. The process as above is described wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides.

  17. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-04-14

    A process is described for the polymerization of ethylene and alphaolefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by treating an inert support material in an inert solvent with (i) a dihydrocarbyl magnesium compound or a complex or mixture of an organic dihydrocarbyl magnesium compound and an aluminum compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a Group IIIa metal halide, (iv) at least one vanadium compound, and as the last step a second treatment with a Group IIIa metal halide.

  18. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  19. Poly-para-xylylene thin films: A study of the deposition chemistry, kinetics, film properties, and film stability

    NASA Astrophysics Data System (ADS)

    Fortin, Jeffrey Bernard

    Poly-para-xylylene, or parylene, thin films are chemically vapor deposited (CVD), conformal, pin-hole free polymeric thin films. They have found many industrial uses since there invention in 1947 and continue to find new applications in micro-electronics, biotechnology, and micro-electro-mechanical systems. In this study the deposition chemistry, deposition kinetics, film properties, and film stability were investigated. A differentially pumped quadrupole mass spectrometer was used to analyze the vapor species present during the CVD process. The identity of dimer contamination and its impact on the CVD process and film properties was studied. The quantitative conversion of dimer to monomer was investigated and it was found that conversion begins at around 385°C and by 565°C 100% conversion is obtained. The kinetics of the CVD process was analyzed for a range of substrate temperatures and chamber pressures. A new kinetic model based on a two-step adsorption was developed and fit the kinetic data well. This model should be appropriate for use with all parylene family polymers. Many of the properties of the films deposited in this study were analyzed. This includes a detailed study of surface morphology using atomic force microscopy which shows the interface width increases as a power law of film thickness. Other properties analyzed were the thermal stability, electrical properties, index of refraction, birefringence, hardness, and elastic modulus. The effect of ultraviolet (UV) radiation of lambda ≥ 250 nm on the thermal stability, electrical, and optical properties of thin parylene films was studied. The thermal stability and electrical properties of UV treated films were seen to deteriorate as the radiation dose increased. The stability of parylene thin films receiving plasma etching was analyzed. The dielectric constant, dissipation factor, and leakage current of plasma etched thin parylene films were investigated and found to be stable for the range of

  20. Synthesis and luminescence properties of polymeric complexes of Cu(II), Zn(II) and Al(III) with 8-hydroxyquinoline side group-containing polystyrene

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Wei, Xiaopeng; Zhang, Yanyan

    2013-01-01

    Three kinds of metalloquinolate-containing polystyrene were prepared via a polymer reaction and a coordination reaction. 5-Chloromethyl-8-hydroxyquinoline (CHQ) was first prepared through the chloromethylation reaction of 8-hydroxyquinoline (HQ) with 1,4-bichloromethoxy-butane as chloromethylation reagent. A polymer reaction, Friedel-Crafts alkylation reaction, was carried out between polystyrene (PS) and CHQ in the presence of Lewis catalyst, and HQ was bonded onto the side chains of PS, obtaining 8-hydroxyquinoline-functionalized Polystyrene, HQ-PS. And then, by using one-pot method with two-stage procedures, the coordination reaction of HQ-PS and small molecule HQ with metal ions including Al(III), Zn(II) and Cu(II) ions, was allowed to be carried out, and three polymeric metalloquinolates, AlQ3-PS, ZnQ2-PS and CuQ2-PS, were successfully prepared, respectively. In the chemical structures of these polymeric metalloquinolates, metalloquinolates were chemically attached onto the side chains of PS. HQ-PS and three polymeric metalloquinolates were fully characterized by FTIR, 1H NMR and TGA. The luminescence properties of the three polymeric metalloquinolates were mainly investigated by UV/Vis absorption spectra and fluorescence emission spectra in solutions and in solid film states. When excited by the ray at about 365 nm, the three polymeric metalloquinolates have blue-green luminescence, and the main emission peaks in the DMF solutions are located at 490, 482 and 502 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. As compared with their emissions in solutions, the emissions in solid film states are red-shifted to some extent, and the main emission peaks are located at 500, 488 and 510 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. Besides, these polymeric metalloquinolates have higher thermal stability than PS as polymeric skeleton.

  1. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  2. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  3. Polymeric spheres on substrates from a spin-coating process.

    PubMed

    Liu, Ying-Ling; Chen, Shi-Yi; Wang, Ko-Shung

    2009-02-01

    Formation of polymeric spheres in nanometer to sub-micrometer is achieved through a spin-coating process with polyamide (from 4,4(')-(hexafluoroisopropylidene)dianiline and 4,4(')-dicarboxydiphenylether) solutions in N,N-dimethylformamide and N,N-dimethylacetamide. The formation of polymeric spheres and their sizes are dependent on the polymer solution concentrations and the rates in spin-coating. The polymeric spheres could be obtained on various substrates including silicon, mica, and glass.

  4. Microwave-assisted radical polymerization of dialkyl fumarates

    NASA Astrophysics Data System (ADS)

    Cortizo, M. Susana; Laurella, Sergio; Alessandrini, José Luis

    2007-07-01

    Free radical polymerization of dialkyl fumarates (R:isopropyl, cyclohexyl, 2-ethylhexyl, 2-phenylethyl) under microwave irradiation was investigated. The polymerizations were carried out at different powers of irradiation and initiator concentrations (benzoyl peroxide, BP) and the effect of the monomer structure on the conversion, average molecular weights and the polydispersity index ( Mw/ Mn) was analyzed. A significant enhancement of the rates of polymerization was found, as compared with those obtained under thermal conditions.

  5. Formulation of cellulose film containing permeation enhancers for prolonged delivery of propranolol hydrocloride.

    PubMed

    Bigucci, Federica; Abruzzo, Angela; Cerchiara, Teresa; Gallucci, Maria Caterina; Luppi, Barbara

    2015-06-01

    The aim of this study was to evaluate the capacity of cellulose films enriched with oleic acid and polysorbate 80 to enhance the transdermal permeation of propranolol hydrochloride. Polymeric films were prepared by casting and drying aqueous solutions of hydroxypropylmethylcellulose or carboxymethylcellulose and characterized in chemical-physical properties, such as drug content, thickness, morphology and water uptake capacity. In vitro transport experiments were performed in order to evaluate the permeation enhancing ability of oleic acid and polysorbate 80. All carboxymethylcellulose films showed lower cumulative amounts of drug permeated than hydroxypropylmethylcellulose. Moreover, films containing both oleic acid and polysorbate 80 provided a greater permeation in comparison to film without permeation enhancers or only with one of these. The results obtained confirm that propranolol hydrochloride permeation can be easily modulated by varying the cellulose and enhancer type used for film preparation.

