Sample records for polymerization volume change

  1. Influence of thermal expansion on shrinkage during photopolymerization of dental resins based on bis-GMA/TEGDMA.

    PubMed

    Mucci, Veronica; Arenas, Gustavo; Duchowicz, Ricardo; Cook, Wayne D; Vallo, Claudia

    2009-01-01

    The aim of this study was to assess volume changes that occur during photopolymerization of unfilled dental resins based on bis-GMA-TEGDMA. The resins were activated for visible light polymerization by the addition of camphorquinone (CQ) in combination with dimethylamino ethylmethacrylate (DMAEMA) or ethyl-4-dimethyl aminobenzoate (EDMAB). A fibre-optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring contraction during photopolymerization. Measurements were carried out on 10mm diameter specimens of different thicknesses (1 and 2mm). The high exothermic nature of the polymerization resulted in volume expansion during the heating, and this effect was more pronounced when the sample thickness increased. Two approaches to assess volume changes due to thermal effects are presented. Due to the difference in thermal expansion coefficients between the rubbery and glassy resins, the increase of volume due to thermal expansion was greater than the decrease in volume due to thermal contraction. As a result, the volume of the vitrified resins was greater than that calculated from polymerization contraction. The observed trends of shrinkage versus sample thickness are explained in terms of light attenuation across the path length during photopolymerization. Results obtained in this research highlight the inherent interlinking of non-isothermal photopolymerization and volumetric changes in bulk polymerizing systems.

  2. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; Zhao, Jie; Yan, Kai; Cui, Yi

    2016-01-01

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes. PMID:26987481

  3. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; ...

    2016-03-18

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  4. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  5. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization.

    PubMed

    Yeow, Jonathan; Joshi, Sanket; Chapman, Robert; Boyer, Cyrille Andre Jean Marie

    2018-04-25

    Translating controlled/living radical polymerization (CLRP) from batch to the high throughput production of polymer libraries presents several challenges in terms of both polymer synthesis and characterization. Although recently there have been significant advances in the field of low volume, high throughput CLRP, techniques able to simultaneously monitor multiple polymerizations in an "online" manner have not yet been developed. Here, we report our discovery that 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) is a self-reporting photocatalyst that can mediate PET-RAFT polymerization as well as report on monomer conversion via changes in its fluorescence properties. This enables the use of a microplate reader to conduct high throughput "online" monitoring of PET-RAFT polymerizations performed directly in 384-well, low volume microtiter plates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of the volumes of bis-acryl and poly(methyl methacrylate) resins on their exothermic behavior during polymerization.

    PubMed

    Ha, Jung-Yun; Kim, Sung-Hun; Kim, Kyo-Han; Kwon, Tae-Yub

    2011-01-01

    This study aimed to evaluate the influence of the volumes of a bis-acryl resin (Luxatemp) and a poly(methyl methacrylate) resin (Jet) on their exothermic behaviors during polymerization based on vinyl group conversion. The number of vinyl groups reacted and exotherm were determined based on weight percent of methacrylate groups using FTIR spectroscopy. Temperature changes during polymerization at 23°C were recorded for 20 minutes using a multiple cavity mold overlying a thermocouple. The number of vinyl groups reacted and exotherm of Luxatemp were consistently lower than those of Jet at each resin volume. Mean peak temperature rises of Luxatemp and Jet were in the range of 2.0-6.6°C and 4.2-11.6°C respectively, with Luxatemp and Jet taking 2 and 10 minutes respectively to reach their peak temperatures. As their resin volumes increased, their peak temperatures and total peak areas were also observed to increase significantly (p<0.01).

  7. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    PubMed

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  8. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry.

  9. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.

    PubMed

    Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C

    2007-06-01

    Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.

  10. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    PubMed

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage.

    PubMed

    Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng

    2009-03-01

    The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.

  12. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Synthesis of amphipathic block copolymers based on polyisobutylene and polyoxyethylene and their application in emulsion polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sar, B.

    1992-12-31

    Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block wasmore » changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.« less

  14. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    PubMed

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  15. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    NASA Astrophysics Data System (ADS)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  16. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.

    2016-05-23

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  17. Small-volume resuscitation from hemorrhagic shock with polymerized human serum albumin.

    PubMed

    Messmer, Catalina; Yalcin, Ozlem; Palmer, Andre F; Cabrales, Pedro

    2012-10-01

    Human serum albumin (HSA) is used as a plasma expander; however, albumin is readily eliminated from the intravascular space. The objective of this study was to establish the effects of various-sized polymerized HSAs (PolyHSAs) during small-volume resuscitation from hemorrhagic shock on systemic parameters, microvascular hemodynamics, and functional capillary density in the hamster window chamber model. Polymerized HSA size was controlled by varying the cross-link density (ie, molar ratio of glutaraldehyde to HSA). Hemorrhage was induced by controlled arterial bleeding of 50% of the animal's blood volume (BV), and hypovolemic shock was maintained for 1 hour. Resuscitation was implemented in 2 phases, first, by infusion of 3.5% of the BV of hypertonic saline (7.5% NaCl) then followed by infusion of 10% of the BV of each PolyHSA. Resuscitation provided rapid recovery of blood pressure, blood gas parameters, and microvascular perfusion. Polymerized HSA at a glutaraldehyde-to-HSA molar ratio of 60:1 (PolyHSA(60:1)) provided superior recovery of blood pressure, microvascular blood flow, and functional capillary density, and acid-base balance, with sustained volume expansion in relation to the volume infused. The high molecular weight of PolyHSA(60:1) increased the hydrodynamic radius and solution viscosity. Pharmacokinetic analysis of PolyHSA(60:1) indicates reduced clearance and increased circulatory half-life compared with monomeric HSA and other PolyHSA formulations. In conclusion, HSA molecular size and solution viscosity affect central hemodynamics, microvascular blood flow, volume expansion, and circulation persistence during small-volume resuscitation from hemorrhagic shock. In addition, PolyHSA can be an alternative to HSA in pathophysiological situations with compromised vascular permeability. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  19. Polymeric Beads for Organic Coatings

    DTIC Science & Technology

    1982-10-31

    Clear Solid Polymeric Beads A solid polymeric bead is comprised of a sol id mass of polymerized unsaturated polyester/styrene resin mixture . 2. lear...than the current unsaturated polyester resin . For example, a bead male from acrylic resin could be more trans- - parent, more durable and provide more...0.44 Isopropyl Alcohol I 11.26 I 1 .73 60% Wt. Alkyd Resin - Volume I 251.26 i 30.52 " Sol ids 51% 1 I Anti.-Skinning Agent I 0.90 I 0.12 Mineral

  20. Volume effect of non-polar solvent towards the synthesis of hydrophilic polymer nanoparticles prepares via inverse miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Nasyita; Kassim, Syara; Harun, Noor Aniza

    2017-09-01

    Polymeric nanoparticles have drawn tremendous attention to researchers and have utilized in diverse fields especially in biomedical applications. Nevertheless, question has raised about the safety and hydrophilicity of the nanoparticles to be utilized in medical and biological applications. One promising solution to this problem is to develop biodegradable polymeric nanoparticles with improve hydrophilicity. This study is focusing to develop safer and "greener" polymeric nanoparticles via inverse miniemulsion polymerization techniques, a robust and convenient method to produce water-soluble polymer nanoparticles. Acrylamide (Am), acrylic acid (AA) and methacrylic acid (MAA) monomers have chosen, as they are biocompatible, non-toxic and ecological. The effect of different volumes of cyclohexane towards the formation of polymer nanoparticles, particle size, particle size distribution and morphology of polymer nanoparticles are investigated. The formation and morphology of polymer nanoparticles are determined using FTIR and SEM respectively. The mean diameters of the polymer nanoparticles were in a range of 80 - 250 nm and with broad particle size distributions as determined by dynamic light scattering (DLS). Hydrophilic polyacrylamide (pAm), poly(acrylic acid) (pAA) and poly(methacrylic acid) (pMAA) nanoparticles were successfully achieved by inverse miniemulsion polymerization and have potentiality to be further utilized in the fabrication of hybrid polymer composite nanoparticles especially in biological and medical applications.

