Sample records for polymeric memory devices

  1. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  2. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  3. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  4. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  5. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    NASA Astrophysics Data System (ADS)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  6. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices.

    PubMed

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-21

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.

  7. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    PubMed Central

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-01-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871

  8. Organic transistor memory with a charge storage molecular double-floating-gate monolayer.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2015-05-13

    A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.

  9. Capacitance-voltage measurement in memory devices using ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Chien A.; Lee, Pooi See

    2006-01-01

    Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.

  10. Functional carbon nitride materials — design strategies for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  11. Transistor and memory devices based on novel organic and biomaterials

    NASA Astrophysics Data System (ADS)

    Tseng, Jia-Hung

    Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.

  12. Nonvolatile RRAM cells from polymeric composites embedding recycled SiC powders.

    PubMed

    De Girolamo Del Mauro, Anna; Nenna, Giuseppe; Miscioscia, Riccardo; Freda, Cesare; Portofino, Sabrina; Galvagno, Sergio; Minarini, Carla

    2014-10-21

    Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.

  13. Revealing the glass transition in shape memory polymers using Brillouin spectroscopy.

    PubMed

    Steelman, Zachary A; Weems, Andrew C; Traverso, Andrew J; Szafron, Jason M; Maitland, Duncan J; Yakovlev, Vladislav V

    2017-12-11

    Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (T g ) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the T g obtained from Brillouin scattering with DMA- and DSC-measured T g to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.

  14. Revealing the glass transition in shape memory polymers using Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Weems, Andrew C.; Traverso, Andrew J.; Szafron, Jason M.; Maitland, Duncan J.; Yakovlev, Vladislav V.

    2017-12-01

    Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (Tg) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the Tg obtained from Brillouin scattering with DMA- and DSC-measured Tg to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.

  15. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  16. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  17. Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems

    NASA Astrophysics Data System (ADS)

    Nair, Devatha P.

    2011-12-01

    The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1 polymer with excess acrylic functional groups within the network. At a later point in time, the photoinitiated, free radical polymerization of the excess acrylic functional groups results in a highly crosslinked, robust material system. By varying the monomers within the system as well as the stoichiometery of thiol to acrylate functional groups, the ability of the two-stage reactive systems to encompass a wide range of properties at the end of both the stage 1 and stage 2 polymerizations was demonstrated. The thiol-acrylate networks exhibited intermediate Stage 1 rubbery moduli and glass transition temperatures that range from 0.5 MPa and -10 ºC to 22 MPa and 22 ºC respectively. The same polymer networks can then attain glass transition temperatures that range from 5 ºC to 195 ºC and rubbery moduli of up to 200 MPa after the subsequent photocure stage. Two-stage reactive polymer composite systems were also formulated and characterized for thermomechanical and mechanical properties. Thermomechanical analysis showed that the fillers resulted in a significant increase in the modulus at both stage 1 and stage 2 polymerizations without a significant change in the glass transition temperatures (Tg). The two-stage reactive matrix composite formed with a hexafunctional acrylate matrix and 20 volume % silica particles showed a 125% increase in stage 1 modulus and 101% increase in stage 2 modulus, when compared with the modulus of the neat matrix. Finally, the two-stage reactive polymeric devices were formulated and designed as orthopedic suture anchors for arthroscopic surgeries and mechanically characterized. The Stage 1 device was designed to exhibit properties ideal for arthroscopic delivery and device placement with glass transition temperatures 25 -- 30 °C and rubbery moduli ˜ 95 MPa. The subsequent photopolymerization generated Stage 2 polymers designed to match the local bone environment with moduli ranging up to 2 GPa. Additionally, pull-out strengths of 140 N were demonstrated and are equivalent to the pull-strengths achieved by other commercially available suture anchors.

  18. Strategic design and fabrication of acrylic shape memory polymers

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  19. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers

    PubMed Central

    Lantada, Andrés Díaz; Rebollo, María Ángeles Santamaría

    2013-01-01

    A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed. PMID:28788401

  20. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  1. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  2. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  3. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  4. Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola

    2016-05-01

    Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.

  5. Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer.

    PubMed

    Cheng, Shun-Wen; Han, Ting; Huang, Teng-Yung; Chang Chien, Yu-Hsin; Liu, Cheng-Liang; Tang, Ben Zhong; Liou, Guey-Sheng

    2018-05-30

    A novel aggregation enhanced emission (AEE)-active polyamide TPA-CN-TPE with a high photoluminesence characteristic was successfully synthesized by the direct polymerization of 4-cyanotriphenyl diamine (TPA-CN) and tetraphenylethene (TPE)-containing dicarboxylic acid. The obtained luminescent polyamide plays a significant role as the polymer electret layer in organic field-effect transistors (OFETs)-type memory. The strong green emission of TPA-CN-TPE under ultraviolet (UV) irradiation can be directly absorbed by the pentacene channel, displaying a light-induced programming and voltage-driven erasing organic phototransistor-based nonvolatile memory. Memory window can be effectively manipulated between the programming and erasing states by applying UV light illumination and electrical field, respectively. The photoinduced memory behavior can be maintained for over 10 4 s between these two states with an on/off ratio of 10 4 , and the memory switching can be steadily operated for many cycles. With high photoresponsivity ( R) and photosensitivity ( S), this organic phototransistor integrated with AEE-active polyamide electret layer could serve as an excellent candidate for UV photodetectors in optical applications. For comparison, an AEE-inactive aromatic polyimide TPA-PIS electret with much weaker solid-state emission was also applied in the same OFETs device architecture, but this device did not show any UV-sensitive and UV-induced memory characteristics, which further confirmed the significance of the light-emitting capability of the electret layer.

  6. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization.

    PubMed

    Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A

    2014-01-15

    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics

    NASA Technical Reports Server (NTRS)

    Cooke, Arther V.

    1996-01-01

    This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.

  8. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric...

  9. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such asmore » self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.« less

  10. Monomeric and polymeric forms of ependymin: a brain extracellular glycoprotein implicated in memory consolidation processes.

    PubMed

    Shashoua, V E

    1988-07-01

    Ependymin, a brain extracellular glycoprotein that appears to be implicated in neural circuit modifications associated with the process of memory consolidation, can rapidly polymerize into fibrous aggregates when the Ca2+ concentration in solution is reduced by the addition of EGTA or by dialysis. Such aggregates, once formed, could not be redissolved in boiling 1% SDS in 6 M urea, acetic acid, saturated aqueous potassium thiocyanate, and trifluoroacetic acid. They were, however, soluble in formic acid. Investigations of the immunological properties of ependymin indicated that various monomers, oligomers and polymers of the molecule with differing carbohydrate contents can be obtained. The polymerization properties of the ependymins may play an important role in their functions in memory consolidation mechanisms.

  11. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.

    PubMed

    Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W

    2013-11-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be implanted through a small slit and to some extent deploy self-sufficiently within the disc cavity. © 2013 Elsevier Ltd. All rights reserved.

  12. Recent advances in degradable lactide-based shape-memory polymers.

    PubMed

    Balk, Maria; Behl, Marc; Wischke, Christian; Zotzmann, Jörg; Lendlein, Andreas

    2016-12-15

    Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Method for making field-structured memory materials

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Tigges, Chris P.

    2002-01-01

    A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.

  14. Optimization of an organic memristor as an adaptive memory element

    NASA Astrophysics Data System (ADS)

    Berzina, Tatiana; Smerieri, Anteo; Bernabò, Marco; Pucci, Andrea; Ruggeri, Giacomo; Erokhin, Victor; Fontana, M. P.

    2009-06-01

    The combination of memory and signal handling characteristics of a memristor makes it a promising candidate for adaptive bioinspired information processing systems. This poses stringent requirements on the basic device, such as stability and reproducibility over a large number of training/learning cycles, and a large anisotropy in the fundamental control material parameter, in our case the electrical conductivity. In this work we report results on the improved performance of electrochemically controlled polymeric memristors, where optimization of a conducting polymer (polyaniline) in the active channel and better environmental control of fabrication methods led to a large increase both in the absolute values of the conductivity in the partially oxydized state of polyaniline and of the on-off conductivity ratio. These improvements are crucial for the application of the organic memristor to adaptive complex signal handling networks.

  15. Delivery Device and Method for Forming the Same

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohua (Inventor); Ma, Peter X. (Inventor); McCauley, Laurie (Inventor)

    2014-01-01

    A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur intermittently. Methods for forming the device are also disclosed herein.

  16. CVD Polymers for Devices and Device Fabrication.

    PubMed

    Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K

    2017-03-01

    Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multifunctional wearable devices for diagnosis and therapy of movement disorders.

    PubMed

    Son, Donghee; Lee, Jongha; Qiao, Shutao; Ghaffari, Roozbeh; Kim, Jaemin; Lee, Ji Eun; Song, Changyeong; Kim, Seok Joo; Lee, Dong Jun; Jun, Samuel Woojoo; Yang, Shixuan; Park, Minjoon; Shin, Jiho; Do, Kyungsik; Lee, Mincheol; Kang, Kwanghun; Hwang, Cheol Seong; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-05-01

    Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.

  18. Nondestructive Memory Elements Based on Polymeric Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Reece, T. J.; Ducharme, S.

    2007-03-01

    Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their low power consumption and fast nondestructive readout. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of polyvinylidene fluoride, PVDF (C2H2F2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, we are able to deposit films as thin as 1.8 nm. We discuss the characterization, modeling and fabrication of metal-ferroelectric-insulator-semiconductor (MFIS) structures incorporating these films.

  19. Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation.

    PubMed

    Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro

    2012-02-13

    We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.

    PubMed

    Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T

    2018-06-19

    We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that produces...

  2. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that produces...

  3. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  4. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  5. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  6. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E

    2014-02-18

    Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  7. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  8. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  9. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  10. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  11. Design and development of a hybrid bioartificial water-induced shape memory polymeric material as an integral component for the anastomosis of human hollow organs.

    PubMed

    Paonessa, Siriana; Barbani, Niccoletta; Rocchietti, Elisa Cibrario; Giachino, Claudia; Cristallini, Caterina

    2017-06-01

    A large number of pathologies require the resection of the bowel and anastomoses to rejoin the two remaining stumps to regain lumen patency. Various materials have been used to rejoin one bowel end to the other such as catgut, stainless steel, and absorbable sutures. The present method for anastomosis surgery uses an entero-entero anastomosis (EEA) circular stapler with only a staple line. This method can have some drawbacks, such as intracellular fluid leakage and local inflammations. The aim of this study is to design and develop a novel bioartificial polymer with a ring shape made of polyvinyl alcohol (PVA) and gelatin (80/20 ratio (w/w)) loaded both directly with acetylsalicylic acid and with nanoparticles incorporating the same drug to reduce local inflammation even for a prolonged period of time. A physical method (8cycles freezing/thawing) was used to obtain a crosslinked bioartificial shape memory ring. Mechanical analysis showed a storage modulus having a comparable value with that of the human colon. HPLC analysis pointed out a sustained and prolonged release of the anti-inflammatory drug both immediately after anastomosis surgery and during healing period. Cell culture tests indicated the cytocompatibility of the bioartificial device. A shape memory of the hydrogel prepared in ring form was observed at 37°C after immersion in water. These bioartificial devices can represent a new approach to serve as a multifunctional anastomotic ring. Copyright © 2017. Published by Elsevier B.V.

  12. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  13. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  14. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  15. Accessing global data from accelerator devices

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the device memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.

  16. Application of phase-change materials in memory taxonomy.

    PubMed

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  17. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-11-01

    We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.

  18. mTORC2 controls actin polymerization required for consolidation of long-term memory

    PubMed Central

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-01-01

    A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction. PMID:23455608

  19. Implementing and Quantifying the Shape-Memory Effect of Single Polymeric Micro/Nanowires with an Atomic Force Microscope.

    PubMed

    Fang, Liang; Gould, Oliver E C; Lysyakova, Liudmila; Jiang, Yi; Sauter, Tilman; Frank, Oliver; Becker, Tino; Schossig, Michael; Kratz, Karl; Lendlein, Andreas

    2018-04-23

    The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σ max,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    PubMed

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  2. Application of phase-change materials in memory taxonomy

    PubMed Central

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  3. Accessing global data from accelerator devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    2016-12-06

    An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the devicemore » memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.« less

  4. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  5. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

    PubMed Central

    Song, Ji-Min; Lee, Jang-Sik

    2016-01-01

    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122

  6. Memory hierarchy using row-based compression

    DOEpatents

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  7. 76 FR 55417 - In the Matter of Certain Dynamic Random Access Memory and Nand Flash Memory Devices and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Access Memory and Nand Flash Memory Devices and Products Containing Same; Notice of Institution of... importation, and the sale within the United States after importation of certain dynamic random access memory and NAND flash memory devices and products containing same by reason of infringement of certain claims...

  8. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  9. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Tyler, Tom; Leang, Kam K.

    2017-10-01

    Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.

  10. Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide.

    PubMed

    Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L

    2014-02-25

    Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.

  11. Metal-organic molecular device for non-volatile memory storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radha, B., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in; Sagade, Abhay A.; Kulkarni, G. U., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organicmore » complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.« less

  12. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  13. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  14. Method for a microfluidic weaklink device

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Duncan, Matthew P [Augusta, GA

    2009-12-01

    The present invention relates to an electrokinetic (EK) pump capable of creating high pressures electroosmotically, and capable of retaining high pressures. Both pressure creation and retention are accomplished without the need for moving parts. The EK pump uses a polymerizable fluid that creates the pressure-retaining seal within the EK pump when polymerization is initiated, typically by exposure to UV radiation. Weaklink devices are advantageously constructed including such a pressure-retaining EK pump since, among other advantages, the response of the weaklink device relies on predictable and reliable chemical polymerization reactions.

  15. Reconfigurable pipelined processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccardi, R.J.

    1989-09-19

    This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less

  16. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  17. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  18. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  19. 405 nm diode laser, halogen lamp and LED device comparison in dental composites cure: an "in vitro" experimental trial.

    PubMed

    Fornaini, C; Lagori, G; Merigo, E; Rocca, J-P; Chiusano, M; Cucinotta, A

    2015-12-30

    A 405 nm diode laser is indicated for composite materials polymerizing, thanks to the recent evolution in their compositions, absorbing in blue part of the spectrum. The purpose of this research was to evaluate its performance on two different kinds of composite resins. Two different composites were polymerized with a traditional halogen lamp, a LED device and a 405 nm diode laser. The depth of the cure, the volumetric shrinkage, and the degree of the conversion (DC%) of the double bond during the curing process were measured. One-way ANOVA test, Kruskal-Wallis tests, and Dunn comparison tests were used for statistic analysis. Regarding the depth of polymerization, the laser had the worst performance on one composite while on the other, no significant difference with the other devices was observed. The volumetric shrinkage showed that laser produced the lowest change in both of the composites. The DC% measure confirmed these findings. Based on the results of this preliminary study, it is not possible to recommend the 405 nm diode laser for the polymerization of dental composites.

  20. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  1. An upconverted photonic nonvolatile memory.

    PubMed

    Zhou, Ye; Han, Su-Ting; Chen, Xian; Wang, Feng; Tang, Yong-Bing; Roy, V A L

    2014-08-21

    Conventional flash memory devices are voltage driven and found to be unsafe for confidential data storage. To ensure the security of the stored data, there is a strong demand for developing novel nonvolatile memory technology for data encryption. Here we show a photonic flash memory device, based on upconversion nanocrystals, which is light driven with a particular narrow width of wavelength in addition to voltage bias. With the help of near-infrared light, we successfully manipulate the multilevel data storage of the flash memory device. These upconverted photonic flash memory devices exhibit high ON/OFF ratio, long retention time and excellent rewritable characteristics.

  2. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuttig, Manfred

    The research was directed towards finding new functional materials, mainly polymeric. Main accomplishment consisit of indentifying mulktiferroic polymers and a shape memory alloy featuring an ultralong fatigue life of 10 million cycles.