  6. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C.J.; Keefer, K.D.; Lenahan, P.M.

    1985-02-25

    A method is disclosed for coating a substrate with a thin film of a predetermined porosity. The method comprises: depositing the thin film on the substrate from a non-gelled solution comprising at least one metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base; prior to said depositing step, controlling the porosity and structure of said coating for a given composition of said solution exclusive of the acid or base component and the water component, by adjusting each of the water content, the pH, the temperature and the time of standing of said solution, increasing/descreasing the water content or the pH to increase/decrease the pore size of said coating, and increasing/decreasing the temperature or time of standing of said solution to increase/decrease the pore size of said coating; and curing said deposited film at a temperature effective for curing whereby there is obtained a thin film coating of a predetermined porosity on the substrate.

  7. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  8. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  9. Elastic Properties of Molecular Glass Thin Films

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    2011-12-01

    This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in T g were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of

  10. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    SciTech Connect

    Reed, John

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  11. Nanoparticle formation and thin film deposition in aniline containing plasmas

    NASA Astrophysics Data System (ADS)

    Pattyn, Cedric; Dias, Ana; Hussain, Shahzad; Strunskus, Thomas; Stefanovic, Ilija; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with plasma based polymerization processes in mixtures of argon and aniline. The investigations are performed in a capacitively coupled RF discharge (in pulsed and continuous mode) and concern both the observed formation of nanoparticles in the plasma volume and the deposition of films. The latter process was used for the deposition of ultra-thin layers on different kind of nanocarbon materials (nanotubes and free standing graphene). The analysis of the plasma and the plasma chemistry (by means of mass spectroscopy and in-situ FTIR spectroscopy) is accompanied by several ex-situ diagnostics of the obtained materials which include NEXAFS and XPS measurements as well as Raman spectroscopy and electron microscopy. The decisive point of the investigations concern the preservation of the original monomer structure during the plasma polymerization processes and the stability of the thin films on the different substrates.

  12. Polymeric assay film for direct colorimetric detection

    DOEpatents

    Charych, Deborah; Nagy, Jon; Spevak, Wayne

    2002-01-01

    A lipid bilayer with affinity to an analyte, which directly signals binding by a changes in the light absorption spectra. This novel assay means and method has special applications in the drug development and medical testing fields. Using a spectrometer, the system is easily automated, and a multiple well embodiment allows inexpensive screening and sequential testing. This invention also has applications in industry for feedstock and effluent monitoring.

  13. Polymeric assay film for direct colorimetric detection

    DOEpatents

    Charych, Deborah; Nagy, Jon; Spevak, Wayne

    1999-01-01

    A lipid bilayer with affinity to an analyte, which directly signals binding by a changes in the light absorption spectra. This novel assay means and method has special applications in the drug development and medical testing fields. Using a spectrometer, the system is easily automated, and a multiple well embodiment allows inexpensive screening and sequential testing. This invention also has applications in industry for feedstock and effluent monitoring.

  14. Responsive Plasma Polymerized Ultrathin Nanocomposite Films

    DTIC Science & Technology

    2012-01-01

    Ab ...so rb an ce (a .u .) Wavenumber, cm-1 NIPAAM 3500 3000 2500 2000 1500 32 72 15 4716 45 29 73 13 901 46 3 Ab so rb an ce (a .u .) Wavenumber, cm-1...PP-NIPAAM 3500 3000 2500 2000 1500 1000 500 69 9 13 76 32 53 16 28 Ab so rb an ce (a .u .) Wavenumber, cm-1 PP-TTIP 3500 3000 2500 2000 1500

  15. UV blocking filters for polymeric films

    NASA Technical Reports Server (NTRS)

    Rayl, G. J.

    1979-01-01

    The concept of incorporating UV screening agents in silicone resins as a means of protecting underlying solar cell covers and adhesives from UV degradation is presented. A silicone hard-coat resin incorporating a UV screening agent was selected as a suitable coating material for PFA Teflon solar cell covers. Consideration is given to fabrication procedures and techniques for introduction of the UV screening agents into silicone resins and application of these UV-inhibited coatings to the Teflons. Some preliminary environmental tests, such as thermal shock and temperature humidity, were conducted.

  16. Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(L-DOPA) functionalized substrate for improved enantiomer separation.

    PubMed

    Gu, Zhi-Gang; Fu, Wen-Qiang; Wu, Xin; Zhang, Jian

    2016-01-14

    A homochiral MOF film grown on a functionalized substrate in a capillary column with high orientation and homogeneity was successfully prepared by using a layer-by-layer liquid phase epitaxial method; by introducing self-polymerized 3,4-dihydroxy-L-phenylalanine (poly(L-DOPA)) as a chiral substrate, the obtained enantiopure substrate mounted homochiral MOF thin film showed improved enantiomer separation.

  17. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  18. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  19. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  20. Low electro-synthesis potentials improve permselectivity of polymerized natural phenols in biosensor applications.