  1. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    NASA Astrophysics Data System (ADS)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  2. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  3. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems

    PubMed Central

    Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.

    2012-01-01

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733

  4. Synthesis and chromatographic characterization of dextran-coated zirconia high-performance liquid chromatographic stationary phases.

    PubMed

    Dunlap, C J; Carr, P W

    1996-10-11

    Porous zirconia particles made by the oil emulsion (OE) method and the polymerization-induced colloid aggregation (PICA) method have been coated with a small, carboxymethylated (approximately 5%) dextran polymer and crosslinked in place. The parameters of the coating process (dextran concentration, adsorption time and crosslinker concentration) have all been examined and an optimum value for each determined. The coated and uncoated materials were characterized by nitrogen sorptometry and size-exclusion chromatography (SEC) using solutes (polystyrenes and dextrans) of well-defined molecular masses. Nitrogen sorptometry results show that the PICA material has a much lower pore volume and smaller pore diameter than do the OE materials. Despite this, the elution volumes of the SEC probes change very little upon polymer coating the PICA material while the OE material shows a very large change upon coating.

  5. Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.

    PubMed

    Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng

    2017-01-01

    Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.

  6. Alternative methods for determining shrinkage in restorative resin composites.

    PubMed

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Development and testing of a space-flight dilatometer/reactor

    NASA Astrophysics Data System (ADS)

    Sudol, E. D.; El-Aasser, M. S.; Micale, F. J.; Vanderhoff, J. W.

    1986-09-01

    A stainless-steel piston cylinder dilatometer (volume ˜100 cm3), designed for use in microgravity, was tested and modified for the purpose of obtaining the polymerization kinetics of monodisperse polystyrene latexes, as well as the latexes themselves. A low-speed, oscillatory agitation (10 rpm, 30° arc per cycle) and redesigned stir paddle were selected for the low shear requirements of the microgravity experiments. Conversion histories accurate to within 2% were obtained after apparatus modification and procedural changes were implemented.

  8. Changes in chroma of two indirect composite materials polymerized with different polymerization systems.

    PubMed

    Ayano, Michiya

    2012-01-01

    This study evaluated chroma change in two composite materials (Sinfony and Pearleste) polymerized with two different systems. Disk specimens were prepared using a metal halide unit (Hyper LII) and an exposure time of 60 to 180 s. The proprietary polymerization systems (Visio and Pearlcure systems) were used as the reference polymerization modes. After storage at 37°C for 24 h, CIE 1976 L*a*b* values were measured by using a dental chroma meter (ShadeEye NCC) with a gray background. The specimens were then immersed in water or tea. Color change from baseline to 4 weeks was evaluated by measuring ΔL*, Δa*, and Δb*, after which ΔE*(ab) values were calculated. The brightness of Sinfony specimens was reduced by tea immersion. The color of both materials shifted to yellow after tea immersion, although color change in Sinfony specimens was greater than that in Pearleste specimens. For both materials, color change was less after polymerization with the metal halide unit. In conclusion, Sinfony polymerized with the Hyper LII unit, and Pearleste polymerized with either system, were stable against discoloration due to tea immersion.

  9. Dimensional change in complete dentures fabricated by injection molding and microwave processing.

    PubMed

    Keenan, Phillip L J; Radford, David R; Clark, Robert K F

    2003-01-01

    Acrylic resin complete dentures undergo dimensional changes during polymerization. Techniques with injection molding and polymerization and microwave polymerization are reported to reduce these changes and thereby improve clinical fit. These dimensional changes need to be quantified. The purpose of this study was to compare differences in dimensional changes of simulated maxillary complete dentures during polymerization and storage in water after injection molding and conventional polymerization, or microwave polymerization against a control of conventionally packed and polymerized simulated maxillary complete dentures. Forty identical maxillary denture bases were prepared in dental wax with anatomic teeth. They were invested and the wax eliminated from the molds. Ten specimens each were randomly assigned to 1 of 4 groups. Group 1 was compression molded and conventionally polymerized; group 2 was injection molded and conventionally polymerized (Success); group 3 was injection molded and microwave polymerized (Acron MC); and group 4 was injection molded and microwave polymerized (Microbase). Intermolar width and changes in vertical dimension of occlusion, were determined after polymerization and after storage in water for 28 days. Measurements in triplicate were made between points scribed on the second molar teeth with a traveling microscope (accurate to 0.005 mm). Vertical dimension of occlusion was measured between points scribed on the upper and lower members of an articulator by use of an internal micrometer (accurate to 0.05 mm). Data were analyzed by use of a 1-way analysis of variance with Tukey post-hoc contrasts (P <.05). Polymerization contractions (intermolar widths) for each group were: group 1, -0.24%; group 2, -0.27%; group 3, -0.35%; and group 4, -0.37%. The Microbase specimens had greater shrinkage than conventionally polymerized specimens, but there were no significant differences between the groups. All injection methods had less postpolymerization increase in vertical dimension of occlusion (0.63 to 0.41 mm) than the conventional Trevalon control (0.74 mm), but only group 4 was significantly different (P<.004). After storage in water for 28 days, all specimens increased in vertical dimension of occlusion (0.10% to 0.16%) from polymerization techniques, but there were no significant differences between groups. Within the limitations of this study, injection molding resulted in a slightly less increase of vertical dimension of occlusion than conventional polymerization techniques, the difference being significant for Microbase compared with the conventional Trevalon control.

  10. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on theirmore » molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.« less

  11. Physical aging in pharmaceutical polymers and the effect on solid oral dosage form stability.

    PubMed

    Kucera, Shawn A; Felton, Linda A; McGinity, James W

    2013-12-05

    The application of a polymeric film to a solid oral dosage form can be an effective technique to modify drug release. Most polymers used for such purposes are amorphous in nature and are subject to physical aging. This physical aging phenomenon has been shown to cause changes not only in the mechanical and drug release properties of polymeric films, but also the permeability of these films due to a densification and decrease in free volume of the polymer as the material relaxes to an equilibrated thermodynamic state. Temperature, humidity, and additional excipients in the coating formulations have been shown to influence the aging process. This review article discusses the process of physical aging in films prepared from aqueous dispersions, describes various analytical techniques that can be used to investigate the aging process, and highlights strategies to prevent such aging. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  13. Nanoscale Origin of the Dichotimous Viscosity-Pressure Behavior in Silicate Melts

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sakamaki, T.; Skiner, L.; Jing, Z.; Yu, T.; Kono, Y.; Park, C.; Shen, G.; Rivers, M. L.; Sutton, S. R.

    2013-12-01

    A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates physical properties such as viscosity and density. While viscosity of depolymerized silicate melts increases with pressure consistent with free volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3 - 5 GPa, above which it turns over to normal (positive) pressure dependence. We conducted high-pressure melt structure studies along the jadeite (Jd) - diopside (Di) join, using a Paris-Edinburgh Press at the HPCAT beamline 16-BM-B and measured Jd melt density using a DIA type apparatus based on x-ray absorption at GSECARS beamline 13-BM-D. Structures of polymerized (Jd and Jd50Di50) and depolymerized (Di) melts show distinct responses to pressure. For Jd melt, T-O, T-T bond lengths (where T denotes tetrahedrally coordinated Al and Si) and T-O-T angle all exhibit rapid, sometimes non-linear decrease with increasing pressure to ~3 GPa. For Di melt, these parameters vary linearly with pressure and change very little. Molecular dynamics calculations, constrained by the x-ray structural data, were employed to examine details of structural evolution in polymerized and depolymerized liquids. A structural model is developed to link structural evolution to changes in melt properties, such as density and viscosity, with pressure. We show that the pressure of the viscosity turnover corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in continual breakup of tetrahedral connectivity and viscosity decrease. Above the turnover pressure, Si and Al coordination increases to allow further packing, with increasing viscosity. This structural response prescribes the distribution of melt viscosity and density with depth, and may be the main controlling factor for magma transport rates in terrestrial planetary interiors.

