Sample records for polymeric precursor method

  1. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  2. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  3. Stress-tuned conductor-polymer composite for use in sensors

    DOEpatents

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  4. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  5. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  6. Synthesis of Biocompatible Surfaces by Different Techniques

    DTIC Science & Technology

    2002-04-01

    production . In the other hand, polymers are widely used in bone/cartilage implants, both, as polymeric materials themselves and as a polymeric surface on a...focus on the production of HA scaffolds by a sol-gel method using different drying processes, and on the study of the plasma polymerization technique to...precursor at 3. SA-stoichiometric amount (to maintain Ca/P= 1,67) of the calcium precursor solution (3 M solution in anhidrous etanol ) was added dropwise

  7. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2016-04-19

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  8. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  9. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  10. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  11. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  12. Gelcasting polymeric precursors for producing net-shaped graphites

    DOEpatents

    Klett, James W.; Janney, Mark A.

    2002-01-01

    The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.

  13. Low temperature stabilization process for production of carbon fiber having structural order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less

  14. A Novel Polymeric Organosilazane Precursor to Si3N4/SiC Ceramics.

    DTIC Science & Technology

    1985-02-06

    prepared by pyrolysis of the appropriately-shaped polymeric precursor. These polysilazanes also may prove to be useful as dispersants for SiC and Si3N4...I[AD-Ri58 748 A NOVEL POLYMERIC ORGANOSILAZANE PRECURSOR TO S13N4/ SIC i/I CERRMICS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY D...Security C ificatlion" 0322 A Novel Polymeric Organosilazane Precursor to Si3N/ SiC C_ramics._I 12. PERSONAL AUTHOR(S) Dietmar Seyferth and Gary H. Wiseman 13

  15. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  16. Insulation Materials Comprising Fibers Having a Partially Cured Polymer Coating Thereon, Articles Including Such Insulation Materials, and Methods of Forming Such Materials and Articles

    NASA Technical Reports Server (NTRS)

    Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)

    2017-01-01

    Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.

  17. New Polymeric Precursors of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Litt, M.; Kumar, K.

    1987-01-01

    Silicon carbide made by pyrolizing polymers. Method conceived for preparation of poly(decamethylcyclohexasilanes) as precursors for preparation of silicon carbide at high yield. Technical potential of polysilanes as precursors of SiC ceramics being explored. Potential limited by intractability of some polysilanes; formation of small, cyclic polycarbosilane fragments during pyrolysis; and overall low char yield and large shrinkage in conversion to ceramics.

  18. Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods.

    PubMed

    Oukacine, Farid; Bernard, Stephane; Bobe, Iulian; Cottet, Hervé

    2014-12-28

    (1,2-diamino-cyclohexane)Platinum(II) ((DACH)Pt) loaded polymeric micelles of poly(ethylene glycol-b-sodium glutamate) (PEG-b-PGlu) are currently studied as a potential candidate to replace oxaliplatin in the treatment of cancers with the aim to reduce side effects like cumulative peripheral distal neurotoxicity and acute dysesthesias. As for all synthetic polymeric drug delivery systems, the characterization of the (co)polymer precursors and of the final drug delivery system (polymeric micelles) is crucial to control the repeatability of the different batches and to get correlation between physico-chemical structure and biological activity. In this work, the use of capillary electrophoresis (CE) and related methods for the characterization of (DACH)Pt-loaded polymeric micelles and their precursor (PEG-b-PGlu copolymer) has been investigated in detail. The separation and quantification of residual PGlu homopolymer in the PEG-b-PGlu sample were performed by free solution capillary zone electrophoresis mode. This mode brought also information on the PEG-b-PGlu copolymer composition and polydispersity. It also permitted to monitor the decomposition of polymeric micelles in the presence of NaCl at room temperature. Interactions between PEG-b-PGlu unimers, on one hand, and polymeric micelles or surfactants, on the other hand, were studied by using the Micellar Electrokinetic Chromatography and Frontal Analysis Capillary Electrophoresis modes. Finally, weight-average hydrodynamic radii of the loaded polymeric micelles and of the PEG-b-PGlu unimers were determined by Taylor Dispersion Analysis (an absolute size determination method that can be easily implemented on CE apparatus). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Self-healing elastomer system

    NASA Technical Reports Server (NTRS)

    Sottos, Nancy R. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor)

    2009-01-01

    A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.

  20. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  1. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  2. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion

    DOE PAGES

    Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...

    2017-08-08

    Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less

  3. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less

  4. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    NASA Astrophysics Data System (ADS)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  5. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes

    NASA Astrophysics Data System (ADS)

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-01

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  6. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.

    PubMed

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-06

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  7. Method for reproducibly preparing a low-melting high-carbon yield precursor

    DOEpatents

    Smith, Wesley E.; Napier, Jr., Bradley

    1978-01-01

    The present invention is directed to a method for preparing a reproducible synthetic carbon precursor by the autoclave polymerization of indene (C.sub.9 H.sub.8) at a temperature in the range of 470.degree.-485.degree. C, and at a pressure in the range of about 1000 to about 4300 psi. Volatiles in the resulting liquid indene polymer are removed by vacuum outgassing to form a solid carbon precursor characterized by having a relatively low melting temperature, high-carbon yield, and high reproducibility which provide for the fabrication of carbon and graphite composites having strict requirements for reproducible properties.

  8. Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors

    DTIC Science & Technology

    1989-02-15

    pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at 򒸀 C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabalka, George W

    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporationmore » techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.« less

  10. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    DOEpatents

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  11. Lignin nanoparticle synthesis

    DOEpatents

    Dirk, Shawn M.; Cicotte, Kirsten Nicole; Wheeler, David R.; Benko, David A.

    2015-08-11

    A method including reducing a particle size of lignin particles to an average particle size less than 40 nanometers; after reducing the particle size, combining the lignin particles with a polymeric material; and forming a structure of the combination. A method including exposing lignin to a diazonium precursor including a functional group; modifying the lignin by introducing the functional group to the lignin; and combining the modified lignin with a polymeric material to form a composite. An apparatus including a composite of a polymer and lignin wherein the lignin has an average particle size less than 100 micrometers.

  12. High volume method of making low-cost, lightweight solar materials

    DOEpatents

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  13. Solution properties and spectroscopic characterization of polymeric precursors to SiNCB and BN ceramic materials

    NASA Astrophysics Data System (ADS)

    Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.

    1998-06-01

    Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.

  14. Homochiral polymerization-driven selective growth of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro; Nakae, Takahiro

    2017-01-01

    The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate 'conformation-controlled surface catalysis': the two-zone chemical vapour deposition of a 'Z-bar-linkage' precursor, which represents two terphenyl units linked in a 'Z' shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.

  15. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  16. Y2O3:Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Roh, H. S.; Kang, Y. C.; Park, H. D.; Park, S. B.

    Y2O3:Eu phosphor particles were prepared by large-scale spray pyrolysis. The morphological control of Y2O3:Eu particles in spray pyrolysis was attempted by adding polymeric precursors to the spray solution. The effect of composition and amount of polymeric precursors on the morphology, crystallinity and photoluminescence characteristics of Y2O3:Eu particles was investigated. Particles prepared from a solution containing polyethylene glycol (PEG) with an average molecular weight of 200 had a hollow structure, while those prepared from solutions containing adequate amounts of citric acid (CA) and PEG had a spherical shape, filled morphology and clean surfaces after post-treatment at high temperature. Y2O3:Eu particles prepared from an aqueous solution with no polymeric precursors had a hollow structure and rough surfaces after post-treatment. The phosphor particles prepared from solutions with inadequate amounts of CA and/or PEG also had hollow and/or fragmented structures. The particles prepared from the solution containing 0.3 M CA and 0.3 M PEG had the highest photoluminescence emission intensity, which was 56% higher than that of the particles prepared from aqueous solution without polymeric precursors.

  17. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    PubMed Central

    Ma, Hsiao-Yuan; Wang, Tzong-Liu; Chang, Pei-Yu; Yang, Chien-Hsin

    2016-01-01

    Organic-inorganic hybrid sols (Ti–O–Si precursor) were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA) to perform photo-polymerization by ultraviolet (UV) irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA) film is higher than that of a pure poly(Ti–O–Si precursor) film, and that this poly(Ti–O–Si precursor-co-OPPEA) hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n) of 1.83 corresponding to a thickness of 2.59 μm. PMID:28344303

  18. Monolithic microfluidic concentrators and mixers

    DOEpatents

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  19. Surface-functionalized mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  20. Influence of Cu-doping on the structural and optical properties of CaTiO{sub 3} powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, L.H.; Moura, A.P. de; La Porta, F.A., E-mail: felipe_laporta@yahoo.com.br

    2016-09-15

    Highlights: • Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders were successfully synthesized via a polymeric precursor method. • Effects of Cu incorporated on the Ca-site into the CaTiO{sub 3} lattice as host matrix has been investigated. • The optical behavior reveals that the Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders have potential applications in emerging technologies. - Abstract: Here, we report on the effect of chemical substitution on the structural and optical properties of Cu-doped CaTiO{sub 3} (CTO) polycrystalline powders synthesized by the polymeric precursor method. Our findings are discussed based on the structural order-disorder effects originating from the modification of the Ca{sub 1−x}Cu{submore » x}TiO{sub 3} microcrystal matrix. These results may elucidate the compositional modulation and methods of controlling the structural design, as well as reveal the changes in the optical behavior of this system at an atomic level.« less

  1. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization.

    PubMed

    Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei

    2012-10-01

    A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  3. Novel Precursor Approached for CMC Derived by Polymer Pyrolysis

    DTIC Science & Technology

    1994-02-15

    to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2

  4. Solution Synthesis of Atomically Precise Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Shekhirev, Mikhail; Sinitskii, Alexander

    2017-05-01

    Bottom-up fabrication of narrow strips of graphene, also known as graphene nanoribbons or GNRs, is an attractive way to open a bandgap in semimetallic graphene. In this chapter, we review recent progress in solution-based synthesis of GNRs with atomically precise structures. We discuss a variety of atomically precise GNRs and highlight theoretical and practical aspects of their structural design and solution synthesis. These GNRs are typically synthesized through a polymerization of rationally designed molecular precursors followed by a planarization through a cyclodehydrogenation reaction. We discuss various synthetic techniques for polymerization and planarization steps, possible approaches for chemical modification of GNRs, and compare the properties of GNRs that could be achieved by different synthetic methods. We also discuss the importance of the rational design of molecular precursors to avoid isomerization during the synthesis and achieve GNRs that have only one possible structure. Significant attention in this chapter is paid to the methods of material characterization of solution-synthesized GNRs. The chapter is concluded with the discussion of the most significant challenges in the field and the future outlook.

  5. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  6. Synthesis and Characterization of a Novel Borazine-Type UV Photo-Induced Polymerization of Ceramic Precursors.

    PubMed

    Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi

    2016-06-21

    A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.

  7. Coordination Polymerization of Renewable 3-Methylenecyclopentene with Rare-Earth-Metal Precursors.

    PubMed

    Liu, Bo; Li, Shihui; Wang, Meiyan; Cui, Dongmei

    2017-04-10

    Coordination polymerization of renewable 3-methylenecyclopentene has been investigated for the first time using rare-earth metal-based precursors bearing various bulky ligands. All the prepared complexes catalyze controllable polymerization of 3-methylenecyclopentene into high molecular weight polymers, of which the NPN- and NSN-tridentate non-Cp ligated lutetium-based catalytic systems exhibited extremely high activities up to 11 520 kg/(mol Lu ⋅h) in a dilute toluene solution (3.2 g/100 mL) at room temperature. The resultant polymers have pure 1,4-regioregularity (>99 %) and tailorable number average molecular weights (1-20×10 4 ) with narrow molecular weight distributions (polydispersity index (PDI)=1.45-1.79). DFT simulations were employed to study the polymerization mechanism and stereoregularity control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution

    NASA Astrophysics Data System (ADS)

    Song, Lixin; Lam, Yeng Ming; Boothroyd, Chris; Teo, Puat Wen

    2007-04-01

    Polymeric films containing titania nanoparticles have potential as dielectric films for flexible electronic applications. For this purpose, the nanoparticles must be homogeneously distributed. Self-assembly is emerging as a neat, elegant method for fabricating such nanostructured hybrid materials with well-distributed nanoparticles. In this work, we report a micellar solution approach for the assembly of copolymer-titanium precursor nanostructures in which titania nanoparticles were synthesized. The ratio of the amount of titanium precursor, titanium isopropoxide, to the blocks forming the micellar core, poly(4-vinylpyridine), was found to play a key role in controlling film morphology. A sphere-to-ribbon transition was observed when the amount of titanium isopropoxide was increased. The thin film morphology can be tuned using the precursor-copolymer interaction rather than just the polymer-polymer interaction or the polymer-solution interaction. This method provides yet another way to control the morphology of nanostructures.

  9. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  10. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  11. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  12. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  13. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  14. Polymeric routes to silicon carbide and silicon oxycarbide CMC

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Heimann, Paul J.; Gyekenyesi, John Z.; Masnovi, John; Bu, Xin YA

    1991-01-01

    An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension.

  15. Method to create gradient index in a polymer

    DOEpatents

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  16. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  17. Solid state polymerization and crystallography of polyimide precursors. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1974-01-01

    Although the production of crystallinity in a polymeric system has historically led to commerically useful properties, the polyimides, prized for their high temperature characteristics, as customarily synthesized by melt or solution casting, are amorphous. It is shown that polymide containing residual crystallinity can be synthesized by isothermal annealing of crystals of the salt of the diisopropyl ester of pyromellitic acid and phenylene diamine. The reaction is topochemical in that the geometry of the polymer product is dependent upon that of the crystalline precursor. Infrared spectroscopy reveals the presence of imide absorption in the polymer, while powder diffractometry suggests residual crystallinity. Single crystal X-ray analysis of the monomer yields a structure of chains of alternating acid and base suggesting that the monomer is amenable to polymerization with a minimum of geometrical disruption.

  18. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    PubMed

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    NASA Astrophysics Data System (ADS)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  20. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  1. Studies on silicon NMR characterization and kinetic modeling of the structural evolution of siloxane-based materials and their applications in drug delivery and adsorption

    NASA Astrophysics Data System (ADS)

    Ambati, Jyothirmai

    This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane rings formed from short-bridged precursors slow down but do not prevent gelation. The tuning of siloxane-based materials for adsorption technologies are also discussed here. In the first example, antioxidant enzyme loading is investigated as a means to reduce oxidative stress generated by silica nanoparticle drug carriers. Materials are engineered for promising enzyme loading and protection from proteolysis. Second, the potential of copper sulfate impregnation to enhance adsorption of ammonia by silica is explored by molecular simulation. KEYWORDS: Sol-gel Polymerization, Kinetic Investigation, Si NMR, Bridged Silanes, DFT Calculations.

  2. Organometallic Precursor Routes to Si-C-Al-O-N Ceramics

    DTIC Science & Technology

    1991-05-15

    Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our

  3. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  4. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  5. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  6. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  7. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  8. Design, Synthesis, and Chemical Processing of Hierarchical Ceramic Structures for Aerospace Applications

    DTIC Science & Technology

    1993-03-30

    Massachusetts Institute of Technology, Cambridge, MA 02139I ABSTRACT polysilanes." Pyrolysis of these polymers usually The decomposition of polymeric SiC ...of soluble polymeric solids. Pyrolysis of these polymers in argon yielded The precursors were prepared by adding a TiC/A120 3 composite at 12501C...formation of soluble polymeric solids. Pyrolysis described an approach for synthesizing AI2O/ SiC of these polymers in argon yielded TiC/AI203

  9. New high boron content polyborane precursors to advanced ceramic materials: New syntheses, new applications

    NASA Astrophysics Data System (ADS)

    Guron, Marta

    There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.

  10. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  11. Poly(cyclohexylethylene)- block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE PAGES

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)- block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation producesmore » an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  12. Chemical oxidative and solid state synthesis of low molecular weight polymers for organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar

    2018-03-01

    Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.

  13. Synthesis of nanostructured materials in inverse miniemulsions and their applications.

    PubMed

    Cao, Zhihai; Ziener, Ulrich

    2013-11-07

    Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.

  14. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  15. Synthesis of High Molecular Weight Poly(glycerol monomethacrylate) via RAFT Emulsion Polymerization of Isopropylideneglycerol Methacrylate

    PubMed Central

    2018-01-01

    High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA–PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions. PMID:29805184

  16. New polymeric precursors to SiNCB, BN, and La(3)Ni(2)B(2)N(3) materials

    NASA Astrophysics Data System (ADS)

    Wideman, Thomas W.

    Boron-containing non-oxide ceramics demonstrate a number of important structural, electronic and physical properties. However, the lack of general synthetic routes to generate these materials with controlled composition, under moderate conditions, and in processed forms, has hampered both scientific studies and practical applications. The goal of the work described in this dissertation was to develop efficient new polymeric precursor routes to boron-containing materials including SiNCB ceramics composites, boron nitride fibers, and quaternary metal boro-nitride superconductors. Two types of polyborosilazane precursors to SiNCB ceramics were developed. Borazine-co-silazane copolymers were prepared through the thermal copolymerization of borazine with two silazanes, tris(trimethylsilylamino)silane, and 1,1,3,3,5,5 -hexamethylcyclotrisilazane. Polyborosilazanes with pendent boron-containing species were obtained by the modification of preformed hydridopolysilazane polymers with three monofunctional boranes: pinacolborane, 2,4-diethylborazine and 1,3-dimethyl-1,3-diaza-2-boracyclopentane. Pyrolyses of both types of polyborosilazanes produced SiNCB ceramics with controllable boron contents, enhanced thermal stabilities, and reduced crystallinity. Processible polymeric precursors to BN were also achieved by the chemical modification of polyborazylene, (Bsb3Nsb3Hsb{˜ 4}rbrack sb{x}, with diethylamine, dipentylamine, and hexamethyldisilazane. The modified polymers, unlike the parent polyborazylene, do not crosslink at low temperatures, and therefore proved to be ideal melt-spinnable precursors to BN ceramic fibers. A new polymeric precursor route to the recently discovered Lasb3Nisb2Bsb2Nsb3 superconductor (Tc = 12K) was developed by reacting lanthanum and nickel powders dispersed in the polyborazylene, to produce the intermetallic in excellent yields. The use of the polymer as a "reagent" provided a controllable, solid state source of nitrogen, and allows for the large scale syntheses of Lasb3Nisb2Bsb2Nsb3 and other quaternary metal boro-nitrides. Two new preparations of borazine, Bsb3Nsb3Hsb6, a key molecular unit in many of the polymers described above, have also been developed. Chemical investigations and practical applications of borazine-based preceramic polymers have been limited by the inefficient syntheses and high cost of borazine, which may now be prepared in 55-65% yields by the convenient, inexpensive the reaction of ammonium and borohydride salts, and the decomposition of ammonia borane, in high-boiling ether solutions.