    PubMed

    Monti, Patrizia; Calia, Giammario; Marceddu, Salvatore; Dettori, Maria A; Fabbri, Davide; Jaoua, Samir; O'Neill, Robert D; Migheli, Quirico; Delogu, Giovanna; Serra, Pier A

    2017-01-01

    First-generation amperometric biosensors are often based on the electro-oxidation of oxidase-generated H2O2. At the applied potential used in most studies, other molecules such as ascorbic acid or dopamine can be oxidized. Phenylenediamines are commonly used to avoid this problem: when these compounds are electro-deposited onto the transducer surface in the form of poly-phenylenediamine, a highly selective membrane is formed. Although there is no evidence of toxicity of the resulting polymer, phenylenediamine monomers are considered carcinogenic. An aim of this work was to evaluate the suitability of natural phenols as non-toxic alternatives to the ortho isomer of phenylenediamine. Electrosynthesis over Pt-Ir electrodes of 2-methoxy phenols (guaiacol, eugenol and isoeugenol), and hydroxylated biphenyls (dehydrodieugenol and magnolol) was achieved. The potentials used in the present study are significantly lower than values commonly applied during electro-polymerization. Polymers were obtained by means of constant potential amperometry, instead of cyclic voltammetry, in order to achieve multiple polymerizations, hence decreasing the time of realization and variability. Permselective properties of natural phenols were significantly improved at low polymerization potentials. Among the tested compounds, isoeugenol and magnolol, polymerized respectively at +25mV and +170mV against Ag/AgCl reference electrode, proved as permselective as poly-ortho-phenylenediamine and may be considered as effective polymeric alternatives. The natural phenol-coated electrodes were stable and responsive throughout 14 days. A biosensor prototype based on acetylcholine esterase and choline oxidase was electro-coated with poly-magnolol in order to evaluate the interference-rejecting properties of the electrosynthesized film in an amperometric biosensor; a moderate decrease in ascorbic acid rejection was observed during in vitro calibration of biosensors.

  1. Nanotube Film Electrode and an Electroactive Device Fabricated with the Nanotube Film Electrode and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.

  2. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  3. Next-generation polymeric photonic devices

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Shacklette, Lawrence W.; Norwood, Robert A.; Yardley, James T.

    1997-07-01

    A versatile polymeric waveguide technology is proposed for low-cost high-performance photonic devices that address the needs of both the telecom and the datacom industries. We have developed advanced organic polymeric materials that can be readily made into both multimode and single-mode optical waveguide structures of controlled numerical aperture and geometry. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, loss, and stability with temperature and humidity. These monomers are intermiscible, providing for precise adjustment of the refractive index from 1.3 to 1.6. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct-writing. A wide range of rigid and flexible substrates can be used, including glass, quartz, oxidized silicon, glass-filled epoxy printed circuit board substrate, and flexible polyimide film. We discuss the use of these materials on chips, on multi-chip modules, on boards, and on backplanes. Light coupling from and to chips is achieved by cutting 45 degree(s) mirrors using excimer laser ablation. Fabrication of the planar polymeric structures directly on the modules provides for stability, ruggedness, and hermeticity in packaging.

  4. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  5. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  6. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  7. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  8. Polymeric Materials for Advanced Aircraft and Aerospace Vehicles

    DTIC Science & Technology

    1979-09-01

    polymeric material (films and fibers ) and the molecular composites (cast and precipitated films) are presented. 19. Key Words (Cont.) cross linked...PBT 46 Fiber 77 34 SAXS Photograph of PBT 46 Fiber Using the 29 cm Setting in a Statton Camera 77 35 Schematic Showing the Geometrical Polefigure...Specimen 82 37 A Measured Polefigure of a PBO Heat-Treated Fiber (Celanese 26085-25-1) 84 38 Photograph of the Dynamic Imaging of X-ray Diffraction

  9. Evaluation of the Biofire FilmArray BioThreat-E Test (v2.5) for Rapid Identification of Ebola Virus Disease in Heat-Treated Blood Samples Obtained in Sierra Leone and the United Kingdom

    PubMed Central

    Bailey, Daniel; Matthews, Steven; Lumley, Sarah; Sweed, Angela; Ready, Derren; Eltringham, Gary; Richards, Jade; Vipond, Richard; Lukaszewski, Roman; Payne, Phillippa M.; Aarons, Emma; Simpson, Andrew J.; Hutley, Emma J.; Brooks, Tim

    2015-01-01

    Rapid Ebola virus (EBOV) detection is crucial for appropriate patient management and care. The performance of the FilmArray BioThreat-E test (v2.5) using whole-blood samples was evaluated in Sierra Leone and the United Kingdom and was compared with results generated by a real-time Ebola Zaire PCR reference method. Samples were tested in diagnostic laboratories upon availability, included successive samples from individual patients, and were heat treated to facilitate EBOV inactivation prior to PCR. The BioThreat-E test had a sensitivity of 84% (confidence interval [CI], 64% to 95%) and a specificity of 89% (CI, 73% to 97%) in Sierra Leone (n = 60; 44 patients) and a sensitivity of 75% (CI, 19% to 99%) and a specificity of 100% (CI, 97% to 100%) in the United Kingdom (n = 108; 70 patients) compared to the reference real-time PCR. Statistical analysis (Fisher's exact test) indicated there was no significant difference between the methods at the 99% confidence level in either country. In 9 discrepant results (5 real-time PCR positives and BioThreat-E test negatives and 4 real-time PCR negatives and BioThreat-E test positives), the majority (n = 8) were obtained from samples with an observed or probable low viral load. The FilmArray BioThreat-E test (v2.5) therefore provides an attractive option for laboratories (either in austere field settings or in countries with an advanced technological infrastructure) which do not routinely offer an EBOV diagnostic capability. PMID:26537445

  10. Evaluation of the Biofire FilmArray BioThreat-E Test (v2.5) for Rapid Identification of Ebola Virus Disease in Heat-Treated Blood Samples Obtained in Sierra Leone and the United Kingdom.

    PubMed

    Weller, Simon A; Bailey, Daniel; Matthews, Steven; Lumley, Sarah; Sweed, Angela; Ready, Derren; Eltringham, Gary; Richards, Jade; Vipond, Richard; Lukaszewski, Roman; Payne, Phillippa M; Aarons, Emma; Simpson, Andrew J; Hutley, Emma J; Brooks, Tim

    2016-01-01

    Rapid Ebola virus (EBOV) detection is crucial for appropriate patient management and care. The performance of the FilmArray BioThreat-E test (v2.5) using whole-blood samples was evaluated in Sierra Leone and the United Kingdom and was compared with results generated by a real-time Ebola Zaire PCR reference method. Samples were tested in diagnostic laboratories upon availability, included successive samples from individual patients, and were heat treated to facilitate EBOV inactivation prior to PCR. The BioThreat-E test had a sensitivity of 84% (confidence interval [CI], 64% to 95%) and a specificity of 89% (CI, 73% to 97%) in Sierra Leone (n = 60; 44 patients) and a sensitivity of 75% (CI, 19% to 99%) and a specificity of 100% (CI, 97% to 100%) in the United Kingdom (n = 108; 70 patients) compared to the reference real-time PCR. Statistical analysis (Fisher's exact test) indicated there was no significant difference between the methods at the 99% confidence level in either country. In 9 discrepant results (5 real-time PCR positives and BioThreat-E test negatives and 4 real-time PCR negatives and BioThreat-E test positives), the majority (n = 8) were obtained from samples with an observed or probable low viral load. The FilmArray BioThreat-E test (v2.5) therefore provides an attractive option for laboratories (either in austere field settings or in countries with an advanced technological infrastructure) which do not routinely offer an EBOV diagnostic capability.