  4. 76 FR 73676 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... INTERNATIONAL TRADE COMMISSION [DN 2859] Certain Dynamic Random Access Memory Devices, and.... International Trade Commission has received a complaint entitled In Re Certain Dynamic Random Access Memory... certain dynamic random access memory devices, and products containing same. The complaint names Elpida...

  5. Polymer-Polymer Bilayer Actuator

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    A device for providing an electromechanical response includes two polymeric webs bonded to each other along their lengths. At least one polymeric web is activated upon application thereto of an electric field and exhibits electrostriction by rotation of polar graft moieties within the polymeric web. In one embodiment, one of the two polymeric webs in an active web upon application thereto of the electric field, and the other polymeric web is a non-active web upon application thereto of the electric field. In another embodiment, both of the two polymeric webs are capable of being active webs upon application thereto of the electric field. However, these two polymeric webs are alternately activated and non-activated by the electric field.

  6. Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage

    NASA Astrophysics Data System (ADS)

    Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.

    2017-07-01

    We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.

  7. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  8. Memory and Spin Injection Devices Involving Half Metals

    DOE PAGES

    Shaughnessy, M.; Snow, Ryan; Damewood, L.; ...

    2011-01-01

    We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injectionmore » devices.« less

  9. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  10. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    PubMed

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extended write combining using a write continuation hint flag

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  12. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-02-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

  13. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    NASA Astrophysics Data System (ADS)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  14. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    PubMed

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  15. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    NASA Astrophysics Data System (ADS)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  16. Satellite Test of Radiation Impact on Ramtron 512K FRAM

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Sayyah, Rana; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2009-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite. The test consists of writing and reading data with a ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is send to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test will be one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The memory devices being tested is a Ramtron Inc. 512K memory device. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  17. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices.

    PubMed

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-08-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli-responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom-up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies.

  18. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices

    PubMed Central

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-01-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584

  19. Electric-field-controlled interface dipole modulation for Si-based memory devices.

    PubMed

    Miyata, Noriyuki

    2018-05-31

    Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.

  20. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  1. Novel conformal organic antireflective coatings for advanced I-line lithography

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  2. Distributed multiport memory architecture

    NASA Technical Reports Server (NTRS)

    Kohl, W. H. (Inventor)

    1983-01-01

    A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.

  3. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  4. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  5. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  6. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  7. GRC-2011-C-03754

    NASA Image and Video Library

    2007-09-26

    Molecular Electronics; Polymeric Films; Two-Terminal and Three-Terminal Devices Intended for the Development and/or Demonstration of Molecular Electronics Devices such as Field Effect Transistors, FETs

  8. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  9. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  10. Titanium oxide nonvolatile memory device and its application

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.

  11. Projected phase-change memory devices.

    PubMed

    Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-09-03

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

  12. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    PubMed

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  13. Systems and methods to control multiple peripherals with a single-peripheral application code

    DOEpatents

    Ransom, Ray M.

    2013-06-11

    Methods and apparatus are provided for enhancing the BIOS of a hardware peripheral device to manage multiple peripheral devices simultaneously without modifying the application software of the peripheral device. The apparatus comprises a logic control unit and a memory in communication with the logic control unit. The memory is partitioned into a plurality of ranges, each range comprising one or more blocks of memory, one range being associated with each instance of the peripheral application and one range being reserved for storage of a data pointer related to each peripheral application of the plurality. The logic control unit is configured to operate multiple instances of the control application by duplicating one instance of the peripheral application for each peripheral device of the plurality and partitioning a memory device into partitions comprising one or more blocks of memory, one partition being associated with each instance of the peripheral application. The method then reserves a range of memory addresses for storage of a data pointer related to each peripheral device of the plurality, and initializes each of the plurality of peripheral devices.

  14. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    NASA Astrophysics Data System (ADS)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (<=30 ns), excellent endurance (~1012 cycles), stability (>106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  15. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate.

    PubMed

    Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong

    2018-06-15

    In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    NASA Technical Reports Server (NTRS)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  17. Impacts of Co doping on ZnO transparent switching memory device characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar

    2016-05-02

    The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less

  18. Foldable and Disposable Memory on Paper

    PubMed Central

    Lee, Byung-Hyun; Lee, Dong-Il; Bae, Hagyoul; Seong, Hyejeong; Jeon, Seung-Bae; Seol, Myung-Lok; Han, Jin-Woo; Meyyappan, M.; Im, Sung-Gap; Choi, Yang-Kyu

    2016-01-01

    Foldable organic memory on cellulose nanofibril paper with bendable and rollable characteristics is demonstrated by employing initiated chemical vapor deposition (iCVD) for polymerization of the resistive switching layer and inkjet printing of the electrode, where iCVD based on all-dry and room temperature process is very suitable for paper electronics. This memory exhibits a low operation voltage of 1.5 V enabling battery operation compared to previous reports and wide memory window. The memory performance is maintained after folding tests, showing high endurance. Furthermore, the quick and complete disposable nature demonstrated here is attractive for security applications. This work provides an effective platform for green, foldable and disposable electronics based on low cost and versatile materials. PMID:27922094

  19. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.

  20. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  1. Initial Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    NASA Technical Reports Server (NTRS)

    MacLeond, Todd C.; Sims, W. Herb; Varnavas,Kosta A.; Ho, Fat D.

    2011-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite that launched in November 2010. The memory device being tested is a commercial Ramtron Inc. 512K memory device. The circuit was designed into the satellite avionics and is not used to control the satellite. The test consists of writing and reading data with the ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is sent to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test is one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The initial data from the test is presented. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  2. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1992-01-01

    An oxidatively coloring electrochromic layer of composition M.sub.y CrO.sub.2+x (0.33.ltoreq.y.ltoreq.2.0 and x.ltoreq.2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M.sub.y CrO.sub.2+x provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li.sup.+ ion conductors.

  3. Injectable Ceramic Microcast Silicon Carbonitride (SiCN) Microelectromechanical System (MEMS) for Extreme Temperature Environments with Extension: Micro Packages for Nano-Devices

    DTIC Science & Technology

    2004-01-01

    pyrolyzed to produce the ceramic (SiCN) parts, or they may be retained in the polymeric state and used as high-temperature polymer /glass MEMS devices. Two...structure and the SU8 /wafer is weak due to the Teflon coating. (j) A free standing polymer structure results. The structure is then crosslinked and... polymer . Further efforts are necessary to identify the least damaging rinsing chemicals, that is, chemicals which would not contaminate polymerized

  4. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1992-01-14

    An oxidatively coloring electrochromic layer of composition M[sub y]CrO[sub 2+x] (0.33[le]y[le]2.0 and x[le]2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M[sub y]CrO[sub 2+x] provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li[sup +] ion conductors. 12 figs.

  5. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  6. Programmable DMA controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F. (Inventor)

    1993-01-01

    In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.

  7. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  8. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  9. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  10. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  11. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.

    PubMed

    Hwang, Bohee; Lee, Jang-Sik

    2017-08-01

    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  13. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.

    PubMed

    Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse

    2009-04-01

    Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.

  14. Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory.

    PubMed

    Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk

    2017-07-27

    An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.

  15. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures

    PubMed Central

    Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo

    2018-01-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356

  16. Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang

    2017-12-01

    Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.

  17. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.

    PubMed

    Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun

    2018-04-01

    Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.

  18. General purpose programmable accelerator board

    DOEpatents

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  19. 76 FR 4375 - In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-683] In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of Commission Determination Not To Review an Initial... the United States after importation of certain MLC flash memory devices and products containing same...

  20. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Facchetti, Antonio (Inventor); Suh, legal representative, Nae-Jeong (Inventor); Marks, Tobin J. (Inventor); Choi, Hyuk-Jin (Inventor); Wang, Zhiming (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  1. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.

    2007-04-01

    Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.

  2. Carrier transport mechanisms of nonvolatile write-once-read-many-times memory devices with InP-ZnS core-shell nanoparticles embedded in a polymethyl methacrylate layer

    NASA Astrophysics Data System (ADS)

    Ham, Jung Hoon; Oh, Do Hyun; Cho, Sung Hwan; Jung, Jae Hun; Kim, Tae Whan; Ryu, Eui Dock; Kim, Sang Wook

    2009-03-01

    Current-voltage (I-V) curves at 300 K for Al/InP-ZnS nanoparticles embedded in a polymethyl methacrylate layer/Al devices showed electrical bistability for write-once-read-many-times (WORM) memory devices. From the I-V curves, the ON/OFF ratio for the device with InP-ZnS nanoparticles was significantly larger than that for the device without InP-ZnS nanoparticles, indicative of the existence of charge capture in the InP nanoparticles. The estimated retention time of the ON state for the WORM memory device was more than 10 years. The carrier transport mechanisms for the WORM memory devices are described by using several models to fit the experimental I-V data.

  3. Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    PubMed Central

    Jung, Sungchul; Jeon, Youngeun; Jin, Hanbyul; Lee, Jung-Yong; Ko, Jae-Hyeon; Kim, Nam; Eom, Daejin; Park, Kibog

    2016-01-01

    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture. PMID:27476475

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  5. Wide memory window in graphene oxide charge storage nodes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping

    2010-04-01

    Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.

  6. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    PubMed

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H

    2017-06-13

    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  7. Three-Dimensional Memory

    DTIC Science & Technology

    2000-01-01

    compound when illuminated with light. This causes the refractive index to increase from n - 1.5 to n f- 1.6. The photopolymerizable solution was...obtained using an ordinary phase-contrast microscope. The photopolymer memory medium we used was monomer mixture composed of a methacryl compound and...an allyl compound with benzil as an initiator and michler’s ketone as a dye sensitizer.9 The metacryl compound polymerizes faster than the allyl

  8. Solution processed molecular floating gate for flexible flash memories

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-10-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.

  9. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  10. Resonant tunneling based graphene quantum dot memristors.

    PubMed

    Pan, Xuan; Skafidas, Efstratios

    2016-12-08

    In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

  11. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.

    PubMed

    Liu, Rongrong; Dai, Honglian; Zhou, Qian; Zhang, Qian; Zhang, Ping

    2016-08-01

    Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.

  12. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  13. A chiral-based magnetic memory device without a permanent magnet

    PubMed Central

    Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081

  14. A chiral-based magnetic memory device without a permanent magnet.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  15. Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2007-01-01

    Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  16. Biomaterial-based Memory Device Development by Conducting Metallic DNA

    DTIC Science & Technology

    2013-05-28

    time. Therefore, we have created a multiple-states memory system . This is the first multi-states resistance memory device by using bio-nanowire of the...world. Based on this achievement, logic device and application will be developed in the near future, too. Moreover, by using Ni-DNA detection system ...ions in DNA can change the resistance of Ni-DNA by applying different polar bias and time. Therefore, we have created a multiple-states memory system

  17. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles

    PubMed Central

    Gittard, Shaun D; Miller, Philip R; Boehm, Ryan D; Ovsianikov, Aleksandr; Chichkov, Boris N; Heiser, Jeremy; Gordon, John; Monteiro-Riviere, Nancy A; Narayan, Roger J

    2010-01-01

    Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy. PMID:21413181

  18. A thermophone on porous polymeric substrate

    NASA Astrophysics Data System (ADS)

    Chitnis, G.; Kim, A.; Song, S. H.; Jessop, A. M.; Bolton, J. S.; Ziaie, B.

    2012-07-01

    In this Letter, we present a simple, low-temperature method for fabricating a wide-band (>80 kHz) thermo-acoustic sound generator on a porous polymeric substrate. We were able to achieve up to 80 dB of sound pressure level with an input power of 0.511 W. No significant surface temperature increase was observed in the device even at an input power level of 2.5 W. Wide-band ultrasonic performance, simplicity of structure, and scalability of the fabrication process make this device suitable for many ranging and imaging applications.

  19. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  20. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  1. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  2. Electrical studies of Ge4Sb1Te5 devices for memory applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, B. G.; Shylashree, N.

    2018-05-01

    In this paper, the Ge4Sb1Te5 thin film device preparation and electrical studies for memory devices were carried out. The device was deposited using vapor-evaporation technique. RESET to SET state switching was shown using current-voltage characterization. The current-voltage characterization shows the switching between SET to RESET state and it was found that it requires a low energy for transition. Switching between amorphous to crystalline nature was studied using resistance-voltage characteristics. The endurance showed the effective use of this composition for memory device.

  3. Intermediate memory devices

    NASA Technical Reports Server (NTRS)

    Basalayev, G. V.; Kmet, A. B.; Rakov, M. A.; Tarasevich, V. A.

    1974-01-01

    Several methods of transfer and processing of data whose practical implementation requires operational memory devices are described. Devices incorporating multistable elements are proposed and their main parameters are given. The possibility of using the proposed devices for storing information for transmission in space radio communications channels is examined.

  4. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  5. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  6. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  7. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  8. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    PubMed

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  9. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  10. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Sejoon; Song, Emil B.; Kim, Sungmin; Seo, David H.; Seo, Sunae; Won Kang, Tae; Wang, Kang L.

    2012-01-01

    Graphene-based non-volatile memory devices composed of a single-layer graphene channel and an Al2O3/HfOx/Al2O3 charge-storage layer exhibit memory functionality. The impact of the gate material's work-function (Φ) on the memory characteristics is investigated using different types of metals [Ti (ΦTi = 4.3 eV) and Ni (ΦNi = 5.2 eV)]. The ambipolar carrier conduction of graphene results in an enlargement of memory window (ΔVM), which is ˜4.5 V for the Ti-gate device and ˜9.1 V for the Ni-gate device. The increase in ΔVM is attributed to the change in the flat-band condition and the suppression of electron back-injection within the gate stack.

  11. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  12. Ferroelectric Memory Devices and a Proposed Standardized Test System Design

    DTIC Science & Technology

    1992-06-01

    positive clock transition. This provides automatic data protection in case of power loss. The device is being evaluated for applications such as automobile ...systems requiring nonvolatile memory and as these systems become more complex, the demand for reprogrammable nonvolatile memory increases. The...complexity and cost in making conventional nonvolatile memory reprogrammable also increases, so the potential for using ferroelectric memory as a replacement

  13. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  14. 76 FR 80964 - Certain Dynamic Random Access Memory Devices, and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-821] Certain Dynamic Random Access Memory... importation, and the sale within the United States after importation of certain dynamic random access memory... certain dynamic random access memory devices, and products containing same that infringe one or more of...

  15. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  16. Solution-processed flexible NiO resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon

    2018-04-01

    Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).

  17. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  18. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Write once read many memory device from Tris-8 (-hydroxyquinoline) aluminum and Indium tin oxide nano particles

    NASA Astrophysics Data System (ADS)

    Aneesh, J.; Predeep, P.

    2011-10-01

    Consequent to the fast increase in data storage requirements new materials and device structures are explored in a war footing. Organic memory devices are attracting lot of interest among the researchers and are becoming a hot topic of investigations. This study is an attempt to develop a tri-layer organic memory device using indium tin oxide (ITO) nanoparticles as charge trapping middle layer between tris-8(-hydroxyquinoline)aluminum (Alq3) layers employing spin coating technique. Device switching is studied by applying a current-voltage (I-V) sweep. On increasing the applied bias the device switched from the initial high resistance (OFF) state to a low resistance (ON) state at a switch on voltage of around 4 V. ON/OFF ratio is of the order of 100 at a read voltage of 2 V. The device is found to remain in the low resistance state on further scans, showing the applicability of this device as a write once read many times (WORM) memory.