  17. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  18. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    NASA Astrophysics Data System (ADS)

    Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.

  19. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  20. Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.

    PubMed

    Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi

    2011-02-01

    A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Size and Morphology Controlled Synthesis of Boehmite Nanoplates and Crystal Growth Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Cui, Wenwen; Page, Katharine L.

    The aluminum oxyhydroxide boehmite is an important crystalline phase in nature and industry. We report development of a flexible additive-free hydrothermal synthesis method to prepare high quality boehmite nanoplates with sizes ranging from under 20 nm to 5 um via using hydrated alumina gels and amorphous powders as precursors. The size and morphology of the boehmite nanoplates was systematically varied between hexagonal and rhombic by adjusting precursor concentrations, pH, and the synthesis temperature, due to face-specific effects. The transformation mechanism is consistent with dissolution and reprecipitation, and involves transitory initial appearance of metastable gibbsite that is later consumed upon nucleationmore » of boehmite. Detailed X-ray pair distribution characterization of the solids over time showed similarities in short-range order that suggest linkages in local chemistry and bonding topology between the precursors and product boehmite, yet also that precursor-specific differences in long-range order appear to manifest subtle changes in resulting boehmite characteristics, suggesting that the rate and extent of water release or differences in the resulting solubilized aluminate speciation leads to slightly different polymerization and condensation pathways. The findings suggest that during dissolution of the precursor that precursor-specific dehydration or solution speciation could be important aspects of the transformation impacting the molecular level details of boehmite nucleation and growth.« less

  2. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.

    PubMed

    Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien

    2013-10-14

    Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.

  3. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    ERIC Educational Resources Information Center

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  4. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating

    NASA Astrophysics Data System (ADS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-03-01

    A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  5. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  6. Method for the preparation of novel polyacetylene-type polymers

    DOEpatents

    Zeigler, John M.

    1989-01-01

    Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III) and/or IV), e.g., WCl.sub.6.(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions.

  7. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking" shell cross-linked micelles is achieved by changing solution pH and salt concentration. The reversible "self-locking" is attained from the interactions of zwitterionic groups in the middle block that constitutes the shell of the micelles. The structure slowly dissociates into unimers in 2-3 days at pH above the pKa of the PAMBA block.

  8. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  9. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  10. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  11. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  12. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials.

    PubMed

    Holmberg, Angela L; Reno, Kaleigh H; Nguyen, Ngoc A; Wool, Richard P; Epps, Thomas H

    2016-05-17

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o -methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.

  13. Approaches to polymer-derived CMC matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.

  14. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  15. Process for preparing silicon carbide foam

    DOEpatents

    Whinnery, LeRoy Louis; Nichols, Monte Carl; Wheeler, David Roger; Loy, Douglas Anson

    1997-01-01

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.

  16. Process for preparing silicon carbide foam

    DOEpatents

    Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.

    1997-09-16

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoes, A.Z.; Riccardi, C.S.; Cavalcante, L.S.

    The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness.

  18. Microfluidic fuel cell systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan

    2005-07-26

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  19. Method for the preparation of novel polyacetylene-type polymers

    DOEpatents

    Zeigler, J.M.

    1987-11-09

    Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6//center dot/(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. 1 tab.

  20. Preparation of "Cauliflower-Like" ZnO Micron-Sized Particles.

    PubMed

    Gordon, Tamar; Grinblat, Judith; Margel, Shlomo

    2013-11-14

    Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl₂ in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl₂-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.

  1. Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    De, Arijit; Kundu, Susmita

    2016-07-01

    Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.

  2. Activated microporous materials through polymerization of microemulsion precursors

    NASA Astrophysics Data System (ADS)

    Venkatesan, Arunkumar

    Microemulsions have been well studied for their unique characteristics. They are isotropic, thermodynamically stable and microstructured mixtures of oil and water stabilized by one or more surfactant species. They are formed spontaneously and are thermodynamically stable. Microemulsion precursors can be polymerized to make microporous solids with controlled pore structure and sizes. These polymeric solids have been studied extensively in the past. Although the fundamental properties of the microporous solids have been studied in depth, the development of specific applications that will utilize the unique properties of these solids has not been exhaustively researched. The current work establishes the feasibility of making activated microporous solids from microemulsion precursors, by the use of a ligand that chelates metals and also attaches itself to the polymer monolith. It also uses a novel 'in-situ' incorporation by combining the formulation and incorporation steps into one. The research objectives are, to formulate a microemulsion system that can yield useful microporous solids upon polymerization and activation, to characterize these solids using existing techniques available for analysis of similar microporous solids, to identify and understand the effect of the variables in the system and to study the influence of these variables on the performance characteristics of this material. Characterization techniques like Differential Scanning Calorimetry, Thermogravimetric Analysis and Scanning Electron Microscopy were used. A hydroxyethylmethylmethacrylate/methylmethacrylate/aqueous phase containing 10% SDS' system was chosen as the precursor microemulsion and the corresponding microporous solids were made. A metal chelating ligand, Congo Red, was incorporated onto the microporous polymer using NaOH as a binding agent. The ability of the resultant 'activated' microporous solid to remove metal ions from solution, was evaluated. The metal ion chosen was chromium and the influence of variables such as NaOH loading, Congo Red loading, Cross linker content etc. were studied. It was found that the microporous solids were effective in removing chromium from solution. They outperformed similar polymeric solids with ligands (reported in literature) in chromium removal. A removal of about 1500 micro moles of chromium ions per gram of dry polymer from a solution of 5 mMol/L initial concentration of chromium was observed. This is much more than the removal of 340 micro moles/gram of dry polymer reported in literature for comparable non-microporous systems.

  3. Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline

    2018-03-01

    Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.

  4. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-04-04

    Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  5. Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

    DTIC Science & Technology

    2012-04-01

    Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007

  6. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  7. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Facchetti, Antonio (Inventor); Suh, legal representative, Nae-Jeong (Inventor); Marks, Tobin J. (Inventor); Choi, Hyuk-Jin (Inventor); Wang, Zhiming (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  8. Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It

    PubMed Central

    Agareva, Nadezhda; Smirnov, Anton A.; Afanasiev, Andrey; Sologubov, Semen; Markin, Alexey; Salomatina, Evgenia; Smirnova, Larisa; Bityurin, Nikita

    2015-01-01

    We study the thermo-physical and photoluminescence (PL) properties of cadmium-(bis)dodecylthiolate (Cd(C12H25S)2). Significant attention is drawn to characterization of Cd(C12H25S)2 by different methods. The laser-induced PLs of Cd(C12H25S)2 and Cd(C12H25S)2/(polymethyl methacrylate) (PMMA) composites are studied. Samples of Cd(C12H25S)2/PMMA are synthesized by the polymerization method. Ultraviolet (UV)-pulsed laser irradiation of the samples under relatively small fluences leads to the formation of induced PL with the maximum near the wavelength of 600 nm. This process can be attributed to the transformation of Cd(C12H25S)2 within the precursor grains. Another PL peak at 450–500 nm, which appears under the higher fluences, relies on the formation of CdS complexes with a significant impact of the polymer matrix. PMID:28793738

  9. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  10. Stress wave propagation and mitigation in two polymeric foams

    NASA Astrophysics Data System (ADS)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  11. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.

  12. Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol-gel technique with a hydrazine monohydrochloride catalyst.

    PubMed

    Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi

    2012-08-21

    Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.

  13. H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young

    2017-10-01

    Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.

  14. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

    PubMed

    Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus

    2014-01-01

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.

  15. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  16. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    NASA Astrophysics Data System (ADS)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.

  17. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  18. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  19. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-03-01

    A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)

    DTIC Science & Technology

    2006-08-01

    preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric

  1. Supercritical Fluid Infusion of Iron Additives in Polymeric Matrices

    NASA Technical Reports Server (NTRS)

    Nazem, Negin; Taylor, Larry T.

    1999-01-01

    The objective of this project was the experimentation to measure preparation of iron nanophases within polymeric matrices via supercritical fluid infusion of iron precursors followed by thermal reduction. Another objective was to determine if supercritical CO2 could infuse into the polymer. The experiment is described along with the materials, and the supercritical fluid infusion and cure procedures. X-ray photoelectron spectra and transmission electron micrographs were obtained. The results are summarized in charts, and tables.

  2. Polymeric peptide pigments with sequence-encoded properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties overmore » a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.« less

  3. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  5. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    NASA Astrophysics Data System (ADS)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  6. Ferrocene-Based Hyperbranched Polytriazoles: Synthesis by Click Polymerization and Application as Precursors to Nanostructured Magnetoceramics.

    PubMed

    Li, Hongkun; Chi, Weiwen; Liu, Yajing; Yuan, Wei; Li, Yaowen; Li, Yongfang; Tang, Ben Zhong

    2017-09-01

    Ferrocene-based polymers have drawn much attention in the past decades due to their unique properties and promising applications. However, the synthesis of hyperbranched polymers is still a great challenge. Here, two ferrocene-based hyperbranched polytriazoles with high molecular weights are facilely prepared by the click polymerization reactions of ferrocene-containing diazides (1) and tris(4-ethynylphenyl)amine (2) using Cu(PPh 3 ) 3 Br as catalyst in dimethylformamide at 60 °C for 5 and 9 h in satisfactory yields of 54.0% and 52.3%. The resulting polytriazoles are soluble in common organic solvents and thermally stable, with 5% weight loss temperatures up to 307 °C. They can be used as precursors to produce nanostructured ceramics with good magnetizability by pyrolysis at elevated temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  8. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-05-01

    Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  9. Method for continuous synthesis of metal oxide powders

    DOEpatents

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  10. Development of test models to quantify encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Moissl-Eichinger, Christine; Mahnert, Alexander; Probst, Alexander; Flier, Niwin; Auerbach, Anna; Weber, Christina; Haberer, Klaus; Boeker, Alexander

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to scientific exploration of other celestial bodies, but it is not easily detectable. In this study, we developed novel testing strategies to estimate the quantity of intrinsic encapsulated bioburden in polymers used frequently on spaceflight hardware. In particular Scotch-Weld (TM) 2216 B/A (Epoxy adhesive); MAP SG121FD (Silicone coating), Solithane (®) 113 (Urethane resin); ESP 495 (Silicone adhesive); and Dow Corning (®) 93-500 (Silicone encapsulant) were investigated. As extraction of bioburden from polymerized (solid) materials did not prove feasible, a method was devised to extract contaminants from uncured polymer precursors by dilution in organic solvents. Cultivation-dependent analyses showed less than 0.1-2.5 colony forming units (cfu) per cm³ polymer, whereas quantitative PCR with extracted DNA indicated considerably higher values, despite low DNA extraction efficiency. Results obtained by this method reflected the most conservative proxy for encapsulated bioburden. To observe the effect of physical and chemical stress occurring during polymerization on the viability of encapsulated contaminants, Bacillus safensis spores were embedded close to the surface in cured polymer, which facilitated access for different analytical techniques. Staining by AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) and subsequent confocal laser scanning microscopy (CLSM) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld™ 2216 B/A.

  11. Porous polymers: enabling solutions for energy applications.

    PubMed

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus

    2009-02-18

    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pumpable rockbolt method

    DOEpatents

    Steinberg, Meyer; Manowitz, Bernard; Waide, Charles H.

    1976-01-06

    Method and apparatus for producing rockbolts in the roof of a subterranean cavity in which two components of an ambient temperature curable resin system are premixed and then inserted into a bore hole. The mixture is permitted to polymerize in situ and then the hardened material is cut off at the entrance to the hole leaving a hardened portion for insertion into the next hole as a precursor. In a preferred embodiment a flexible glass roving is employed to reinforce the material in the hole and a metal tube inserted to support the roving while it is fed into the hole and also to provide venting. The roving and tube is then cut off and left in the hole.

  13. A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heieh, B.R.; Antoniadis, H.; Bland, D.C.

    1995-12-01

    We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less

  14. Pressure-induced polymerization of P(CN) 3

    DOE PAGES

    Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; ...

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN) 3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN) 3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, togethermore » with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp 2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less

  15. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei

    2012-08-01

    Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization. Electronic supplementary information (ESI) available: Methods for preparing and characterizing UCN, TCN and DCN samples. Methods for examining the photocatalytic hydrogen production. FTIR, XPS, and digital photos of three products are shown in Fig. S1-6. See DOI: 10.1039/c2nr30948c

  16. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Design and synthesis of inorganic/organic hybrid electrochemical materials

    NASA Astrophysics Data System (ADS)

    Harreld, John H.

    An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.

  18. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  19. Soluble silylated polyacetylene derivatives, their preparation and their use as precursors to novel polyacetylene-type polymers

    DOEpatents

    Zeigler, J.M.

    1985-07-30

    Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6/ x (organo-Li, organo-Mg or polysilanes). The resultant silylated polymers are of heretofore unachievable, high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. They can be used as electrodes in batteries.

  20. Synthesis and characterization of novel polyacid-stabilized latexes.

    PubMed

    Yang, Pengcheng; Armes, S P

    2012-09-18

    A series of novel polyacid macromonomers based on 2-hydroxypropyl methacrylate (HPMA) were prepared by atom transfer radical polymerization (ATRP) via a two-step route. First, a range of well-defined PHPMA homopolymer precursors were synthesized by ATRP using a tertiary amine-functionalized initiator, 2-(dimethylamino)ethyl-2-bromoisobutyrylamide, and a CuCl/2, 2'-bipyridine (bpy) catalyst in alcoholic media at 50 °C. ATRP polymerizations were relatively slow and poorly controlled in pure isopropanol (IPA), especially when targeting higher degrees of polymerization (DP > 30). Improved control was achieved by addition of water: low polydispersity (M(w)/M(n) < 1.25) PHPMA homopolymers of DP = 30, 40, 50, 60, or 70 were successfully prepared using a 9:1 w/w % IPA/water mixture at 50 °C. These PHPMA homopolymer precursors were then derivatized to produce the corresponding poly(2-(succinyloxy)propyl methacrylate) (PSPMA) macromonomers by quaternizing the tertiary amine end-group with excess 4-vinylbenzyl chloride, followed by esterification of the pendent hydroxyl groups using excess succinic anhydride at 20 °C. These polyacid macromonomers were evaluated as reactive steric stabilizers for polystyrene latex synthesis under either aqueous emulsion polymerization or alcoholic dispersion polymerization conditions. Near-monodisperse polystyrene latexes were obtained via aqueous emulsion polymerization using 10 wt % PSPMA macromonomer (with respect to styrene monomer) with various initiators as evidenced by scanning electron microscopy, disk centrifuge photosedimentometry and light scattering studies. PSPMA macromomer concentrations as low as 1.0 wt % also produced near-monodisperse latexes, suggesting that these PSPMA macromonomers are highly effective stabilizers. Alcoholic dispersion polymerization of styrene conducted in various ethanol/water mixtures with 10 wt % PSPMA(50) macromonomer produced relatively large near-monodisperse latexes. Increasing the water content in such formulations led to smaller latexes, as expected. Control experiments conducted with 10 wt % PSPMA(50) homopolymer produced relatively large polydisperse latexes via emulsion polymerization and only macroscopic precipitates via alcoholic dispersion polymerization. Thus the terminal styrene group on the macromonomer chains is essential for the formation of well-defined latexes. FT-IR spectroscopy indicated that these latexes contained PSPMA macromonomer, whereas (1)H NMR spectroscopy studies of dissolved latexes allowed stabilizer contents to be determined. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies confirmed that the PSPMA macromonomer chains were located at the latex surface, as expected. Finally, these polyacid-stabilized polystyrene latexes exhibited excellent freeze-thaw stability and remained colloidally stable in the presence of electrolyte.

  1. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    PubMed

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  2. Mixed-ligand approach to design of heterometallic single-source precursors with discrete molecular structure.

    PubMed

    Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V

    2014-05-05

    Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.

  3. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    NASA Astrophysics Data System (ADS)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  4. Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties

    PubMed Central

    Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer

    2016-01-01

    A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244

  5. Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs

    NASA Astrophysics Data System (ADS)

    Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova

    2018-03-01

    The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.

  6. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  7. Synthesis and Free Radical Polymerization of Fluorinated Polyhedral Oligomeric Silsesquioxane (F-POSS) Macromers: Precursors for Low Surface Energy Materials and Devices

    DTIC Science & Technology

    2012-10-01

    Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic electrospun surfaces...door for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic

  8. Process for removing polymer-forming impurities from naphtha fraction

    DOEpatents

    Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.

    1983-12-27

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.

  9. Process for removing polymer-forming impurities from naphtha fraction

    DOEpatents

    Kowalczyk, Dennis C.; Bricklemyer, Bruce A.; Svoboda, Joseph J.

    1983-01-01

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.

  10. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  11. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels.