  11. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  12. Nanoscale thermomechanics of wear-resilient polymeric bilayer systems.

    PubMed

    Kaule, Tassilo; Zhang, Yi; Emmerling, Sebastian; Pihan, Sascha; Foerch, Renate; Gutmann, Jochen; Butt, Hans-Jürgen; Berger, Rüdiger; Duerig, Urs; Knoll, Armin W

    2013-01-22

    We explore the effect of an ultrathin elastic coating to optimize the mechanical stability of an underlying polymer film for nanoscale applications. The coating consists of a several nanometer thin plasma-polymerized norbornene layer. Scanning probes are used to characterize the system in terms of shear-force-induced wear and thermally assisted indentation. The layer transforms a weakly performing polystyrene film into a highly wear-resistive system, ideal for high-density and low-power data storage applications. The result can be understood from the indentation characteristics with a hot and sharp indenter tip. The latter gives rise to a deformation mode in the fully plastic regime, enabling a simple interpretation of the results. The softening transition and the yield stress of the system on a microsecond time scale and a nanometer size scale were obtained. We show that the plastic deformation is governed by yielding in the polystyrene sublayer, which renders the overall system soft for plastic deformation. The ultrathin protection layer contributes as an elastic skin, which shields part of the temperature and pressure and enables the high wear resistance against lateral forces. Moreover, the method of probing polymers at microsecond and nanometer size scales opens up new opportunities for studying polymer physics in a largely unexplored regime. Thus, we find softening temperatures of more than 100 °C above the polystyrene glass transition, which implies that for the short interaction time scales the glassy state of the polymer is preserved up to this temperature.

  13. Nanostructured Polymeric Micelles Carrying Xanthene Dyes for Photodynamic Evaluation.

    PubMed

    de Freitas, Camila Fabiano; Pellosi, Diogo Silva; Estevão, Bianca Martins; Calori, Italo Rodrigo; Tsubone, Tayana Mazin; Politi, Mário José; Caetano, Wilker; Hioka, Noboru

    2016-11-01

    It was evaluated the properties of the xanthene dyes Erythrosin B, Eosin Y and theirs Methyl, Butyl and Decyl ester derivatives as possible photosensitizers (PS) for photodynamic treatments. The more hydrophobic dyes self-aggregate in water/ethanol solutions above 70% water (vol/vol) in the mixture. In buffered water, these PS were encapsulated in Pluronic polymeric surfactants of P-123 and F-127 by two methodologies: direct addition and the thin-film solid dispersion methods. The thin-film solid method provided formulations with higher stabilities besides effective encapsulation of the PS as monomers. Size measurements demonstrated that Pluronic forms self-assembled micelles with uniform size, which present slightly negative surface potential and a spherical form detected by TEM microscopy. The ester length modulates xanthene localization in the micelle, which is deeper with the increase in the alkyl chain. Moreover, some PS are distributed into two populations: one on the corona micelle interface shell (PEO layer) and the other into the core (PPO region). Although all PS formulations show high singlet oxygen quantum yield, promising results were obtained for Erythrosin B esters with the hydrophobic P-123, which ensures their potential as drug for clinical photodynamic applications.

  14. Polymeric photonic crystals

    NASA Astrophysics Data System (ADS)

    Fink, Yoel

    Two novel and practical methods for controlling the propagation of light are presented: First, a design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies is derived and used in fabricating an alldielectric omnidirectional reflector consisting of multilayer films. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices. A comprehensive framework for creating one-, two- and three-dimensional photonic crystals out of self- assembling block copolymers has been formulated. In order to form useful band gaps in the visible regime, periodic dielectric structures made of typical block copolymers need to be modified to obtain appropriate characteristic distances and dielectric constants. Moreover, the absorption and defect concentration must also be controlled. This affords the opportunity to tap into the large structural repertoire, the flexibility and intrinsic tunability that these self-assembled block copolymer systems offer. A block copolymer was used to achieve a self assembled photonic band gap in the visible regime. By swelling the diblock copolymer with lower molecular weight constituents control over the location of the stop band across the visible regime is achieved. One and three- dimensional crystals have been formed by changing the volume fraction of the swelling media. Methods for incorporating defects of prescribed dimensions into the self-assembled structures have been explored leading to the construction of a self assembled microcavity light- emitting device. (Copies available exclusively from MIT

  15. Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization.

    PubMed

    Alvárez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2014-03-01

    A glycomonomer was synthesized from poly(ethylene glycol) methacrylate (PEGMA). The terminal hydroxyl moieties were activated with ester groups and subsequently the glucosamine was incorporated forming urethane linkages. The obtained glycomonomer was copolymerized with methyl acrylate by free radical polymerization varying the initial feed composition to produce different amphiphilic glycopolymers. The glycopolymers were then characterized and compared with the homologous glycopolymers based on 2-{[(D-glucosamin-2-N-yl)carbonyl]oxy}ethyl methacrylate. Both series of glycopolymers were used in emulsion polymerization of methyl acrylate as stabilizers without the addition of any cosurfactant. Although high conversions were not achieved with any of the employed surfactant, the glycopolymers provide good colloidal stability, spherical, monodisperse and small latex particles in comparison with the surfactant-free emulsion polymerization. The latex particles stabilized with the glycosurfactant based on PEGMA, containing a flexible spacer between the backbone and the glucosamine, lead to smooth films whereas the short side chain surfactant from 2-hydroxyethyl methacrylate (HEMA), with higher glass transition temperature, restricts the coalescence of particles and, therefore, the film formation. Moreover, the surface bioactivity of these polymer coatings was examined by analyzing their specific interaction with the lectin, Concanavalin A, Canavalia ensiformis. The specific and successful binding to the Concanavalin A was demonstrated by fluorescence microscopy for both series being more intense with increasing amount of glycounits in the glycopolymer stabilizers. Interestingly, the incorporation of a flexible spacer in the glycopolymer structures enhances the binding activity.