  14. In Situ Multilength-Scale Tracking of Dimensional and Viscoelastic Changes in Composite Battery Electrodes.

    PubMed

    Dargel, Vadim; Jäckel, Nicolas; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D; Daikhin, Leonid; Presser, Volker; Aurbach, Doron

    2017-08-23

    Intercalation-induced dimensional changes in a composite battery electrode (comprising a polymeric binder) are one of the major factors limiting electrode cycling performance. Since electrode performance is expressed by the quantities averaged over its entire surface area (e.g., capacity retention, Faradaic efficiency, rate capability), significant efforts have been made to develop a methodology allowing its facile mechanical diagnostics at the same areal scale. Herein we introduce such a generic methodology for a highly sensitive in situ monitoring of intrinsic mechanical properties of composite battery electrodes. The gravimetric, dimensional, viscoelastic, and adhesive changes in the composite electrodes caused by Li-ions intercalation are assessed noninvasively and in real time by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). Multiharmonic acoustic waves generated by EQCM-D penetrate into thin porous electrodes comprising either rigid or a soft binder resulting in frequency and dissipation changes quantified by analytical acoustic load impedance models. As a first demonstration, we used a composite LiFePO 4 (LFP) electrode containing either polyvinylidene dichloride (PVdF) or Na carboximethyl cellulose (NaCMC) as rigid and viscoelastic binders, respectively, in aqueous electrolytes. The intercalation-induced volume changes of LFP electrode were evaluated from a hydrodynamic correction to the mass effect of the intercalated ions for PVdF, and both components of the effective complex shear modulus (i.e., storage and loss moduli) in case of NaCMC binder have been extracted. The sliding friction coefficients for large particles bound at their bottom to the quartz crystal surface (a measure of the adhesion strength of binders) has also been evaluated. Tracking the mechanical properties of the composite electrodes in different environments and charging/cycling conditions in a self-consistent manner provides all necessary conditions for an optimal selection of the polymeric binders resistant to intercalation-induced volume changes of intercalation particles.

  15. Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and vapors.

    PubMed

    Davankov, Vadim A; Pastukhov, Alexander V

    2011-12-29

    An automatic registration of the changing size of a single spherical microbead of a cross-linked polymer was applied for studying the swelling process of the bead by the sorption of vapors and/or liquids. Many representatives of all three basic types of polymeric networks, gel-type, hypercrosslinked, and macroporous, were examined. Only the first two display large volume changes and prove suitable for following the kinetics and extent of swelling by the above dilatometric technique. The results unambiguously prove that swelling of all polymeric networks in liquids is always higher than in corresponding saturated vapors (Schroeder's paradox). The general nature of this phenomenon implies that the absolute activity of any sorbate in its liquid form is always larger than in the form of its saturated vapor. Surprisingly, gels with any solvent contents, which fall into the broad range between the vapor-equilibrated and liquid-equilibrated extreme contents, retain their volumes constant in the saturated vapor atmosphere. This paradox of a wide range of gels swollen to a different extent and, nevertheless, standing in equilibrium with saturated vapor is explained by the specificity of the network polymers, namely, that the energy of the solvent-polymer interactions is easily compensated by the energy of remaining between-chain interactions at any solvent content in the above range. Therefore, the strain-free swollen gels do not generate enhanced vapor pressure, but neither display the ability to take up more sorbate from its vapor. © 2011 American Chemical Society

  16. PALS, MIR and UV-vis-NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials

    NASA Astrophysics Data System (ADS)

    Filipecka, Katarzyna; Budaj, Mariusz; Chamerski, Kordian; Miedziński, Rafał; Sitarz, Maciej; Miskowiak, Bogdan; Makowska-Janusik, Małgorzata; Filipecki, Jacek

    2017-11-01

    Studies on polymeric materials used in contactology for manufacturing of contact lenses are presented in the paper. Different types of brand new contact lenses were investigated: hydrogel, silicone-hydrogel and rigid gas permeable. Positron annihilation lifetime spectroscopy (PALS) was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. Measurements reveal significant differences between the materials. Namely differences in size and fraction of free volume were observed. These changes are strongly correlated with oxygen permeability in contact lenses. Middle infrared (MIR) spectroscopy was carried out in order to investigate the internal structure of materials. Furthermore, UV-vis-NIR studies were performed in order to determine the transmittance properties of contact lenses.

  17. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    PubMed

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials.

    PubMed

    Xu, Xiangling; Goponenko, Alexander V; Asher, Sanford A

    2008-03-12

    The surface of monodisperse silica particles synthesized using the Stober process were coated with a thin layer of polystyrene. Surface charge groups were attached by a grafting polymerization of styrene sulfonate. The resulting highly charged monodisperse silica particles self-assemble into crystalline colloidal arrays (CCA) in deionized water. We polymerized hydroxyethyl methacrylate (HEMA) around the CCA to form a HEMA-polymerized crystalline colloidal array (PCCA). Hydrofluoric acid was utilized to etch out the silica particles to produce a three-dimensional periodic array of voids in the HEMA PCCA. The diffraction from the embedded CCA sensitively monitors the concentration of ethanol in water because the HEMA PCCA shows a large volume dependence on ethanol due to a decreased Flory-Huggins mixing parameter. Between pure water and 40% ethanol the diffraction shifts across the entire visible spectral region. We accurately modeled the dependence of the diffraction wavelength on ethanol concentration using Flory theory. We also fabricated a PCCA (which responds to pH changes in both low and high ionic strength solutions) by utilizing a second polymerization to incorporate carboxyl groups into the HEMA PCCA. We were also able to model the pH dependence of diffraction of the HEMA PCCA by using Flory theory. An unusual feature of the pH response is a hysteresis in response to titration to higher and lower pH. This hysteresis results from the formation of a Donnan potential at high pH which shifts the ionic equilibrium. The kinetics of equilibration is very slow due to the ultralow diffusion constant of protons in the carboxylated PCCA as predicted earlier by the Tanaka group.

  19. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2(2+)) ions.

    PubMed

    Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht

    2010-03-15

    UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.

  20. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  1. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    PubMed

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  2. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

    PubMed

    Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin

    2015-02-01

    To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

  3. Preparation of Silica Aerogel from TEOS

    PubMed

    Tamon; Kitamura; Okazaki

    1998-01-15

    Silica alcogels were synthesized by the sol-gel polymerization of tetraethylorthosilicate (TEOS). In the synthesis, HCl and NH3 were used as hydrolysis and condensation catalysts. The gelation time became short and the visible light transmittance increased with increasing the amount of HCl or lengthening the hydrolysis time. The alcogels were dried under supercritical conditions with carbon dioxide, and silica aerogels were obtained. As a result of characterization by visible light transmission and N2 adsorption, the aerogels are mesoporous materials with high surface areas. The experimental results suggest that the aerogel properties are not influenced by the drying conditions such as extraction temperature, extraction time, depressurizing temperature, and depressurizing rate. On the other hand, the properties are changed under the conditions of sol-gel polymerization. In the preparation of highly transparent aerogels with high surface areas and large pore volumes, it is necessary to synthesize highly transparent alcogels. It is found that the visible light transmittance of alcogels is an index for preparing aerogels from TEOS. Copyright 1998 Academic Press. Copyright 1998Academic Press

  4. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    PubMed

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  5. ADMiER-ing thin but complex fluids

    NASA Astrophysics Data System (ADS)

    McDonnell, Amarin G.; Bhattacharjee, Pradipto K.; Pan, Sharadwata; Hill, David; Danquah, Michael K.; Friend, James R.; Yeo, Leslie Y.; Prabhakar, Ranganathan

    2011-12-01

    The Acoustics Driven Microfluidic Extensional Rheometer (ADMiER) utilises micro litre volumes of liquid, with viscosities as low as that of water, to create valid and observable extensional flows, liquid bridges that pinch off due to capillary forces in this case. ADMiER allows the study fluids that have been beyond conventional methods and also study more subtle fluid properties. We can observe polymeric fluids with solvent viscosities far below those previously testable, accentuating elastic effects. Also, it has enabled the testing of aqueous solutions of living motile particles, which significantly change fluid properties, opening up the potential for diagnostic applications.

  6. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  7. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  8. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    PubMed

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.

  9. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1989-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  10. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1992-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  11. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  12. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    DOEpatents

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  13. Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier

    2015-06-01

    The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.

  14. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  15. The Use of the Ex Vivo Chandler Loop Apparatus to Assess the Biocompatibility of Modified Polymeric Blood Conduits

    PubMed Central

    Slee, Joshua B.; Alferiev, Ivan S.; Levy, Robert J.; Stachelek, Stanley J.