  20. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some cases, which led to desired chemical phase formation. The residue of polymer thermal decomposition was also controlled and utilized for certain functionality in some nanostructures. Throughout this study, we successfully fabricated several novel functional structures and revealed a new formation mechanism of metal/metal oxide nanotubes. The magnetic and electrical properties of these nanostructures were studied and optimized for applications in soft magnetic materials and spintronics devices. In the second part, (Chapter 7) a study on memristive switching devices with magnetron-sputtered metal-semiconductor-metal thin film structures based on ZnO is presented. Resistive random access memory (RRAM) is a new, non-volatile memory based on the memristor effect theoretically predicted by Leon Chua in 1971 and first experimentally demonstrated by Hewlett Packard in 2008. The unit cell of a RRAM (a memristor) is a two-terminal device in which the switching medium is sandwiched between the top and bottom electrodes and the resistance of the switching medium can be modulated by applying an electrical signal (current or voltage) to the electrodes. On the other hand, the significance of a memristor, as the fourth element of circuit elements besides resistor, capacitor and inductor, is not limited to just being a candidate for next-generation memory. Owing to the unique i-v characteristics of non-linear memristors that cannot be duplicated with any combinations of the other three basic elements in a passive circuitry, many new electrical functions are being developed based on the memristors. In our study, various contact electrode combinations and semiconductor doping profiles were utilized to achieve different functional resistive switching behaviors and to help fundamentally understand the underlying switching mechanisms in ZnO-based thin film structures. Two distinctive switching mechanisms (ferroelectric charge-induced resistive switching and dopant-induced filament-type resistive switching) have been identified in specified structures. Among them, the ferroelectric charge induced resistive switching is new to the existing mechanisms; and the crucial role of the electrode oxide layer in the filament type resistive switching was reported for the first time. Based on these studies, a unique structure that is believed to combine the two competing switching mechanisms was demonstrated. The new memory structure acts like a complimentary resistive switching memory (CRS) that is designed to eliminate the cross-talk issue in RRAM.

  1. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories

    NASA Astrophysics Data System (ADS)

    Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.

    2015-10-01

    Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e

  2. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.

    PubMed

    Davalos, Rafael V; McGraw, Gregory J; Wallow, Thomas I; Morales, Alfredo M; Krafcik, Karen L; Fintschenko, Yolanda; Cummings, Eric B; Simmons, Blake A

    2008-02-01

    Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting.

  3. Three-terminal resistive switching memory in a transparent vertical-configuration device

    NASA Astrophysics Data System (ADS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  4. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  5. Terahertz electrical writing speed in an antiferromagnetic memory

    PubMed Central

    Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias

    2018-01-01

    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601

  6. Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim

    2017-07-01

    Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3  ×  103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.

  7. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh

    2017-10-01

    Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.

  8. Multilevel characteristics and memory mechanisms for nonvolatile memory devices based on CuInS{sub 2} quantum dot-polymethylmethacrylate nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; Yun, Dong Yeol; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2014-12-08

    Nonvolatile memory devices based on CuInS{sub 2} (CIS) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) layer were fabricated using spin-coating method. The memory window widths of the capacitance-voltage (C-V) curves for the Al/CIS QDs embedded in PMMA layer/p-Si devices were 0.3, 0.6, and 1.0 V for sweep voltages of ±3, ±5, and ±7 V, respectively. Capacitance-cycle data demonstrated that the charge-trapping capability of the devices with an ON/OFF ratio value of 2.81 × 10{sup −10} was maintained for 8 × 10{sup 3} cycles without significant degradation and that the extrapolation of the ON/OFF ratio value to 1 × 10{sup 6} cycles converged to 2.40 × 10{sup −10}, indicative ofmore » the good stability of the devices. The memory mechanisms for the devices are described on the basis of the C-V curves and the energy-band diagrams.« less

  9. Nanogap-Engineerable Electromechanical System for Ultralow Power Memory.

    PubMed

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei; Chu, Weiguo; Zhou, Haiqing; Sun, Lianfeng

    2018-02-01

    Nanogap engineering of low-dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub-5 nm nanogaped single-walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10 -19 J bit -1 ), ON/OFF ratio of 10 5 , stable switching ON operations, and over 30 h retention time in ambient conditions.

  10. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  11. Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo

    2017-07-15

    In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.

  12. Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory

    PubMed Central

    Zhang, Jian; Deng, Ya; Hu, Xiao; Nshimiyimana, Jean Pierre; Liu, Siyu; Chi, Xiannian; Wu, Pei; Dong, Fengliang; Chen, Peipei

    2017-01-01

    Abstract Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions. PMID:29619307

  13. Ordering of guarded and unguarded stores for no-sync I/O

    DOEpatents

    Gara, Alan; Ohmacht, Martin

    2013-06-25

    A parallel computing system processes at least one store instruction. A first processor core issues a store instruction. A first queue, associated with the first processor core, stores the store instruction. A second queue, associated with a first local cache memory device of the first processor core, stores the store instruction. The first processor core updates first data in the first local cache memory device according to the store instruction. The third queue, associated with at least one shared cache memory device, stores the store instruction. The first processor core invalidates second data, associated with the store instruction, in the at least one shared cache memory. The first processor core invalidates third data, associated with the store instruction, in other local cache memory devices of other processor cores. The first processor core flushing only the first queue.

  14. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task

    NASA Astrophysics Data System (ADS)

    Ouyang, Liangqi; Shaw, Crystal L.; Kuo, Chin-chen; Griffin, Amy L.; Martin, David C.

    2014-04-01

    After extended implantation times, traditional intracortical neural probes exhibit a foreign-body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns et al 2007 J. Neural Eng. 4 L6-13). The EDOT monomer can be delivered via a microcannula/electrode system into the brain tissue of living animals followed by direct electrochemical polymerization, using the electrode itself as a source of oxidative current. In this study, we investigated the long-term effect of local in vivo PEDOT deposition on hippocampal neural function and histology. Rodent subjects were trained on a hippocampus-dependent task, delayed alternation (DA), and implanted with the microcannula/electrode system in the hippocampus. The animals were divided into four groups with different delay times between the initial surgery and the electrochemical polymerization: (1) control (no polymerization), (2) immediate (polymerization within 5 min of device implantation), (3) early (polymerization within 3-4 weeks after implantation) and (4) late (polymerization 7-8 weeks after polymerization). System impedance at 1 kHz was recorded and the tissue reactions were evaluated by immunohistochemistry. We found that under our deposition conditions, PEDOT typically grew at the tip of the electrode, forming an ˜500 µm cloud in the tissue. This is much larger than the typical width of the glial scar (˜150 µm). After polymerization, the impedance amplitude near the neurologically important frequency of 1 kHz dropped for all the groups; however, there was a time window of 3-4 weeks for an optimal decrease in impedance. For all surgery-polymerization time intervals, the polymerization did not cause significant deficits in performance of the DA task, suggesting that hippocampal function was not impaired by PEDOT deposition. However, GFAP+ and ED-1+ cells were also found at the deposition two weeks after the polymerization, suggesting potential secondary scarring. Therefore, less extensive deposition or milder deposition conditions may be desirable to minimize this scarring while maintaining decreased system impedance.

  15. In vivo polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in living rat hippocampus does not cause a significant loss of performance in a delayed alternation (DA) task

    PubMed Central

    Ouyang, Liangqi; Shaw, Crystal L.; Kuo, Chin-chen; Griffin, Amy L.; Martin, David C.

    2014-01-01

    After extended implantation times, traditional intracortical neural probes exhibit a foreign body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4 ethylene dioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns, Hendricks, & Martin, 2007). The EDOT monomer can be delivered via a microcannula/electrode system into the brain tissue of living animals followed by direct electrochemical polymerization, using the electrode itself as a source of oxidative current. In this study we investigated the long-term effect of local in vivo PEDOT deposition on hippocampal neural function and histology. Rodent subjects were trained on a hippocampus-dependent task, Delayed Alternation (DA), and implanted with the microcannula/electrode system in the hippocampus. The animals were divided into four groups with different delay times between the initial surgery and the electrochemical polymerization: (1) Control (no polymerization), (2) Immediate (polymerization within 5 minutes of device implantation), (3) Early (polymerization within 3–4 weeks after implantation), and (4) Late (polymerization 7–8 weeks after polymerization). System impedance at 1 kHz was recorded and the tissue reactions were evaluated by immunohistochemistry. We found that under our deposition conditions, PEDOT typically grew at the tip of the electrode, forming a ~500 μm cloud into the tissue. This is much larger than the typical width of the glial scar (~150 μm). After polymerization, the impedance amplitude near the neurologically important frequency of 1 kHz dropped for all the groups, however, there was a time window of 3–4 weeks for optimal decrease in impedance. For all surgery-polymerization time intervals, the polymerization did not cause significant deficits in performance of the DA task, suggesting that hippocampal function was not impaired by PEDOT deposition. However, GFAP+ and ED-1+ cells were also found at the deposition 2 weeks after the polymerization, suggesting potential secondary scarring. Therefore less extensive deposition or milder deposition conditions may be desirable to minimize this scarring while maintaining decreased system impedance. PMID:24503720

  16. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  17. Signal and noise extraction from analog memory elements for neuromorphic computing.

    PubMed

    Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T

    2018-05-29

    Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.

  18. Fast Initialization of Bubble-Memory Systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  19. Novel synaptic memory device for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-06-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle.

  20. Thiophene dendrimer-based low donor content solar cells

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Dani M.; Ma, Chang-Qi; Nagiri, Ravi C. R.; Clulow, Andrew J.; Bäuerle, Peter; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul

    2016-09-01

    Low donor content solar cells containing polymeric and non-polymeric donors blended with fullerenes have been reported to give rise to efficient devices. In this letter, we report that a dendrimeric donor can also be used in solution-processed low donor content devices when blended with a fullerene. A third generation dendrimer containing 42 thiophene units (42T) was found to give power conversion efficiencies of up to 3.5% when blended with PC70BM in optimized devices. The best efficiency was measured with 10 mole percent (mol. %) of 42T in PC70BM and X-ray reflectometry showed that the blends were uniform. Importantly, while 42T comprised 10 mol. % of the film, it made up 31% of the film by volume. Finally, it was found that solvent annealing was required to achieve the largest open circuit voltage and highest device efficiencies.

  1. Fabrication of InGaZnO Nonvolatile Memory Devices at Low Temperature of 150 degrees C for Applications in Flexible Memory Displays and Transparency Coating on Plastic Substrates.

    PubMed

    Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin

    2016-05-01

    We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.

  2. Data storage technology comparisons

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1990-01-01

    The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.

  3. Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Cheng, Huhu; Hu, Yue; Song, Long; Zhang, Zhipan; Jiang, Lan; Qu, Liangti

    2014-07-01

    Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the active insulator layer with tunable conductivity for achieving the high performance memory devices with electrical bistability. Unlike in conventional memory diodes, the g-C3N4-NSs based devices combined with graphene layer electrodes are flexible, metal-free and low cost. The functionalized g-C3N4-NSs exhibit desirable dispersibility and dielectricity which support the all-solution fabrication and high performance of the memory diodes. Moreover, the flexible memory diodes are conveniently fabricated through the fast laser writing process on graphene oxide/g-C3N4-NSs/graphene oxide thin film. The obtained devices not only have the nonvolatile electrical bistability with great retention and endurance, but also show the rewritable memory effect with a reliable ON/OFF ratio of up to 105, which is the highest among all the metal-free flexible memory diodes reported so far, and even higher than those of metal-containing devices.

  4. Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus.

    PubMed

    Popik, Bruno; Crestani, Ana Paula; Silva, Mateus Oliveira; Quillfeldt, Jorge Alberto; de Oliveira Alvares, Lucas

    2018-05-01

    It has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity. Here, we tested whether the pharmacological inhibition of calpain in the dorsal hippocampus affects memory consolidation, retrieval and reconsolidation in rats trained in contextual fear conditioning. We first found that post-training infusion of the calpain inhibitor PD150606 impaired long-term memory consolidation, but not short-term memory. Next, we showed that pre-test infusion of the calpain inhibitor hindered memory retrieval. Finally, blocking calpain activity after memory reactivation disrupted reconsolidation. Taken together, our results show that calpain play an essential role in the hippocampus by enabling memory formation, expression and reconsolidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  6. Development of Curie point switching for thin film, random access, memory device

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Tchernev, D. I.

    1967-01-01

    Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.

  7. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.

    PubMed

    Rother, Martin; Nussbaumer, Martin G; Renggli, Kasper; Bruns, Nico

    2016-11-07

    Protein cages are hollow protein nanoparticles, such as viral capsids, virus-like particles, ferritin, heat-shock proteins and chaperonins. They have well-defined capsule-like structures with a monodisperse size. Their protein subunits can be modified by genetic engineering at predetermined positions, allowing for example site-selective introduction of attachment points for functional groups, catalysts or targeting ligands on their outer surface, in their interior and between subunits. Therefore, protein cages have been extensively explored as functional entities in bionanotechnology, as drug-delivery or gene-delivery vehicles, as nanoreactors or as templates for the synthesis of organic and inorganic nanomaterials. The scope of functionalities and applications of protein cages can be significantly broadened if they are combined with synthetic polymers on their surface or within their interior. For example, PEGylation reduces the immunogenicity of protein cage-based delivery systems and active targeting ligands can be attached via polymer chains to favour their accumulation in diseased tissue. Polymers within protein cages offer the possibility of increasing the loading density of drug molecules, nucleic acids, magnetic resonance imaging contrast agents or catalysts. Moreover, the interaction of protein cages and polymers can be used to modulate the size and shape of some viral capsids to generate structures that do not occur with native viruses. Another possibility is to use the interior of polymer cages as a confined reaction space for polymerization reactions such as atom transfer radical polymerization or rhodium-catalysed polymerization of phenylacetylene. The protein nanoreactors facilitate a higher degree of control over polymer synthesis. This review will summarize the hybrid structures that have been synthesized by polymerizing from protein cage-bound initiators, by conjugating polymers to protein cages, by embedding protein cages into bulk polymeric materials, by forming two- and three-dimensional crystals of protein cages and dendrimers, by adsorbing proteins to the surface of materials, by layer-by-layer deposition of proteins and polyelectrolytes and by encapsulating polymers into protein cages. The application of these hybrid materials in the biomedical context or as tools and building blocks for bionanotechnology, biosensing, memory devices and the synthesis of materials will be highlighted. The review aims to showcase recent developments in this field and to suggest possible future directions and opportunities for the symbiosis of protein cages and polymers.

  8. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials.

    PubMed

    Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei

    2016-03-18

    The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  10. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  11. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  12. Design and biocompatibility of endovascular aneurysm filling devices

    DOE PAGES

    Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John; ...

    2014-08-04

    We report that the rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several suchmore » devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. Lastly, we also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing.« less

  13. Design and biocompatibility of endovascular aneurysm filling devices

    PubMed Central

    Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John; Landsman, Todd L.; Boyle, Anthony; Wierzbicki, Mark A.; Hasan, Sayyeda M.; Follmer, Douglas; Bryant, Jesse; Small, Ward; Maitland, Duncan J.

    2014-01-01

    The rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several such devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. We also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing. PMID:25044644

  14. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters

    NASA Astrophysics Data System (ADS)

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy

    2014-11-01

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  15. Low latency counter event indication

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2008-09-16

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  16. Low latency counter event indication

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-08-24

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  17. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  18. Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications

    NASA Astrophysics Data System (ADS)

    Tsao, Hou-Yen; Lin, Yow-Jon

    2014-02-01

    The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.

  19. Interference lithography for optical devices and coatings

    NASA Astrophysics Data System (ADS)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.

  20. Thickness effect of nickel oxide thin films on associated solution-processed write-once-read-many-times memory devices

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan

    2018-06-01

    With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.

  1. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    PubMed Central

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  2. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentini, L., E-mail: luca.valentini@unipg.it; Cardinali, M.; Fortunati, E.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electricmore » field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.« less

  3. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    PubMed

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  4. Investigation of fast initialization of spacecraft bubble memory systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  5. Sterilization and reprocessing of materials and medical devices--reusability.