  16. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  17. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    SciTech Connect

    Zuzuarregui, Ana Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  18. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    PubMed Central

    Ma, Hsiao-Yuan; Wang, Tzong-Liu; Chang, Pei-Yu; Yang, Chien-Hsin

    2016-01-01

    Organic-inorganic hybrid sols (Ti–O–Si precursor) were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA) to perform photo-polymerization by ultraviolet (UV) irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA) film is higher than that of a pure poly(Ti–O–Si precursor) film, and that this poly(Ti–O–Si precursor-co-OPPEA) hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n) of 1.83 corresponding to a thickness of 2.59 μm.

  19. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  20. Microtransfer printing of metal ink patterns onto plastic substrates utilizing an adhesion-controlled polymeric donor layer

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sub; Choi, Jun-Chan; Park, Min-Kyu; Bae, Jeong Min; Bae, Jin-Hyuk; Kim, Hak-Rin

    2016-06-01

    We propose a method for transfer-printed electrode patterns onto flexible/plastic substrates, specifically intended for metal ink that requires a high sintering temperature. Typically, metal-ink-based electrodes cannot be picked up for microtransfer printing because the adhesion between the electrodes and the donor substrate greatly increases after the sintering process due to the binding materials. We introduced a polymeric donor layer between the printed electrodes and the donor substrate and effectively reduced the adhesion between the Ag pattern and the polymeric donor layer by controlling the interfacial contact area. After completing a wet-etching process for the polymeric donor layer, we obtained Ag patterns supported on the fine polymeric anchor structures; the Ag patterns could be picked up onto the stamp surface even after the sintering process by utilizing the viscoelastic properties of the elastomeric stamp with a pick-up velocity control. The proposed method enables highly conductive metal-ink-based electrode patterns to be applied on thermally weak plastic substrates via an all-solution process. Metal electrodes transferred onto a film showed superior electrical and mechanical stability under the bending stress test required for use in printed flexible electronics.

  1. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts.

    PubMed

    Talón, Emma; Trifkovic, Kata T; Nedovic, Viktor A; Bugarski, Branko M; Vargas, María; Chiralt, Amparo; González-Martínez, Chelo

    2017-02-10

    The aim of this study was to analyse the antioxidant activity of different polymeric matrices based on chitosan and starch, incorporating a thyme extract (TE) rich in polyphenols. TE provided the films with remarkable antioxidant activity. When mixed with chitosan, the polyphenols interacted with the polymer chains, acting as crosslinkers and enhancing the tensile behaviour of films. The opposite effect was observed when incorporated into the starch matrix. All the films became darker, more reddish and less transparent when TE was incorporated. These colour changes were more marked in starch matrices, which suggests that TE compounds were poorly encapsulated. The use of chitosan-based matrices carrying TE polyphenols is recommended as a means of obtaining antioxidant films, on the basis of their tensile response and greater antioxidant activity, which could be associated with the development of polyphenol-chitosan interactions, contributing to a better protection of the functionality of polyphenols during film formation and conditioning.

  2. Surface wrinkling on polydopamine film

    NASA Astrophysics Data System (ADS)

    Meng, Jieyun; Xie, Jixun; Han, Xue; Lu, Conghua

    2016-05-01

    In this paper, we report a non-lithographic strategy to realize surface patterns on polydopamine films. It is based on surface wrinkling, which is induced on polydopamine (PDA) films that are grown on uniaxially pre-strained polydimethylsiloxane (PDMS) substrates through self-polymerization of dopamine, followed by the pre-strain release. We investigate the influences of the experimental conditions including polymerization time, prestrain and the dopamine solution concentration on the wrinkling patterns. Furthermore, we take advantage of the reducibility of PDA to fabricate silver nanoparticle-deposited PDA films with surface-wrinkled patterns, which may have potential applications in the related fields.

  3. Gemini amphiphiles regulated photopolymerization of diacetylene acid in organized molecular films.

    PubMed

    Zhong, Ling; Jiao, Tifeng; Liu, Minghua

    2009-07-02

    In this paper, we have investigated the photopolymerization of an amphiphilic diacetylene, 10,12-pentacosadiynoic acid (PCDA), in organized molecular films in the presence of a series of gemini amphiphiles with different spacer lengths. It has been found that, when gemini amphiphiles were mixed with the diacetylene, the film-forming properties were greatly improved and the photopolymerization could be regulated by the gemini amphiphiles. Miscibility and Fourier transform infrared spectroscopy (FT-IR) investigations revealed that the polymerization of PCDA in a mixed film was regulated by the mixing ratio and spacer length of the gemini amphiphiles. Although a slight amount of gemini amphiphile did not make the PCDA polymerize into blue films, the increment of the gemini amphiphile with the short spacer length in the mixed film caused the formation of a red film, and the intensity of red phase to blue phase can be modulated by changing the mixing ratios. When gemini amphiphiles with longer spacer lengths were mixed, blue films were predominantly obtained in all mixing ratios. A mechanism including the interaction between the headgroup of the gemini amphiphiles and the diacetylene and the regulation of the spacer was proposed.

  4. Polymerized and functionalized triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  5. Flame retardant polymeric materials

    SciTech Connect

    Lewin, M.; Atlas, S.M.; Pearce, E.M.

    1982-01-01

    The flame retardation of polyolefins is the focus of this volume. Methods for reduction of smoke and experimental evaluation of flammability parameters for polymeric materials are discussed. The flammability evaluation methods for textiles and the use of mass spectrometry for analysis of polymers and their degradation products are also presented.