    2014-01-01

    The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits. PMID:25178087

  16. Characterization of photochemical-cured acrylates with calorimetric methods

    NASA Astrophysics Data System (ADS)

    Strehmel, Bernd; Anwand, Dirk; Wetzel, Henrik

    1994-05-01

    Radical polymerization kinetics of different kinds of diacrylates was investigated in linear polymers (binders) by using an isoperibolic calorimeter. For all experiments benzoin compounds were added as photoinitiator. The ester between acrylic acid and bisphenol-A-diglycidylether (DDGDA) and hexamethylenediacrylate were used as monomers. Both compounds have a high limiting conversion and a large polymerization rate in the binders investigated. Additionally, three kinds of termination reaction were observed: first order, second order, and primary radical termination. The last reaction was mainly found in the case of using the hexamethylenediacrylate monomer. The materials were investigated by DSC to determine the phase behavior. Both monomers form one phase with the binder (polymethylmethacrylate, PMMA). In contrast, a phase separation was observed between the crosslinked hexamethylenediacrylate and PMMA. Formations of semi- interpenetrating networks were found in the case of crosslinked DDGDA and PMMA. The glass transition temperatures were determined at different polymerization degrees also. The obtained results indicate that most of the network formation occurred in the glassy state. Fluorescence probe technique was applied to study changes in the mobility during network formation. The fluorescence probe crystal violet (CV) was used because this compound shows a strong free volume-dependent fluorescence. It was found that in the glassy state, where most of networks were formed, a large variation of the molecular mobility was observed during irradiation of the photopolymers. This result was in agreement with the observations during DSC experiments.

  17. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  18. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites

    PubMed Central

    Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.

    2011-01-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538

  19. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    PubMed

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.

  20. Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2017-09-07

    A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.

  1. Multifunctional Materials Held in Boston, Massachusetts on November 29- December 1 1989. Materials Research Proceedings. Volume 175

    DTIC Science & Technology

    1991-02-01

    MULTIFUNCTIONAL MATERIALS *MULTIFUNCTIONAL MOLECULAR AND POLYMERIC MATERIALS FOR NONLINEAR OPTICS AND PHOTONICS 79 Paras N. Prasad ENHANCEMENT OF...in solution 121. Only the ortho photo-Fries product can be formed for the polymer as well as for 5 since the para positions in both cases are blocked...fhII11111 Itf 111111111ll1111111II 111 111 , 9 MULTIFUNCTIONAL MOLECULAR AND POLYMERIC MATERIALS FOR NONLINEAR OPTICS AND PHOTONICS PARAS N. PRASAD

  2. Color Stability Behavior of Methacrylate-based Resin Composites Polymerized with Light-emitting Diodes and Quartz-Tungsten-Halogen.

    PubMed

    Sabatini, C

    2015-01-01

    Despite significant developments in improving the optical properties of resin composite materials, their color stability remains a challenge. This study aimed to evaluate the shade stability of light-polymerized, methacrylate-based resin composites with different filler particle composition (microfill, minifill, nanohybrids, and microhybrids) polymerized with quartz-tungsten-halogen (QTH) and light-emitting diodes (LED). Composite discs were fabricated from Tetric EvoCeram, Premise, Artiste, and Beautifil II (nanohybrids); Filtek Supreme Plus and Vit-l-escence (microhybrids); Heliomolar (microfill); and Estelite Sigma Quick (minifill) using a Teflon mold. The specimens were irradiated either with QTH (Elipar 2500; 600 mW/cm(2)) for 40 seconds or with LED (Bluephase G2; 1200 mW/cm(2)) for 20 seconds. Color parameters were measured with a colorimeter before and after polymerization and at 24 hours, one week, one month, and three months. Color change was calculated among the different storage periods. There was a significant effect of the composite, time, and their interaction (p<0.001) but no effect of the polymerization unit on the color stability. Color changes immediately after polymerization and at 24 hours (4.22 and 3.88 for LED; and 4.08 and 3.82 for QTH) were not significantly different from each other but were both significantly higher than changes after one week (0.96 and 0.78), one month (1.12 and 1.02), and three months (1.27 and 1.11) for LED and QTH, respectively (p<0.001). Color changes were observed for all the materials that were dependent on the type of composite but not on the polymerization unit. These color shifts took place primarily immediately after polymerization and after 24 hours and were additive in nature.

  3. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  4. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  5. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  6. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    PubMed Central

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  7. Evaluation of polymerization-dependent changes in color and translucency of resin composites using two formulae.

    PubMed

    Paravina, Rade D; Kimura, Mikio; Powers, John M

    2005-09-01

    The aim of this study was to evaluate polymerization-dependent changes in the color and translucency parameter (TP) of resin composites and to compare results obtained using two color-difference metric formulae, CIELAB and CIEDE 2000. Twenty-eight shades of commercial resin composites were analyzed. Specimens (n = 5) were made as discs, 11 mm in diameter and 2-mm thick, using cylindrical molds. Data were collected before and after composite polymerization, using a spectrophotometer. In regard to in vitro color changes of composites (DeltaE*) a DeltaE76 of 3.7 or greater was considered to be an unacceptable color change. Data were analyzed by analysis of variance, and Fisher's protected least significant difference (PLSD) intervals for comparison of means were calculated at the 0.05 level of significance. Mean polymerization-dependent differences in color were DeltaE00 = 4.48 (2.11) and DeltaE76 = 5.51 (2.68). The DeltaTP00 range was 2.57, while the DeltaTP76 range was 2.89. Mean polymerization-dependent differences in translucency were DeltaTP00 = 0.84 (0.77) and DeltaTP76 = 0.87 (0.76). Analysis of variance showed significant differences among composites, shades, and their interactions (P < 0.0001; power = 1.0). Regression equations and r values for the two color-difference formulae and all evaluated TP values showed very strong correlation. In conclusion, within the limitations of this study, polymerization-dependent changes in color and translucency were highly varied. The majority of shades showed polymerization-dependent differences in color higher than the DeltaE76 = 3.7. The TP generally increased after light polymerization by light activation. The very strong correlation (r > 0.97) between the two color-difference formulae indicates that the limitations of the CIELAB system do not appear to be a problem when evaluating composites; however, recorded differences between DeltaE76 and DeltaE00 values stress the importance of data conversion.

  8. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.

    PubMed Central

    Root, D. D.; Reisler, E.

    1992-01-01

    Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380

  9. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    PubMed

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  10. Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations

    DOE PAGES

    Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...

    2016-06-22

    Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less

  11. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology

    PubMed Central

    Golker, Kerstin; Karlsson, Björn C. G.; Rosengren, Annika M.; Nicholls, Ian A.

    2014-01-01

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design. PMID:25391043

  12. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology.

    PubMed

    Golker, Kerstin; Karlsson, Björn C G; Rosengren, Annika M; Nicholls, Ian A

    2014-11-10

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  13. The Evaluation of 3-Dimensional Polymerization Changes of a Denture Resin Utilizing Injection Molding with Water Bath Polymerization and Microwave Polymerization

    DTIC Science & Technology

    2016-06-01

    bases, in The International journal of prosthodontics. 1990. p. 528-37. 8. Gharechahi, J., et al., Dimensional Changes of Acrylic Resin Denture Bases...by Different Techniques. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 22    14. Yannikakis, S., et al...Prosthodontic Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in partial fulfillment of the

  14. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    PubMed

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  15. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats

    NASA Astrophysics Data System (ADS)

    Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien

    2015-02-01

    In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.

  16. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Song, Yang

    2016-06-01

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  17. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    PubMed

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r < 0.3). These results indicate the important contribution of polymeric proanthocyanidins to red wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  18. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  19. The kinetics of polyurethane structural foam formation: Foaming and polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.

    We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less

  20. The kinetics of polyurethane structural foam formation: Foaming and polymerization

    DOE PAGES

    Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.; ...

    2017-02-15

    We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less

  1. Apparatus and method for oxidation and stabilization of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2009-05-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  2. Apparatus and method for oxidation and stabilization of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-08-31

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  3. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    NASA Astrophysics Data System (ADS)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  4. Factorial Design Based Multivariate Modeling and Optimization of Tunable Bioresponsive Arginine Grafted Poly(cystaminebis(acrylamide)-diaminohexane) Polymeric Matrix Based Nanocarriers.