    PubMed

    Seraji, Mohamad Mehdi; Sameri, Ghasem; Davarpanah, Jamal; Bahramian, Ahmad Reza

    2017-05-01

    Phenol-formaldehyde/silica hybrid aerogels with different degree of hydrophobicity were successfully synthesized via high temperature sol-gel polymerization. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursor and co-precursor of the hydrophobic silica-based phase, respectively. The hydrolysis step of silica based sols were conducted by acid catalyzed reactions and HCl was used as hydrolysis catalyst. The chemical structure of prepared hybrid aerogels was characterized by Fourier Transform Infrared spectroscopy (FT-IR). The effect of MTES/TEOS proportion and catalyst content on the morphology and microstructure of samples were investigated by FE-SEM and C, Si mapping analysis. The acid catalyzed hydrolysis of TEOS and MTES sols leads to formation of a sol with primarily silica particles in the organic-inorganic hybrid sol and varying colloid growth mechanisms were occurred with change in MTES and HCl molar ratio. With the increasing of MTES content, the microstructure of samples changed from uniform colloidal network, core-shell structure to polymeric structure with a huge phase separation. The increasing of HCl mole fraction leads to smaller particle size. Moreover, the shrinkage of samples was decreased and water contact angles of the resulted aerogels were increased from 40 to 156.8° with the increases of MTES content. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Production of continuous mullite fiber via sol-gel processing

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  13. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  14. Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    PubMed Central

    Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate

    2011-01-01

    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae. PMID:22022378

  15. Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae.

    PubMed

    Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate

    2011-01-01

    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.

  16. Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.

    1999-01-04

    Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7,more » and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.« less

  17. Directed assembly of nanomaterials for miniaturized sensors by dip-pen nanolithography using precursor inks

    NASA Astrophysics Data System (ADS)

    Su, Ming

    The advent of nanomaterials with enhanced properties and the means to pattern them in a controlled fashion have paved the way to construct miniaturized sensors for improved detection. However it remains a challenge for the traditional methods to create such sensors and sensor arrays. Dip pen nanolithography (DPN) can form nanostructures on a substrate by controlling the transfer of molecule inks. However, previous DPN can not pattern solid materials on insulating surfaces, which are necessary to form functional electronic devices. In the dissertation, the concept of reactive precursor inks for DPN is developed for the generation of solid functional nanostructures of the following materials: organic molecule, sol-gel material, and conducting polymer. First, the covalent bonding is unnecessary for DPN as shown in the colored ink DPN; therefore the numbers of molecules that can be patterned is extended beyond thiol or thiolated molecules. Subsequently, a reactive precursor strategy (sol) is developed to pattern inorganic or organic/inorganic composite nanostructures on silicon based substrates. The method works by hydrolysis of metal precursors in the water meniscus and allows the preparation of solid structures with controlled geometry beyond the individual molecule level. Then the SnO 2 nanostructures patterned between the gaps of electrodes are tested as gas sensors. Proof-of-concept experiments are demonstrated on miniaturized sensors that show fast response and recovery to certain gases. Furthermore, an eight-unit sensor array is fabricated on a chip using SnO2 sols that are doped with different metals. The multiplexed device can recognize different gases by comparing the response patterns with the reference patterns of known gases generated on the same array. At last, the idea of precursor ink for DPN is extended to construct conducting polymer based devices. By using an acid promoted polymerization approach, conducting polymers are patterned on silicon dioxide substrates. The patterned organic solids response to light and behave as miniaturized photo-detectors. The microstructures are studied using microscopic and spectroscopic techniques.

  18. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials

    PubMed Central

    Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.

    2016-01-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069

  19. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  20. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor

    NASA Astrophysics Data System (ADS)

    Ganesan, Ramakrishnan; Safari Dinachali, Saman; Lim, Su Hui; Saifullah, M. S. M.; Tit Chong, Wee; Lim, Andrew H. H.; Jie Yong, Jin; San Thian, Eng; He, Chaobin; Low, Hong Yee

    2012-08-01

    Nanostructuring of Al2O3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al2O3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al2O3. Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ˜100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al2O3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol-gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides.

  1. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  2. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Wen, Shengwu; Xu, Xinmei; Huang, Guozhi; Cui, Yifan; Li, Jinyu; Qu, Ailan

    2018-04-01

    Porous graphite carbon nitride nanosheets (g-C3N4) are achieved via one-step catalyst-free solution self-polymerization from a single melamine precursor. The resultant porous g-C3N4 nanosheets with the best photodegradation capacity provided the surface area of 669.15 m2/g, which is superior to the surface area of any other porous g-C3N4 reported. Results showed enhanced adsorption and degradation capacity of methyl orange (MO) under UV-visible light irradiation (λ > 350 nm) compared to bulk g-C3N4. The MO oxidation of the porous g-C3N4 nanosheets is driven mostly by the participation of holes, and secondly by rad O2- and rad OH radicals. This approach shed lights on porous g-C3N4 production simply by self-polycondensation of single functional monomer. It also provided a low-cost and eco-friendly method to facilely mass-produce g-C3N4 nanosheets with high surface area for many potential applications.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hongbo; Qiao, Zemin; Liu, Xiao

    Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibitmore » lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.« less

  4. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  5. IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution

    NASA Astrophysics Data System (ADS)

    Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław

    2018-07-01

    Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.

  6. Initial formation behaviour of polypyrrole on single crystal TiO2 through photo-electrochemical reaction.

    PubMed

    Kawakita, Jin; Weitzel, Matthias

    2011-04-01

    Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.

  7. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  8. Construction of monomer-free, highly crosslinked, water-compatible polymers.

    PubMed

    Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W

    2014-12-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.

  9. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  10. Magnetoceramics from the bulk pyrolysis of polysilazane cross-linked by polyferrocenylcarbosilanes with hyperbranched topology.

    PubMed

    Kong, Jie; Kong, Minmin; Zhang, Xiaofei; Chen, Lixin; An, Linan

    2013-10-23

    In this contribution, we report a novel strategy for the synthesis of nanocrystal-containing magnetoceramics with an ultralow hysteresis loss by the pyrolysis of commercial polysilazane cross-linked with a functional metallopolymer possessing hyperbranched topology. The usage of hyperbranched polyferrocenylcarbosilane offers either enhanced ceramic yield or magnetic functionality of pyrolyzed ceramics. The ceramic yield was enhanced accompanied by a decreased evolution of hydrocarbons and NH3 because of the cross-linking of precursors and the hyperbranched cross-linker. The nucleation of Fe5Si3 from the reaction of iron atoms with Si-C-N amorphous phase promoted the formation of α-Si3N4 and SiC crystals. After annealing at 1300 °C, stable Fe3Si crystals were generated from the transformation of the metastable Fe5Si3 phase. The nanocrystal-containing ceramics showed good ferromagnetism with an ultralow (close to 0) hysteresis loss. This method is convenient for the generation of tunable functional ceramics using a commercial polymeric precursor cross-linked by a metallopolymer with a designed topology.

  11. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    NASA Astrophysics Data System (ADS)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  12. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  13. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  14. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration.

    PubMed

    Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf

    2017-01-24

    Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prebiotic chemistry and nucleic acid replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Lohrmann, R.

    1974-01-01

    Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.

  16. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah

    2012-01-01

    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  17. Engineering a monolignol 4- O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alchohol

    DOE PAGES

    Cai, Yuanheng; Shanklin, John; Mohammad -Wadud Bhuiya; ...

    2015-09-16

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create anmore » enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. Lastly, the resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.« less

  18. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes.

    PubMed

    Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  19. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    PubMed Central

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  20. Proton-Dependent Coniferin Transport, a Common Major Transport Event in Differentiating Xylem Tissue of Woody Plants1[W

    PubMed Central

    Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi

    2013-01-01

    Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms. PMID:23585651

  1. Engineering a Monolignol 4-O-Methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alcohol*

    PubMed Central

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-01-01

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. PMID:26378240

  2. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored significantly by the successful grafting and immobilization which is confirmed by AFM and CA analysis. Owing to the physico-chemical changes on the surface of PP films induced by CAPP assisted polymerization, the anti-thrombogenic properties of PP films were enhanced as confirmed by in vitro analysis.

  3. Acrylic acid plasma polymerization for biomedical use

    NASA Astrophysics Data System (ADS)

    Bitar, Rim; Cools, Pieter; De Geyter, Nathalie; Morent, Rino

    2018-08-01

    Since a few decades, polymeric materials have played a central role in regenerative medicine and tissue engineering as artificial tissue replacements and organ transplantation devices. Chemical and topographical surface modifications of biomaterials are often required to achieve an overall better biocompatibility. Non-thermal plasma is a non-invasive, solvent-free alternative for modifying polymeric surface properties without affecting the bulk of the material. Plasma polymerization of organic compounds has proven to be an effective tool for thin film production with specific surface chemistries, useful for biomedical applications. These polymer layers have received a growing interest in tissue regeneration and biomolecules immobilization processes. Many different types of chemical functional groups can be introduced, but the focus of this review will be on carboxylic acid groups. Thin films consisting of carboxylic acid functional groups are considered attractive for biomedical applications since these are known for stimulating the adhesion and proliferation of fibroblasts and other kind of cells. Therefore, an overview on the use of acrylic acid (AAc) as a precursor or for the plasma-assisted deposition of carboxylic-group containing-films in bio-interface research activities, will be described in this review. The review will specifically focus on plasma polymerized acrylic acid (PPAA) coatings that are obtained using a variety of plasma deposition techniques. Moreover, the influence of plasma parameters on surface properties such as wettability, surface topography and chemical composition will be discussed in detail. The correlation between different parameters will be studied and a general recipe leading to the successful deposition of COOH-rich stable coatings will be extracted and linked to their ability to improve cell growth, proliferation and differentiation, all leading to the further progress in the biomedical field. A lot of publications claim to have developed suitable coatings for biomedical applications, but neglect the importance of coating stability. For those publications exhibiting sufficient coating stability, a lot of initial in vitro experiments were performed, but the number in-depth studies on the mechanisms behind the cell-material interactions is limited. Although AAc forms an excellent precursor for biomedical coatings, its potential still needs to be explored in more details.

  4. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  5. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  6. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  7. Improved hybrid solar cells via in situ UV-polymerization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepavcevic, S.; Darling, S. B.; Dimitrijevic, N. M.

    One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO{sub 2} nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO{sub 2} NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO{sub 2} substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact {pi}-ring structure that further produce longer oligothiophene/PT molecules.more » Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO{sub 2} surface via a charge transfer complex. Coupling with the TiO{sub 2} surface improves UV-PT crystallinity and {pi}-{pi} stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of {approx} 5 {micro}A cm{sup -2} - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO{sub 2} surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.« less

  8. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  9. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    NASA Technical Reports Server (NTRS)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  10. Hydrogen cyanide polymers: from laboratory to space

    NASA Astrophysics Data System (ADS)

    Matthews, Clifford N.

    1995-02-01

    Hydrogen cyanide polymers - heterogeneous solids ranging in color from yellow to orange to red to black - may be among the organic macromolecules most readily formed within the solar system The non-volatile black crust of comet Halley for example, may consist largely of such polymers. It seems likely. too, that HCN polymers are a major constituent of the dark. CN bearing solids identified tentatively by IR spectra in the dust of some other comets. HCN polymerization could also account for some of the yellow-orange-red coloration of Jupiter and Saturn, and perhaps for the orange haze high in Titan's atmosphere. Studies of these polymers show that a yellow-brown powder can be extracted by water and further hydrolyzed to vield α-amino acids. Several instrumental methods used for the separation and identification of these intriguing materials. including pyrolysis mass spectrometry, Fourier transform IR photoacoustic spectroscopy and supercritical fluid extraction chromatography, reveal fragmentation patterns and chemical functionalities consistent with the presence of polymeric peptide precursors - polyamidines - in HCN polymers. Implications for prebiotic chemistry are profound. Primitive Earth may have been covered by HCN polymers and other organic products through bolide bombardment or terrestrial synthesis, producing a proteinaceous matrix able to bring about the molecular interactions leading to the emergence or life. Cyanide polymerization could also he a preferred pathway beyond Earth and the solar system, on planetary bodies and satellites around other stars and in the dusty molecular clouds of spiral galaxies.

  11. Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trávníček, Zdeněk

    2016-12-08

    Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic Mn III ···Pt II ···Mn III coordination compounds, prepared from the Ba[Pt(CN)₄] and [Mn(L4A/B)(Cl)] ( 1a / b ) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}₂{μ⁴-Pt(CN)₄}] n ( 2a ), where H₂L4A = N , N '-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)₄] 2- bridges, thus forming a square-grid polymeric structure with the hexacoordinate Mn III atoms. The trinuclear complex [{Mn(L4B)}₂{μ-Pt(CN)₄}] ( 2b ), where H₂L4B = N , N '-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate Mn III atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = -3.7(1) in 2a and -2.2(1) cm -1 in 2b . Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands.

  12. Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning

    NASA Astrophysics Data System (ADS)

    Nonato, Renato C.; Morales, Ana R.; Rocha, Mateus C.; Nista, Silvia V. G.; Mei, Lucia H. I.; Bonse, Baltus C.

    2017-01-01

    Zinc oxide (ZnO) nanofibers were prepared by electrospinning under different conditions using a solution of poly(vinyl alcohol) and zinc acetate as precursor. A 23 factorial design was made to study the influence of the process parameters in the electrospinning (collector distance, flow rate and voltage), and a 22 factorial design was made to study the influence of the calcination process (time and temperature). SEM images were made to analyze the fiber morphology before and after calcination process, and the images were made to measure the nanofiber diameter. X-ray diffraction was made to analyze the total precursor conversion to ZnO and the elimination of the polymeric carrier.

  13. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications.

    PubMed

    Bhaumik, Madhumita; Choi, Hyoung J; McCrindle, Rob I; Maity, Arjun

    2014-07-01

    Presented here is a simple preparation of metallic iron nanoparticles, supported on polyaniline nanofibers at room temperature. The preparation is based on polymerization of interconnected nanofibers by rapid mixing of the aniline monomer with Fe(III) chloride as the oxidant, followed by reductive deposition of Fe(0) nanoparticles, using the polymerization by-products as the Fe precursor. The morphology and other physico-chemical properties of the resulting composite were characterized by scanning and transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and vibrating-sample magnetometry. The composite fibers were 80-150 nm in diameter and exhibited the expected ferromagnetic behavior. The composite rapidly and efficiently removed As(V), Cr(VI), and also Congo red dye, from aqueous solutions suggesting their usefulness for removal of toxic materials from wastewater. The composite fibers have high capacity for toxin removal: 42.37 mg/g of As(V), 434.78 mg/g of Cr(VI), and 243.9 mg/g of Congo red. The fibers are easily recovered from fluids by exploiting their ferromagnetic properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Investigation of UV photocurable microcapsule inner crosslink extent

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Meng, Shuangshuang; Lai, Weidong; Yu, Haiyang; Fu, Guangsheng

    2008-11-01

    UV photocuring technology has encountered increased applications in recent years, which finds a variety of applications on protective coating of the optical-fiber, ink and optical recording materials. Combined with techniques of photohardenable, microcapsule, heat-sensitive and interface-polymerization method, a novel photoheat sensitive recording material of non-silver salt is explored in this thesis. Microcapsules are particulate substance with a core and shell structure, where photopolymerizable composition, monofunctional/polyfunctional diluents, photopolymerization initiator, photosensitivity enhancing agent and dye precursor are encapsulated as the internal phase. In this paper introduced the characteristics and curing mechanism of photo-sensitive microcapsule materials. The photocuring process may be a complex-function with photopolymerizable compound and photopolymerization initiator. For the sake of high photocuring speed and degree, optimal photo-sensitive materials were selected. In order to match with the light source excitation wavelength and absorb more wider ultraviolet band, combined type of photo-polymerization initiators were employed. With the kinds and dosage of photopolymerization initiator changing, the photocuring speed and quality can be ameliorated. Through studying the UV-visible absorption spectrum and infra-red spectrum of the material , the optical response property of the inner compound can be obtained.

  15. Influence of entanglements on glass transition temperature of polystyrene

    NASA Astrophysics Data System (ADS)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  16. Synthesis and characterization of nanoporous silica aerogel beads using cheap industrial grade sodium silacte precursor

    NASA Astrophysics Data System (ADS)

    Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.

    2018-05-01

    We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.

  17. AC and DC conductivity due to hopping mechanism in double ion doped ceramics

    NASA Astrophysics Data System (ADS)

    Rizwana, Mahboob, Syed; Sarah, P.

    2018-04-01

    Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.

  18. Multi-functional properties of CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.

    2012-09-01

    In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.

  19. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  20. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less

  1. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  2. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00620a Click here for additional data file.

    PubMed Central

    Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.

    2017-01-01

    Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890

  3. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics

    NASA Astrophysics Data System (ADS)

    Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.

    2016-08-01

    Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.

  4. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  5. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    NASA Astrophysics Data System (ADS)

    Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-04-01

    To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  6. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    PubMed

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  7. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  8. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.

    PubMed

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-10-30

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers.

    PubMed

    Wan, Xuejuan; Liu, Tao; Liu, Shiyong

    2011-04-11

    We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.

  10. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    PubMed

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  11. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    NASA Astrophysics Data System (ADS)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  12. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated AAC/LDPE films.

  13. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.

  14. Assembly of large-area, highly ordered, crack-free inverse opal films

    PubMed Central

    Hatton, Benjamin; Mishchenko, Lidiya; Davis, Stan; Sandhage, Kenneth H.; Aizenberg, Joanna

    2010-01-01

    Whereas considerable interest exists in self-assembly of well-ordered, porous “inverse opal” structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite colloidal crystal films have been generated via evaporative deposition of polymeric colloidal spheres suspended within a hydrolyzed silicate sol-gel precursor solution. The coassembly of a sacrificial colloidal template with a matrix material avoids the need for liquid infiltration into the preassembled colloidal crystal and minimizes the associated cracking and inhomogeneities of the resulting inverse opal films. We discuss the underlying mechanisms that may account for the formation of large-area defect-free films, their unique preferential growth along the 〈110〉 direction and unusual fracture behavior. We demonstrate that this coassembly approach allows the fabrication of hierarchical structures not achievable by conventional methods, such as multilayered films and deposition onto patterned or curved surfaces. These robust SiO2 inverse opals can be transformed into various materials that retain the morphology and order of the original films, as exemplified by the reactive conversion into Si or TiO2 replicas. We show that colloidal coassembly is available for a range of organometallic sol-gel and polymer matrix precursors, and represents a simple, low-cost, scalable method for generating high-quality, chemically tailorable inverse opal films for a variety of applications. PMID:20484675

  15. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOEpatents

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  16. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  17. Hybrid layers deposited by an atmospheric pressure plasma process for corrosion protection of galvanized steel.