  6. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  7. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  8. Preparing polymeric biomaterials using "click" chemistry techniques

    NASA Astrophysics Data System (ADS)

    Lin, Fei

    Significant efforts have been focused on preparing degradable polymeric biomaterials with controllable properties, which have the potential to stimulate specific cellular responses at the molecular level. Click reactions provide a universal tool box to achieve that goal through molecular level design and modification. This dissertation demonstrates multiple methodologies and techniques to develop advanced biomaterials through combining degradable polymers and click chemistry. In my initial work, a novel class of amino acid-based poly(ester urea)s (PEU) materials was designed and prepared for potential applications in bone defect treatment. PEUs were synthesized via interfacial polycondensation, and showed degradability in vivo and possessed mechanical strength superior to conventionally used polyesters. Further mechanical enhancement was achieved after covalent crosslinking with a short peptide crosslinker derived from osteogenic growth peptide (OGP). The in vitro and in an in vivo subcutaneous rat model demonstrated that the OGP-based crosslinkers promoted proliferative activity of cells and accelerated degradation properties of PEUs. As a continuous study, extra efforts were focused on the development of PEUs with functional pendant groups, including alkyne, azide, alkene, tyrosine phenol, and ketone groups. PEUs with Mw exceeding to 100K Da were obtained via interfacial polycondensation, and the concentration of pendent groups was varied using a copolymerization strategy. Electrospinning was used to fabricate PEU nanofiber matrices with mechanical strengths suitable for tissue engineering. A series of biomolecules were conjugated to nanofiber surface following electrospinning using click reactions in aqueous media. The ability to derivatize PEUs with biological motifs using high efficient chemical reactions will significantly expand their use in vitro and in vivo. Based on similar principles, a series of mono- and multifunctionalized polycaprolactone (PCL

  9. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    PubMed Central

    Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico

    2016-01-01

    This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938

  10. Prediction of Optimum Combination of Eudragit RS/Eudragit RL/Ethyl Cellulose Polymeric Free Films Based on Experimental Design for Using as a Coating System for Sustained Release Theophylline Pellets

    PubMed Central

    Akhgari, Abbas; Tavakol, Ali

    2016-01-01

    Purpose: The physicochemical properties of free films made from different mixtures of sustained release polymers were investigated, and an optimum formulation coating on drug containing pellets, based on the study of free film was evaluated. Methods: In order to determine the effect of different variables on the permeability and swelling of films and procedure optimization, the experimental design was fulfilled based on the statistical method of a 33 full factorial design, and according to this method 27 formulations were prepared. The films were prepared using casting-solvent evaporation method. Water vapor permeability, the swelling and permeability of free films in both acidic and buffer media, were carried out. Then, the pellets containing theophylline were coated with the optimum formulation. Results: The results of this study demonstrated that an increase in the free film thickness and Eurdragit RS ratio in films lowered the water vapor transmission (WVT), the swelling and the permeability of all formulations, while an increase in the quantity of ethylcellulose, up to a specific ratio (approximately 40%), decreased the permeability and swelling. The most optimum free film formulation was made up of 60% Eudragit RS and 40% ethylcellulose. Conclusion: Pellets coated with a 10% coating level of ethylcellulose and Eudragit RS (4:6) showed suitable release properties and could serve as a favorable sustained release system for theophylline. PMID:27478784

  11. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.; Etherton, B.P.; Kaus, M.J.

    1989-09-12

    This patent describes a polymerization process. It comprises polymerizing ethylene, alpha-olefins of 3 to 20 carbon atoms or mixtures of ethylene and the alpha-olefins in the presence of a catalyst system. The system comprising: an organo aluminum compound of the formula AIR'''/sub eta/X'''/sub 3-eta/ wherein R''' is hydrogen, hydrocarbyl, or substituted hydrocarbyl having from 1 to 20 carbon atoms, X''' is a halogen and eta is a number from 1 to 3, and a transition metal-containing catalyst component. The component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent with an organonmetallic compound represented by the formula R/sup 1/MgR/sup 2/ wherein R/sup 1/ and R/sup 2/, which may be the same of different,contain 1 to 20 carbon atoms and are selected from alkyl group, aryl group, cycloalkyl group, aralkyl group, alkadienyl group of group; an alcohol; an acyl halide; a titanium halide; Cl/sub 2/, and prereducing the transition metal-containing product with an aluminum alkyl, with the proviso that the first two ingredients can be added to the inert solid simultaneously, as the reaction product of the first two steps or treatment with step two immediately precedes treatment with step one.

  12. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compound of the formula ALR''/sub n/X''/sub 3-n/ wherein R is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and is a number from 1 to 3, and (b) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with (A) an organometallic compounds of a Group IIa, IIb or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, (B) an oxygen containing compound selected from ketones, aldehydes, alcohols or mixtures thereof, (C) an acyl halide, (D) at least one transition metal compound of a Group IVb, Vb, VIb or VIII metal, and (E) a group IIIa metal hydrocarbyl dihalide.

  13. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compound of the formula AIR''/sub n/X''/sub 3-n/ wherein R'' is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and n is a number from 1 to 3, and (B) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with, optionally (A) Cl/sub 2/, Br/sub 2/, an interhalogen or mixtures thereof, (B) an organometallic compound of a Group IIa, IIb or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, (C) an oxygen containing compound selected from ketones, aldehydes, alcohols or mixtures thereof, (D) an acyl halide, (E) at least one transition metal compound of a Group IVb, VB, VIb or VIII metal, and (F) Cl/sub 2/, Br/sub 2/, an interhalogen or mixtures thereof.

  14. Polymerization catalyst, production and use

    SciTech Connect

    Best, S.A.

    1987-01-06

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing in the presence of a catalyst system comprising (a) an organo aluminum compounds of the formula AIR''/sub n/X''/sub 3-n/ wherein R'' is hydrogen or a hydrocarbyl group having from 1 to 20 carbon atoms, X is halogen and n is a number from 1 to 3, and (b) a transition metal containing catalyst component comprising the solid reaction product obtained by treating an inert solid support material in an inert solvent. This is done sequentially with (A) an organometallic compound of a Group IIa, IIb, or IIIa metal wherein all the metal valencies are satisfied with a hydrocarbon group, optionally (B) an oxygen containing compound selected from ketones, aldehydes, alcohols, siloxanes or mixtures thereof, (C) at least one transition metal compound of a Group IVb, Vb, VIb or VIII metal, and (D) a group IIIa metal hydrocarbyl dihalide.