    PubMed

    Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B

    2017-01-03

    Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.

  5. Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations

    PubMed Central

    Weinkam, Patrick; Sali, Andrej

    2014-01-01

    Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820

  6. Multifractal detrended fluctuation analysis of intensity time series of photons scattered by tracer particles within a polymeric gel

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Haro-Pérez, Catalina; Moreno-Torres, L. Rebeca; Ramirez-Rojas, Alejandro

    2018-01-01

    Some properties of spatial confinement of tracer colloidal particles within polyacrylamide dispersions are studied by means of the well-known dynamic light scattering (DLS) technique. DLS allows obtaining sequences of elapsed times of scattered photons. In this work, the aqueous polyacrylamide dispersion has no crosslinking and the volume fraction occupied by the tracer particles is 0.02 %. Our experimental setup provides two sequences of photons scattered by the same scattering volume that corresponds to two simultaneous experiments (Channel A and Channel B). By integration of these sequences, the intensity time series are obtained. We find that both channels are antipersistent with Hurst exponent, H ∼0.43 and 0.36, respectively. The antipersistence of the intensity time series indicates a subdiffusive dynamics of the tracers in the polymeric network, which is in agreement with the time dependence of the tracer's mean square displacement.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jiwen; Song, Yang, E-mail: yang.song@uwo.ca; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the solemore » product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.« less

  8. Reactive centre loop mutants of α-1-antitrypsin reveal position-specific effects on intermediate formation along the polymerization pathway

    PubMed Central

    Haq, Imran; Irving, James A.; Faull, Sarah V.; Dickens, Jennifer A.; Ordóñez, Adriana; Belorgey, Didier; Gooptu, Bibek; Lomas, David A.

    2013-01-01

    The common severe Z mutation (E342K) of α1-antitrypsin forms intracellular polymers that are associated with liver cirrhosis. The native fold of this protein is well-established and models have been proposed from crystallographic and biophysical data for the stable inter-molecular configuration that terminates the polymerization pathway. Despite these molecular ‘snapshots’, the details of the transition between monomer and polymer remain only partially understood. We surveyed the RCL (reactive centre loop) of α1-antitrypsin to identify sites important for progression, through intermediate states, to polymer. Mutations at P14P12 and P4, but not P10P8 or P2P1′, resulted in a decrease in detectable polymer in a cell model that recapitulates the intracellular polymerization of the Z variant, consistent with polymerization from a near-native conformation. We have developed a FRET (Förster resonance energy transfer)-based assay to monitor polymerization in small sample volumes. An in vitro assessment revealed the position-specific effects on the unimolecular and multimolecular phases of polymerization: the P14P12 region self-inserts early during activation, while the interaction between P6P4 and β-sheet A presents a kinetic barrier late in the polymerization pathway. Correspondingly, mutations at P6P4, but not P14P12, yield an increase in the overall apparent activation energy of association from ~360 to 550 kJ mol−1. PMID:23659468

  9. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    NASA Astrophysics Data System (ADS)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  10. Kinetics of waterborne fluoropolymers prepared by one-step semi-continuous emulsion polymerization of chlorotrifluoroethylene, vinyl acetate, butyl acrylate and Veova 10

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.

    2018-01-01

    Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.

  11. A theory for fracture of polymeric gels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  12. Chemical Polymerization and Langmuir-Blodgett Techniques. 2. The Polymerization of Monolayers of 3-Substituted Pyrroles

    DTIC Science & Technology

    1993-09-12

    the liquid -air interface could be monitored by changes in the surface area. Deposition of monolayers by Langmuir - Blodgett technique is possible and...polymerization product from the LB trough in chloroform solution. Figure 10 Langmuir - Blodgett transfer of poly (3-hexadecyl pyrrole) onto hydrophobized glass... Langmuir - Blodgett Techniques, 2: The Polymerization of Monolayers of 3-Substituted Pyrroles by W.M. Sigmund, C. Marestin, S. Keil, H. Zhou and R.S

  13. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    PubMed

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  15. Two-dimensional inverse opal hydrogel for pH sensing.

    PubMed

    Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn

    2014-12-07

    A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated.

  16. Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: Insights from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilymis, D. A.; Ispas, S., E-mail: simona.ispas-crouzet@umontpellier.fr; Delaye, J.-M.

    2016-07-28

    We have carried out classical molecular dynamics simulations in order to get insight into the atomistic mechanisms of the deformation during nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass. In terms of the glass hardness, we have found that the primary factor affecting the decrease of hardness after irradiation is depolymerization rather than free volume, and we argue that this is a general trend applicable to other borosilicate glasses with similar compositions. We have analyzed the changes of the short- and medium-range structures under deformation and found that the creation of oxygen triclusters is an importantmore » mechanism in order to describe the deformation of highly polymerized borosilicate glasses and is essential in the understanding of the folding of large rings under stress. We have equally found that the less polymerized glasses present a higher amount of relative densification, while the analysis of bond-breaking during the nanoindentation has showed that shear flow is more likely to appear around sodium atoms. The results provided in this study can be proven to be useful in the interpretation of experimental results.« less

  17. Silicate melts: The “anomalous” pressure dependence of the viscosity

    NASA Astrophysics Data System (ADS)

    Bottinga, Y.; Richet, P.

    1995-07-01

    The decrease of the specific volume, when the extent of polymerization diminishes, is a cause of the pressure sensitivity of the viscosity of silicate melts. This effect can be explained by means of the Adam and Gibbs (1965) theory, taking into account the pressure dependence of the degree of polymerization of the melt and its influence on the configurational entropy. At temperatures close to their glass transitions, liquid silica and SiO2sbnd Na2O melts have configurational entropies that are probably due to the mixing of their bridging and nonbridging oxygen atoms.

  18. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.

    1993-12-21

    High-temperature electrically conducting polymers are described. The in situ reactions: AgNO[sub 3] + RCHO [yields] Ag + RCOOH and R[sub 3]M [yields] M + 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R[sub 3]M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrone.

  19. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.

    1993-01-01

    High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.Ag.degree.+RCOOH and R.sub.3 M.fwdarw.M.degree.+3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.

  20. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, Raimond; Jorgensen, Betty S.; Liepins, Leila Z.

    1989-01-01

    High-temperature electrically conducting polymers. The in situ reactions: AgNO.sub.3 +RCHO.fwdarw.AG.sup.0 +RCOOH and R.sub.3 M.fwdarw.M.sup.0 3R, where M=Au or Pt have been found to introduce either substantial bulk or surface conductivity in high-temperature polymers. The reactions involving the R.sub.3 M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone.

  1. Process for introducing electrical conductivity into high-temperature polymeric materials

    DOEpatents

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.

    1987-08-27

    High-temperature electrically conducting polymers. The in situ reactions: AgNO/sub 3/ + RCHO ..-->.. Ag/sup 0/ + RCOOH and R/sub 3/M ..-->.. M/sup 0/ + 3R, where M = Au or Pt have been found to introduce either substantial bulk or surface conductivity in high- temperature polymers. The reactions involving the R/sub 3/M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone. 3 tabs.

  2. Evolution of material properties during free radical photopolymerization

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry

    2018-03-01

    Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress of a thick sample caused by volume shrinkage during photopolymerization. Changes in the conversion degree gradient and the internal stress during photopolymerization are determined using FEM simulation. The model can be extended to many photocuring processes, such as photopolymerization 3D printing, surface coating and automotive part curing processes.

  3. Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer

    NASA Astrophysics Data System (ADS)

    Jallapuram, Raghavendra; Naydenova, Izabela; Byrne, Hugh J.; Martin, Suzanne; Howard, Robert; Toal, Vincent

    2008-01-01

    Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607 cm-1 corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm-1 corresponding to the carbon-carbon double bond of methylenebisacrylamide using Raman spectroscopy. To study the dependence of the polymerization rate on intensity and to find the dependence parameter, the polymerization rate constant is measured at different intensities. A comparison with a commercially available photopolymer shows that the polymerization rate in this photopolymer is much faster.

  4. Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.