    PubMed

    Jayabalan, M

    1995-07-01

    Problems associated with reprocessing of disposable medical devices such as hemodialysers with resterilization for reuse and changes in material properties with resterilization of polymeric (PVC, polypropylene, polyester, polycarbonate) materials intended for development of disposable devices are reviewed. Reprocessing of hospital supplies, polystyrene microtiter plate and angiographic catheter for reuse is also discussed.

  6. Radiation Test Challenges for Scaled Commerical Memories

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Ray L.; Cohn, Lewis M.; Oldham, Timothy

    2007-01-01

    As sub-100nm CMOS technologies gather interest, the radiation effects performance of these technologies provide a significant challenge. In this talk, we shall discuss the radiation testing challenges as related to commercial memory devices. The focus will be on complex test and failure modes emerging in state-of-the-art Flash non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs), which are volatile. Due to their very high bit density, these device types are highly desirable for use in the natural space environment. In this presentation, we shall discuss these devices with emphasis on considerations for test and qualification methods required.

  7. In situ characterization of the oxidative degradation of a polymeric light emitting device

    NASA Astrophysics Data System (ADS)

    Cumpston, B. H.; Parker, I. D.; Jensen, K. F.

    1997-04-01

    Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.

  8. Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials.

    PubMed

    Zhou, Li; Mao, Jingyu; Ren, Yi; Han, Su-Ting; Roy, Vellaisamy A L; Zhou, Ye

    2018-03-01

    Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier

    2015-06-01

    The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.

  10. Filtering Water by Use of Ultrasonically Vibrated Nanotubes

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan

    2009-01-01

    Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can be expected to become aligned into helical columns that exhibit properties of both hexagonal ice crystals and liquid water

  11. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    DOE PAGES

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less

  12. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    PubMed

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  13. Transparent conductive nano-composites

    DOEpatents

    Geohegan, David Bruce; Ivanov, Ilia N; Puretzky, Alexander A; Jesse, Stephen; Hu, Bin; Garrett, Matthew; Zhao, Bin

    2013-09-24

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  14. Transparent conductive nano-composites

    DOEpatents

    Geohegan, David Bruce [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN; Jesse, Stephen [Knoxville, TN; Hu, Bin [Knoxville, TN; Garrett, Matthew [Knoxville, TN; Zhao, Bin [Easley, SC

    2011-04-12

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  15. Low-power resistive random access memory by confining the formation of conducting filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien

    2016-06-15

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less

  16. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Sachin M.; Tanemura, Masaki; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material asmore » well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.« less

  17. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  18. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 2: The optimization of material-device parameters for application in bubble domain memory elements for spacecraft data recorders

    NASA Technical Reports Server (NTRS)

    Besser, P. J.

    1976-01-01

    Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.

  19. Device and methods for writing and erasing analog information in small memory units via voltage pulses

    DOEpatents

    El Gabaly Marquez, Farid; Talin, Albert Alec

    2018-04-17

    Devices and methods for non-volatile analog data storage are described herein. In an exemplary embodiment, an analog memory device comprises a potential-carrier source layer, a barrier layer deposited on the source layer, and at least two storage layers deposited on the barrier layer. The memory device can be prepared to write and read data via application of a biasing voltage between the source layer and the storage layers, wherein the biasing voltage causes potential-carriers to migrate into the storage layers. After initialization, data can be written to the memory device by application of a voltage pulse between two storage layers that causes potential-carriers to migrate from one storage layer to another. A difference in concentration of potential carriers caused by migration of potential-carriers between the storage layers results in a voltage that can be measured in order to read the written data.

  20. Short-term memory to long-term memory transition in a nanoscale memristor.

    PubMed

    Chang, Ting; Jo, Sung-Hyun; Lu, Wei

    2011-09-27

    "Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society

  1. Printed Biopolymer-Based Electro-Optic Device Components

    DTIC Science & Technology

    2013-07-01

    devices and fabricated e-beam lithography-based master molds. Printed micro and nanostructures using a newly developed spin-on nanoprinting (SNAP...polymeric materials. Among the natural biopolymers , deoxyribonucleic acid (DNA) is an attractive material which can be used to make electronic and...photonic devices [2, 3]. If patterned on the micro and nanoscale using a soft lithography technique, high quality biodegradable optical devices can be

  2. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  3. From dead leaves to sustainable organic resistive switching memory.

    PubMed

    Sun, Bai; Zhu, Shouhui; Mao, Shuangsuo; Zheng, Pingping; Xia, Yudong; Yang, Feng; Lei, Ming; Zhao, Yong

    2018-03-01

    An environmental-friendly, sustainable, pollution-free, biodegradable, flexible and wearable electronic device hold advanced potential applications. Here, an organic resistive switching memory device with Ag/Leaves/Ti/PET structure on a flexible polyethylene terephthalate (PET) substrate was fabricated for the first time. We observed an obvious resistive switching memory characteristic with large switching resistance ratio and stable cycle performance at room temperature. This work demonstrates that leaves, a useless waste, can be properly treated to make useful devices. Furthermore, the as-fabricated devices can be degraded naturally without damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

    NASA Astrophysics Data System (ADS)

    Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng

    2018-05-01

    A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.

  5. Composition-dependent nanoelectronics of amido-phenazines: non-volatile RRAM and WORM memory devices.

    PubMed

    Maiti, Dilip K; Debnath, Sudipto; Nawaz, Sk Masum; Dey, Bapi; Dinda, Enakhi; Roy, Dipanwita; Ray, Sudipta; Mallik, Abhijit; Hussain, Syed A

    2017-10-17

    A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.

  6. Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing

    PubMed Central

    Zhao, Fei; Cheng, Huhu; Hu, Yue; Song, Long; Zhang, Zhipan; Jiang, Lan; Qu, Liangti

    2014-01-01

    Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the active insulator layer with tunable conductivity for achieving the high performance memory devices with electrical bistability. Unlike in conventional memory diodes, the g-C3N4-NSs based devices combined with graphene layer electrodes are flexible, metal-free and low cost. The functionalized g-C3N4-NSs exhibit desirable dispersibility and dielectricity which support the all-solution fabrication and high performance of the memory diodes. Moreover, the flexible memory diodes are conveniently fabricated through the fast laser writing process on graphene oxide/g-C3N4-NSs/graphene oxide thin film. The obtained devices not only have the nonvolatile electrical bistability with great retention and endurance, but also show the rewritable memory effect with a reliable ON/OFF ratio of up to 105, which is the highest among all the metal-free flexible memory diodes reported so far, and even higher than those of metal-containing devices. PMID:25073687

  7. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  9. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    PubMed Central

    Cataldo, Sebastiano; Pignataro, Bruno

    2013-01-01

    This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362

  10. Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.

    PubMed

    Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan

    2014-08-11

    A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  11. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes.

    PubMed

    Henderson, Rowan D; Guijt, Rosanne M; Haddad, Paul R; Hilder, Emily F; Lewis, Trevor W; Breadmore, Michael C

    2010-07-21

    This work describes the development of a fully polymeric microchip with integrated polymeric electrodes suitable for performing microchip electrophoresis. The polymer electrodes were fabricated in a thin film of the conducting polymer, polyaniline (PANI), by flash lithography using a studio camera flash and a transparency mask. During flash welding, exposed regions welded into non-conducting regions forming a conducting polymer circuit in the non-exposed regions. Using a structured layer of dry film photoresist for sealing, a polydimethylsiloxane (PDMS) substrate containing channels and reservoirs was bound to the PANI film to form an integrated microfluidic device. The conducting regions of the PANI film were shown to be capable of carrying the high voltages of up to 2000 V required for chip electrophoresis, and were stable for up to 30 minutes under these conditions. The PANI electrodes were used for the electrophoretic separation of three sugars labelled with 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) in the dry film resist-PDMS hybrid device. Highly efficient separations comparable to those achieved in similar microchips using platinum electrodes confirm the potential of polyaniline as a new material suitable for high voltage electrodes in Lab-on-a-chip devices.

  12. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    PubMed

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  13. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    NASA Astrophysics Data System (ADS)

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-09-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective.

  14. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    PubMed Central

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-01-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective. PMID:26324073

  15. Operation mode switchable charge-trap memory based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  16. Scientific developments of liquid crystal-based optical memory: a review

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M.

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  17. Scientific developments of liquid crystal-based optical memory: a review.

    PubMed

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  18. Virtex-5QV Self Scrubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    2015-10-20

    This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.

  19. Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices

    NASA Astrophysics Data System (ADS)

    Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.

  20. Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices

    PubMed Central

    Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy

    2017-01-01

    Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues. PMID:28868148

  1. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  2. In-memory interconnect protocol configuration registers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kevin Y.; Roberts, David A.

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mappingmore » decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.« less

  3. Polymeric composite devices for localized treatment of early-stage breast cancer

    PubMed Central

    Kan-Dapaah, Kwabena; Soboyejo, Wole

    2017-01-01

    For early-stage breast cancers mastectomy is an aggressive form of treatment. Therefore, there is a need for new treatment strategies that can enhance the use of lumpectomy by eliminating residual cancer cells with limited side effects to reduce local recurrence. Although, various radiotherapy-based methods have been developed, residual cells are found in 20–55% of the time at the first operation. Furthermore, some current treatment methods result in poor cosmesis. For the last decade, the authors have been exploring the use of polymeric composite materials in single and multi-modal implantable biomedical devices for post-operative treatment of breast cancer. In this paper, the concept and working principles of the devices, as well as selected results from experimental and numerical investigations, are presented. The results show the potential of the biomedical implants for cancer treatment. PMID:28245288

  4. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  5. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing

    DOE PAGES

    Vetter, Jeffrey S.; Mittal, Sparsh

    2015-01-12

    For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less

  6. A study on carbon nanotube bridge as a electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung

    2005-04-01

    A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.

  7. Flexible graphene-PZT ferroelectric nonvolatile memory.

    PubMed

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  8. Spin transport and spin torque in antiferromagnetic devices

    DOE PAGES

    Zelezny, J.; Wadley, P.; Olejnik, K.; ...

    2018-03-02

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  9. Spin transport and spin torque in antiferromagnetic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelezny, J.; Wadley, P.; Olejnik, K.

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  10. Monolayer optical memory cells based on artificial trap-mediated charge storage and release

    NASA Astrophysics Data System (ADS)

    Lee, Juwon; Pak, Sangyeon; Lee, Young-Woo; Cho, Yuljae; Hong, John; Giraud, Paul; Shin, Hyeon Suk; Morris, Stephen M.; Sohn, Jung Inn; Cha, Seungnam; Kim, Jong Min

    2017-03-01

    Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing have received little attention. Here we report a concept for monolayer MoS2 optoelectronic memory devices using artificially-structured charge trap layers through the functionalization of the monolayer/dielectric interfaces, leading to localized electronic states that serve as a basis for electrically-induced charge trapping and optically-mediated charge release. Our devices exhibit excellent photo-responsive memory characteristics with a large linear dynamic range of ~4,700 (73.4 dB) coupled with a low OFF-state current (<4 pA), and a long storage lifetime of over 104 s. In addition, the multi-level detection of up to 8 optical states is successfully demonstrated. These results represent a significant step toward the development of future monolayer optoelectronic memory devices.

  11. Spin transport and spin torque in antiferromagnetic devices

    NASA Astrophysics Data System (ADS)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  12. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  13. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  14. Nondegradable magnetic poly (carbonate urethane) microspheres with good shape memory as a proposed material for vascular embolization.

    PubMed

    Liu, Rongrong; Zhang, Qian; Zhou, Qian; Zhang, Ping; Dai, Honglian

    2018-06-01

    In this study, nondegradable poly (carbonate urethane) (PCU) and poly (carbonate urethane) incorporated variable Fe 3 O 4 content microspheres (PCU/Fe 3 O 4 ) were synthesized using pre-polymerization and suspension polymerization. Synthesis was confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of Fe 3 O 4 incorporation was investigated on crystalline, thermal, shape memory and degradation properties by X-Ray diffraction (XRD), Differential scanning calorimetery (DSC), compression test and degradation in vitro, respectively. Otherwise, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior depends on the amount of magnetic particles incorporated within the networks. The biological study results of as-synthesized polymers from the platelet adhesion test and the cell proliferation inhibition test indicated they were biocompatible in vitro. Fe 3 O 4 incorporation was conductive to reducing platelet adhesion in blood contacting test and promotion of rat vascular smooth muscle cell proliferation and growth. These nondegradable, superparamagnetic, biocompatible polymers, combined with their good shape memory properties may allow for their future exploitation in the biomedical field, such as, in cardiovascular implants, targeted tumor treatment, tissue engineering and artificial organ's engineering. Copyright © 2018. Published by Elsevier Ltd.

  15. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  16. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John

    We report that the rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several suchmore » devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. Lastly, we also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing.« less

  18. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.

    PubMed

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  19. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  20. Review of radiation effects on ReRAM devices and technology

    NASA Astrophysics Data System (ADS)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  1. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    PubMed

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  3. Optical computing, optical memory, and SBIRs at Foster-Miller

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  4. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.

    2013-02-01

    The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a

  5. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    NASA Astrophysics Data System (ADS)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  6. 4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices.

    PubMed

    Zarek, Matt; Mansour, Nicola; Shapira, Shir; Cohn, Daniel

    2017-01-01

    The convergence of additive manufacturing and shape-morphing materials is promising for the advancement of personalized medical devices. The capability to transform 3D objects from one shape to another, right off the print bed, is known as 4D printing. Shape memory thermosets can be tailored to have a range of thermomechanical properties favorable to medical devices, but processing them is a challenge because they are insoluble and do not flow at any temperature. This study presents here a strategy to capitalize on a series of medical imaging modalities to construct a printable shape memory endoluminal device, exemplified by a tracheal stent. A methacrylated polycaprolactone precursor with a molecular weight of 10 000 g mol -1 is printed with a UV-LED stereolithography printer based on anatomical data. This approach converges with the zeitgeist of personalized medicine and it is anticipated that it will broadly expand the application of shape memory-exhibiting biomedical devices to myriad clinical indications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory.

    PubMed

    Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin

    2016-01-13

    Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.

  8. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  9. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.

    PubMed

    Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiadò, Alessandro; Roppolo, Ignazio

    2017-06-07

    In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.

  10. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    PubMed

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  11. Fully transparent, non-volatile bipolar resistive memory based on flexible copolyimide films

    NASA Astrophysics Data System (ADS)

    Yu, Hwan-Chul; Kim, Moon Young; Hong, Minki; Nam, Kiyong; Choi, Ju-Young; Lee, Kwang-Hun; Baeck, Kyoung Koo; Kim, Kyoung-Kook; Cho, Soohaeng; Chung, Chan-Moon

    2017-01-01

    Partially aliphatic homopolyimides and copolyimides were prepared from rel-(1'R,3S,5'S)-spiro[furan-3(2H),6'-[3]oxabicyclo[3.2.1]octane]-2,2',4',5(4H)-tetrone (DAn), 2,6-diaminoanthracene (AnDA), and 4,4'-oxydianiline (ODA) by varying the molar ratio of AnDA and ODA. We utilized these polyimide films as the resistive switching layer in transparent memory devices. While WORM memory behavior was obtained with the PI-A100-O0-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 1 : 0), the PI-A70-O30-based device (molar feed ratio of DAn : AnDA : ODA = 1 : 0.7 : 0.3) exhibited bipolar resistive switching behavior with stable retention for 104 s. This result implies that the memory properties can be controlled by changing the polyimide composition. The two devices prepared from PI-A100-O0 and PI-A70-O30 showed over 90% transmittance in the visible wavelength range from 400 to 800 nm. The behavior of the memory devices is considered to be governed by trap-controlled, space-charge limited conduction (SCLC) and local filament formation. [Figure not available: see fulltext.