    PubMed

    Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D

    2010-04-01

    Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.

  18. Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.

    PubMed

    Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger

    2007-04-21

    The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process.

  19. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Zhibin; Lu, Yixuan

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact withmore » a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.« less

  20. Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal

    PubMed

    Guymon; Hoggan; Clark; Rieker; Walba; Bowman

    1997-01-03

    Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.

  1. Dynamic Nuclear Polarization NMR Spectroscopy of Polymeric Carbon Nitride Photocatalysts: Insights into Structural Defects and Reactivity.

    PubMed

    Li, Xiaobo; Sergeyev, Ivan V; Aussenac, Fabien; Masters, Anthony F; Maschmeyer, Thomas; Hook, James M

    2018-06-04

    Metal-free polymeric carbon nitrides (PCNs) are promising photocatalysts for solar hydrogen production, but their structure-photoactivity relationship remains elusive. Two PCNs were characterized by dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy, which circumvented the need for specific labeling with either 13 C- or 15 N-enriched precursors. Rapid 1D and 2D data acquisition was possible, providing insights into the structural contrasts between the PCNs. Compared to PCN_B with lower performance, PCN_P is a more porous and more active photocatalyst that is richer in terminal N-H bonds not associated with interpolymer chains. It is proposed that terminal N-H groups act as efficient carrier traps and reaction sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  3. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  4. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways.

    PubMed

    Caveney, Nathanael A; Li, Franco Kk; Strynadka, Natalie Cj

    2018-06-06

    The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process.

    PubMed

    Demont-Caulet, Nathalie; Lapierre, Catherine; Jouanin, Lise; Baumberger, Stéphanie; Méchin, Valérie

    2010-10-01

    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Peptide nucleic acids rather than RNA may have been the first genetic molecule

    NASA Technical Reports Server (NTRS)

    Nelson, K. E.; Levy, M.; Miller, S. L.

    2000-01-01

    Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranieri, M.G.A., E-mail: gabi.ranieri@ig.com.br; Aguiar, E.C.; Cilense, M.

    Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} thick films were obtained by SSR and PPM methods. • Both systems crystallize in an orthorhombic structure. • Textured characteristics were evidenced. • Grain morphology affects the P–E loops. - Abstract: Bismuth titanate powders (Bi{sub 4}Ti{sub 3}O{sub 12}-BIT) were fabricated by solid state reaction (SSR) and polymeric precursor method (PPM). From these powders, Bi{sub 4}Ti{sub 3}O{sub 12} pellets were obtained by tape-casting using plate-like templates particles prepared by a molten salt method. The BIT phase crystallizes in an orthorhombic structure type with space group Fmmm. Agglomeration of the particles, which affects the densification ofmore » the ceramic, electrical conduction and leakage current at high electric fields, was monitored by transmission electronic microscopy (TEM) analyses. FEG-SEM indicated that different shape of grains of BIT ceramics was influenced by the processing route. Both SSR and PPM methods lead to unsaturated P–E loops of BIT ceramics originating from the highly c-axis orientation and high conductivity which was affected by charge carriers flowing normally to the grain boundary of the crystal lattice.« less

  8. Thermoluminescence (TL) of europium-doped ZrO2 obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Furetta, C.; Azorín, J.; Barrera, M.; Soto, A. M.

    This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide.

  9. Towards the preparation of realistic model Ziegler-Natta catalysts: XPS study of the MgCl 2/TiCl 4 interaction with flat SiO 2/Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Siokou, Angeliki; Ntais, Spyridon

    2003-08-01

    Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO 2 supported MgCl 2/TiCl 4 and TiCl 4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO 2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl 2 is not present while a significant amount of the Ti atoms is reduced to the Ti 3+ state.

  10. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    NASA Astrophysics Data System (ADS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-05-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.

  11. Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in-situ polymerization and their properties

    NASA Astrophysics Data System (ADS)

    Qian, Yong; Lan, Yanfei; Xu, Jianping; Ye, Fucheng; Dai, Shizhen

    2014-09-01

    In this study, a facile and effective strategy is proposed to fabricate polyimide (PI)-based nanocomposites containing functionalized graphene oxide (FGO) nanosheets by in-situ polymerization and thermal imidization. Highly dispersed CIGO which was firstly obtained by graphene oxide (GO) functionalized with cyclohexyl isocyanate (CI) exhibited excellent dispersibility and compatibility in polyamic acid (PAA, precursor of PI) matrix via in-situ polymerization. Then the CIGO sheets were partially thermally reduced efficiently to FGO during the thermal imidization process of PAA. The incorporation of FGO sheets significantly affected the macroscopic properties of the PI-based composites. A 56.5% increase in the tensile strength and a 43.8% improvement in the Young's modulus were achieved for 2.0 wt% FGO loading. Furthermore, the thermal stability and glass transition temperature (Tg) were improved by adding FGO. In addition, the hydrophobic behavior of the PI-FGO composite clearly improved because of the excellent hydrophobic properties of FGO. The success of this approach provides a good rational for developing high-performance polymer-based composite materials.

  12. Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization.

    PubMed

    Michaels, Thomas C T; Knowles, Tuomas P J

    2014-06-07

    The formation of nanoscale protein filaments from soluble precursor molecules through nucleated polymerization is a common form of supra-molecular assembly phenomenon. This process underlies the generation of a range of both functional and pathological structures in nature. Filament breakage has emerged as a key process controlling the kinetics of the growth reaction since it increases the number of filament ends in the system that can act as growth sites. In order to ensure microscopic reversibility, however, the inverse process of fragmentation, end-to-end annealing of filaments, is a necessary component of a consistent description of such systems. Here, we combine Smoluchowski kinetics with nucleated polymerization models to generate a master equation description of protein fibrillization, where filamentous structures can undergo end-to-end association, in addition to elongation, fragmentation, and nucleation processes. We obtain self-consistent closed-form expressions for the growth kinetics and discuss the key physics that emerges from considering filament fusion relative to current fragmentation only models. Furthermore, we study the key time scales that describe relaxation to equilibrium.

  13. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    PubMed

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  14. Chemical precursors to non-oxide ceramics: Macro to nanoscale materials

    NASA Astrophysics Data System (ADS)

    Forsthoefel, Kersten M.

    Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.

  15. Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.

    PubMed

    Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana

    2013-01-01

    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  17. Fire and heat resistant laminating resins based on maleimido and citraconimido substituted 1-(diorgano oxyphosphonyl) methyl -2,4- and -2,6- diaminobenzenes

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, John A. (Inventor); Kourtides, Demetrius A. (Inventor)

    1987-01-01

    A class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-((dialkoxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes are described. The polymer precursors are prepared by reacting 1-((diorganooxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes with maleic anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivatives of 1-((diorganooxyphosphonyl) methyl)-2,4 and -2,6-diaminobenzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarbocylic dianhydride, or aryl diisocyanates, such as methylenebis (4-phenylisocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by differential scanning calorimetry (DSC) and the thermal stability of the polymers is ascertained by thermogravimetric analysis (TGA).

  18. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    PubMed

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  19. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    PubMed

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (<30 s) of responsive polymers is reported. Visible-light-triggered polymerization of commercial monomers defines digitally stress distribution in a 2D polymer film. Releasing the stress after the printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGES

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  1. Synthesis and Useful Reactions of Organosilicon Polymeric Precursors for Ceramics

    DTIC Science & Technology

    1992-04-05

    composites are hot pressing, chemical vapor infiltration , reaction bonding and polymer infiltration / pyrolysis . Thus the inorganic or organometallic...to prepare preceramic polymers whose D; pyrolysis gives -99% SiC , -99.5% Si 3 N4 , or any mixture of the two by appropriate manipulation of the...the standard furnace pyrolysis of the polymer gave a ceramic of composition 96.6% SiC , 1.7% ZrC and 1.7% Si in 71% yield. Finally, (71-C

  2. Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method

    NASA Astrophysics Data System (ADS)

    Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul

    2011-06-01

    Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b

  3. Template-free fabrication of hollow N-doped carbon sphere (h-NCS) to synthesize h-NCS@PANI positive material for MoO3//h-NCS@PANI asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin; Xiang, Xinxin; Liu, Yunhua; Xiao, Dan

    2018-06-01

    Asymmetric supercapacitors (ASCs) based on pseudocapacitor electrode materials are vital to improve the electrochemical properties of devices in aqueous electrolytes. This study fabricates hollow N-doped carbon sphere (h-NCS) to produce h-NCS@PANI nanocomposite as positive electrode and α-MoO3 as negative electrode to assemble ASC device. In particular, a facile template-free synthesis method, catalyzed by Cu2+, is used to prepare hollow PANI nanosphere precursor to build h-NCS. The mechanism of the precursor formation is illustrated in detail. After polymerization of PANI on the surface of h-NCS, the capacitance increases to 327 F g-1 at 1 A g-1. Furthermore, a hydrothermal reaction is carried out to produce α-MoO3 negative electrode material. The maximum specific capacitance of 720 F g-1 is achieved at 1 A g-1. The obtained h-NCS@PANI and α-MoO3 are utilized to construct an ASC device. The electrochemical properties of this device are investigated comprehensively. The maximum energy density of 34.1 W h kg-1 and power density of 9350.6 W kg-1 are observed, which provide an insight into the development of ASCs.

  4. Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12

    NASA Astrophysics Data System (ADS)

    Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.

    2017-08-01

    A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.

  5. Electronic nose screening of ethanol release during sol-gel encapsulation. A novel non-invasive method to test silica polymerisation.

    PubMed

    Lovino, Magalí; Cardinal, M Fernanda; Zubiri, Diana B V; Bernik, Delia L

    2005-12-15

    Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effects on the activity of entrapped enzymes or modify a drug release kinetic. Therefore, it is critical to determine that no remnant ethanol is left prior using or storing the obtained biomaterial. In this regard, the technique used in the alcohol determination should be non-invasive and non-destructive to preserve the encapsulation device intact and ready to use. In this work we have successfully used a portable electronic nose (e-nose) for the screening of silica polymerisation process during theophylline encapsulation. TEOS reaction was "smelt" since precursor pre-hydrolysis until the end of ethanol release, sensed directly at the headspace of matrices slabs. Measurements showed that ethanol was negligible since 10th day in polymeric slabs of 10 mm width and 2 cm diameter. This first use of e-nose following a polymerisation reaction opens a wide number of putative applications in pharmaceutical and biochemical fields.

  6. Non-strinking siloxane polymers

    DOEpatents

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  7. A mathematical model for regulating monomer composition of the microbially synthesized polyhydroxyalkanoate copolymers.

    PubMed

    Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong

    2005-06-30

    A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.

  8. Pilot Scale Production of Activated Carbon Spheres Using Fluidized Bed Reactor and Its Evaluation for the Removal of Hexavalent Chromium from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Tripathi, Nagesh Kumar; Sathe, Manisha

    2017-12-01

    Large scale production of activated carbon is need of ongoing research due to its excellent adsorption capacity for removal of heavy metals from contaminated solutions. In the present study, polymeric precursor polystyrene beads [Brunauer Emmett Teller (BET) surface area, 46 m2/g; carbon content, 40.64%; crushing strength, 0.32 kg/sphere] were used to produce a new variant of activated carbon, Activated Carbon Spheres (ACS) in a pilot scale fluidized bed reactor. ACS were prepared by carbonization of polymeric precursor at 850 °C followed by activation of resultant material with steam. Prepared ACS were characterized using scanning electron microscope, CHNS analyzer, thermogravimetric analyzer, surface area analyzer and crushing strength tester. The produced ACS have 1009 m2/g BET surface area, 0.89 cm3/g total pore volume, 92.32% carbon content and 1.1 kg/sphere crushing strength with less than 1% of moisture and ash content. The ACS were also evaluated for its potential to remove hexavalent chromium [Cr(VI)] from contaminated solutions. The chromium removal is observed to be 99.1% at initial concentration 50 mg/l, pH 2, ACS dose 1 g/l, contact time 2 h, agitation 120 rpm and temperature 30 °C. Thus ACS can be used as an adsorbent material for the removal of Cr(VI) from contaminated solutions.

  9. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen.

    PubMed

    Sato, Eriko; Matsumoto, Akikazu

    2009-01-01

    We have developed a facile synthesis of degradable polyperoxides by the radical alternating copolymerization of 1,3-diene monomers with molecular oxygen at an atmospheric pressure. In this review, the synthesis, the degradation behavior, and the applications of functional polyperoxides are summarized. The alkyl sorbates as the conjugated 1,3-dienes gave a regiospecific alternating copolymer by exclusive 5,4-addition during polymerization and the resulting polyperoxides decomposed by the homolysis of a peroxy linkage followed by successive beta-scissions. The preference of 5,4-addition was well rationalized by theoretical calculations. The degradation of the polyperoxides occurred with various stimuli, such as heating, UV irradiation, a redox reaction with amines, and an enzyme reaction. The various functional polyperoxides were synthesized by following two methods, one is the direct copolymerization of functional 1,3-dienes, and the other is the functionalization of the precursor polyperoxides. Water soluble polyperoxides were also prepared, and the LCST behavior and the application to a drug carrier in the drug delivery system were investigated. In order to design various types of degradable polymers and gels we developed a method for the introduction of dienyl groups into the precursor polymers. The resulting dienyl-functionalized polymers were used for the degradable gels. The degradable branched copolymers showed a microphase-separated structure, which changed owing to the degradation of the polyperoxide segments. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  10. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate

    PubMed Central

    Ozkir, Serhat Emre; Yilmaz, Burak; Unal, Server Mutluay; Culhaoglu, Ahmet; Kurkcuoglu, Isin

    2018-01-01

    Objective: The objective of this study is the effect of different heat polymerization conditions on the strength of polymethyl methacrylate (PMMA) resin base is unknown. Distinguishing one method that provides improved mechanical properties may be beneficial to the clinical success of complete and partial dentures and overdentures. The purpose of this study was to evaluate the effect of different polymerization methods on the flexural strength of a dental PMMA resin. Materials and Methods: Forty PMMA specimens (64 mm × 10 mm × 4 mm) were prepared with 4 different polymerization methods (n = 10); heat polymerization at 74°C for 9 h, at 100°C for 40 min, and with 620 kPa pressure at 100°C for 20 min. The remaining group of specimens was microwave polymerized at 180 W for 6 min. All specimens were thermocycled at 5°C and 55°C for 5000 times. Three-point flexure test was used to measure the flexural strength of specimens. One-way ANOVA and Tukey Honestly Significant Difference were applied to analyze the differences in flexural strengths (α = 0.05). Results: The flexural strength of heat-polymerized groups was similar. The flexural strength of microwave polymerized group was significantly different and lower than the other groups (P < 0.05). Conclusion: Polymerizing conventional heat-polymerizing PMMA resin with microwave energy resulted in a significant decrease in flexural strength. The results of this study suggest that clinicians may benefit from using heat polymerization when processing PMMA denture bases instead of microvawe polymerization when tested brand is used. PMID:29657535

  11. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    NASA Astrophysics Data System (ADS)

    Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu

    2016-10-01

    SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  12. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was fabricated. In addition to developing an understanding of UV-polymerized systems, a rapid 10 to 20 second, microwave-assisted polymerization method was developed as a novel means to create ionogels. These ionogels exhibited comparable mechanical response and ionic conductivity levels to those gels fabricated by the UV method. Lastly, an EDLC prototype was fabricated using a UV-polymerized ionogel formed in situ between two high-surface area carbon electrodes. The device performance metrics were comparable to commercial EDLCs, and functioned for several thousand cycles with limited loss in capacitance.

  13. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower temperature and in shorter heating time by PC method. • Perovskite-type YScO{sub 3}:Gd{sup 3+} was found to show strong sharp UV emission at 314 nm.« less

  14. Recent progress on understanding the mechanisms of amyloid nucleation.

    PubMed

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  15. Step Transfer-Addition and Radical-Termination (START) Polymerization of α,ω-Unconjugated Dienes under Irradiation of Blue LED Light.

    PubMed

    Xu, Tianchi; Yin, Hongnan; Li, Xiaohong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-07-01

    A new polymerization method, termed as step transfer-addition and radical-termination, is developed for the step-growth radical polymerization of α,ω-unconjugated dienes under irradiation of visible light at room temperature (25 °C) for the first time. α,ω-Diiodoperfluoroalkane monomers (signified as A) are added onto α,ω-unconjugated dienes (signified as B) alternatively and efficiently with the generation of perfluorocarbon-containing alternating copolymers (AB) n . Based on the combined analyses of polymerization kinetics and NMR spectra ( 1 H and 19 F), the mechanism of the novel polymerization method, including the side reaction, is proposed. This novel polymerization method provides a new strategy not only for the step-growth radical polymerization of α,ω-unconjugated dienes but also for the construction of high molecular weight perfluorocarbon-containing alternating copolymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  17. A new method for the preparation of polymeric porous layer open tubular columns for GC application

    NASA Technical Reports Server (NTRS)

    Shen, T. C.; Wang, M. L.

    1995-01-01

    A new method to prepare polymeric PLOT columns by using in situ polymerization technology is described. The method involves a straightforward in situ polymerization of the monomer. The polymer produced is directly coated on the metal tubing. This eliminates many of the steps needed in conventional polymeric PLOT column preparation. Our method is easy to operate and produces very reproducible columns, as shown previously (T. C. Shen. J. Chromatogr. Sci. 30, 239, 1992). The effects of solvents, tubing pretreatments, initiators and reaction temperatures in the preparation of PLOT columns are studied. Several columns have been developed to separate (1) highly polar compounds, such as water and ammonia or water and HCN, and (2) hydrocarbons and inert gases. A recent improvement has allowed us to produce bonded polymeric PLOT columns. These were studied, and the results are included also.

  18. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis.

    PubMed

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-12-07

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  19. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-11-01

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  20. Soluble silylated polyacetylene derivatives and their use as percursors to novel polyacetylene-type polymers

    DOEpatents

    Zeigler, John M.

    1989-01-01

    Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl.sub.6.(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions.