    PubMed

    Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun

    2016-01-01

    Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.

  5. Cell mechanics: a dialogue.

    PubMed

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K; Sun, Sean X

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  6. Cell mechanics: a dialogue

    PubMed Central

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K; Sun, Sean X

    2017-01-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined. PMID:28129208

  7. Cell mechanics: a dialogue

    NASA Astrophysics Data System (ADS)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  8. Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties.

    PubMed

    Lu, Tao; Zhu, Shenmin; Ma, Jun; Lin, Jinyou; Wang, Wanlin; Pan, Hui; Tian, Feng; Zhang, Wang; Zhang, Di

    2015-10-01

    Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM. The corresponding reflection peaks red-shift with increase in temperature-an opposite phenomenon to previous studies, demonstrating a thermoresponsive photonic property. This unique phenomenon is caused by the refractive index change due to the volume change of PNIPAM during the temperature rising. This work sets up an efficient strategy for the fabrication of stimuli-responsive photonic materials with hierarchical structures toward extensive applications in science and technology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoresponsive Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Lygeraki, M. I.; Lakiotaki, K.; Varda, M.; Athanassiou, A.; Farsari, M.; Fotakis, C.

    2007-03-01

    Photochromic spiropyran molecules are utilized as additives for the development of polymer surfaces whose wetting characteristics can reversibly respond to irradiation with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers, which is reversed upon green laser irradiation. Micropatterning of the photochromic-polymer films using soft lithography or photo-polymerization techniques affects their wettability towards a more hydrophobic or more hydrophilic behavior depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. The light-induced wettability variations of the structured surfaces are enhanced by up to a factor of three as compared to those on the flat surfaces. This enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.

  10. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    PubMed

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization

    NASA Astrophysics Data System (ADS)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-05-01

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting molecules within a crowded microenvironment. The excluded volume effect (arising from crowding) increases the effective concentration of actin, which increases the reaction rate, while the microviscosity does not increase sufficiently to lower the reaction rate. This study reveals finer details about the mechanism of MMC.

  12. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization.

    PubMed

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-04-30

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting molecules within a crowded microenvironment. The excluded volume effect (arising from crowding) increases the effective concentration of actin, which increases the reaction rate, while the microviscosity does not increase sufficiently to lower the reaction rate. This study reveals finer details about the mechanism of MMC.

  13. Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Bickauskaite, G.; Gertus, T.; Danilevicius, P.; Paipulas, D.; Rutkauskas, M.; Gilbergs, H.; Baltriukiene, D.; Bukelskis, L.; Širmenis, R.; Bukelskiene, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-04-01

    A tightly focused ultrafast pulsed laser beam is guided into the volume of the photosensitive material and induces nonlinear photomodification. By translating the sample, the position of the focus is changed relatively, thus point-by-point complex 3D structures can be written inside the bulk. In this report, we present a Laser Two-Photon Polymerization (LTPP) setup for three-dimensional micro/nanostructuring for applications in photonics, microoptics, micromechanics, microfluidics and biomedicine. This system enables fabrication of functional devices over a large area (up to several cm in lateral size) with reproducible sub-micrometer resolution (up to 200 nm). In our experiments a Yb:KGW active media laser oscillator (75 fs, 200 kW, 515 nm frequency doubled, 80 MHz) was used as an irradiation source. The sample was mounted on XYZ wide range linear motor driven positioning stages having 10 nm positioning resolution. These stages enable an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support a linear scanning speed of up to 300 mm/s. Control of all the equipment was automated via custom made computer software "3D-Poli" specially designed for LTPP applications. The model of the structure can be imported as CAD file, this enables rapid and flexible structuring out of various photopolymers like ORMOCERs, ORMOSILs, acrylates and PEGDAs which are commonly used in conventional UV mask, nanoimprint and μ-stereolithographies. In this paper, we demonstrate polymeric microstructures fabricated over a large area on glass, plastic and metal substrates. This opens a way to produce functional devices like photonic crystals, microlenses, micromechanic and microfluidic components and artificial scaffolds as templates for cell growth. Additionally, results of primary myogenic stem cells expanding on microfabricated polymeric scaffolds are provided. Cell proliferation tests show the material and structure to be biocompatible for the biomedical practice.

  14. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly.

    PubMed

    Andreu, J M; Wagenknecht, T; Timasheff, S N

    1983-03-29

    The polymerization of purified tubulin-colchicine complex, which results in polymers different from microtubules under microtubule-promoting conditions, has been characterized. It proceeds as a nucleated condensation polymerization, requires Mg2+, and is inhibited by small concentrations of Ca2+. Polymerization requires GTP binding, but GDP is inhibitory. The GTPase activity proceeds, but it is unlinked to polymerization. The thermodynamic characteristics of the growth reaction, namely, the apparent changes of free energy, enthalpy, entropy, heat capacity, and preferential interaction with H+ and Mg2+, are very similar to those of microtubule assembly. It is proposed that the interactions responsible for the two types of polymerization are very similar and that the molecular mechanism of microtubule inhibition by colchicine may consist in a drug-induced distortion of the normal protomer bonding geometry.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Justin; Rzayev, Javid

    Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. Themore » resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.« less

  16. Novel polymeric monolith materials with a β-cyclodextrin-graphene composite for the highly selective extraction of methyl jasmonate.

    PubMed

    Yu, Xinhong; Ling, Xu; Zou, Li; Chen, Zilin

    2017-04-01

    A novel polymeric monolith column with a  β-cyclodextrin-graphene composite was prepared for extraction of methyl jasmonate. A simple, sensitive, and effective polymeric monolith microextraction with high-performance liquid chromatography method has been presented for the determination. To carry out the best microextraction efficiency, several parameters such as sample flow rate, sample volume, and sample pH value were systematically optimized. In addition, the method validation showed a wide linear range of 5-2000 ng/mL, with a good linearity and low limits of detection for methyl jasmonate. The proposed method was successfully applied for the determination of methyl jasmonate in wintersweet flowers with recoveries of 90.67%. The result was confirmed by high-performance liquid chromatography with mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Michael B.; Van Horn, J. David; Wu, Fei

    The synthesis of microporous polymers generally requires postpolymerization modification via hyper-cross-linking to trap the polymeric network in a state with high void volume. An alternative approach utilizes rigid, sterically demanding monomers to inhibit efficient packing, thus leading to a high degree of free volume between polymer side groups and main chains. Herein we combine polymers of intrinsic microporosity with polymerization-induced microphase separation (PIMS), a versatile methodology for the synthesis of nanostructured materials that can be rendered mesoporous. Copolymerization of various styrenic monomers with divinylbenzene in the presence of a poly(lactide) terminated with a chain-transfer agent (PLA-CTA) results in kinetic trappingmore » of a microphase-separated state. Subsequent etching of PLA provides a bicontinuous mesoporous network. Using equilibrium and kinetic nitrogen sorption experiments as well as positron annihilation lifetime spectroscopy (PALS), we demonstrate that variations in the steric characteristics of the styrenic monomer impart the network with microporosity, resulting in hierarchically (meso and micro) porous materials. Additionally, structure–property relationships of the styrenic monomer with total surface area and pore volume indicate that the glass transition temperature (Tg) of the corresponding styrenic homopolymers provides a reasonable measure of the steric interactions and resultant microporosity in these systems. Finally, PALS provides insight into micro- and mesoscopic void volume differences between porous monoliths containing either tert-butyl or TMS-modified styrenic monomers compared to the parent, unmodified styrene.« less

  18. Research regarding biodegradable properties of food polymeric products under microorganism activity

    NASA Astrophysics Data System (ADS)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  19. Distribution of Particles, Small Molecules and Polymeric Formulation Excipients in the Suprachoroidal Space after Microneedle Injection

    PubMed Central

    Chiang, Bryce; Venugopal, Nitin; Edelhauser, Henry F.; Prausnitz, Mark R.