  12. Investigation of resistive switching behaviours in WO3-based RRAM devices

    NASA Astrophysics Data System (ADS)

    Li, Ying-Tao; Long, Shi-Bing; Lü, Hang-Bing; Liu, Qi; Wang, Qin; Wang, Yan; Zhang, Sen; Lian, Wen-Tai; Liu, Su; Liu, Ming

    2011-01-01

    In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.

  13. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  14. Overview of emerging nonvolatile memory technologies.

    PubMed

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

  15. Memristive effects in oxygenated amorphous carbon nanodevices

    NASA Astrophysics Data System (ADS)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  16. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.

  17. 15 CFR 740.19 - Consumer Communications Devices (CCD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (11) Memory devices classified under ECCN 5A992 or designated EAR99; (12) “Information security... 5D992 or designated EAR99; (13) Digital cameras and memory cards classified under ECCN 5A992 or...

  18. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  19. Chemically Polymerized Polypyrrole for On-Chip Concentration of Volatile Breath Metabolites

    PubMed Central

    Strand, Nicholas; Bhushan, Abhinav; Schivo, Michael; Kenyon, Nicholas J.; Davis, Cristina E.

    2009-01-01

    A wide range of metabolites are measured in the gas phase of exhaled human breath, and some of these biomarkers are frequently observed to be up- or down-regulated in certain disease states. Portable breath analysis systems have the potential for a wide range of applications in health diagnostics. However, this is currently limited by the lack of concentration mechanisms to enhance trace metabolites found in the breath to levels that can be adequately recorded using miniaturized gas-phase sensors. In this study we have created chip-based polymeric pre-concentration devices capable of absorbing and desorbing breath volatiles for subsequent chemical analysis. These devices appear to concentrate chemicals from both environmental air samples as well as directly from exhaled human breath, and these devices may have applications in lab-on-a-chip-based environmental and health monitoring systems. PMID:20161533

  20. Viscoelastic coupling of nanoelectromechanical resonators.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonson, Robert Joseph; Staton, Alan W.

    2009-09-01

    This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanicalmore » devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.« less

  1. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  4. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    PubMed Central

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  5. Feasibility study of molecular memory device based on DNA using methylation to store information

    NASA Astrophysics Data System (ADS)

    Jiang, Liming; Qiu, Wanzhi; Al-Dirini, Feras; Hossain, Faruque M.; Evans, Robin; Skafidas, Efstratios

    2016-07-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  6. A graphene integrated highly transparent resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.

    2018-05-01

    We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (<±1 V). The vertical two-terminal device shows an excellent resistive switching behavior with a high on-off ratio of ˜5 × 103. We also fabricated a ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.

  7. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures.

    PubMed

    Abhijith, T; Kumar, T V Arun; Reddy, V S

    2017-03-03

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO 3 ) between two tris-(8-hydroxyquinoline)aluminum (Alq 3 ) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 10 3 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO 3 layer thickness and its location in the Alq 3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO 3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  8. Photoisomerization-induced manipulation of single-electron tunneling for novel Si-based optical memory.

    PubMed

    Hayakawa, Ryoma; Higashiguchi, Kenji; Matsuda, Kenji; Chikyow, Toyohiro; Wakayama, Yutaka

    2013-11-13

    We demonstrated optical manipulation of single-electron tunneling (SET) by photoisomerization of diarylethene molecules in a metal-insulator-semiconductor (MIS) structure. Stress is placed on the fact that device operation is realized in the practical device configuration of MIS structure and that it is not achieved in structures based on nanogap electrodes and scanning probe techniques. Namely, this is a basic memory device configuration that has the potential for large-scale integration. In our device, the threshold voltage of SET was clearly modulated as a reversible change in the molecular orbital induced by photoisomerization, indicating that diarylethene molecules worked as optically controllable quantum dots. These findings will allow the integration of photonic functionality into current Si-based memory devices, which is a unique feature of organic molecules that is unobtainable with inorganic materials. Our proposed device therefore has enormous potential for providing a breakthrough in Si technology.

  9. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    NASA Astrophysics Data System (ADS)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  10. A Study of Energy Conversion Devices Using Photoactive Organometallic Electrocatalysts.

    DTIC Science & Technology

    1986-05-23

    arylisocyanide complexes confined to polymeric thin films in solar energy conversion systems . The chemical systems of interest were chromium...The goals of the project then became threefold: 1) examine the thermo- dynamics an- ’ kinetics of charge transfer in the systems in which we had shown...complexes confined to polymeric thin films in solar energy conversion systems . The chemical systems of interest were chromium, molybdenum and

  11. Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

    DTIC Science & Technology

    2012-04-01

    Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007

  12. NiTi shape memory alloys treated by plasma-polymerized tetrafluoroethylene. A physicochemical and electrochemical characterization.

    PubMed

    Yahia, L H; Lombardi, S; Piron, D; Klemberg-Sapieha, J E; Wertheimer, M R

    NiTi alloy specimens were plasma cleaned and then coated with a thin film of plasma-polymerized tetrafluoroethylene (TFE) in a Radio-Frequency reactor. The corrosion protection provided by these films was studied by potentiodynamic tests performed in Hank's physiological solution. Surface properties which determine biocompatibility were characterized by X-ray photoelectron spectroscopy (XPS). The results showed that the surface of untreated NiTi was mostly composed by oxygen, carbon, titanium oxide (TiO2) with traces of nickel oxides (NiO and Ni2O3) and metallic Ni. The passivity of untreated NiTi was found to be unstable in the simulated human body media. After plasma treatment, the NiTi surface contained only carbon and fluor. The plasma-polymerized thin film was found to stabilize the NiTi passivity and to increase its pitting potential. This treatment provides a good protection against dissolution of nickel from NiTi alloys.

  13. Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres.

    PubMed

    Oliveira, Serafim M; Almeida, Isabel F; Costa, Paulo C; Barrias, Cristina C; Ferreira, M Rosa Pena; Bahia, M Fernanda; Barbosa, Mário A

    2010-06-01

    A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25 degrees C or at 4 degrees C.

  14. A multilevel nonvolatile magnetoelectric memory

    NASA Astrophysics Data System (ADS)

    Shen, Jianxin; Cong, Junzhuang; Shang, Dashan; Chai, Yisheng; Shen, Shipeng; Zhai, Kun; Sun, Young

    2016-09-01

    The coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics. Because the states of α depends on the relative orientation between magnetization and polarization, one can reach different levels of α by controlling the ratio of up and down ferroelectric domains with external electric fields. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure confirm that the states of α can be well controlled between positive and negative by applying selective electric fields. Consequently, two-level, four-level, and eight-level nonvolatile memory devices are demonstrated at room temperature. This kind of multilevel magnetoelectric memory retains all the advantages of ferroelectric random access memory but overcomes the drawback of destructive reading of polarization. In contrast, the reading of α is nondestructive and highly efficient in a parallel way, with an independent reading coil shared by all the memory cells.

  15. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while themore » electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.« less

  17. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  18. Memory characteristics of metal-oxide-semiconductor structures based on Ge nanoclusters-embedded GeO(x) films grown at low temperature.

    PubMed

    Lin, Tzu-Shun; Lou, Li-Ren; Lee, Ching-Ting; Tsai, Tai-Cheng

    2012-03-01

    The memory devices constructed from the Ge-nanoclusters embedded GeO(x) layer deposited by the laser-assisted chemical vapor deposition (LACVD) system were fabricated. The Ge nanoclusters were observed by a high-resolution transmission electron microscopy. Using the capacitance versus voltage (C-V) and the conductance versus voltage (G-V) characteristics measured under various frequencies, the memory effect observed in the C-V curves was dominantly attributed to the charge storage in the Ge nanoclusters. Furthermore, the defects existed in the deposited film and the interface states were insignificant to the memory performances. Capacitance versus time (C-t) measurement was also executed to evaluate the charge retention characteristics. The charge storage and retention behaviors of the devices demonstrated that the Ge nanoclusters grown by the LACVD system at low temperature are promising for memory device applications.

  19. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less

  20. Light programmable organic transistor memory device based on hybrid dielectric

    NASA Astrophysics Data System (ADS)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  1. Josephson Thermal Memory

    NASA Astrophysics Data System (ADS)

    Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Di Ventra, Massimiliano; Giazotto, Francesco

    2018-01-01

    We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of approximately 0.2 ns for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest a noninvasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.

  2. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory.

    PubMed

    Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  3. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  4. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.

    PubMed

    Linn, E; Menzel, S; Ferch, S; Waser, R

    2013-09-27

    Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.

  5. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam

    2011-08-01

    Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

  6. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  7. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  8. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.

    PubMed

    Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.

  9. Bad data packet capture device

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  10. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar's performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar's transmitted pulse and sending the result back to the radar's receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar's performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  11. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  12. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    DTIC Science & Technology

    2006-03-31

    nanotube actuators for both sensing and active control of surfaces. State-of-the-art OLED and photovoltaic materials have been developed for display...format. 14. SUBJECT TERMS Multi-sensor paints; carbon nanotube materials and devices; OLED , 15. NUMBER OF PAGES nhntovnlthir ndni elp.trAn-nntjc ’vicn...Significant advances in organic light emitting device ( OLED ) materials has also been achieved as is evident from the publications and invention

  13. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  14. Comparison of resistive switching characteristics using copper and aluminum electrodes on GeOx/W cross-point memories

    PubMed Central

    2013-01-01

    Comparison of resistive switching memory characteristics using copper (Cu) and aluminum (Al) electrodes on GeOx/W cross-points has been reported under low current compliances (CCs) of 1 nA to 50 μA. The cross-point memory devices are observed by high-resolution transmission electron microscopy (HRTEM). Improved memory characteristics are observed for the Cu/GeOx/W structures as compared to the Al/GeOx/W cross-points owing to AlOx formation at the Al/GeOx interface. The RESET current increases with the increase of the CCs varying from 1 nA to 50 μA for the Cu electrode devices, while the RESET current is high (>1 mA) and independent of CCs varying from 1 nA to 500 μA for the Al electrode devices. An extra formation voltage is needed for the Al/GeOx/W devices, while a low operation voltage of ±2 V is needed for the Cu/GeOx/W cross-point devices. Repeatable bipolar resistive switching characteristics of the Cu/GeOx/W cross-point memory devices are observed with CC varying from 1 nA to 50 μA, and unipolar resistive switching is observed with CC >100 μA. High resistance ratios of 102 to 104 for the bipolar mode (CCs of 1 nA to 50 μA) and approximately 108 for the unipolar mode are obtained for the Cu/GeOx/W cross-points. In addition, repeatable switching cycles and data retention of 103 s are observed under a low current of 1 nA for future low-power, high-density, nonvolatile, nanoscale memory applications. PMID:24305116

  15. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    ERIC Educational Resources Information Center

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  16. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  17. Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode.

    PubMed

    Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir

    2015-08-01

    A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.

  18. Use of the shape memory effect of a titanium nickelide spring in a suturing device for the formation of compression esophageal anastomoses.

    PubMed

    Robak, A N

    2008-11-01

    A new method for the formation of a compression esophagointestinal anastomosis is proposed. The compression force in the new device for creation of compression circular anastomoses is created by means of a titanium nickelide spring with a "shape memory" effect. Experimental study showed good prospects of the new device and the advantages of the anastomosis compression suture formed by means of this device in comparison with manual ligature suturing.

  19. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  20. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  1. A resistance ratio change phenomenon observed in Al doped ZnO (AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou

    2018-03-01

    In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.

  2. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  3. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times.

    PubMed

    Kaastrup, Kaja; Sikes, Hadley D

    2012-10-21

    Although polymerization-based amplification (PBA) has demonstrated promise as an inexpensive technique for use in molecular diagnostics, oxygen inhibition of radical photopolymerization has hindered its implementation in point-of-care devices. The addition of 0.3-0.7 μM eosin to an aqueous acrylate monomer solution containing a tertiary amine allows an interfacial polymerization reaction to proceed in air only near regions of a test surface where additional eosin initiators coupled to proteins have been localized as a function of molecular recognition events. The dose of light required for the reaction is inversely related to eosin concentration. This system achieves sensitivities comparable to those reported for inert gas-purged systems and requires significantly shorter reaction times. We provide several comparisons of this system with other implementations of polymerization-based amplification.

  4. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  5. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.

    PubMed

    Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei

    2017-09-01

    TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of nanomaterials in two-terminal resistive-switching memory devices

    PubMed Central

    Ouyang, Jianyong

    2010-01-01

    Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862

  7. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    NASA Astrophysics Data System (ADS)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was studied as a function of tunnel oxide thickness, dielectric permittivity and energy barrier, and modified Butler-Volmer expressions were postulated to describe the redox kinetics. The speed vs. retention performance of the devices was improved via asymmetric layered tunnel barriers. The properties of molecules can be tailored by molecular design and synthetic chemistry. In this work, it was demonstrated that an alternate route to tune/enhance the properties of the hybrid device is to engineer the substrate (silicon) component. The molecules were attached to diode surfaces to tune redox voltages and improve charge-retention characteristics. N+ pockets embedded in P-Si well were utilized to obtain multiple states from a two-state molecule. The structure was also employed as a characterization tool in investigating the intrinsic properties of the molecules such as lateral conductivity within the monolayer. Redox molecules were also incorporated on an ultra thin gate-oxide of Si MOSFETs with the intent of studying the interaction of redox states with Si MOSFETs. The discrete molecular states were manifested in the drain current and threshold voltage characteristics of the device. This work demonstrates the multi-state modulation of Si-MOSFETs' drain current via redox-active molecular monolayers. Polymeric films of redox-active molecules were incorporated to improve the charge-density (ON/OFF ratio) and these structures may be employed for multi-state, low-voltage Flash memory applications. The most critical aspect of this research effort is to build a reliable and high density solid state memory technology. To this end, efforts were directed towards replacement of the electrolytic gate, which forms an extremely thin insulating double layer (˜10 nm) at the electrolyte-molecule interface, with a combination of an ultra-thin high-K dielectric layer and a metal gate. Several interesting observations were made in the research approaches towards integration and provided valuable insights into the electrolyte-redox systems. In summary, this work provides fundamental insights into the interaction of redox-energy states with silicon substrate and realistic approaches for exploiting the unique properties of the molecules that may enable solutions for nanoscale high density, low-voltage, long retention and multiple bit memory applications.

  8. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE PAGES

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...

    2015-04-10

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  9. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  10. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  11. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  12. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    NASA Astrophysics Data System (ADS)

    Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool

    2015-12-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.

  13. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-07-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.

  14. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer.

    PubMed

    Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V A L

    2013-03-07

    The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al(2)O(3)) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al(2)O(3) dielectric layer) could be potentially integrated with large area flexible electronics.

  15. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory.

    PubMed

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-07-23

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.

  16. Using DMA for copying performance counter data to memory

    DOEpatents

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance counter data.

  17. Using DMA for copying performance counter data to memory

    DOEpatents

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W

    2013-12-31

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance data.