  1. Fire and heat resistant laminating resins based on malemeido and citraconimido substituted 1 -2,4- and -2,6- diaminobenzenes

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, John A.; Kourtides, Demetrius A. (Inventor)

    1987-01-01

    A novel class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-(dialkox phosphonyl) methyl-2-4 and -2,6-diamino benzenes was presented. The polymer precursors are prepared by reacting 1-(diorgano oxyphosphonyl) methyl-2-4- and -2,6-diamino benzenes with maliec anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivaties of 1 (diorgano oxyphosphonyl) methyl -2,4- and -2,6-diamino benzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarboxylic dianhydride, or aryl diisocyanates, such as methylene bis(4-phenyl isocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by diferential scanning calorimetry and the thermal stability of the polymers is ascertained by thermogravimetric analysis.

  2. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity

    DOE PAGES

    Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...

    2016-09-28

    Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less

  3. A facile molten-salt route to graphene synthesis.

    PubMed

    Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus

    2014-01-15

    Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels.

    PubMed

    Boday, Dylan J; Stover, Robert J; Muriithi, Beatrice; Keller, Michael W; Wertz, Jason T; Defriend Obrey, Kimberly A; Loy, Douglas A

    2009-07-01

    Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.

  5. Improved Structural Design and CO 2 Capture of Porous Hydroxy-Rich Polymeric Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidder, Michelle K.; Earl, Lyndsey D.; de Almeida, Valmor F.

    2016-04-16

    Polymeric organic frameworks (POFs) are tunable and robust porous materials with potential applications for gas capture, catalysis, and separations technologies. A series of new porous POFs have been synthesized from the reaction of phloroglucinol or resorcinol derivatives with aryl aldehyde precursors. The monomers have various molecular shapes including linear, bent, trigonal, and tetrahedral geometries. Depending on the size and geometric matching of the monomers, the polymers are dominantly microporous with some mesoporous character or they are non-porous. In addition to standard spectroscopic and surface characterization, the materials were screened as adsorbents for carbon dioxide capture at low pressure (0-1 bar).more » The best performing material (POF 1D) has a CO 2 capture capacity of 9.0 wt. % (2.04 mmol g -1) at 298 K and 1 bar which is comparable to other polymeric organic frameworks. Isosteric heats of adsorption for POF 1A, POF 2A, and POF 2B were found to be dependent on the weight percent of CO 2 adsorbed: this suggests there are both chemisorptive and physisorptive components of CO 2 capture by the POFs.« less

  6. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitorsmore » in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Gupta, Rahul; Pallem, Venkateswara

    The authors report a systematic study aimed at evaluating the impact of molecular structure parameters of hydrofluorocarbon (HFC) precursors on plasma deposition of fluorocarbon (FC) films and etching performance of a representative ultra-low-k material, along with amorphous carbon. The precursor gases studied included fluorocarbon and hydrofluorocarbon gases whose molecular weights and chemical structures were systematically varied. Gases with three different degrees of unsaturation (DU) were examined. Trifluoromethane (CHF{sub 3}) is the only fully saturated gas that was tested. The gases with a DU value of one are 3,3,3-trifluoropropene (C{sub 3}H{sub 3}F{sub 3}), hexafluoropropene (C{sub 3}F{sub 6}), 1,1,3,3,3-pentafluoro-1-propene (C{sub 3}HF{sub 5}),more » (E)-1,2,3,3,3-pentafluoropropene (C{sub 3}HF{sub 5} isomer), heptafluoropropyl trifluorovinyl ether (C{sub 5}F{sub 10}O), octafluorocyclobutane (C{sub 4}F{sub 8}), and octafluoro-2-butene (C{sub 4}F{sub 8} isomer). The gases with a DU value of two includes hexafluoro-1,3-butadiene (C{sub 4}F{sub 6}), hexafluoro-2-butyne (C{sub 4}F{sub 6} isomer), octafluorocyclopentene (C{sub 5}F{sub 8}), and decafluorocyclohexene (C{sub 6}F{sub 10}). The work was performed in a dual frequency capacitively coupled plasma reactor. Real-time characterization of deposition and etching was performed using in situ ellipsometry, and optical emission spectroscopy was used for characterization of CF{sub 2} radicals in the gas phase. The chemical composition of the deposited FC films was examined by x-ray photoelectron spectroscopy. The authors found that the CF{sub 2} fraction, defined as the number of CF{sub 2} groups in a precursor molecule divided by the total number of carbon atoms in the molecule, determines the CF{sub 2} optical emission intensity of the plasma. CF{sub 2} optical emission, however, is not the dominant factor that determines HFC film deposition rates. Rather, HFC film deposition rates are determined by the number of weak bonds in the precursor molecule, which include a ring structure, C=C, C≡C, and C–H bonds. These bonds are broken preferentially in the plasma, and/or at the surface and fragments arriving at the substrate surface presumably provide dangling bonds that efficiently bond to the substrate or other fragments. Upon application of a radio-frequency bias to the substrate, substrate etching is induced. Highly polymerizing gases show decreased substrate etching rates as compared to HFC gases characterized by a lower HFC film deposition rate. This can be explained by a competition between deposition and etching reactions, and an increased energy and etchant dissipation in relatively thicker steady state FC films that form on the substrate surface. Deposited HFC films exhibit typically a high CF{sub 2} density at the film surface, which correlates with both the CF{sub 2} fractions in the precursor molecular structure and the deposition rate. The FC films deposited using hydrogen-containing precursors show higher degrees of crosslinking and lower F/C ratios than precursors without hydrogen, and exhibit a lower etch rate of substrate material. A small gap structure that blocks direct ion bombardment was used to simulate the sidewall plasma environment of a feature and was employed for in situ ellipsometry measurements. It is shown that highly polymerizing precursors with a DU of two enable protection of low-k sidewalls during plasma exposure from oxygen-related damage by protective film deposition. Dielectric film modifications are seen for precursors with a lower DU.« less

  8. Novel Anti-Biofouling Soft Contact Lens: l-Cysteine Conjugated Amphiphilic Conetworks via RAFT and Thiol-Ene Click Chemistry.

    PubMed

    Zhang, Chengfeng; Liu, Ziyuan; Wang, Haiye; Feng, Xiaofeng; He, Chunju

    2017-07-01

    A unique l-cysteine conjugated antifouling amphiphilic conetwork (APCN) is synthesized through end-crosslinking of well-defined triblock copolymers poly(allyl methacrylate)-b-poly(ethylene glycol)-b-poly(allyl methacrylate) via a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene "click" chemistry. The synthesized poly(ethylene glycol) macro-RAFT agent initiates the polymerization of allyl methacrylate in a controlled manner. The vinyl pendant groups of the precursor partially conjugate with l-cysteine and the rest fully crosslink with mercaptopropyl-containing siloxane via thiol-ene click chemistry under UV irradiation into APCNs, which show distinguished properties, that is, excellent biocompatibility, more than 39.6% water content, 101 barrers oxygen permeability, optimized mechanical properties, and more than 93% visible light transmittance. What's more, the resultant APCNs exhibit eminent resistance to protein adsorption, where the bovine serum albumin and lysozyme adsorption are decreased to 12 and 21 µg cm -2 , respectively. The outstanding properties of APCNs depend on the RAFT controlled method, which precisely designs the hydrophilic/hydrophobic segments and eventually greatly improves the crosslinking efficiency and homogeneity. Meantime, the l-cysteine monolayer can effectively reduce the surface hydrophobicity and prevent protein adsorption, which exhibits the viability for antifouling surface over and under ophthalmic devices, suggesting a promising soft contact lens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  10. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.

    PubMed

    Harman-Ware, Anne E; Happs, Renee M; Davison, Brian H; Davis, Mark F

    2017-01-01

    Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H), and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10, and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid-state NMR spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.

  11. Bio-inspired method to obtain multifunctional dynamic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushner, Aaron M.; Guan, Zhibin; Williams, Gregory

    A method for a polymeric or nanocomposite material. The method includes assembling a multiphase hard-soft structure, where the structure includes a hard micro- or nano-phase, and a soft micro- or nano-phase that includes a polymeric scaffold. In the method, the polymeric scaffold includes dynamically interacting motifs and has a glass transition temperature (T.sub.g) lower than the intended operating temperature of the material.

  12. The use of functionalized zirconocenes as precursors to silica-supported zirconocene olefin polymerization catalysts

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    2001-07-01

    Me3Si substituents adjacent to Cp2MCl2 (M = Ti, Zr, Hf) are converted to BrMe2Si groups using BBr 3. The high reactivity of the Si-Br bonds toward nucleophiles such as water suggested that these substituents could react with hydroxylated silica surfaces, immobilizing the metallocenes. This dissertation concerns the syntheses of electrophile-functionalized zirconocene dihalide complexes and their use as precursors to silica-supported metallocene olefin polymerization catalysts. First we extended the metallocene "functionalization" chemistry to obtain substituents bearing more than one electrophilic bond. (Me3Sn) 2C5H4 combined with CpZrCl3 in toluene to afford (eta5-Me3Sn-C5H4)CpZrCl 2 (A). Reactions of A with electrophiles (E-X = Cl2B-Cl, I-Cl, and I-I) afforded (eta5-XMe 2Sn-C5H4)CpZrCl2 (and E-Me) cleanly. The reaction of A with BBr3 afforded either (eta5-BrMe2Sn-C5H4)CpZrBr2 (25 °C, 10 min) or (eta5-Br2MeSn-C5H 4)CpZrBr2 (25 °C, 15 h). Ph2MeSi-C5H 4Li combined with ZrCl4•2THF to afford (eta 5-Ph2MeSi-C5H4)2ZrCl 2 (B). The reaction of B with BCl3 led to incomplete cleavage of the Ph-Si bonds, however treatment of B with BBr3 afforded (eta5-Br2MeSi-C 5H4)2ZrBr2 (C) efficiently. X-ray crystal structures of (eta5-ClMe2Sn-C 5H4)CpZrCl2•1/2toluene, (eta 5-Br2MeSn-C5H4)CpZrBr2•THF, B, and C were obtained. Metallocene C reacts with water to afford an oligosiloxane-supported zirconocene dibromide. Spectroscopic characterization suggested a stereoregular structure in which the metallocene units have meso symmetry. The oligomeric substance showed high activity for homogeneous ethylene polymerization. Supported metallocene olefin polymerization catalysts were prepared by combining a functionalized metallocene precursor (Cp2ZrBr 2 bearing either BrMe2Si or Br2MeSi groups) and partially dehydroxylated silica. The activities of the immobilized zirconocene catalysts decreased and the stabilities increased with increasing number of tethers. The immobilized catalyst prepared from (eta5-Br 2MeSi-C5H4)2ZrBr2, which is assumed to form two "double-tethers" to silica, was significantly more active than the catalyst prepared from [eta5-1,3-(BrMe 2Si)2C5H3]2ZrBr2, which is assumed to form four "single-tethers" to silica. Catalyst leaching was observed in all the immobilized zirconocene catalysts. Finally we report model studies on the stability of the Si-O-Si bonds toward methylaluminoxane (MAO). The reaction of (eta5-BrMe 2Si-C5H4)CpZrBr2 with tBuMe 2SiOH results in the formation of Si-O-Si bonds; addition of NEt 3 results in further reaction to afford Si-O-Zr bonds. The reaction of Me3Si-O-SiMe3 with MAO showed that Si-O-Si bonds can be cleaved under the conditions of our polymerization reactions.

  13. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.

  14. Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest.

    PubMed

    Wang, Hongwei; Yao, Yating; Li, Ya; Ma, Shujuan; Peng, Xiaojun; Ou, Junjie; Ye, Mingliang

    2017-08-01

    An open tubular (OT) column (25 μm i.d.) was prepared by in situ ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxanes (POSS-epoxy) with 4-aminophenyl disulfide (APDS) in a binary porogenic system of ethanol/H 2 O. It was found that porogenic composition played an important role in the formation of OT stationary phases. The ratio of ethanol/H 2 O at 6/1 (v/v) would lead to the fabrication of hybrid monoliths, while the ratio of ethanol/H 2 O at 13/1 (v/v) would result in the synthesis of OT phases. In addition, the effects of precursor content and reaction duration on the thickness of OT stationary phases were investigated. Either lower precursor content or shorter reaction duration would produce thinner layer of OT column. The repeatability of OT columns was evaluated through relative standard deviation (RSD%) with benzene as the analyte. The run-to-run, column-to-column and batch-to-batch repeatabilities were 1.7%, 4.8% and 5.6%, respectively, exhibiting satisfactory repeatability of the OT column. Then tryptic digest of mouse liver proteins was used to evaluate the performance of the resulting OT columns (25 μm i.d. × 2.5 m in length) by cLC-MS/MS analysis, demonstrating their potential in proteome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  16. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    NASA Astrophysics Data System (ADS)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  17. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  18. Alternative methods for determining shrinkage in restorative resin composites.

    PubMed

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G; Katsoulidis, Alexandros

    2015-03-10

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  20. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  1. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  2. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2016-06-28

    The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.

  3. Controlled preparation of aluminum borate powders for the development of defect-related phosphors for warm white LED lighting

    NASA Astrophysics Data System (ADS)

    Guimarães, Vinicius F.; Salaün, Mathieu; Burner, Pauline; Maia, Lauro J. Q.; Ferrier, Alban; Viana, Bruno; Gautier-Luneau, Isabelle; Ibanez, Alain

    2017-03-01

    The optimization of the elaboration conditions of a new family of highly emissive white phosphors based on glassy yttrium aluminum borates (g-YAB) compositions is presented. Their preparation from solutions is based on the polymeric precursor method (modified Pechini process), involving non-toxic and low cost precursors. The resulting resins were first dried at moderate temperatures followed by two-step annealing treatments of the obtain powders under controlled atmospheres: a first pyrolysis under nitrogen followed by a calcination under oxygen. This favored the gradual oxidation of organic moieties coming from starting materials, avoiding uncontrolled self-combustion reactions, which generate localized hot spots. This prevented phase segregations and the formation of pyrolytic carbon or carbonates, which are strongly detrimental to the luminescence properties. Thus, coupled chemical analyses and luminescence characterizations showed the high chemical homogeneity of the resulting powders and their intense emissions in the whole visible range. These emissions can be tuned from blue to warm white by adjusting the calcination temperature that is an important advantage for the development of LED devices. We showed that impurities of monovalent and divalent cations act as quenching emission centers for these phosphors. Therefore, by increasing the purity grade, we significantly enhanced the PL emissions leading to high internal quantum yields (80-90%). Finally, cathodoluminescence emissions showed the homogeneous dispersion of emitting centers in the g-YAB matrix.

  4. Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks

    NASA Astrophysics Data System (ADS)

    Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-05-01

    The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.

  5. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.

    PubMed

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra

    2017-07-01

    Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.

  7. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  8. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  9. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    PubMed

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  10. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  11. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan-Qing, E-mail: yqli@mail.ipc.ac.cn; Wang, Jian-Lei; Fu, Shao-Yun, E-mail: syfu@mail.ipc.ac.cn

    2010-06-15

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 {sup o}C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as themore » Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO{sub 2} nanoparticles is reduced by more than three orders compared with the pure SnO{sub 2} nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In{sub 2}O{sub 3}.« less

  12. Liquid precursor for deposition of copper selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  13. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  14. Estimation of degree of polymerization of poly-acrylonitrile-grafted carbon nanotubes using Guinier plot of small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong

    2018-07-01

    Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a ‘grafting from’ method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet–visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the ‘grafting from’ method and to fabricate polymer/CNT composite materials.

  15. Estimation of degree of polymerization of poly-acrylonitrile-grafted carbon nanotubes using Guinier plot of small angle x-ray scattering.

    PubMed

    Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong

    2018-07-06

    Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a 'grafting from' method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g  = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet-visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the 'grafting from' method and to fabricate polymer/CNT composite materials.

  16. One-Pot Anchoring of Pd Nanoparticles on Nitrogen-Doped Carbon through Dopamine Self-Polymerization and Activity in the Electrocatalytic Methanol Oxidation Reaction.

    PubMed

    Li, Xin; Niu, Xiangheng; Zhang, Wenchi; He, Yanfang; Pan, Jianming; Yan, Yongsheng; Qiu, Fengxian

    2017-03-09

    Exploration of advanced electrocatalysts to promote the sluggish methanol oxidation reaction (MOR) is of vital importance for developing high efficiency and low-cost direct methanol fuel cells. Highly dispersed palladium nanoparticles (Pd NPs) anchored on a nitrogen-doped carbon support were fabricated using a facile one-pot dopamine self-polymerization mediated redox strategy, in which dopamine not only acted as a moderate reductant to induce the formation of Pd NPs during self-polymerization but was also the precursor of the nitrogen-doped carbon support for Pd. The synthesized hybrid features the following characteristics: 1) High dispersity of Pd NPs, which exposed a high abundance of active surfaces and sites for heterogeneous electrocatalysis; 2) metal-support interactions, which may affect the surface chemistry and electron distribution of active Pd NPs; 3) the Pd NPs were partially imbedded or encapsulated into the support, thus reducing the possible agglomeration of Pd NPs during cyclic measurements. The electrocatalyst with such favorable features provided higher mass activity (2.2 times that of commercial Pd/C) and better durability (reduced loss of activity during simulated frequent startup-shutdown operations) for the MOR in alkaline media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls

    PubMed Central

    Pandey, Jyotsna L.; Wang, Bo; Diehl, Brett G.; Richard, Tom L.; Chen, Gong; Anderson, Charles T.

    2015-01-01

    Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205

  18. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  19. Systems and methods for detection of blowout precursors in combustors

    DOEpatents

    Lieuwen, Tim C.; Nair, Suraj

    2006-08-15

    The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.