    2016-01-01

    The purpose of this work was to determine the effect of injection volume, formulation composition, and time on circumferential spread of particles, small molecules and polymeric formulation excipients in the suprachoroidal space (SCS) after microneedle injection into New Zealand White rabbit eyes ex vivo and in vivo. Microneedle injections of 25–150 μL Hank’s Balanced Salt Solution (HBSS) containing 0.2 μm red-fluorescent particles and a model small molecule (fluorescein) were performed in rabbit eyes ex vivo, and visualized via flat mount. Particles with diameters of 0.02 – 2 μm were co-injected into SCS in vivo with fluorescein or a polymeric formulation excipient: fluorescein isothiocyanate (FITC)-labeled Discovisc or FITC-labeled carboxymethyl cellulose (CMC). Fluorescent fundus images were acquired over time to determine area of particle, fluorescein and polymeric formulation excipient spread, as well as their co-localization. We found that fluorescein covered a significantly larger area than co-injected particles when suspended in HBSS, and that this difference was present from 3 min post-injection onwards. We further showed that there was no difference in initial area covered by FITC-Discovisc and particles; the transport time (i.e., the time until the FITC-Discovisc and particle area began dissociating) was 2 d. There was also no difference in initial area covered by FITC-CMC and particles; the transport time in FITC-CMC was 4 d. We also found that particle size (20 nm – 2 μm) had no effect on spreading area when delivered in HBSS or Discovisc. We conclude that (i) the area of particle spread in SCS during injection generally increased with increasing injection volume, was unaffected by particle size and was significantly less than the area of fluorescein spread, (ii) particles suspended in low-viscosity HBSS formulation were entrapped in the SCS after injection, whereas fluorescein was not and (iii) particles co-injected with viscous polymeric formulation excipients co-localized near the site of injection in the SCS, continued to co-localize while spreading over larger areas for 2 – 4 days, and then no longer co-localized as the polymeric formulation excipients were cleared within 1 – 3 weeks and the particles remained largely in place. These data suggest that particles encounter greater barriers to flow in SCS compared to molecules and that co-localization of particles and polymeric formulation excipients allow spreading over larger areas of the SCS until the particles and excipients dissociate. PMID:27742547

  20. Distribution of particles, small molecules and polymeric formulation excipients in the suprachoroidal space after microneedle injection.

    PubMed

    Chiang, Bryce; Venugopal, Nitin; Edelhauser, Henry F; Prausnitz, Mark R

    2016-12-01

    The purpose of this work was to determine the effect of injection volume, formulation composition, and time on circumferential spread of particles, small molecules, and polymeric formulation excipients in the suprachoroidal space (SCS) after microneedle injection into New Zealand White rabbit eyes ex vivo and in vivo. Microneedle injections of 25-150 μL Hank's Balanced Salt Solution (HBSS) containing 0.2 μm red-fluorescent particles and a model small molecule (fluorescein) were performed in rabbit eyes ex vivo, and visualized via flat mount. Particles with diameters of 0.02-2 μm were co-injected into SCS in vivo with fluorescein or a polymeric formulation excipient: fluorescein isothiocyanate (FITC)-labeled Discovisc or FITC-labeled carboxymethyl cellulose (CMC). Fluorescent fundus images were acquired over time to determine area of particle, fluorescein, and polymeric formulation excipient spread, as well as their co-localization. We found that fluorescein covered a significantly larger area than co-injected particles when suspended in HBSS, and that this difference was present from 3 min post-injection onwards. We further showed that there was no difference in initial area covered by FITC-Discovisc and particles; the transport time (i.e., the time until the FITC-Discovisc and particle area began dissociating) was 2 d. There was also no difference in initial area covered by FITC-CMC and particles; the transport time in FITC-CMC was 4 d. We also found that particle size (20 nm-2 μm) had no effect on spreading area when delivered in HBSS or Discovisc. We conclude that (i) the area of particle spread in SCS during injection generally increased with increasing injection volume, was unaffected by particle size, and was significantly less than the area of fluorescein spread, (ii) particles suspended in low-viscosity HBSS formulation were entrapped in the SCS after injection, whereas fluorescein was not and (iii) particles co-injected with viscous polymeric formulation excipients co-localized near the site of injection in the SCS, continued to co-localize while spreading over larger areas for 2-4 days, and then no longer co-localized as the polymeric formulation excipients were cleared within 1-3 weeks and the particles remained largely in place. These data suggest that particles encounter greater barriers to flow in SCS compared to molecules and that co-localization of particles and polymeric formulation excipients allows spreading over larger areas of the SCS until the particles and excipients dissociate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Radiation-induced polymerization of glass forming systems. VI. Polymerization rate at higher conversion in binary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-08-01

    The effect of temperature and composition on the inflection point in the time-conversion curve and the saturated conversion was investigated in the gamma -radio-induced radical polymerization of binary systems consisting of a glass- forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA) -triacetin and hydroxyethyl methacrylate (HEMA) --propylene glycol systems, the time-conversion curve has an inflection point at polymerization temperatures between T/sub vm/(T/sub v/ of monomer system) and T/sub vp/ (T/sub v/ of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. T/submore » v/ was found to be 30 to 50 deg C higher than T/sub g/ (glass transition temperature) and a monotonic function of composition (monomer -- polymer -- solvent). The acceleration effect continued to 100% conversion above T/sub vp/, and no acceleration effect was observed below T/sub vm/. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between T/sub gm/ (T/sub g/ of monomer system) and T/sub gp/(T of polymer system). T/sub g/ was also a monotonic function of composition. No saturation in conversion was observed above T/sub gp/ , and no polymerization occurred below T/sub gm/. In the polymerization of completely heterogeneous systems such as HEMA-dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% sbove T/sub g/ of pure HEMA, and no polymerization occurred below this temperature in this system. (auth)« less

  2. Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation

    PubMed Central

    Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François

    2017-01-01

    Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036

  3. Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.

    PubMed

    Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T

    2007-03-30

    Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.

  4. Monomer volume fraction profiles in pH responsive planar polyelectrolyte brushes

    DOE PAGES

    Mahalik, Jyoti P.; Yang, Yubo; Deodhar, Chaitra V.; ...

    2016-03-06

    Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion-pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics-based approach based on these theories for the predictionmore » and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface-initiated atom transfer radical polymerization.« less

  5. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  6. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.

  7. Polymerization-Incompetent Uromodulin in the Pregnant Stroke-Prone Spontaneously Hypertensive Rat

    PubMed Central

    Mary, Sheon; Small, Heather Yvonne; Siwy, Justyna; Mullen, William; Giri, Ashok

    2017-01-01

    The kidney is centrally involved in blood pressure regulation and undergoes extensive changes during pregnancy. Hypertension during pregnancy may result in an altered urinary peptidome that could be used to indicate new targets of therapeutic or diagnostic interest. The stroke-prone spontaneously hypertensive rat (SHRSP) is a model of maternal chronic hypertension. Capillary electrophoresis-mass spectrometry was conducted to interrogate the urinary peptidome in SHRSP and the control Wistar–Kyoto strain at three time points: prepregnancy and gestational days 12 and 18. The comparison within and between the Wistar–Kyoto and SHRSP peptidome at all time points detected 123 differentially expressed peptides (fold change >1.5; P<0.05). Sequencing of these peptides identified fragments of collagen α-chains, albumin, prothrombin, actin, serpin A3K, proepidermal growth factor, and uromodulin. Uromodulin peptides showed a pregnancy-specific alteration in SHRSP with a 7.8-fold (P<0.01) and 8.8-fold (P<0.05) increase at gestational days 12 and 18, respectively, relative to the Wistar–Kyoto. Further investigation revealed that these peptides belonged to the polymerization-inhibitory region of uromodulin. Two forms of uromodulin (polymerization competent and polymerization incompetent) were found in urine from both Wistar–Kyoto and SHRSP, where the polymerization-incompetent form was increased in a pregnancy-specific manner in SHRSP. Nifedipine-treated pregnant SHRSP showed only polymerization-competent uromodulin, indicating that calcium may be mechanistically involved in uromodulin polymerization. This study highlights, for the first time, a potential role of uromodulin and its polymerization in hypertensive pregnancy. PMID:28348009

  8. Color and translucency in silorane-based resin composite compared to universal and nanofilled composites.

    PubMed

    Pérez, María M; Ghinea, Razvan; Ugarte-Alván, Laura I; Pulgar, Rosa; Paravina, Rade D