  18. Press-coated tablets for time-programmed release of drugs.

    PubMed

    Conte, U; Maggi, L; Torre, M L; Giunchedi, P; La Manna, A

    1993-10-01

    A new dry-coated device for the release of drug after a programmable period of time is proposed. It is intended to be used mainly in the therapy of those diseases which depend on circadian rhythms. Some core formulations, characterized by different release rates and mechanisms (containing diltiazem hydrochloride or sodium diclofenac as model drugs), were coated by compression with different polymeric barrier layers (press-coated systems). The shell formulations tested contained either gellable or erodible polymers. The dissolution profiles of uncoated cores and press-coated devices were compared. The gellable and/or erodible characteristics (properties) of the barrier formulations were also examined by means of a penetrometer. The coatings prevent drug release from the core until the polymeric shell is completely eroded or swollen. This delay in release start is not influenced by the core composition and depends only on the shell formulation. Except for the time-lag, the release kinetics of the drug contained in the core are not significantly influenced by the presence of the erodible barrier, but can be widely modulated using a swellable polymeric shell.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Ha; Kim, Hyun-Jin; Park, Choon-Sang

    In this study, we have proposed the double grounded atmospheric pressure plasma jet (2G-APPJ) device to individually control the plasmas in both fragmentation (or active) and recombination (or passive) regions with a mixture of He and Ar gases to deposit organic thin films on glass or Si substrates. Plasma polymerization of acetone has been successfully deposited using a highly energetic and high-density 2G-APPJ and confirmed by scanning electron microscopy (SEM). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar and He spectra lines, we observed some spectra of C{sub 2} and CHmore » species for fragmentation and N{sub 2} (second positive band) species for recombination. The experimental results confirm that the Ar gas is identified as a key factor for facilitating fragmentation of acetone, whereas the He gas helps the plume of plasma reach the substrate on the 2{sup nd} grounded electrode during the plasma polymerization process. The high quality plasma polymerized thin films and nanoparticles can be obtained by the proposed 2G-APPJ device using dual gases.« less

  20. Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunctional Evaluation

    PubMed Central

    Zhou, Ping; Deng, Yi; Lyu, Beier; Zhang, Ranran; Zhang, Hai; Ma, Hongwei; Lyu, Yalin; Wei, Shicheng

    2014-01-01

    Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces. PMID:25415328

  1. VOP memory management in MPEG-4

    NASA Astrophysics Data System (ADS)

    Vaithianathan, Karthikeyan; Panchanathan, Sethuraman

    2001-03-01

    MPEG-4 is a multimedia standard that requires Video Object Planes (VOPs). Generation of VOPs for any kind of video sequence is still a challenging problem that largely remains unsolved. Nevertheless, if this problem is treated by imposing certain constraints, solutions for specific application domains can be found. MPEG-4 applications in mobile devices is one such domain where the opposite goals namely low power and high throughput are required to be met. Efficient memory management plays a major role in reducing the power consumption. Specifically, efficient memory management for VOPs is difficult because the lifetimes of these objects vary and these life times may be overlapping. Varying life times of the objects requires dynamic memory management where memory fragmentation is a key problem that needs to be addressed. In general, memory management systems address this problem by following a combination of strategy, policy and mechanism. For MPEG4 based mobile devices that lack instruction processors, a hardware based memory management solution is necessary. In MPEG4 based mobile devices that have a RISC processor, using a Real time operating system (RTOS) for this memory management task is not expected to be efficient because the strategies and policies used by the ROTS is often tuned for handling memory segments of smaller sizes compared to object sizes. Hence, a memory management scheme specifically tuned for VOPs is important. In this paper, different strategies, policies and mechanisms for memory management are considered and an efficient combination is proposed for the case of VOP memory management along with a hardware architecture, which can handle the proposed combination.

  2. Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line

    NASA Astrophysics Data System (ADS)

    León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader

    2018-05-01

    We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.

  3. Filamentary model in resistive switching materials

    NASA Astrophysics Data System (ADS)

    Jasmin, Alladin C.

    2017-12-01

    The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.

  4. Adaptive microwave impedance memory effect in a ferromagnetic insulator.

    PubMed

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-14

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  5. Adaptive microwave impedance memory effect in a ferromagnetic insulator

    PubMed Central

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-01-01

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures. PMID:27966536

  6. Feasibility study of molecular memory device based on DNA using methylation to store information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Al-Dirini, Feras; Center for Neural Engineering

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibriummore » Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.« less

  7. A memristor-based nonvolatile latch circuit

    NASA Astrophysics Data System (ADS)

    Robinett, Warren; Pickett, Matthew; Borghetti, Julien; Xia, Qiangfei; Snider, Gregory S.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2010-06-01

    Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.

  8. Low operation voltage and high thermal stability of a WSi2 nanocrystal memory device using an Al2O3/HfO2/Al2O3 tunnel layer

    NASA Astrophysics Data System (ADS)

    Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju

    2012-02-01

    A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.

  9. Some Improvements in Utilization of Flash Memory Devices

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.

  10. Design, processing, and testing of lsi arrays for space station

    NASA Technical Reports Server (NTRS)

    Lile, W. R.; Hollingsworth, R. J.

    1972-01-01

    The design of a MOS 256-bit Random Access Memory (RAM) is discussed. Technological achievements comprise computer simulations that accurately predict performance; aluminum-gate COS/MOS devices including a 256-bit RAM with current sensing; and a silicon-gate process that is being used in the construction of a 256-bit RAM with voltage sensing. The Si-gate process increases speed by reducing the overlap capacitance between gate and source-drain, thus reducing the crossover capacitance and allowing shorter interconnections. The design of a Si-gate RAM, which is pin-for-pin compatible with an RCA bulk silicon COS/MOS memory (type TA 5974), is discussed in full. The Integrated Circuit Tester (ICT) is limited to dc evaluation, but the diagnostics and data collecting are under computer control. The Silicon-on-Sapphire Memory Evaluator (SOS-ME, previously called SOS Memory Exerciser) measures power supply drain and performs a minimum number of tests to establish operation of the memory devices. The Macrodata MD-100 is a microprogrammable tester which has capabilities of extensive testing at speeds up to 5 MHz. Beam-lead technology was successfully integrated with SOS technology to make a simple device with beam leads. This device and the scribing are discussed.

  11. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  12. Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)

    1992-01-01

    An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.

  13. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  14. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  15. 3D gate-all-around bandgap-engineered SONOS flash memory in vertical silicon pillar with metal gate

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Sub; Yang, Seong-Dong; Lee, Sang-Youl; Kim, Young-Su; Kang, Min-Ho; Lim, Sung-Kyu; Lee, Hi-Deok; Lee, Ga-Won

    2013-08-01

    In this paper, a gate-all-around bandgap-engineered silicon-oxide-nitride-oxide-silicon device with a vertical silicon pillar structure and a Ti metal gate are demonstrated for a potential solution to overcome the scaling-down of flash memory device. The devices were fabricated using CMOS-compatible technology and exhibited well-behaved memory characteristics in terms of the program/erase window, retention, and endurance properties. Moreover, the integration of the Ti metal gate demonstrated a significant improvement in the erase characteristics due to the efficient suppression of the electron back tunneling through the blocking oxide.

  16. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  17. Spatial light modulators and applications III; Proceedings of the Meeting, San Diego, CA, Aug. 7, 8, 1989

    NASA Astrophysics Data System (ADS)

    Efron, Uzi

    Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.

  18. Spatial light modulators and applications III; Proceedings of the Meeting, San Diego, CA, Aug. 7, 8, 1989

    NASA Technical Reports Server (NTRS)

    Efron, Uzi (Editor)

    1990-01-01

    Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.

  19. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  20. New trends in logic synthesis for both digital designing and data processing

    NASA Astrophysics Data System (ADS)

    Borowik, Grzegorz; Łuba, Tadeusz; Poźniak, Krzysztof

    2016-09-01

    FPGA devices are equipped with memory-based structures. These memories act as very large logic cells where the number of inputs equals the number of address lines. At the same time, there is a huge demand in the market of Internet of Things for devices implementing virtual routers, intrusion detection systems, etc.; where such memories are crucial for realizing pattern matching circuits, IP address tables, and other. Unfortunately, existing CAD tools are not well suited to utilize capabilities that such large memory blocks offer due to the lack of appropriate synthesis procedures. This paper presents methods which are useful for memory-based implementations: minimization of the number of input variables and functional decomposition.

  1. Reconfigurable Fault Tolerance for FPGAs

    NASA Technical Reports Server (NTRS)

    Shuler, Robert, Jr.

    2010-01-01

    The invention allows a field-programmable gate array (FPGA) or similar device to be efficiently reconfigured in whole or in part to provide higher capacity, non-redundant operation. The redundant device consists of functional units such as adders or multipliers, configuration memory for the functional units, a programmable routing method, configuration memory for the routing method, and various other features such as block RAM, I/O (random access memory, input/output) capability, dedicated carry logic, etc. The redundant device has three identical sets of functional units and routing resources and majority voters that correct errors. The configuration memory may or may not be redundant, depending on need. For example, SRAM-based FPGAs will need some type of radiation-tolerant configuration memory, or they will need triple-redundant configuration memory. Flash or anti-fuse devices will generally not need redundant configuration memory. Some means of loading and verifying the configuration memory is also required. These are all components of the pre-existing redundant FPGA. This innovation modifies the voter to accept a MODE input, which specifies whether ordinary voting is to occur, or if redundancy is to be split. Generally, additional routing resources will also be required to pass data between sections of the device created by splitting the redundancy. In redundancy mode, the voters produce an output corresponding to the two inputs that agree, in the usual fashion. In the split mode, the voters select just one input and convey this to the output, ignoring the other inputs. In a dual-redundant system (as opposed to triple-redundant), instead of a voter, there is some means to latch or gate a state update only when both inputs agree. In this case, the invention would require modification of the latch or gate so that it would operate normally in redundant mode, and would separately latch or gate the inputs in non-redundant mode.

  2. Recent trends in hardware security exploiting hybrid CMOS-resistive memory circuits

    NASA Astrophysics Data System (ADS)

    Sahay, Shubham; Suri, Manan

    2017-12-01

    This paper provides a comprehensive review and insight of recent trends in the field of random number generator (RNG) and physically unclonable function (PUF) circuits implemented using different types of emerging resistive non-volatile (NVM) memory devices. We present a detailed review of hybrid RNG/PUF implementations based on the use of (i) Spin-Transfer Torque (STT-MRAM), and (ii) metal-oxide based (OxRAM), NVM devices. Various approaches on Hybrid CMOS-NVM RNG/PUF circuits are considered, followed by a discussion on different nanoscale device phenomena. Certain nanoscale device phenomena (variability/stochasticity etc), which are otherwise undesirable for reliable memory and storage applications, form the basis for low power and highly scalable RNG/PUF circuits. Detailed qualitative comparison and benchmarking of all implementations is performed.

  3. Analysis of a digital RF memory in a signal-delay application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar`s performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar`s transmitted pulse and sending the result back to the radar`s receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar`s performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  4. Electrical memory characteristics of a nondoped pi-conjugated polymer bearing carbazole moieties.

    PubMed

    Park, Samdae; Lee, Taek Joon; Kim, Dong Min; Kim, Jin Chul; Kim, Kyungtae; Kwon, Wonsang; Ko, Yong-Gi; Choi, Heungyeal; Chang, Taihyun; Ree, Moonhor

    2010-08-19

    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this pi-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.

  5. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  6. Nonvolatile Ionic Two-Terminal Memory Device

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.

    1990-01-01

    Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.

  7. Enhancement of memory margins in the polymer composite of [6,6]-phenyl-C61-butyric acid methyl ester and polystyrene.

    PubMed

    Sun, Yanmei; Lu, Junguo; Ai, Chunpeng; Wen, Dianzhong; Bai, Xuduo

    2016-11-09

    Memory devices based on composites of polystyrene (PS) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) were investigated with bistable resistive switching behavior. Current-voltage (I-V) curves for indium-tin-oxide (ITO)/PS + PCBM/Al devices with 33 wt% PCBM showed non-volatile, rewritable, flash memory properties with a maximum ON/OFF current ratio of 1 × 10 4 , which was 100 times larger than the ON/OFF ratio of the device with 5 wt% PCBM. For ITO/PS + PCBM/Al devices with 33 wt% PCBM, the write-read-erase-read test cycles demonstrated the bistable devices with ON and OFF states at the same voltage. The programmable ON and OFF states endured up to 10 4 read pulses and possessed a retention time of over 10 5 s, indicative of the memory stability of the device. In the OFF state, the I-V curve at lower voltages up to 0.45 V was attributed to the thermionic emission mechanism, and the I-V characteristics in the applied voltage above 0.5 V dominantly followed the space-charge-limited-current behaviors. In the ON state, the curve in the applied voltage range was related to an Ohmic mechanism.

  8. Anatomy of filamentary threshold switching in amorphous niobium oxide.

    PubMed

    Li, Shuai; Liu, Xinjun; Nandi, Sanjoy Kumar; Elliman, Robert Glen

    2018-06-25

    The threshold switching behaviour of Pt/NbOx/TiN devices is investigated as a function device area and NbOx film thickness and shown to reveal important insight into the structure of the self-assembled switching region. The devices exhibit combined selector-memory (1S1R) behavior after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are independent of the device area and film thickness but the threshold current (power), while independent of device area, decreases with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the TiN electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a simple circuit model, and more detailed finite element simulations. These results provide further insight into the structure and operation of NbOx threshold switching devices that have application in emerging memory and neuromorphic computing fields. © 2018 IOP Publishing Ltd.

  9. Frontal photopolymerization for microfluidic applications.

    PubMed

    Cabral, João T; Hudson, Steven D; Harrison, Christopher; Douglas, Jack F

    2004-11-09

    Frontal photopolymerization (FPP) offers numerous advantages for the rapid prototyping of microfluidic devices. Quantitative utilization of this method, however, requires a control of the vertical dimensions of the patterned resist material. To address this fundamental problem, we study the ultraviolet (UV) photopolymerization of a series of multifunctional thiolene resists through a combination of experiments and analytical modeling of the polymerization fronts. We describe this nonlinear spatio-temporal growth process in terms of a "minimal" model involving an order parameter phi(x, t) characterizing the extent of monomer-to-polymer conversion, the optical attenuation T(x, t), and the solid front position h(t). The latter exhibits an induction time (or equivalent critical UV dose) characterizing the onset of frontal propagation. We also observe a novel transition between two logarithmic rates of growth, determined by the Beer-Lambert attenuation constants mu(0) and mu(infinity) of the monomer and fully polymerized material, respectively. The measured frontal kinetics and optical transmission of the thiolene resist materials are consistent with our photopolymerization model, exhibiting both "photodarkening" and "photoinvariant" polymerization. This is apparently the first observation of photodarkening reported in FPP. On the basis of these results, multilevel fluidic devices with controlled height are readily fabricated with modulated illumination. A representative two-level microfluidic device, incorporating a chaotic mixer, a T junction, and a series of controlled flow constrictions, illustrates the practical versatility of this fabrication method.

  10. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    PubMed Central

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  11. Programmable Analog Memory Resistors For Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Thakoor, Sarita; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Electrical resistance of new solid-state device altered repeatedly by suitable control signals, yet remains at steady value when control signal removed. Resistance set at low value ("on" state), high value ("off" state), or at any convenient intermediate value and left there until new value desired. Circuits of this type particularly useful in nonvolatile, associative electronic memories based on models of neural networks. Such programmable analog memory resistors ideally suited as synaptic interconnects in "self-learning" neural nets. Operation of device depends on electrochromic property of WO3, which when pure is insulator. Potential uses include nonvolatile, erasable, electronically programmable read-only memories.

  12. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2017-09-05

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  13. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  14. A review of emerging non-volatile memory (NVM) technologies and applications

    NASA Astrophysics Data System (ADS)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  15. Evaluation of 1.5-T Cell Flash Memory Total Ionizing Dose Response

    NASA Astrophysics Data System (ADS)

    Clark, Lawrence T.; Holbert, Keith E.; Adams, James W.; Navale, Harshad; Anderson, Blake C.

    2015-12-01

    Flash memory is an essential part of systems used in harsh environments, experienced by both terrestrial and aerospace TID applications. This paper presents studies of COTS flash memory TID hardness. While there is substantial literature on flash memory TID response, this work focuses for the first time on 1.5 transistor per cell flash memory. The experimental results show hardness varying from about 100 krad(Si) to over 250 krad(Si) depending on the usage model. We explore the circuit and device aspects of the results, based on the extensive reliability literature for this flash memory type. Failure modes indicate both device damage and circuit marginalities. Sector erase failure limits, but read only operation allows TID exceeding 200 krad(Si). The failures are analyzed by type.

  16. Accessing memory

    DOEpatents

    Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy

    2017-09-26

    A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.