  15. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  16. Conductive thin-film composite hydrogels: Trapping an anionic polyelectrolyte in a polyaziridine host matrix

    SciTech Connect

    Wexler, A.; Suen, C.; Hill, S.

    1995-08-01

    Acid-catalyzed polymerization of sufficiently concentrated aqueous solutions of a trifunctional aziridine monomer affords hydrogels. Dynamic mechanical analysis has been used to demonstrate that composite hydrogels, obtained when the polymerization is effected in the presence of poly(sodium styrenesulfonate), have a composition dependent modulus. A region rich in the polyelectrolyte has a modulus which exceeds that of the {open_quotes}host{close_quotes} homogeneous polyaziridine hydrogel. This is consistent with ionic bonds between protonated sites on the polyaziridine matrix and sulfonate groups on the included polyelectrolyte augmenting the structural stability of the hydrogel. Thin films were prepared from coatings of the incipient hydrogel solutions. When the coatings are dried to a water content of 20%, water-insoluble thin films are obtained provided a critical weight fraction of the monomer is exceeded. Conductive thin films can be obtained, provided a critical weight fraction of polyelectrolyte is exceeded. FTIR analysis of the coatings in the attenuated total reflectance mode shows that conductivity increases as tight ion pairing decreases between the polyelectrolyte and its counter ions in the matrix. The S-shaped dependence of the normalized conductivity on the composition of the thin films is independent of the state of hydration of the film. Effective medium percolation theory, (EMPT), generally fits the S-shaped compositional dependence of the conductivity but overestimates the rate of growth of the conductivity beyond the critical point. 20 refs., 7 figs.

  17. Real-Time UV-Visible Spectroscopy Analysis of Purple Membrane-Polyacrylamide Film Formation Taking into Account Fano Line Shapes and Scattering

    PubMed Central

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided. PMID:25329473

  18. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    PubMed

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  19. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1988-01-01

    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  20. Analysis of Mass Loss of a Polymeric Composite under Space Radiations

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid

    2016-07-01

    Polymeric materials find ever-widening application in space technique. This is tied with the simplicity of producing the polymeric-based composites with the predetermined set of properties. However, these materials in space become the sources of volatile products that increase density of spacecraft outer atmosphere that undermines on serviceability of the on-board equipment. Therefore, study of mass loss of spacecraft materials in service conditions is a vital task. Polymeric composites are often used as thermal control coatings (TCC), which are subjected to maximum radiation exposure in service. It is known that irradiation of a PC is accompanied by intense gas formation but evolution of volatile products (VP) through the material-vacuum surface is limited by diffusion. Well-developed surface together with little thickness of a TCC film facilitate migration of radiolysis products to free coating surface. In this case outgassing and destruction of material augment permeability of the film, accelerate migration processes and make them easier. This work is devoted to studying action of separate (electron, proton, and electromagnetic), paired, and the whole set of radiations on mass loss of a pattern material in vacuum. The primary focus was on studying and interpretation of synergistic effects appearing in the course of mass loss of the pattern materials EKOM-1 and EKOM-2 polymeric composites, the widely used spacecraft TCC. Irradiation was made by 20-50-keV electrons and 20-keV protons and electromagnetic radiation in vacuum chamber of the UV-1/2 test facility. It was found that parameters characterizing the synergistic effects of mass loss of the material for fixed conditions of electron-proton and combined radiations are the functions of irradiation time. To interpret the experimental data, a physical-mathematical model of mass loss of polymeric materials in vacuum was proposed. The obtained data can be explained by diffusion fluxes associated with the gradient of

  1. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  2. Polymeric ion conductors

    SciTech Connect

    Nagai, J.; Mizuhashi, M.; Kamimori, T.

    1990-12-31

    There are several requirements for (polymeric) ion conductors in electrochromic window applications: (1) they have high ionic conductivity (desirably, > 1 {times} 10{sup {minus}4} Scm{sup {minus}1}); (2) they have high chemical and electrochemical stabilities with respect to the wide usable potential window and thermal and UV stabilities; (3) they are transparent in a specific wavelength region, which is, however, dependent of applications; and (4) they have enough adhesiveness to the substrates and have acceptable mechanical properties. Many kinds of polymeric ionic conductors have since been reported and some of them were applied to electrochromic uses. In this chapter, electrochemical and physicochemical properties of these materials are reviewed. However, certain aspects such as crystallographic studies and conduction models in detail have been omitted, which are still controversial.

  3. Organometallic polymerization catalysts

    SciTech Connect

    Waymouth, R.M.

    1993-12-31

    Well-defined transition metal catalysts have resulted in exciting new opportunities in polymer synthesis. The stereochemistry of vinyl polymers can be rationally controlled with choice of the appropriate catalysts. Studies with optically active catalyst precursors have revealed considerable information on the absolute stereochemistry of olefin polymerization and have led to the synthesis of novel chiral polyolefins. The development of homogeneous olefin metathesis catalysts has also led to a variety of well-defined new polymer structures with controlled molecular weight and molecular weight distribution. Recent advances in understanding the mechanisms and stereochemistry of homogeneous transition metal catalyzed polymerization will be discussed. The ability to control polymer structure through catalyst design presents exciting opportunities in the synthesis of {open_quotes}tailor-made{close_quotes} macromolecules.

  4. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  5. Frontal Polymerization in Microgravity

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    1999-01-01

    Frontal polymerization systems, with their inherent large thermal and compositional gradients, are greatly affected by buoyancy-driven convection. Sounding rocket experiments allowed the preparation of benchmark materials and demonstrated that methods to suppress the Rayleigh-Taylor instability in ground-based research did not significantly affect the molecular weight of the polymer. Experiments under weightlessness show clearly that bubbles produced during the reaction interact very differently than under 1 g.