  20. Mining of the Pyrrolamide Antibiotics Analogs in Streptomyces netropsis Reveals the Amidohydrolase-Dependent “Iterative Strategy” Underlying the Pyrrole Polymerization

    PubMed Central

    Deng, Zixin; Zhao, Changming; Yu, Yi

    2014-01-01

    In biosynthesis of natural products, potential intermediates or analogs of a particular compound in the crude extracts are commonly overlooked in routine assays due to their low concentration, limited structural information, or because of their insignificant bio-activities. This may lead into an incomplete and even an incorrect biosynthetic pathway for the target molecule. Here we applied multiple compound mining approaches, including genome scanning and precursor ion scan-directed mass spectrometry, to identify potential pyrrolamide compounds in the fermentation culture of Streptomyces netropsis. Several novel congocidine and distamycin analogs were thus detected and characterized. A more reasonable route for the biosynthesis of pyrrolamides was proposed based on the structures of these newly discovered compounds, as well as the functional characterization of several key biosynthetic genes of pyrrolamides. Collectively, our results implied an unusual “iterative strategy” underlying the pyrrole polymerization in the biosynthesis of pyrrolamide antibiotics. PMID:24901640

  1. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    PubMed

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  2. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-08

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sequence Effects in Conjugated Donor-Acceptor Trimers and Polymers.

    PubMed

    Zhang, Shaopeng; Hutchison, Geoffrey R; Meyer, Tara Y

    2016-06-01

    To investigate the sequence effect on donor-acceptor conjugated oligomers and polymers, the trimeric isomers PBP and BPP, comprising dialkoxy phenylene vinylene (P), benzothiadiazole vinylene (B), and alkyl endgroups with terminal olefins, are synthesized. Sequence effects are evident in the optical/electrochemical properties and thermal properties. Absorption maxima for PBP and BPP differ by 41 nm and the electrochemical band gaps by 0.1 V. The molar emission intensity is five times greater in PBP than BPP. Both trimers are crystalline and the melting points differ by 17 °C. The PBP and BPP trimers are used as macromonomers in an acyclic diene metathesis polymerization to give PolyPBP and PolyBPP. The optical and electrochemical properties are similar to those of their trimer precursors-sequence effects are still evident. These results suggest that sequence is a tunable variable for electronic materials and that the polymerization of oligomeric sequences is a useful approach to introducing sequence into polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials

    PubMed Central

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2018-01-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown. PMID:29503494

  5. Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters.

    PubMed

    Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence

    2015-12-15

    In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman-Ware, Anne E.; Happs, Renee M.; Davison, Brian H.

    Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H) and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10 and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid state NMRmore » spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.« less

  7. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.

    PubMed

    Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin

    2015-01-14

    In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.

  8. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers

    DOE PAGES

    Harman-Ware, Anne E.; Happs, Renee M.; Davison, Brian H.; ...

    2017-11-30

    Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H) and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10 and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid state NMRmore » spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.« less

  9. Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis.

    PubMed

    Lima, Ana Paula Barbosa; Vitti, Rafael Pino; Amaral, Marina; Neves, Ana Christina Claro; da Silva Concilio, Lais Regiane

    2018-04-01

    This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (α = .05). he results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values ( P <.05). No statistical differences were found for area of contact points among the groups ( P =.7150). The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

  10. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    PubMed

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  11. Gelcasting methods

    DOEpatents

    Walls, Claudia A.; Kirby, Glen H.; Janney, Mark A.; Omatete, Ogbemi O.; Nunn, Stephen D.; McMillan, April D.

    2000-01-01

    A method of gelcasting includes the steps of providing a solution of at least hydroxymethylacrylamide (HMAM) and water. At least one inorganic powder is added to the mixture. At least one initiator system is provided to polymerize the HMAM. The initiator polymerizes the HMAM and water, to form a firm hydrogel that contains the inorganic powder. One or more comonomers can be polymerized with the HMAM monomer, to alter the final properties of the gelcast material. Additionally, one or more additives can be included in the polymerization mixture, to alter the properties of the gelcast material.

  12. Method of making a coating of a microtextured surface

    DOEpatents

    Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV

    2004-11-02

    A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.

  13. Delivery Device and Method for Forming the Same

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohua (Inventor); Ma, Peter X. (Inventor); McCauley, Laurie (Inventor)

    2014-01-01

    A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur intermittently. Methods for forming the device are also disclosed herein.

  14. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  15. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  16. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  17. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  18. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  19. Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids.

    PubMed

    Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A

    2017-09-05

    The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.

  20. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    PubMed Central

    Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom

    2017-01-01

    Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776

  1. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  2. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  3. Method of Preparing Polymers with Low Melt Viscosity

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2001-01-01

    This invention is an improvement in standard polymerizations procedures, i.e., addition-type and step-growth type polymerizations, wherein monomers are reacted to form a growing polymer chain. The improvement includes employing an effective amount of a trifunctional monomer (such as a trifunctional amine anhydride, or phenol) in the polymerization procedure to form a mixture of polymeric materials consisting of branced polymers, star-shaped polymers, and linear polymers. This mixture of polymeric materials has a lower melt temperature and a lower melt viscosity than corresponding linear polymeric materials of equivalent molecular weight.

  4. General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors.

    PubMed

    Chen, Yu Ming; Li, Zhen; Lou, Xiong Wen David

    2015-09-01

    A simple and versatile method for general synthesis of uniform one-dimensional (1D) M(x)Co(3-x)S4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core-shell polymer@M-Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core-shell polymer@M(x)Co(3-x)S4 composite nanofibers. The as-made M(x)Co(3-x)S4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g(-1) at 10 A g(-1), and the cycling stability is remarkable, with only about 6% loss over 20,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  6. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  7. Multiple wavelength photolithography for preparing multilayer microstructures

    DOEpatents

    Dentinger, Paul Michael; Krafcik, Karen Lee

    2003-06-24

    The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.

  8. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  9. Preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors by a facile precursor method and their luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xia; Liang, Pan; Huang, Hong-Sheng

    2014-04-01

    Graphical abstract: LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor was obtained by calcining the precursor which was synthesized by boric acid melting method. It (a) exhibits much stronger PL intensity than that (b) prepared by conventional solid state reaction method. - Highlights: • A calcining precursor method was used for preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor. • Precursor was prepared by boric acid melting method. • The luminescence intensity of LaB{sub 3}O{sub 6}:Eu{sup 3+} was enhanced by the present method. - Abstract: The LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors were prepared by calcining the precursors which were synthesized by boric acid meltingmore » method using rare earth oxide and boric acid as raw materials, and they were characterized by EDS, XRD, IR, SEM and PL. The influences of reaction temperature for the preparation of precursor and subsequent calcination temperature and time of precursor on the luminescence properties of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor were investigated. The results showed that the LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors with maximum luminescent intensity were obtained by calcining precursor at 1000 °C for 6 h, in which the precursor was prepared at 200 °C for 72 h. Compared with the conventional high temperature solid-state reaction method, the pure LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor can be obtained at relatively lower calcination temperature by the precursor method and exhibits much stronger emission intensity.« less

  10. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  11. Spatially controlled, in situ synthesis of polymers

    DOEpatents

    Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau

    2005-03-22

    An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.

  12. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  13. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs.

    PubMed

    Basilico, N; Pagani, E; Monti, D; Olliaro, P; Taramelli, D

    1998-07-01

    The malaria parasite metabolizes haemoglobin and detoxifies the resulting haem by polymerizing it to form haemozoin (malaria pigment). A polymer identical to haemozoin, beta-haematin, can be obtained in vitro from haematin at acidic pH. Quinoline-containing anti-malarials (e.g. chloroquine) inhibit the formation of either polymer. Haem polymerization is an essential and unique pharmacological target. To identify molecules with haem polymerization inhibitory activity (HPIA) and quantify their potency, we developed a simple, inexpensive, quantitative in-vitro spectrophotometric microassay of haem polymerization. The assay uses 96-well U-bottomed polystyrene microplates and requires 24 h and a microplate reader. The relative amounts of polymerized and unpolymerized haematin are determined, based on solubility in DMSO, by measuring absorbance at 405 nm in the presence of test compounds as compared with untreated controls. The final product (a solid precipitate of polymerized haematin) was validated using infrared spectroscopy and the assay proved reproducible; in this assay, activity could be partly predicted based on the compound's chemical structure. Both water-soluble and water-insoluble compounds can be quantified by this method. Although the throughput of this assay is lower than that of radiometric methods, the assay is easier to set up and cheaper, and avoids the problems related to radioactive waste disposal.

  14. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification

    PubMed Central

    Bux, Jaiyana; Manga, Mohamed S.; Hunter, Timothy N.

    2016-01-01

    Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1–10 l h−1 scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298430

  15. Kinetic study of isothermal crystallization process of Gd2Ti2O7 precursor's powder prepared through the Pechini synthetic approach

    NASA Astrophysics Data System (ADS)

    Janković, Bojan; Marinović-Cincović, Milena; Dramićanin, Miroslav

    2015-10-01

    Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták-Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.

  16. In-situ polymerization PLOT columns I: divinylbenzene

    NASA Technical Reports Server (NTRS)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  17. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    PubMed

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto

    2009-10-30

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.

  18. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    PubMed

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  19. Effect of the components extracted from the needles of Taxus baccata on protein biosynthesis in a cell-free rat liver system.

    PubMed

    Sredzińska, K; Gajko, A; Gałasiński, W; Gindzieński, A

    1999-01-01

    Various species of Taxus contain taxanes that promote polymerization and stabilization of microtubules. They have been reported as antineoplastic compounds with highly effective chemiotherapeutic application. A decrease in incorporation of the radiolabelled precursors into DNA, RNA and proteins in vivo has been reported too. The preliminary results have shown that also the other compounds present in the aqueous extract from Taxus baccata needles, participate in the inhibition of the protein biosynthesis. The binding site of eEF-2 on the ribosome seems to be the target of this inhibition process.

  20. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  1. Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.

    PubMed

    Ross, Charles W; Simonsick, William J; Aaserud, David J

    2002-09-15

    Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.

  2. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOEpatents

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  3. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  4. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOEpatents

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  5. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  6. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach.

    PubMed

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-03-01

    The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria's as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 CONCLUSION: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles.

  7. UV-Triggered Self-Healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings.

    PubMed

    Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan

    2016-08-17

    UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.

  8. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  9. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  10. PECVD de composes de silicium sur polymeres: Etude de la premiere phase du depot

    NASA Astrophysics Data System (ADS)

    Dennler, Gilles

    Since their first introduction in the early 90's, transparent barriers against oxygen and/or water vapor permeation through polymers, such as SiO 2, are the object of increasing interest in the food and pharmaceutical packaging industries, and more recently for the encapsulation of organic-based displays. It is now well known that these thin layers possess barrier properties only if they are thicker than a certain critical thickness, dc. For example, dc is around 12 nm in the case of SiO2 on KaptonRTM PI; below this value, the measured "Oxygen Transmission Rate" (OTR, in standard cm3/m2/day/bar) is roughly the same as that of the uncoated polymer. Until now, no detailed research has been carried out to explain this observation, but a hypothesis was proposed in the literature, based on island-like growth structure of the coating for d ≤ dc. According to this hypothesis, the surface energy of the polymeric substrates is so low that the Volmer-Weber (island-coalescence) growth mode occurs. We have aimed to verify this explanation, that is, to study the initial phase of silicon-compound (SiO2 and SiN) growth on four different polymeric substrates, namely polyimide (KaptonRTM PI), polycarbonate (LexanRTM PC), polypropylene (PP), and polyethyleneterephthalate (MylarRTM PET). Three different deposition methods were used, namely reactive evaporation of SiO, radio-frequency (RF) Plasma Enhanced Chemical Vapor Deposition (RF PECVD), and Distributed Electron Cyclotron Resonance (DECR) PECVD. In this latter case, the substrates were placed in three different positions: (i) in the active glow zone, (ii) downstream, and (iii) downstream, but shielded from photon emission (e.g. VUV) from the plasma. Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS), Rutherford Backscattering Spectroscopy (RBS), and Scanning Electron Microscopy (SEM), the latter performed after Reactive Ion Etching (RIE) by oxygen plasma, revealed that growth indeed occurs in a Volmer-Weber mode in the case of evaporated films. The island coalescence was observed to occur at d = 1.2 nm, at which point the sticking coefficient of precursor species changes drastically. Finally, we have investigated the presence of an "interphase" between deposited coatings and the polymeric substrate. (Abstract shortened by UMI.)

  11. Survey Study of Trunk Materials for Direct ATRP Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Tomonori; Chatterjee, Sabornie; Johnson, Joseph C.

    2015-02-01

    In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.

  12. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  13. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    PubMed

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.

  15. Synthesis of well-defined bisbenzoin end-functionalized poly(ε-caprolactone) macrophotoinitiator by combination of ROP and click chemistry and its use in the synthesis of star copolymers by photoinduced free radical promoted cationic polymerization

    PubMed Central

    Uyar, Zafer; Degirmenci, Mustafa; Genli, Nasrettin; Yilmaz, Ayse

    2017-01-01

    Abstract A new well-defined bisbenzoin group end-functionalized poly(ε-caprolactone) macrophotoinitiator (PCL-(PI)2) was synthesized by combination of ring opening polymerization (ROP) and click chemistry. The ROP of ε-CL monomer in bulk at 110 °C, by means of a hydroxyl functional initiator namely, 3-cyclohexene-1-methanol in conjunction with stannous-2-ethylhexanoate, (Sn(Oct)2), yielded a well-defined PCL with a cyclohexene end-chain group (PCL-CH). The bromination and subsequent azidation of the cyclohexene end-chain group gave bisazido functionalized poly(ε-caprolactone) (PCL-(N3)2). Separately, an acetylene functionalized benzoin photoinitiator (PI-alkyne) was synthesized by using benzoin and propargyl bromide. Then the click reaction between PCL-(N3)2 and PI-alkyne was performed by Cu(I) catalysis. The spectroscopic studies revealed that poly(ε-caprolactone) with bisbenzoin photoactive functional group at the chain end (PCL-(PI)2) with controlled chain length and low-polydispersity was obtained. This PCL-(PI)2 macrophotoinitiator was used as a precursor in photoinduced free radical promoted cationic polymerization to synthesize an AB2-type miktoarm star copolymer consisting of poly(ε-caprolactone) (PCL, as A block) and poly(cyclohexene oxide) (PCHO, as B block), namely PCL(PCHO)2. PMID:29491778

  16. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  17. Selection of a Suitable Method for the Preparation of Polymeric Nanoparticles: Multi-Criteria Decision Making Approach

    PubMed Central

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-01-01

    Purpose: The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Methods: Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. Results: The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria’s as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 Conclusion: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles. PMID:25789220

  18. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  19. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  20. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N [Columbia, SC; Subramanian, Nalini [Kennesaw, GA; Colon-Mercado, Hector R [Columbia, SC

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  1. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  2. The sorption properties of polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid synthesized by various methods

    NASA Astrophysics Data System (ADS)

    Dmitrienko, S. G.; Popov, S. A.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2011-03-01

    New sorbents, polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), were prepared on the basis of acrylamide. The sorbents were synthesized by thermal polymerization methods with and without the use of ultrasound, photopolymerization, and suspension polymerization. The specific surface area of the products was estimated and their sorption properties were studied. Polymers with molecular imprints prepared by thermal polymerization with the use of ultrasound and by suspension polymerization showed the best ability to repeatedly bind 2,4-D. The selectivity of polymers was estimated for the example of structurally related compounds. It was shown that the method of synthesis decisively influenced not only the ability of sorbents to repeatedly bind 2,4-D but also their selectivity.

  3. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    El-Beqqali, Aziza; Andersson, Lars I; Jeppsson, Amin Dadoun; Abdel-Rehim, Mohamed

    2017-09-15

    Amphetamine selective molecularly imprinted sol-gel polymer tablets, MIP-tablets, for solid-phase microextraction of biofluid samples were prepared. An acetonitrile solution of deuterated amphetamine template and silane precursor, 3-(propylmethacrylate) trimethoxysilane, was soaked into the pores of polyethylene tablet substrates and polymerized by an acid-catalysed sol-gel process. Application of the resultant MIP-tablets to extract amphetamine from human urine samples followed by LC-MS/MS analysis was investigated. The extraction protocol was optimised with respect to pH of sample, addition of sodium chloride, extraction time, desorption solvent and desorption time. The final analysis method determined amphetamine in human urine with a limit of detection (LOD) of 1.0ng/mL and a lower limit of quantification (LLOQ) of 5ng/mL. Validation demonstrated accuracy of the method was 91.0-104.0% and inter-assay precision was 4.8-8.5% (RSD). Extraction recovery was 80%. The MIP-tablets could be re-used and the same tablet could be employed for more than twenty extractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fast nucleation for silica nanoparticle synthesis using a sol-gel method.

    PubMed

    Dixit, Chandra K; Bhakta, Snehasis; Kumar, Ajeet; Suib, Steven L; Rusling, James F

    2016-12-01

    We have developed a method that for the first time allowed us to synthesize silica particles in 20 minutes using a sol-gel preparation. Therefore, it is critically important to understand the synthesis mechanism and kinetic behavior in order to achieve a higher degree of fine tuning ability during the synthesis. In this study, we have employed our ability to modulate the physical nature of the reaction medium from sol-gel to emulsion, which has allowed us to halt the reaction at a particular time; this has allowed us to precisely understand the mechanism and chemistry of the silica polymerization. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as a precursor in an equi-volumetric ethanol-water system and with sodium hydroxide as a catalyst. Synthesis is performed under ambient conditions at 20 °C for 20 minutes followed by phasing out of any unreacted TEOS and polysilicic acid chains via their emulsification with supersaturated water. We have also demonstrated that the developed particles with various sizes can be used as seeds for further particle growth and other applications. Luminol, a chemiluminescent molecule, has been entrapped successfully between the layers of silica and was demonstrated for the chemiluminescence of these particles.

  5. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  6. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  7. A simple method for determining polymeric IgA-containing immune complexes.

    PubMed

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  8. Mass and Charge Transport in Electronically Conductive Polymers

    DTIC Science & Technology

    1990-08-02

    This method is based on coating an electrode surface with an insulating nitrile butadiene rubber ( NBR ). The electrolyte for polymerization (LiCIO4...in acetonitrile) etches channels through the NBR ; pyrrole is then polymerized in these channels. After polymerization the NBR is extracted away with

  9. A master equation approach to actin polymerization applied to endocytosis in yeast.

    PubMed

    Wang, Xinxin; Carlsson, Anders E

    2017-12-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.