  17. Synaptic plasticity and memory functions achieved in a WO3-x-based nanoionics device by using the principle of atomic switch operation

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Terabe, Kazuya; Yao, Yiping; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K.; Aono, Masakazu

    2013-09-01

    A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3-x-based nanoionics device and can be precisely and cumulatively controlled by adjusting the device’s resistance state and input pulse parameters such as the amplitude, interval, and number. This control is analogous to biological synaptic plasticity including short-term plasticity, long-term potentiation, transition from short-term memory to long-term memory, forgetting processes for short- and long-term memory, learning speed, and learning history. A compact WO3-x-based nanoionics device with a simple stacked layer structure should thus be a promising candidate for use as an inorganic synapse in artificial neural networks due to its striking resemblance to the biological synapse.

  18. Design and Verification of a Shape Memory Polymer Peripheral Occlusion Device

    PubMed Central

    Landsman, Todd L.; Bush, Ruth L.; Glowczwski, Alan; Horn, John; Jessen, Staci L.; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R.; Hasan, Sayyeda M.; Nash, Daniel; Clubb, Fred J.; Maitland, Duncan J.

    2017-01-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615

  19. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    NASA Astrophysics Data System (ADS)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  20. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan

    2009-04-21

    We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

  1. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.

    PubMed

    Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig

    2014-11-01

    In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.

  3. Memory device using movement of protons

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.

    1998-11-03

    An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.

  4. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    1998-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  5. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    2000-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  6. Solution properties and spectroscopic characterization of polymeric precursors to SiNCB and BN ceramic materials

    NASA Astrophysics Data System (ADS)

    Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.

    1998-06-01

    Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.

  7. Scoliosis correction with shape-memory metal: results of an experimental study.

    PubMed

    Wever, D J; Elstrodt, J A; Veldhuizen, A G; v Horn, J R

    2002-04-01

    The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis correction. In the experimental study the action of the new device was inverted: the device was used to induce a scoliotic curve instead of correcting one. Surgical procedures were performed in six pigs. An originally curved squared rod, in the cold condition, was straightened and fixed to the spine with pedicle screws. Peroperatively, the memory effect of the rod was activated by heating the rod to 50 degrees C by a low-voltage, high-frequency current. After 3 and after 6 months the animals were sacrificed. The first radiographs, obtained immediately after surgery, showed in all animals an induced curve of about 40 degrees Cobb angle - the original curve of the rod. This curve remained constant during the follow-up. The postoperative serum nickel measurements were around the detection limit, and were not significantly higher compared to the preoperative nickel concentration. Macroscopic inspection after 3 and 6 months showed that the device was almost overgrown with newly formed bone. Corrosion and fretting processes were not observed. Histologic examination of the sections of the surrounding tissues and sections of the lung, liver, spleen and kidney showed no evidence of a foreign body response. In view of the initiation of the scoliotic deformation, it is expected that the shape-memory metal based scoliosis correction device also has the capacity to correct a scoliotic curve. Moreover, it is expected that the new device will show good biocompatibility in clinical application. Extensive fatigue testing of the whole system should be performed before clinical trials are initiated.

  8. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  9. Design and Implementation of an MC68020-Based Educational Computer Board

    DTIC Science & Technology

    1989-12-01

    device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to initialize...MHz. It includes four * Static Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two Programmable Array Logic (PAL) chips...device and the other for a Macintosh personal computer. A stored program can be installed in 8K bytes Programmable Read Only Memory (PROM) to

  10. A study of selenium nanoparticles as charge storage element for flexible semi-transparent memory devices

    NASA Astrophysics Data System (ADS)

    Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi

    2017-12-01

    Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.

  11. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    PubMed

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  12. Ultralow Power Consumption Flexible Biomemristors.

    PubMed

    Kim, Min-Kyu; Lee, Jang-Sik

    2018-03-28

    Low power consumption is the important requirement in memory devices for saving energy. In particular, improved energy efficiency is essential in implantable electronic devices for operation under a limited power supply. Here, we demonstrate the use of κ-carrageenan (κ-car) as the resistive switching layer to achieve memory that has low power consumption. A carboxymethyl (CM) group is introduced to the κ-car to increase its ionic conductivity. Ag was doped in CM:κ-car to improve the resistive switching properties of the devices. Memory devices based on Ag-doped CM:κ-car showed electroforming-free resistive switching. This device exhibited low reset voltage (∼0.05 V), fast switching speed (50 ns), and high on/off ratio (>10 3 ) under low compliance current (10 -5 A). Its power consumption (∼0.35 μW) is much lower than those of the previously reported biomemristors. The resistive switching may be a result of an electrochemical redox process and Ag filament formation in the CM:κ-car under an electric field. This biopolymer memory can also be fabricated on flexible substrate. This study verifies the feasibility of using biopolymers for applications to future implantable and biocompatible nanoelectronics.

  13. Multi-pulse drug delivery from a resorbable polymeric microchip device

    NASA Astrophysics Data System (ADS)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  14. A polymer/semiconductor write-once read-many-times memory

    NASA Astrophysics Data System (ADS)

    Möller, Sven; Perlov, Craig; Jackson, Warren; Taussig, Carl; Forrest, Stephen R.

    2003-11-01

    Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

  15. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    PubMed

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-31

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  16. Design of a Molecular Memory Device: The Electron Transfer Shift Register Memory

    NASA Technical Reports Server (NTRS)

    Beratan, D.

    1993-01-01

    A molecular shift register memory at the molecular level is described. The memory elements consist of molecules can exit in either an oxidized or reduced state and the bits are shifted between the cells with photoinduced electron transfer reactions.

  17. The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.

    PubMed

    Guan, Allan; Li, Zhenyu; Phillips, K Scott

    2015-01-01

    Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.

  18. An Interferometric Study of Epoxy Polymerization Kinetics

    NASA Astrophysics Data System (ADS)

    Page, Melissa A.; Tandy Grubbs, W.

    1999-05-01

    An interferometric method for monitoring polymerization kinetics is described. The experimental apparatus can be constructed from items commonly available in undergraduate laboratories. It consists of a low power helium-neon laser, a home-built Michelson interferometer, and a photodiode light detector. When a polymerizing sample is placed in one arm of the Michelson interferometer, the variation in refractive index will cause a corresponding shift in the phase of the coherent optical beam that passes through the sample, and the output of the interferometer will subsequently fluctuate between constructive and destructive interference. The oscillation in the interferometer output intensity is monitored as a function of time with the photodiode. The time between successive maxima (or minima) is used to calculate the change in refractive index with time (Dn/Dt), which is subsequently used as a phenomenological definition of polymerization rate. We have utilized this device to collect and compare curing profiles of commercially available epoxy glues.

  19. Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications

    NASA Astrophysics Data System (ADS)

    Briggs, Benjamin D.

    The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.

  20. Device and method for treatment of openings in vascular and septal walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.

  1. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  2. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    NASA Astrophysics Data System (ADS)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  3. Amorphous blue phase III polymer scaffold as a sub-millisecond switching electro-optical memory device

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy

    2017-02-01

    We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.

  4. Stochastic switching of TiO2-based memristive devices with identical initial memory states

    PubMed Central

    2014-01-01

    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953

  5. Pentacene-based metal-insulator-semiconductor memory structures utilizing single walled carbon nanotubes as a nanofloating gate

    NASA Astrophysics Data System (ADS)

    Sleiman, A.; Rosamond, M. C.; Alba Martin, M.; Ayesh, A.; Al Ghaferi, A.; Gallant, A. J.; Mabrook, M. F.; Zeze, D. A.

    2012-01-01

    A pentacene-based organic metal-insulator-semiconductor memory device, utilizing single walled carbon nanotubes (SWCNTs) for charge storage is reported. SWCNTs were embedded, between SU8 and polymethylmethacrylate to achieve an efficient encapsulation. The devices exhibit capacitance-voltage clockwise hysteresis with a 6 V memory window at ± 30 V sweep voltage, attributed to charging and discharging of SWCNTs. As the applied gate voltage exceeds the SU8 breakdown voltage, charge leakage is induced in SU8 to allow more charges to be stored in the SWCNT nodes. The devices exhibited high storage density (˜9.15 × 1011 cm-2) and demonstrated 94% charge retention due to the superior encapsulation.

  6. Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction

    NASA Astrophysics Data System (ADS)

    Shin, Ik-Soo; Kim, Jung-Min; Jeun, Jun-Ho; Yoo, Seok-Hyun; Ge, Ziyi; Hong, Jong-In; Ho Bang, Jin; Kim, Yong-Sang

    2012-04-01

    An organic floating-gate memory device using CdSe quantum dots (QDs) as a charge-trapping element was fabricated. CdSe QDs were localized beneath a pentacene without any tunneling insulator, and the QD layer played a role as hole-trapping sites. The band bending formed at the junction between pentacene and QD layers inhibited back-injection of holes trapped in CdSe into pentacene, which appeared as a hysteretic capacitance-voltage response during the operation of the device. Nearly, 60% of trapped charge was sustained even after 104 s in programmed state, and this long retention time can be potentially useful in practical applications of non-volatile memory.

  7. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    USGS Publications Warehouse

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  8. Light-erasable embedded charge-trapping memory based on MoS2 for system-on-panel applications

    NASA Astrophysics Data System (ADS)

    He, Long-Fei; Zhu, Hao; Xu, Jing; Liu, Hao; Nie, Xin-Ran; Chen, Lin; Sun, Qing-Qing; Xia, Yang; Wei Zhang, David

    2017-11-01

    The continuous scaling and challenges in device integrations in modern portable electronic products have aroused many scientific interests, and a great deal of effort has been made in seeking solutions towards a more microminiaturized package assembled with smaller and more powerful components. In this study, an embedded light-erasable charge-trapping memory with a high-k dielectric stack (Al2O3/HfO2/Al2O3) and an atomically thin MoS2 channel has been fabricated and fully characterized. The memory exhibits a sufficient memory window, fast programming and erasing (P/E) speed, and high On/Off current ratio up to 107. Less than 25% memory window degradation is observed after projected 10-year retention, and the device functions perfectly after 8000 P/E operation cycles. Furthermore, the programmed device can be fully erased by incident light without electrical assistance. Such excellent memory performance originates from the intrinsic properties of two-dimensional (2D) MoS2 and the engineered back-gate dielectric stack. Our integration of 2D semiconductors in the infrastructure of light-erasable charge-trapping memory is very promising for future system-on-panel applications like storage of metadata and flexible imaging arrays.

  9. High-speed noise-free optical quantum memory

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  10. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1980-01-01

    The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.

  11. Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory.

    PubMed

    Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See

    2016-10-05

    Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.

  12. Conjugated polymers and their use in optoelectronic devices

    DOEpatents

    Marks, Tobin J.; Guo, Xugang; Zhou, Nanjia; Chang, Robert P. H.; Drees, Martin; Facchetti, Antonio

    2016-10-18

    The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.

  13. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices

    PubMed Central

    Song, Younggul; Jeong, Hyunhak; Chung, Seungjun; Ahn, Geun Ho; Kim, Tae-Young; Jang, Jingon; Yoo, Daekyoung; Jeong, Heejun; Javey, Ali; Lee, Takhee

    2016-01-01

    The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems. PMID:27659298

  14. Realization of transient memory-loss with NiO-based resistive switching device

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2012-11-01

    A resistive switching device based on a nickel-rich nickel oxide thin film, which exhibits inherent learning and memory-loss abilities, is reported in this work. The conductance of the device gradually increases and finally saturates with the number of voltage pulses (or voltage sweepings), which is analogous to the behavior of the short-term and long-term memory in the human brain. Furthermore, the number of the voltage pulses (or sweeping cycles) required to achieve a given conductance state increases with the interval between two consecutive voltage pulses (or sweeping cycles), which is attributed to the heat diffusion in the material of the conductive filaments formed in the nickel oxide thin film. The phenomenon resembles the behavior of the human brain, i.e., forgetting starts immediately after an impression, a larger interval of the impressions leads to more memory loss, thus the memorization needs more impressions to enhance.

  15. Multilevel Resistance Programming in Conductive Bridge Resistive Memory

    NASA Astrophysics Data System (ADS)

    Mahalanabis, Debayan

    This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing.

  16. Characterization and Modeling of Superconducting Josephson Junction Arrays at Low Voltage and Liquid Helium Temperatures

    DTIC Science & Technology

    2016-09-01

    to the characteristics and extract the non-ideality. These capabilities and calibration results will assist in the characterization of advanced...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices

  17. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  18. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, Y. C.; Zeng, F.; Pan, F.

    2010-08-01

    Highly stable and reproducible bipolar resistive switching effects are reported on Cu/AlN/Pt devices. Memory characteristics including large memory window of 103, long retention time of >106 s and good endurance of >103 were demonstrated. It is concluded that the reset current decreases as compliance current decreases, which provides an approach to suppress power consumption. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and trap-controlled space charge limited current, respectively. The memory effect is explained by the model concerning redox reaction mediated formation and rupture of the conducting filament in AlN films.

  19. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  20. Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device

    NASA Astrophysics Data System (ADS)

    Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun

    2018-02-01

    Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.

  1. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-10-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer. In comparison to a memory capacitor with a single HfO2 trapping layer, the erase speed of a memory capacitor with a stacked HfO2/Ta2O5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔVFB = 4 V, the device with a stacked HfO2/Ta2O5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO2/Ta2O5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application.

  2. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  3. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  4. Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen

    2015-01-01

    The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5  ×  104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.

  5. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  6. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  7. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  8. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  9. A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent.

    PubMed

    Landsman, T L; Touchet, T; Hasan, S M; Smith, C; Russell, B; Rivera, J; Maitland, D J; Cosgriff-Hernandez, E

    2017-01-01

    Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material (SMP foam and hydrogel) are retained when combined in a composite device. The iodine-doped hydrogel demonstrated an 80% reduction in bacteria viability when cultured with a high bioburden of Staphylococcus aureus. Hydrogel coating of the SMP foam increased fluid uptake by 19× over the uncoated SMP foam. The composite device retained the shape memory behavior of the foam with more than 15× volume expansion after being submerged in 37°C water for 15 min. Finally, the expansion force of the composite was tested to assess potential tissue damage within the wound during device expansion. Expansion forces did not exceed 0.6N, making tissue damage during device expansion unlikely, even when the expanded device diameter is substantially larger than the target wound site. Overall, the enhanced fluid uptake and bactericidal properties of the shape memory foam composite indicate its strong potential as a hemostatic agent to treat non-compressible wounds. No hemostatic device currently used in civilian and combat trauma situations satisfies all the desired criteria for an optimal hemostatic wound dressing. The research presented here sought to improve on current devices by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material are retained when combined into a composite device. This research opens the door to generating novel composites with a focus on both hemostasis, as well as wound healing and microbial prevention. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe2.

    PubMed

    Liu, Chunsen; Yan, Xiao; Wang, Jianlu; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-05-01

    Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe 2 and a 3D Al 2 O 3 /HfO 2 /Al 2 O 3 charge-trap stack are combined to form a charge-trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built-in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state-of-the-art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high-performance charge trap memory based on WSe 2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multibit Polycristalline Silicon-Oxide-Silicon Nitride-Oxide-Silicon Memory Cells with High Density Designed Utilizing a Separated Control Gate

    NASA Astrophysics Data System (ADS)

    Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan

    2010-10-01

    Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.