  6. Developments in polymerization lamps.

    PubMed

    Jiménez-Planas, Amparo; Martín, Juan; Abalos, Camilo; Llamas, Rafael

    2008-02-01

    Polymerization shrinkage of composite resins and the consequent stress generated at the composite-tooth interface continue to pose a serious clinical challenge. The development of high-intensity halogen lamps and the advent of curing units providing higher energy performance, such as laser lamps, plasma arc units, and, most recently, light-emitting diode (LED) curing units, have revolutionized polymerization lamp use and brought major changes in light-application techniques. A comprehensive review of the literature yielded the following conclusions: (1) the most reliable curing unit for any type of composite resin is the high-density halogen lamp, fitted with a programming device to enable both pulse-delay and soft-start techniques; (2) if any other type of curing unit is used, information must be available on the compatibility of the unit with the composite materials to be used; (3) polymerization lamp manufacturers need to focus on the ongoing development of LED technology; (4) further research is required to identify the most reliable light-application techniques.

  7. Imaging nanowire plasmon modes with two-photon polymerization

    SciTech Connect

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.; Hirzer, Andreas; Schmidt, Volker

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  8. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications.

  9. Dynamic mechanical thermal analysis of hypromellose 2910 free films.

    PubMed

    Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo

    2011-10-01

    It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance.

  10. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  11. Plasma deposition of organic thin films: Control of film chemistry

    SciTech Connect

    Ratner, B.D.

    1993-12-31

    Plasma deposition of thin, polymeric films represent a versatile surface modification technology. Although these thin films are exploited for many applications, complaints heard about plasma deposited films are that their structures are uncharacterizable, that organic functionality is lost in their production and that reproducibility is difficult. Recently, new methods for film production, reactor control and surface characterization have led to well characterized plasma deposited thin polymeric films (PDTPF) with defined structure and organic functionality. Such PDTPF often closely resemble conventionally prepared homopolymers. Methods that can be used to control the chemistry of PDTPF are the minimization of the plasma power, pulsing the RF field to reduce the {open_quotes}plasma on{close_quotes} time, use of a Faraday cage to reduce electron bombardment, positioning the sample downfield from the glow zone, the use of monomers containing polymerizable double bonds and the use of a cold substrate to condense vapor simultaneously with plasma deposition.

  12. Adhesion between polymers and evaporated gold and nickel films

    NASA Technical Reports Server (NTRS)

    Yamada, Y.; Wheeler, D. R.; Buckley, D. H.

    1984-01-01

    To obtain information on the adhesion between metal films and polymeric solids, the adhesion force was measured by means of a tensile pull test. It was found that the adhesion strengths between polymeric solids and gold films evaporated on polymer substrates were (1.11 + or - 0.53) multiplied by 10(6) N/M(2) on PTFE, about 5.49 multiplied by 10(6) N/m(2) on UHMWPE, and 6.54x10(6) on 6/6 nylon. The adhesion strengths for nickel films evaporated on PTFE, UHMWPE, and 6/6 nylon were found to be a factor of 1.7 higher than those for the gold coated PTFE, UHMWPE, and 6/6 nylon. To confirm quantitatively the effect of electron irradiation on the adhesion strength between a PTFE solid and metal films, a tensile pull test was performed on the irradiated PTFE specimens, which were prepared by evaporating nickel or gold on PTFE surfaces irradiated by 2-keV electrons for various times. After irradiation, the adhesion strength increased to (4.92 + or - 0.92)x10(6) N/m(2) for nickel coated PTFE and (1.82 + or - 0.48)x10(6) N/m(2) for gold coated PTFE. The improvement in adhesion for nickel is higher than that for gold.

  13. Electrical conductivity of poly(3,4-ethylenedioxythiophene):p-toluene sulfonate films hybridized with reduced graphene oxide

    PubMed Central

    2014-01-01

    Reduced graphene oxide-poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (rGO-PEDOT:PTS) hybrid electrode films were synthesized directly on a substrate by interfacial polymerization between an oxidizing solid layer and liquid droplets of 3,4-ethylenedioxythiophene (EDOT) produced by electrospraying. The EDOT reduced the graphene oxide by donating electrons during its transformation into PEDOT:PTS, and hybrid films consisting of rGO distributed in a matrix of PEDOT:PTS were obtained. These rGO-PEDOT:PTS hybrid films showed excellent electrical conductivities as high as 1,500 S/cm and a sheet resistance of 70 Ω sq-1. The conductivity values are up to 50% greater than those of films containing conductive PEDOT:PTS alone. These results confirm that highly conductive rGO-PEDOT:PTS hybrid films can potentially be used as organic transparent electrodes. PMID:25520593

  14. Accurate fluorescent polymeric thermometers containing an ionic component.

    PubMed

    Gota, Chie; Uchiyama, Seiichi; Ohwada, Tomohiko

    2007-02-01

    Fluorescent polymeric thermometers consisting of only N-alkylacrylamide and fluorescent components show rather low temperature resolution in their functional ranges (ca. 15-50 degrees C) because of the occurrence of intermolecular aggregation, which causes hysteresis in their fluorescence response to changes in temperature. By adding an ionic component to prevent such intermolecular aggregation, we obtained four fluorescent polymeric thermometers that offer high temperature resolution (<0.2 degrees C). Each new fluorescent polymeric thermometer covered the temperature range, 9-33 degrees C, 30-51 degrees C, 49-66 degrees C or 4-38 degrees C.

  15. Hafnocene-Based Olefin Polymerizations

    NASA Astrophysics Data System (ADS)

    Diesner, T.; Troll, C.; Rieger, B.

    Zirconocenes have been used for a long time in the field of olefin polymerization using MAO as cocatalyst. The equivalent hafnocenes were seldom used due to a lack of productivity while using MAO activation. In the last few years borane and borate activation has come into the focus of research for olefin polymerization. A variety of different hafnocenes were used to investigate the polymerization mechanism and the different cocatalysts.

  16. Structurally-driven Enhancement of Thermoelectric Properties within Poly(3,4-ethylenedioxythiophene) thin Films

    PubMed Central

    Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A.; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges

    2016-01-01

    Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. PEDOT:Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the PEDOT:Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK2 has been readily obtained for PEDOT:Tos thin films following this methodology. PMID:27470637

  17. Structurally-driven Enhancement of Thermoelectric Properties within Poly(3,4-ethylenedioxythiophene) thin Films

    NASA Astrophysics Data System (ADS)

    Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A.; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges

    2016-07-01

    Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. PEDOT:Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the PEDOT:Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK2 has been readily obtained for PEDOT:Tos thin films following this methodology.

  18. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  19. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  20. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.