  10. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A master equation approach to actin polymerization applied to endocytosis in yeast

    PubMed Central

    Wang, Xinxin

    2017-01-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771

  12. Direct synthesis of cis-dihalido-bis(NHC) complex of nickel(II) and catalytic application in olefin addition polymerization: effect of halogen co-ligands and density functional theory study.

    PubMed

    Zhang, Dao; Zhou, Sen; Li, Zhiming; Wang, Quanrui; Weng, Linhong

    2013-09-07

    Two novel amine-containing N-heterocyclic carbene ligand precursors [H(1a-b)]Br have been prepared in good yield and fully characterized. Direct syntheses of cis- and trans-dihalido-bis(NHC) nickel complexes [Ni(NHC)2X2] (X = Cl, Br) are reported. The solid structures of trans-[Ni(1a-b)2Br2] (2a-b) and cis-[Ni(1a)2Cl2] (3) were determined by single-crystal X-ray analysis and 3 was found to be the first example of cis-configuration coordination of monodentate NHC ligands to a metal center for dihalido-bis(NHC) nickel complexes. DFT calculations were conducted to determine the energy difference between cis- and trans-isomers of complexes 2a and 3 bearing bromide and chloride co-ligands. The cis-[Ni(1a)2Cl2] (cis-3) is 1.77-1.55 kcal mol(-1) lower in energy than its trans-isomer in polar solvents including CH2Cl2 and THF, while the trans-[Ni(1a)2Br2] (trans-2a) is more stable than the cis-isomer similarly in the gas phase. The cis nickel complex 3 with two coordinated monodentate NHCs was tested for olefin addition polymerization at standard conditions. It was found that cis-3 was inactive in ethylene polymerization but showed moderate catalytic activities (0.5-3.0 × 10(6) g of PNB (mol of Ni)(-1) h(-1)) in the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst.

  13. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies

    PubMed Central

    2013-01-01

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  14. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  15. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  16. Degradable Polymers and Block Copolymers from Electron-deficient Carbonyl Compounds (STIR) (7.3 Polymer Chemistry - Synthesis: Architecture and Composition)

    DTIC Science & Technology

    2015-04-23

    polymerization results Illustrations: Scheme 1. Polymerization of aldehydes and depolymerization of polyacetals. Scheme 2. Optimized methods for...oligomers) to the pure aldehyde monomer requires several distillations and transfer of the monomer at reflux directly to the polymerization vessel. Low...the controlled organocatalytic chain polymerization of ethyl glyoxylate and other reactive aldehydes , which will enable the preparation of

  17. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  18. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry.

  19. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay

    2018-04-01

    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  20. Method of manufacturing tin-doped indium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form anmore » indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.« less

  1. Method and apparatus for pyrolysis of atactic polypropylene

    DOEpatents

    Staffin, H. Kenneth; Roaper, R. B.

    1986-09-23

    This invention relates to an apparatus and a method for pyrolytic decomposition of polymeric materials into lower molecular weight products involving the heat treatment of raw polymeric material within reactive conduits submerged in a fluidized bed furnace operated at pyrolizing temperatures.

  2. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  3. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  4. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  5. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    PubMed

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design

    PubMed Central

    Meyer, Randall A.; Green, Jordan J.

    2015-01-01

    Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390

  7. Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Amrute, Junedh M.; Athanasiou, Lambros S.; Rikhtegar, Farhad; de la Torre Hernández, José M.; Camarero, Tamara García; Edelman, Elazer R.

    2018-03-01

    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging-they are relatively invisible via angiography-and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images.

  8. Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography.

    PubMed

    Lin, Hui; Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-10-16

    Two kinds of hybrid monoliths were first prepared via thiol-epoxy click polymerization using a multi-epoxy monomer, octaglycidyldimethylsilyl POSS (POSS-epoxy), and two multi-thiols, trimethylolpropanetris(3-mercaptopropionate) (TPTM) and pentaerythritoltetrakis(3-mercaptopropionate) (PTM), respectively, as the precursors. The resulting two hybrid monoliths (assigned as POSS-epoxy-TPTM and POSS-epoxy-PTM) not only possessed high thermal, mechanical and chemical stabilities, but also exhibited well-controlled 3D skeletal microstructure and high efficiency in capillary liquid chromatography (cLC) separation of small molecules. The highest column efficiency reached 182,700N/m (for butylbenzene) on the monolith POSS-epoxy-PTM at the velocity of 0.75mm/s. Furthermore, the hybrid monolith POSS-epoxy-PTM was successfully applied for cLC separations of various samples, not only standard compounds such as alkylbenzenes, PAHs, phenols and dipeptides, as well as intact proteins, but also complex samples of EPA 610 and BSA digest. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Wang, Lei; Ok, Yong Sik; Poon, Chi Sun

    2017-08-01

    This study aimed to maximize the valorization of bread waste, a typical food waste stream, into hydroxymethylfurfural (HMF) by improving our kinetic understanding. The highest HMF yield (30mol%) was achieved using SnCl 4 as catalyst, which offered strong derived Brønsted acidity and moderate Lewis acidity. We evaluated the kinetic balance between these acidities to facilitate faster desirable reactions (i.e., hydrolysis, isomerization, and dehydration) relative to undesirable reactions (i.e., rehydration and polymerization). Such catalyst selectivity of SnCl 4 , AlCl 3 , and FeCl 3 was critical in maximizing HMF yield. Higher temperature made marginal advancement by accelerating the undesirable reactions to a similar extent as the desirable pathways. The polymerization-induced metal-impregnated high-porosity carbon was a possible precursor of biochar-based catalyst, further driving up the economic potential. Preliminary economic analysis indicated a net gain of USD 43-236 per kilogram bread waste considering the thermochemical-conversion cost and chemical-trading revenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    PubMed

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  11. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  12. Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices.

    PubMed

    Suraniti, Emmanuel; Studer, Vincent; Sojic, Neso; Mano, Nicolas

    2011-04-01

    Immobilization and electrical wiring of enzymes is of particular importance for the elaboration of efficient biosensors and can be cumbersome. Here, we report a fast and easy protocol for enzyme immobilization, and as a proof of concept, we applied it to the immobilization of bilirubin oxidase, a labile enzyme. In the first step, bilirubin oxidase is mixed with a redox hydrogel "wiring" the enzyme reaction centers to electrodes. Then, this adduct is covered by an outer layer of PEGDA made by photoinitiated polymerization of poly(ethylene-glycol) diacrylate (PEGDA) and a photoclivable precursor, DAROCUR. This two-step protocol is 18 times faster than the current state-of-the-art protocol and leads to currents 25% higher. In addition, the outer layer of PEGDA acts as a protective layer increasing the lifetime of the electrode by 100% when operating continuously for 2000 s and by 60% when kept in dry state for 24 h. This new protocol is particularly appropriate for labile enzymes that quickly denaturate. In addition, by tuning the ratio PEGDA/DAROCUR, it is possible to make the enzyme electrodes even more active or more stable.

  13. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m 2 g –1),more » large pore volume (2.26 cm –3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  14. Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao

    2013-03-01

    We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.

  15. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  16. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

    1980-03-13

    The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

  17. Thermally crosslinked polymeric compositions and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koros, William John; Kratochvil, Adam Michal

    2014-03-04

    The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.

  18. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, Gilbert W.; Lewis, Jr., John; Weber, Gary W.

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  19. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  20. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOEpatents

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  1. Measurement and Analysis of in vitro Actin Polymerization

    PubMed Central

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  2. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  3. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  4. Method and apparatus for pyrolysis of atactic polypropylene

    DOEpatents

    Staffin, H.K.; Roaper, R.B.

    1986-09-23

    This invention relates to an apparatus and a method for pyrolytic decomposition of polymeric materials into lower molecular weight products involving the heat treatment of raw polymeric material within reactive conduits submerged in a fluidized bed furnace operated at pyrolyzing temperatures. 1 fig.

  5. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  6. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    NASA Astrophysics Data System (ADS)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica nanoparticles strongly differing in polarity. AIP modified silica nanoparticles are able to adsolubilize molecules of poorly water-soluble 2-naphthol into the adsorbed polymer layer. The adsolubilization ability of adsorbed invertible macromolecules makes AIP-modified silica nanoparticles potentially useful in wastewater treatment or biomedical applications. Finally, the invertible micellar assemblies were used as functional additives to improve the appearance of electrospun silicon wires based on cyclohexasilane, a liquid silicon precursor. AIP-assisted fabrication of silicon wires from the liquid cyclohexasilane precursor has potential as a scalable method for developing electronic functional materials.

  7. Kinetics of waterborne fluoropolymers prepared by one-step semi-continuous emulsion polymerization of chlorotrifluoroethylene, vinyl acetate, butyl acrylate and Veova 10

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.

    2018-01-01

    Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.

  8. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    PubMed

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  10. A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method

    NASA Astrophysics Data System (ADS)

    Naseri, Mahmoud Goodarz; Halimah, M. K.; Dehzangi, Arash; Kamalianfar, Ahmad; Saion, Elias B.; Majlis, Burhanuddin Y.

    2014-03-01

    This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.

  11. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    PubMed

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  12. 25th anniversary article: "Cooking carbon with salt": carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s.

    PubMed

    Fellinger, Tim-Patrick; Thomas, Arne; Yuan, Jiayin; Antonietti, Markus

    2013-11-06

    This review surveys recent work on the use of ionic liquids (ILs) and polymerized ionic liquids (PILs) as precursors to synthesize functional carbon materials. As solvents or educts with negligible vapour pressure, these systems enable simple processing, composition, and structural control of the resulting carbons under rather simple and green synthesis conditions. Recent applications of the resulting nanocarbons across a multitude of fields, such as fuel cells, energy storage in batteries and supercapacitors, catalysis, separation, and sorption materials are highlighted. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  14. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  15. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  16. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  17. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    PubMed

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  18. Polymerization method for formation of thermally exfoliated graphite oxide containing polymer

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)

    2010-01-01

    A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.

  19. A novel headspace gas chromatographic method for in situ monitoring of monomer conversion during polymerization in an emulsion environment.

    PubMed

    Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao

    2012-05-18

    This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for over 150 days in air at ambient temperature. The conductivity of the films dropped only half an order of magnitude in that time. Films aged under vacuum at ambient temperature diminished slightly in conductivity in the first day, but did not change thereafter. An experimental design approach will be applied to maximize the efficiency of the laboratory effort. The material properties (initial and long term) will also be monitored and assessed. The experimental results will add to the existing database for electrically conductive polymer materials. Attachments: 1) Synthesis Crystal Structure, and Polymerization of 1,2:5,6:9,10-Tribenzo-3,7,11,13-tetradehydro(14) annulene. 2) Reinvestigation of the Photocyclization of 1,4-Phenylene Bis(phenylmaleic anhydride): Preparation and Structure of (5)Helicene 5,6:9,10-Dianhydride. 3) Preparation and Structure Charecterization of a Platinum Catecholate Complex Containing Two 3-Ethynyltheophone Groups. and 4) Rigid-Rod Polymers Based on Noncoplanar 4,4'-Biphenyldiamines: A Review of Polymer Properties vs Configuration of Diamines.

  2. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  3. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  4. Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)

    2006-01-01

    A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.

  5. Synthesis of transparent conducting oxide coatings

    DOEpatents

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  6. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids.

    PubMed

    Ding, Shukai; Attia, Mohamed F; Wallyn, Justine; Taddei, Chiara; Serra, Christophe A; Anton, Nicolas; Kassem, Mohamad; Schmutz, Marc; Er-Rafik, Meriem; Messaddeq, Nadia; Collard, Alexandre; Yu, Wei; Giordano, Michele; Vandamme, Thierry F

    2018-02-06

    In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

  7. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells.

    PubMed

    Seo, Hye In; Cho, Ann-Na; Jang, Jiho; Kim, Dong-Wook; Cho, Seung-Woo; Chung, Bong Geun

    2015-10-01

    We report thermo-responsive retinoic acid (RA)-loaded poly(N-isopropylacrylamide)-co-acrylamide (PNIPAM-co-Am) nanoparticles for directing human induced pluripotent stem cell (hiPSC) fate. Fourier transform infrared spectroscopy and (1)H nuclear magnetic resonance analysis confirmed that RA was efficiently incorporated into PNIAPM-co-Am nanoparticles (PCANs). The size of PCANs dropped with increasing temperatures (300-400 nm at room temperature, 80-90 nm at 37°C) due to its phase transition from hydrophilic to hydrophobic. Due to particle shrinkage caused by this thermo-responsive property of PCANs, RA could be released from nanoparticles in the cells upon cellular uptake. Immunocytochemistry and quantitative real-time polymerase chain reaction analysis demonstrated that neuronal differentiation of hiPSC-derived neuronal precursors was enhanced after treatment with 1-2 μg/ml RA-loaded PCANs. Therefore, we propose that this PCAN could be a potentially powerful carrier for effective RA delivery to direct hiPSC fate to neuronal lineage. The use of induced pluripotent stem cells (iPSCs) has been at the forefront of research in the field of regenerative medicine, as these cells have the potential to differentiate into various terminal cell types. In this article, the authors utilized a thermo-responsive polymer, Poly(N-isopropylacrylamide) (PNIPAM), as a delivery platform for retinoic acid. It was shown that neuronal differentiation could be enhanced in hiPSC-derived neuronal precursor cells. This method may pave a way for future treatment of neuronal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pressure-induced stable BeN4 as a high-energy density material

    NASA Astrophysics Data System (ADS)

    Zhang, Shoutao; Zhao, Ziyuan; Liu, Lulu; Yang, Guochun

    2017-10-01

    Polynitrogens are the ideal rocket fuels or propellants. Due to strong triple N≡N bond in N2, the direct polymerization of nitrogen is rather difficult (i.e. extreme high temperature and high pressure). However, the use of nitrides as precursors or the reaction of N2 with other elements has been proved to be an effective way to obtain polynitrogens. Here, with assistance of the advanced first-principles swarm-intelligence structure searches, we found that P 1 bar -BeN4, containing infinite zigzag-like polymeric nitrogen chains, can be synthesized by compressing the mixture of Be3N2 and N2 at 25.4 GPa, which is greatly lower than 110 GPa for synthesizing cubic gauche nitrogen and other polynitrogen compounds (e.g. bulk CNO at 52 GPa and SN4 at 49 GPa). Its structural stability can be attributed to the coexistence of ionic Be-N and covalent N-N bonds. Intriguingly, this phase has high kinetic stability and remains metastable at ambient pressure. The exceptional properties, including high energy density (3.60 kJ g-1), high nitrogen content (86.1%), high dynamical stability, and low polymerization pressure, make P 1 bar -structured BeN4 a promising high energy material. Infinite nitrogen chains in P 1 bar -BeN4 transform to N10 rings network in P21/c phase at 115.1 GPa. P 1 bar -BeN4 is metallic, while P21/c-BeN4 is an insulator.

  9. Formation of polymeric toroidal-spiral particles.

    PubMed

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  10. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  11. Biomedical applications of stereoregular poly(vinyl alcohol) micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyoo, Won Seok; Kim, Joon Ho; Kim, Sam Soo; Ghim, Han Do

    2002-11-01

    Syndiotactic poly(vinyl alcohol) (PVA)/poly(vinyl pivalate/vinyl acetate) (P(VPi/VAc)) and atactic PVA/PVAc micro- and nanoparticles with skin/core structure have been prepared by heterogeneous saponification of P(VPi/VAc) and PVAc micro- and nanoparticles. Especially, to prepare P(VPi/VAc) and PVAc microparticles having various particle sizes and uniform particle size distribution, vinyl pivalate (VPi)/vinyl acetate (VAc) and VAc were suspension-polymerized using a low-temperature initiator, 2,2"-azobis(2,4-dimethylvaleronitrile). P(VPi/VAc) particles are promising precursor of stereoregular PVA embolic materials which can be introduced through catheters in the management of gastrointestinal bleeders, arteriovenous malformations, hemangiomas, and traumatic rupture of blood vessels. Monodisperse and/or nearly monodisperse P(VPi/VAc) and PVAc microparticles with various particle diameters were obtained by controlling suspension polymerization conditions. Monodisperse P(VPi/VAc) and PVAc microparticles having various particle sizes were partially saponified in the heterogeneous system. PVA/P(VPi/VAc) and PVA/PVAc microparticles having various tacticity and degree of saponification were produced by controlling various polymerization and saponification conditions. The coating of stereoregular PVA micro- and nanoparticles for drug release experiments was conducted with the strepo-avidin-alkaline phosphatase conjugate in variable conditions of pH value, coating buffer, and reaction temperature. Protein-coated syndiotactic PVA micro- and nanoparticles, which does not crosslinking, were more superior to controllability of drug release, durability, and dimensional stability to water and blood than atactic one.

  12. Method for the preparation of carbon fiber from polyolefin fiber precursor

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  13. Vacuum stability requirements of polymeric material for spacecraft application

    NASA Technical Reports Server (NTRS)

    Craig, J. W.

    1984-01-01

    The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.

  14. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  15. Composition and method of preparation of solid state dye laser rods

    DOEpatents

    Hermes, Robert E.

    1992-01-01

    The present invention includes solid polymeric-host laser rods prepared using bulk polymerization of acrylic acid ester comonomers which, when admixed with dye(s) capable of supporting laser oscillation and polymerized with a free radical initiator under mild thermal conditions, produce a solid product having the preferred properties for efficient lasing. Unsaturated polymerizable laser dyes can also be employed as one of the comonomers. Additionally, a method is disclosed which alleviates induced optical stress without having to anneal the polymers at elevated temperatures (>85.degree. C.).

  16. Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes.