  12. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  13. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  14. Design of a Multi-Level/Analog Ferroelectric Memory Device

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2006-01-01

    Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  15. Two-photon polymerization for fabrication of biomedical devices

    NASA Astrophysics Data System (ADS)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  16. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    PubMed

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  18. Formation of Novel Polydiacetylenes: Synthesis of Poly(iodoethynyliododiacetylene) and Towards the Formation of Conjugated Ladder Polydiacetylenes

    NASA Astrophysics Data System (ADS)

    Freitag, Matthew

    Polydiacetylenes (PDAs) are 1-dimensional polymers with a carbon-rich ene-yne backbone. Materials scientists are interested in PDAs because they are semiconductors, they have large multiphoton absorptions, and they can be prepared as ordered assemblies in the solid-state. Polydiacetylenes are formed from the topochemical 1,4-polymerization of a monomer unit made up of at least two sequential alkynes. This work describes attempts to form novel polydiacetylenes from several higher order polyyne monomers, as well as efforts to alter the morphology of known polydiacetylenes into thin films. The first project described here examined the formation of cocrystals of diiodohexatriyne with a bis(alkylnitrile) oxalamide host. Diiodohexatriyne undergoes 1,4-topochemical polymerization, with mild heating, to form poly(iodoethynyliododiacetylene), PIEDA. Polymerization was followed by extensive characterization through Raman spectroscopy, solid-state 13C MAS-NMR, and X-ray crystallography. This work represents the first ordered single-crystal to single-crystal 1,4-topochemical polymerization of a triyne, demonstrated through X-ray diffraction. The second project described efforts towards post-polymerization modification on PIEDA. Despite some success in model studies, isolated PIEDA was found to be too unstable to undergo controlled post-polymerization modification. The third project of this work described the demonstration of the formation of thin films of another PDA, polydiiododiacetylene (PIDA). Thin films of PIDA cocrystals could serve as components in solar cells or photovoltaic devices. Using lower concentration and allowing evaporation to occur in a fume hood, nanometer thick films were formed. However, thin films of PIDA cocrystals were too heterogeneous to be used within devices. The fourth project described here examined the preparation of cocrystals of bis(iodobutadiynyl)benzene monomer with several oxalamide hosts. The goal of this project is formation of conjugated ladder polydiacetylenes which have been theorized to have a lower band-gap than analogous linear polydiacetylenes. Cocrystals of monomer bis(iodobutadiynyl)benzene were formed with a variety of oxalamide hosts. Monomer cocrystals were heated at high temperatures and gave Raman signal consistent with polydiacetylene formation. Attempts to analyze heated cocrystals through single crystal X-ray diffraction have failed due to increased mosaicity. Other methods of inducing polymerization have been investigated but no ordered polymerization could be demonstrated. Halogen bonding has been demonstrated to be a reliable interaction for aligning these monomers. However, the polymerization and characterization of resultant polymer remains challenging due to the multiple reaction pathways of these materials.

  19. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality

    PubMed Central

    Claiborne, Thomas E; Slepian, Marvin J; Hossainy, Syed; Bluestein, Danny

    2013-01-01

    Present prosthetic heart valves, while hemodynamically effective, remain limited by progressive structural deterioration of tissue valves or the burden of chronic anticoagulation for mechanical valves. An idealized valve prosthesis would eliminate these limitations. Polymeric heart valves (PHVs), fabricated from advanced polymeric materials, offer the potential of durability and hemocompatibility. Unfortunately, the clinical realization of PHVs to date has been hampered by findings of in vivo calcification, degradation and thrombosis. Here, the authors review the evolution of PHVs, evaluate the state of the art of this technology and propose a pathway towards clinical reality. In particular, the authors discuss the development of a novel aortic PHV that may be deployed via transcatheter implantation, as well as its optimization via device thrombogenicity emulation. PMID:23249154

  20. Temperature-dependent charge transport mechanisms in carbon sphere/polyaniline composite

    NASA Astrophysics Data System (ADS)

    Nieves, Cesar A.; Martinez, Luis M.; Meléndez, Anamaris; Ortiz, Margarita; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya

    2017-12-01

    Charge transport in the temperature range 80 K < T < 300 K was studied in a composite of carbon spheres (CS), prepared via hydrothermal carbonization of sucrose, and the conducting polymer polyaniline (PANi). PANi was synthesized via the oxidative polymerization of aniline with ammonium peroxydisulfate (APS) in acidic media. The CS/PANi composite was prepared by coating the spheres with a thin polyaniline (PANi) film doped with hydrochloric acid (HCl) in situ during the polymerization process. Temperature dependent conductivity measurements show that three dimensional variable range hopping of electrons between polymeric chains in PANi-filled gaps between CS is the predominant transport mechanism through CS/PANi composites. The high conductivity of the CS/PANi composite makes the material attractive for the fabrication of devices and sensors.

  1. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  2. Nanodevices from Nanocomponents: Memory Logic and Mechanical Nanodevices

    DTIC Science & Technology

    2009-05-11

    microemulsion method at room temperature. The microemulsion system was made up of cyclohexane, NP-5, PbSe and dimethylamine. Typically, 10 ml...30 min after the microemulsion system was formed, 100 \\i\\ dimethylamine aqueous solution (40wt %) was introduced to initiate the polymerization...growth was completed after 24 h of stirring. The nanoparticles were destabilized from the microemulsion using acetone and precipitated by

  3. Research on materials for advanced electronic and aerospace application. [including optical and magnetic data processing, stress corrosion and H2 interaction, and polymeric systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Development and understanding of materials most suitable for use in compact magnetic and optical memory systems are discussed. Suppression of metal deterioration by hydrogen is studied. Improvement of mechanical properties of polymers is considered, emphasizing low temperature ductility and compatibility with high modulus fiber materials.

  4. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  5. Associative Memory Acceptors.

    ERIC Educational Resources Information Center

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  6. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  7. Single-Event Effect Performance of a Conductive-Bridge Memory EEPROM

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Berg, Melanie; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Seidleck, Christina; LaBel, Kenneth

    2015-01-01

    We investigated the heavy ion single-event effect (SEE) susceptibility of the industry’s first stand-alone memory based on conductive-bridge memory (CBRAM) technology. The device is available as an electrically erasable programmable read-only memory (EEPROM). We found that single-event functional interrupt (SEFI) is the dominant SEE type for each operational mode (standby, dynamic read, and dynamic write/read). SEFIs occurred even while the device is statically biased in standby mode. Worst case SEFIs resulted in errors that filled the entire memory space. Power cycle did not always clear the errors. Thus the corrupted cells had to be reprogrammed in some cases. The device is also vulnerable to bit upsets during dynamic write/read tests, although the frequency of the upsets are relatively low. The linear energy transfer threshold for cell upset is between 10 and 20 megaelectron volts per square centimeter per milligram, with an upper limit cross section of 1.6 times 10(sup -11) square centimeters per bit (95 percent confidence level) at 10 megaelectronvolts per square centimeter per milligram. In standby mode, the CBRAM array appears invulnerable to bit upsets.

  8. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    PubMed

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  9. A Novel Bat-Shaped Dicyanomethylene-4H-pyran-Functionalized Naphthalimide for Highly Efficient Solution-Processed Multilevel Memory Devices.

    PubMed

    Zhang, Qi-Jian; Miao, Shi-Feng; Li, Hua; He, Jing-Hui; Li, Na-Jun; Xu, Qing-Feng; Chen, Dong-Yun; Lu, Jian-Mei

    2017-06-19

    Small-molecule-based multilevel memory devices have attracted increasing attention because of their advantages, such as super-high storage density, fast reading speed, light weight, low energy consumption, and shock resistance. However, the fabrication of small-molecule-based devices always requires expensive vacuum-deposition techniques or high temperatures for spin-coating. Herein, through rational tailoring of a previous molecule, DPCNCANA (4,4'-(6,6'-bis(2-octyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-9H,9'H-[3,3'-bicarbazole]-9,9'-diyl)dibenzonitrile), a novel bat-shaped A-D-A-type (A-D-A=acceptor-donor-acceptor) symmetric framework has been successfully synthesized and can be dissolved in common solvents at room temperature. Additionally, it has a low-energy bandgap and dense intramolecular stacking in the film state. The solution-processed memory devices exhibited high-performance nonvolatile multilevel data-storage properties with low switching threshold voltages of about -1.3 and -2.7 V, which is beneficial for low power consumption. Our result should prompt the study of highly efficient solution-processed multilevel memory devices in the field of organic electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. Themore » device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.« less

  11. All-spin logic operations: Memory device and reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2018-02-01

    Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.

  12. Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ma, Zehao; Ooi, Poh Choon; Li, Fushan; Yun, Dong Yeol; Kim, Tae Whan

    2015-10-01

    Nonvolatile memory (NVM) devices based on a metal-insulator-metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current-voltage ( I- V) curves showed a bistable current behavior and the presence of hysteresis. The current-time ( I- t) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the I- t curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and Child-Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I- V characteristics.

  13. Feasibility of self-structured current accessed bubble devices in spacecraft recording systems

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Lo, D. S.; Amundsen, D. L.; Stein, G. A.

    1985-01-01

    The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.

  14. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.

    PubMed

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-23

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  15. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  16. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to nanocrystal charge has a strong effect on the memory characteristics. Also, the programming operation of the memory cell has been investigated. The tunneling rate from quantum well channel to quantum dot (nanocrystal) gate is calculated. The calculations include various memory parameters, wavefunctions, and energies of quantum well channel and quantum dot gate. The use of floating gate nanocrystal memory as a transistor with a programmable threshold voltage has been demonstrated. The incorporation of FG-NCFETs to design programmable integrated circuit building blocks has been discussed. This includes the design of programmable current and voltage reference circuits. Finally, we demonstrated the design of tunable gain op-amp incorporating FG-NCFETs. Programmable integrated circuit building blocks can be used in intelligent analog and digital systems.

  17. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.

    PubMed

    Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2013-09-01

    Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.

  18. Camera memory study for large space telescope. [charge coupled devices

    NASA Technical Reports Server (NTRS)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  19. 40 CFR 63.10906 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., plenums, and fans. Chlorinated plastics means solid polymeric materials that contain chlorine in the polymer chain, such as polyvinyl chloride (PVC) and PVC copolymers. Control device means the air pollution...

  20. 40 CFR 63.10906 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., plenums, and fans. Chlorinated plastics means solid polymeric materials that contain chlorine in the polymer chain, such as polyvinyl chloride (PVC) and PVC copolymers. Control device means the air pollution...

  1. Combating Memory Corruption Attacks On Scada Devices

    NASA Astrophysics Data System (ADS)

    Bellettini, Carlo; Rrushi, Julian

    Memory corruption attacks on SCADA devices can cause significant disruptions to control systems and the industrial processes they operate. However, despite the presence of numerous memory corruption vulnerabilities, few, if any, techniques have been proposed for addressing the vulnerabilities or for combating memory corruption attacks. This paper describes a technique for defending against memory corruption attacks by enforcing logical boundaries between potentially hostile data and safe data in protected processes. The technique encrypts all input data using random keys; the encrypted data is stored in main memory and is decrypted according to the principle of least privilege just before it is processed by the CPU. The defensive technique affects the precision with which attackers can corrupt control data and pure data, protecting against code injection and arc injection attacks, and alleviating problems posed by the incomparability of mitigation techniques. An experimental evaluation involving the popular Modbus protocol demonstrates the feasibility and efficiency of the defensive technique.

  2. Multi-layer electrode for high contrast electrochromic devices

    DOEpatents

    Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA

    2011-11-01

    An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.

  3. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  4. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    PubMed

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  5. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  6. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  7. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  8. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  9. Soft errors in commercial off-the-shelf static random access memories

    NASA Astrophysics Data System (ADS)

    Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.

    2017-01-01

    This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.

  10. Proceedings of the Workshop on Compound Semiconductor Devices and Integrated Circuits (13th) Held in Cabourg, France on 10-12 May 1989

    DTIC Science & Technology

    1989-05-12

    USA Resonant tunneling transistors and New III-V memory devices for new circuit architectures with reduced complexity F. Capasso, Bell. Murray Hill...the evaporation, or by selective oxidation of As, leaving metallic Ga clusters and b) the interdiffusive deterioration of metal contacts on GaAs...VEB (My) Resonant Tunneling Transistors and New III-V Memory Devices for New Circuit Architectures with Reduced Complexity . Invited: F. Capasso

  11. Measurement of irregularities in angular velocities of rotating assemblies in memory devices on magnetic carriers

    NASA Technical Reports Server (NTRS)

    Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.

    1973-01-01

    Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.

  12. Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Liu, Qi; Long, Shibing; Lv, Hangbing; Liu, Ming

    2017-08-01

    The attractive usability of quantum phenomena in futuristic devices is possible by using zero-dimensional systems like nanocrystals (NCs). The performance of nonvolatile flash memory devices has greatly benefited from the use of NCs over recent decades. The quantum abilities of NCs have been used to improve the reliability of flash devices. Its appeal is extended to the design of emerging devices such as resistive random-access memory (RRAM), a technology where the use of silicon is optional. Here, we are going to review the recent progress in the design, characterization, and utilization of NCs in RRAM devices. We will first introduce the physical design of the RRAM devices using NCs and the improvement of electrical performance in NC-RRAM over conventional ones. In particular, special care has been taken to review the ways of development provided by the NCs in the RRAM devices. In a broad sense, the NCs can play a charge trapping role in the NC-RRAM structure or it can be responsible for the localization and improvement of the stability of the conductive filament or it can play a part in the formation of the conductive filament chain by the NC migration under applied bias. Finally, the scope of NCs in the RRAM devices has also been discussed.

  13. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  14. In vitro and in vivo Evaluation of a Shape Memory Polymer Foam-over-Wire Embolization Device Delivered in Saccular Aneurysm Models

    PubMed Central

    Boyle, Anthony J.; Landsman, Todd L.; Wierzbicki, Mark A.; Nash, Landon D.; Hwang, Wonjun; Miller, Matthew W.; Tuzun, Egemen; Hasan, Sayyeda M.; Maitland, Duncan J.

    2015-01-01

    Current endovascular therapies for intracranial saccular aneurysms result in high recurrence rates due to poor tissue healing, coil compaction, and aneurysm growth. We propose treatment of saccular aneurysms using shape memory polymer (SMP) foam to improve clinical outcomes. SMP foam-over-wire (FOW) embolization devices were delivered to in vitro and in vivo porcine saccular aneurysm models to evaluate device efficacy, aneurysm occlusion, and acute clotting. FOW devices demonstrated effective delivery and stable implantation in vitro. In vivo porcine aneurysms were successfully occluded using FOW devices with theoretical volume occlusion values greater than 72% and rapid, stable thrombus formation. PMID:26227115

  15. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  16. Prospective memory rehabilitation using smartphones in patients with TBI: What do participants report?

    PubMed

    Evald, Lars

    2015-01-01

    Use of assistive devices has been shown to be beneficial as a compensatory memory strategy among brain injury survivors, but little is known about possible advantages and disadvantages of the technology. As part of an intervention study participants were interviewed about their experiences with the use of low-cost, off-the-shelf, unmodified smartphones combined with Internet calendars as a compensatory memory strategy. Thirteen community-dwelling patients with traumatic brain injury (TBI) received a 6-week group-based instruction in the systematic use of a smartphone as a memory compensatory aid followed by a brief structured open-ended interview regarding satisfaction with and advantages and disadvantages of the compensatory strategy. Ten of 13 participants continued to use a smartphone as their primary compensatory strategy. Audible and visual reminders were the most frequently mentioned advantages of the smartphone, and, second, the capability as an all-in-one memory device. In contrast, battery life was the most often mentioned disadvantage, followed by concerns about loss or failure of the device. Use of a smartphone seems to be a satisfactory compensatory memory strategy to many patients with TBI and smartphones come with features that are advantageous to other compensatory strategies. However, some benefits come hand-in-hand with drawbacks, such as the feeling of dependency. These aspects should be taken into account when choosing assistive technology as a memory compensatory strategy.

  17. Memory technology survey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The current status of semiconductor, magnetic, and optical memory technologies is described. Projections based on these research activities planned for the shot term are presented. Conceptual designs of specific memory buffer pplications employing bipola, CMOS, GaAs, and Magnetic Bubble devices are discussed.

  18. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D [Littleton, CO; Thapa, Prem [Lima, OH

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  19. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D [Littleton, CO; Thapa, Prem [Lima, OH

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  20. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

Top