    PubMed

    Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel

    2015-12-15

    Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Promotion of tribological and hydrophobic properties of a coating on TPE substrates by atmospheric plasma-polymerization

    NASA Astrophysics Data System (ADS)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; Pantoja-Ruiz, Mariola

    2016-05-01

    Thermoplastic elastomers (TPE) are used in the automotive sealing industry with the objective of producing anti-friction and hydrophobic components. At present, the anti-friction property is achieved by the electrostatic flocking, which sometimes produces an irregular coating. Therefore, this paper's objective is the promotion of adhesion of an anti-friction (based on the silane aminopropyltriethoxysilane-APTES-) and hydrophobic (based on the fluorinated precursor 1-perfluorohexene-PFH-) coating by the adhesion promoter, APTES. Different mixtures of APTES and PFH have been applied to a TPE substrate by an Atmospheric Pressure Plasma Jet (APPJ) system with Dielectric Barrier Discharge (DBD) in order to determine the optimal mixture of precursors. The main difficulty in this work lies in the hydrophilic character of APTES and the low adhesion of the fluorinated coatings. The sample coated with a mixture of 50% APTES and 50% PFH (A50P50) was found to be the best one to satisfy both properties at the same time, despite not having the highest dynamic water contact angle (WCA) or the lowest friction coefficient.

  18. Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauracher, Stephan Gerhard; Molitor, Christian; Al-Oweini, Rami

    Polyphenol oxidase 4 (PPO4) from the natural source A. bisporus was crystallized in its latent precursor form (pro-tyrosinase; Ser2–Thr565) using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a crystallization additive. Tyrosinase exhibits catalytic activity for the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones. Owing to polymerization of these quinones, brown-coloured high-molecular-weight compounds called melanins are generated. The latent precursor form of polyphenol oxidase 4, one of the six tyrosinase isoforms from Agaricus bisporus, was purified to homogeneity and crystallized. The obtained crystals belonged to space group C121 (two molecules per asymmetric unit)more » and diffracted to 2.78 Å resolution. The protein only formed crystals under low-salt conditions using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a co-crystallization agent.« less

  19. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  20. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    NASA Astrophysics Data System (ADS)

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  1. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    PubMed Central

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-01-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil. PMID:27966663

  2. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading.

    PubMed

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-14

    This paper reports the synthetic route of 3-D network shape α-Fe 2 O 3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe 2 O 3 , particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe 2 O 3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  3. Method of making soluble polyacetylenic and polyaromatic polymers

    DOEpatents

    Aldissi, Mahmoud; Liepins, Raimond

    1985-01-01

    A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.

  4. Soluble polyacetylenic and polyaromatic polymers and method of mking the same

    DOEpatents

    Aldissi, M.; Liepins, R.

    1983-12-16

    A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.

  5. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    NASA Astrophysics Data System (ADS)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  6. A new gel route to synthesize LiCoO{sub 2} for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, N.; Ge, X.W.; Chen, C.H.

    2005-09-01

    A new synthetic route, i.e. the radiated polymer gel (RPG) method, has been developed and demonstrated for the production of LiCoO{sub 2} powders. The process involved two processes: (1) obtaining a gel by polymerizing a mixed solution of an acrylic monomer and an aqueous solution of lithium and cobalt salts under {gamma}-ray irradiation conditions and (2) obtaining LiCoO{sub 2} powders by drying and calcining the gel. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. Galvanostatic cell cycling, cyclic voltammetry and ac impedance spectroscopy weremore » used to evaluate the electrochemical properties of the LiCoO{sub 2} powders. It was found that a pure phase of LiCoO{sub 2} can be obtained at the calcination temperature of 800 deg. C. Both the particle size (micrometer range) and specific charge/discharge capacity of an RPG-LiCoO{sub 2} powder increase with increasing the concentration of its precursor solution.« less

  7. Conversion of "Waste Plastic" into Photocatalytic Nanofoams for Environmental Remediation.

    PubMed

    de Assis, Geovania C; Skovroinski, Euzébio; Leite, Valderi D; Rodrigues, Marcelo O; Galembeck, André; Alves, Mary C F; Eastoe, Julian; de Oliveira, Rodrigo J

    2018-03-07

    Plastic debris is a major environmental concern, and to find effective ways to reuse polystyrene (PS) presents major challenges. Here, it is demonstrated that polystyrene foams impregnated with SnO 2 are easily generated from plastic debris and can be applied to photocatalytic degradation of dyes. SnO 2 nanoparticles were synthesized by a polymeric precursor method, yielding specific surface areas of 15 m 2 /g after heat treatment to 700 °C. Crystallinity, size, and shape of the SnO 2 particles were assessed by X-ray diffraction (XRD) and transmission electron microscopy (TEM), demonstrating the preparation of crystalline spherical nanoparticles with sizes around 20 nm. When incorporated into PS foams, which were generated using a thermally induced phase separation (TIPS) process, the specific surface area increased to 48 m 2 /g. These PS/SnO 2 nanofoams showed very good efficiency for photodegradation of rhodamine B, under UV irradiation, achieving up to 98.2% removal. In addition the PS/SnO 2 nanofoams are shown to retain photocatalytic activity for up to five reuse cycles.

  8. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Plasma nanocoating of thiophene onto MoS2 nanotubes

    NASA Astrophysics Data System (ADS)

    Türkaslan, Banu Esencan; Dikmen, Sibel; Öksüz, Lütfi; Öksüz, Aysegul Uygun

    2015-12-01

    MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly.

  10. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  11. Methods for forming particles from single source precursors

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  12. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  13. Olefin polymerization from single site catalysts confined within porous media

    NASA Astrophysics Data System (ADS)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE of higher percent crystallinity (greater than 60% crystalline). High-density polyethylene with crystallinity of 40--60% can be prepared by using cocatalysts tethered to AMPS or silica in conjunction with analogous soluble, homogeneous CGCs (Chapter 6). Preparative methods to assemble piano stool complexes on hydroxy polystyrenes have been designed. These supported catalysts in conjunction with cocatalysts act as both oligomerization and copolymerization catalysts and allow the preparation of branched polyethylenes from ethylene only feed (Chapter 7).

  14. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  15. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  16. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    PubMed

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  17. Method and system for continuous atomic layer deposition

    DOEpatents

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  18. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold; Solovyov, Vyacheslav

    2014-02-18

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  19. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY

    2008-04-22

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  20. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY

    2012-07-10

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  1. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  2. Molecular Syntheses of Extended Materials

    NASA Astrophysics Data System (ADS)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  3. Preparation, characterization, and in vitro activity evaluation of triblock copolymer-based polymersomes for drugs delivery

    NASA Astrophysics Data System (ADS)

    Besada, Lucas N.; Peruzzo, Pablo; Cortizo, Ana M.; Cortizo, M. Susana

    2018-03-01

    Polymersomes are polymer-based vesicles that form upon hydration of amphiphilic block copolymers and display high stability and durability, due to their mechanical and physical properties. They have hydrophilic reservoirs as well as thick hydrophobic membranes; allowing to encapsulate both water-soluble bioactive agent and hydrophobic drugs. In this study, poly ethylene glycol (PEG3350 and PEG6000) were used as hydrophilic part and poly(vinyl benzoate) (PVBz) as hydrophobic block to synthesize amphiphilic triblock copolymers (PVBz- b-PEG- b-PVBz). Different proportions of hydrophilic/hydrophobic part were assayed in order to obtain polymersomes by solvent injection method. For the synthesis of the copolymers, the initial block of PEG was derived to obtain a macroinitiator through a xanthate functional group (PEGX3 or PEGX6) and the polymerization of vinyl benzoate was carried out through reversible addition-fragmentation chain transfer polymerization (RAFT). The structure of PEGX and copolymers was confirmed by Infrared, 1H-NMR and UV-Vis spectrometry, while the average molecular weight (Mw) and polydispersity index (PI) were determined by size exclusion chromatography (SEC). The structures adopted by the copolymers in aqueous solution by self-assembly were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Both techniques confirm that polymersomes were obtained for a fraction of hydrophilic block ( f) ≈ 35 ± 10%, with a diameter of 38.3 ± 0.3 nm or 22.5 ± 0.7 nm, as determined by TEM and according to the M w of the precursor block copolymer. In addition, we analyzed the possible cytotoxicity in view of its potential application as biomedical nanocarrier. The results suggest that polymersomes seem not induce cytotoxicity during the periods of time tested.

  4. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  5. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    PubMed

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  6. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  7. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis.

    PubMed

    Sharma, Rahul; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    The present study is designed to explore the localized delivery of fluconazole using mucoadhesive polymeric nanofibers. Drug-loaded polymeric nanofibers were fabricated by the electrospinning method using polyvinyl alcohol (PVA) as the polymeric constituent. The prepared nanofibers were found to be uniform, non-beaded and non-woven, with the diameter of the fibers ranging from 150 to 180 nm. Further drug release studies indicate a sustained release of fluconazole over a period of 6 h. The results of studies on anti-microbial activity indicated that drug-loaded polymeric nanofibers exhibit superior anti-microbial activity against Candida albicans, when compared to the plain drug.

  8. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    PubMed

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enhancement of binding characteristics for production of an agglomerated product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taulbee, Darrell; Hodgen, Robert

    A method is provided for preparing a product from a precursor material. The method includes the steps of (a) mixing a particulate material and a binder to form a precursor material and (b) irradiating that precursor material with microwave radiation so as to activate the binder and form the product.

  10. Methods for producing thin film charge selective transport layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  11. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  12. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  13. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers.

    PubMed

    Domènech, Berta; Ziegler, Kharla K; Carrillo, Fernando; Muñoz, Maria; Muraviev, Dimitri N; Macanás, Jorge

    2013-05-16

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride.

  14. Transparent organic/inorganic hybrid sol-gel materials based on perfluorinated polymers and silica

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1996-01-01

    Two types of hybrid gels based on silica and perfluorinated polymers have been prepared. The first type involves a perfluorinated polymer containing acrylate groups. Perfluoropolyether diol diacrylate (PFDA) was functionalized by reacting it with (3-mercapto-propyl) trimethoxysilane by a Michael addition. The resulting silyl derivative (PFDAS) was able to copolymerize with a silica precursor, tetraethylorthosilicate (TEOS), resulting in perfluorinated polymer/silica hybrid gels. For the second type, perfluoroalkylsilane (FAS), vinyltriethoxysilane (VTES), and TEOS were polymerized in one step. In both cases, the gels were transparent, crack-free and water repellent. Since the inorganic and organic components are covalently bonded to each other, these materials can be classified as organic/inorganic copolymers.

  15. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)

    PubMed Central

    Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki

    2016-01-01

    Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260

  16. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  17. Method for preparing dioxyheterocycle-based electrochromic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, John R.; Estrada, Leandro; Deininger, James

    A method for preparing a conjugated polymer involves a DHAP polymerization of a 3,4-dioxythiophene, 3,4-dioxyfuran, or 3,4-dioxypyrrole and, optionally, at least one second conjugated monomer in the presence of a Pd or Ni comprising catalyst, an aprotic solvent, a carboxylic acid at a temperature in excess of 120.degree. C. At least one of the monomers is substituted with hydrogen reactive functionalities and at least one of the monomers is substituted with a Cl, Br, and/or I. The polymerization can be carried out at temperature of 140.degree. C. or more, and the DHAP polymerization can be carried out without a phosphinemore » ligand or a phase transfer agent. The resulting polymer can display dispersity less than 2 and have a degree of polymerization in excess of 10.« less

  18. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  19. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  20. Functional Analyses and Treatment of Precursor Behavior

    PubMed Central

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding for all participants was differentiated during the functional analyses, and individualized treatments eliminated precursor behavior. These results suggest that functional analysis of precursor behavior may offer an alternative, indirect method to assess the operant function of severe problem behavior. PMID:18468282

  1. 3-Acetyl-11-keto-beta-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity.

    PubMed

    Goel, Amit; Ahmad, Farhan Jalees; Singh, Raman Mohan; Singh, Gyanendra Nath

    2010-02-01

    The aim of this study was to develop 3-acetyl-11-keto-beta-boswellic acid (AKBA)-loaded polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. Polymeric nanomicelles of AKBA were developed by a radical polymerization method using N-isopropylacrylamide, vinylpyrrolidone and acrylic acid. The polymeric nanomicelles obtained were characterized by Fourier transform infrared (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). In-vitro and in-vivo evaluations of AKBA polymeric nanomicelles gel were carried out for enhanced skin permeability and anti-inflammatory and anti-arthritic activity. TEM and DLS results demonstrated that polymeric nanomicelles were spherical with a mean diameter approximately 45 nm. FTIR data indicated a weak interaction between polymer and AKBA in the encapsulated system. The release of drug in aqueous buffer (pH 7.4) from the polymeric nanomicelles was 23 and 55% after 2 and 8 h, respectively, indicating sustained release. In-vitro skin permeation studies through excised abdominal skin indicated a threefold increase in skin permeability compared with AKBA gel containing the same amount of AKBA as the AKBA polymeric nanomicelles gel. The AKBA polymeric nanomicelle gel showed significantly enhanced anti-inflammatory and anti-arthritic activity compared with the AKBA gel. This study suggested that AKBA polymeric nanomicelle gel significantly enhanced skin permeability, and anti-inflammatory and anti-arthritic activity.

  2. A high throughput mutagenic analysis of yeast sumo structure and function

    PubMed Central

    Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.

    2017-01-01

    Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236

  3. Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry.

    PubMed

    Rajabi Khorrami, Afshin; Rashidpur, Amene

    2012-05-21

    In this work, a molecular sol-gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol-gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1-80 μg mL(-1) and the limit of detection was 0.1 μg mL(-1). The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates

    NASA Astrophysics Data System (ADS)

    Tjandra, Wiliana; Ravi, Palaniswamy; Yao, Jia; Tam, Kam C.

    2006-12-01

    Poly(methylmethacrylate)-block-poly(methacrylic acid) (PMMA-b-PMAA) copolymer was synthesized by an atom transfer radical polymerization (ATRP) technique. The block copolymer was employed as a template for the controlled precipitation of calcium phosphate from aqueous solution at different pH values. A Ca2+ ion selective electrode was used to study the interactions between Ca2+ ions and the polymer, which indicated a possible weak interaction between Ca2+ and un-ionized MAA segments at pH~4.0 in addition to electrostatic interaction between Ca2+ and ionized MAA segments at higher pH. An interesting structure representing that of a superstructure consisting of hybrid nano-filaments was observed by the transmission electron microscope at pH~4.0. The filaments originated from a core of similar size to primary polymer aggregates, suggesting that cooperative interactions at a local level between dissolving calcium phosphate clusters and disassembling polymer segments are responsible for the secondary growth process. A hollow spherical morphology was obtained at pH~7.0 and 9.0. Such calcium phosphate/polymer monohybrids with complex morphologies are interesting and might be useful as novel drug delivery carriers, ceramics precursors, reinforcing fillers or biomedical implants.

  5. Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.

    PubMed

    Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew

    2015-12-10

    While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.

  6. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOEpatents

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  7. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    PubMed

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world; thus, it is necessary to optimize the performances of such materials to yield durable superhydrophobic surfaces. To sum up, some challenges and perspectives regarding the future research and development of polymeric superhydrophobic surfaces are presented.

  8. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  9. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    PubMed Central

    2017-01-01

    Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms. PMID:28260814

  10. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  11. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  12. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    DOEpatents

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  13. Polymer precursors for ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Litt, M. H.; Kumar, K.

    1986-01-01

    The synthesis and characterization of a polycyclohexasilane is reported. Because of its cyclic structure, it is anticipated that this polymer might serve as a precursor to SIC having a high char yield with little rearrangement to form small, volatile cyclic silanes, and, as such, would be of interest as a precursor to SiC composite matrices and fibers, or as a binder in ceramic processing. Several approaches to the synthesis of a bifunctional cyclic monomer were attempted; the most successful of these was metal coupling of PhMeSiCl2 and Me2SiCl2. The procedure gives six-membered ring compounds with all degrees of phenyl substitution, from none to hexaphenyl. The compounds with from 0-2 groups were isolated and characterized. The fraction with degree of phenyl substitution equal to 2, a mixture of cis and trans 1,2-; 1,3-; and 1,4 isomers, was isolated in 32 percent yield. Pure 1,4 diphenyldecamethylcyclohexasilane was isolated from the mixed diphenyl compounds and characterized. Diphenyldecamethylcyclohexasilanes were dephenylated to dichlorodecamethylcyclohexasilanes by treating with H2SO4.NH4Cl in benzene. The latter were purified and polymerized by reacting with sodium in toluene. The polymers were characterized by HPGPC, elemental analysis, proton NMR, and IR. Thermogravimetric analyses were carried out on the polymers. As the yield of residual SiC was low, polymers were heat treated to increase the residual char yield. As high as 51.52 percent residual char yield was obtained in one case.

  14. Polysiloxanes derived from the controlled hydrolysis of tetraethoxysilane as precursors to silica for use in ceramic processing

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.

    1990-01-01

    Synthesis, properties, and potential applications in ceramic processing for two polysiloxane silica precursors derived from the controlled hydrolysis of tetraethoxysilane (TEOS) are presented. The higher molecular weight TEOS-A is a thick adhesive liquid of viscosity 8000 to 12,000 c.p. having a SiO2 char yield of about 55 percent. The lower molecular weight TEOS-B is a more fluid liquid of viscosity 150 to 200 c.p. having a SiO2 char yield of about 52 percent. The acid catalyzed hydrolysis of TEOS to hydrated silica gel goes through a series of polysiloxane intermediates. The rate of this transition increases with the quantity of water added to the TEOS; thus, for ease of polymer isolation, the amount of water added must be carefully determined so as to produce the desired polymer in a reasonable time. The water to TEOS mole ratio falls in the narrow range of 1.05 for TEOS-A and 0.99 for TEOS-B. Further polymerization or gelation is prevented by storing at -5 C in a freezer. Both polysiloxanes thermoset to a glassy solid at 115 C. The liquid polymers are organic in nature in that they are miscible with toluene and ethanol, slightly souble in heptane, but immiscible with water. For both polymers, results on viscosity versus time are given at several temperatures and water additions. Based on these results, some examples of practical utilization of the precursors for ceramic fabrication are given.

  15. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing

    2014-01-01

    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  17. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  18. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life

    NASA Astrophysics Data System (ADS)

    Whicher, Alexandra; Camprubi, Eloi; Pinna, Silvana; Herschy, Barry; Lane, Nick

    2018-03-01

    Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest ( 2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.

  19. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE PAGES

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; ...

    2016-03-11

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

  20. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

Top