    2010-01-01

    The purpose of this study was to determine the optical properties, color and translucency, of the new silorane-based resin composite and to compare it to universal dimethacrylate-based composites. Six dimethacrylate-based resin composites and one silorane-based resin composite (all A2 shade) were studied. Color of non-polymerized and polymerized composites was measured against white and black backgrounds using a spectroradiometer. Changes in color (ΔE*(ab)), translucency (ΔTP) and color coordinates (ΔL*, Δa* and Δb*) were calculated for each resin composite. Results were evaluated using a one-way ANOVA, a Tukey's test and a t-test. The polymerization-dependent ΔE*(ab) ranged from 4.7 to 9.1, with the smallest difference for the silorane-based resin composite. The color changes of silorane-based composite were due to the changes of coordinates Δa* and Δb*. However, for the dimethacrylate-based composites, the color changes mainly originated by ΔL*and Δb*. The silorane composite exhibited the smallest TP values. Tukey's test confirmed significant statistical differences (p<0.05) between mean TP values of Filtek Silorane and each brand of dimethacrylate-based composites before and after polymerization. The new silorane-based restorative system showed different optical properties compared to clinically successful dimethacrylate composites. The silorane composite exhibited better polymerization-dependent chromatic stability, and a lower translucency compared to other tested products. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    PubMed

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Membranes with artificial free-volume for biofuel production

    PubMed Central

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  11. Membranes with artificial free-volume for biofuel production

    NASA Astrophysics Data System (ADS)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  12. Membranes with artificial free-volume for biofuel production

    DOE PAGES

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; ...

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the termmore » artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.« less

  13. Evaluation of Photopolymerization Kinetics by Means of Transmittance Measurements

    NASA Astrophysics Data System (ADS)

    Bovesecchi, G.; Coppa, P.; Armellin, E.; Cerroni, L.

    2018-04-01

    Polymeric resins are widely used for dental reconstruction, and most resins use camphorquinone as activator of the polymerization reaction, through the absorption of light at a defined wavelength range (from 400 nm to 460 nm). During the photopolymerization curing, transparency of these resins changes and transmittance variation can be detected by photodiode and bolometer measurements. This change can be used as an index of the reaction rate, and the kinetic parameter k (reaction rate) can be evaluated from transmittance data by means of nonlinear regression. The relation between k and the light intensity impinging on the resin sample can thus be obtained. In the present work, tests were carried out using the resin Enamel Plus HFO GE2. Results reveal the presence of two different polymerization reactions at two different intensity ranges. The obtained k values were used to predict the most suited curing times for different light intensities. The proposed methodology can be applied to different dental reconstruction materials, provided that the material is partially transparent and that its transparency changes during the polymerization reaction.

  14. Size matters: smart copolymeric nanohydrogels: synthesis and applications.

    PubMed

    Katime, Issa; Guerrero, Luis Guillermo; Mendizabal, Eduardo

    2012-01-01

    In this work the synthesis of smart nanoparticles capable of respond to external stimulus (pH and temperature variations) is reported. To avoid post-polymerization modification, functionalized monomers able to respond to pH and temperature changes were and then polymerized. The synthesized monomers have the capability for coupling with folic acid which is the target molecule. For this reason their polymers can be used as targeted drug delivery systems. Smart polymeric nanoparticles were prepared by direct and inverse microemulsion polymerization of the synthesized monomers. The nanoparticles were charged with drugs and their release kinetic was studied.

  15. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  16. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  17. Polymeric assemblies for sensitive colorimetric assays

    DOEpatents

    Charych, Deborah

    2000-01-01

    The presently claimed invention relates to polymeric assemblies which visibly change color in the presence of analyte. In particular, the presently claimed invention relates to liposomes comprising a plurality of lipid monomers, which comprises a polymerizable group, a hydrophilic head group and a hydrophobic tail group, and one or more ligands. Overall carbon chain length, and polymerizable group positioning on the monomer influence color change sensitivity to analyte concentrations.

  18. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-02-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  19. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.

    PubMed

    Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E

    2015-12-09

    Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and approaches that of the gas phase. The high sorption capacity and reversible dilation characteristics of the presented materials provide new directions for applications including gas sensors and gas separation membranes.

  20. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  1. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  2. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  3. Do low-shrink composites reduce polymerization shrinkage effects?

    PubMed

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.

  4. Request for Symposia Support: Advances in Olefin Polymerization Catalysis

    DTIC Science & Technology

    2014-11-24

    States Polyolefins, including polyethylene ( HDPE and LLDPE) ad polypropylene (PP), represent half of commercial polymers produced in the world...i.e. HDPE vs. UHMWPE) by simply changing the catalyst. Despite this success, the development of novel transition metal olefin polymerization

  5. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    PubMed Central

    Liu, Dong; Wang, Xue; Deng, Jinxing; Zhou, Chenglong; Guo, Jinshan; Liu, Peng

    2015-01-01

    The poor cycling stability of polyaniline (PANI) limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI) composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs), which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor. PMID:28347050

  6. Polymer-modified opal nanopores.

    PubMed

    Schepelina, Olga; Zharov, Ilya

    2006-12-05

    The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.

  7. Testing of Candidate Polymeric Materials for Compatibility with Pure Alternate Pretreat as Part of the Universal Waste Management System (UWMS)

    NASA Technical Reports Server (NTRS)

    Wingard, C. D.

    2018-01-01

    The Universal Waste Management System (UWMS) is an improved Waste Collection System for astronauts living and working in low Earth orbit spacecraft. Polymeric materials used in water recovery on International Space Station are regularly exposed to phosphoric acid-treated 'pretreated' urine. Polymeric materials used in UWMS are not only exposed to pretreated urine, but also to concentrated phosphoric acid with oxidizer before dilution known as 'pure pretreat.' Samples of five different polymeric materials immersed in pure pretreat for 1 year were tested for liquid compatibility by measuring changes in storage modulus with a dynamic mechanical analyzer.

  8. The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity

    NASA Astrophysics Data System (ADS)

    Lee, Yichao; Chang, Shuiping

    2017-05-01

    Spirogyra is a genus of widely distributed, large green fresh water algae. This study discovered that changes in salinity can induce Spirogyra fluviatilis to produce amounts of extracellular polymeric substance (EPS) when controlling other environmental conditions. If culturing S. fluviatilis with salinity greater than a 3.0‰ medium for 4 hours, the secretion EPS will be changed. And the level of polysaccharides and proteins, the primary components of EPS, is slightly increased in accordance with the increase in the salinity. But the proteins to polysaccharides ratio changes are not significantly

  9. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  10. Nanocomposite polymeric materials for high density optical storage

    NASA Astrophysics Data System (ADS)

    Criante, L.; Castagna, R.; Vita, F.; Lucchetta, D. E.; Simoni, F.

    2009-02-01

    We report the results of an extended investigation performed on composite polymeric materials with the aim of obtaining compounds suitable for holographic recording. In order to investigate the material properties a characterization of holographic reflection gratings at different writing wavelength (514.5, 457 and 405 nm) has been performed. The volume grating presents high diffraction efficiency (>60%), high sensitivity (>103 cm J-1) and refractive index modulation Δn≈0.01 even for writing wavelength in the blue range. We show that following a strategy of two basic components leading to phase separation during the photopolymerization process, most of the requirements for holographic data storage are achieved. The one that needs further improvement concerns long term mechanical stability.

  11. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  12. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE PAGES

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; ...

    2017-02-04

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  13. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    PubMed Central

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; Moon, Juhyuk; Monteiro, Paulo J. M.

    2017-01-01

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C3S-HVFA system and presented results consistent with previous literature. PMID:28772490

  14. Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2 + ion in water samples

    NASA Astrophysics Data System (ADS)

    Rajabi, Hamid Reza; Razmpour, Saham

    2016-01-01

    Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni2 + ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni2 + ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni2 + ion over other ions such as Na+, K+, Ag+, Co2 +, Cu2 +, Cd2 +, Hg2 +, Pb2 +, Zn2 +, Mn2 +, Mg2 +, Cr3 +, and Fe3 +. The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni2 + ion from different water samples.

  15. Use of the refractometer as a tool to monitor dietary formula concentration in gastric juice.

    PubMed

    Chang, W-K; Chen, M-Z; Chao, Y-C

    2002-12-01

    Critically ill patients do not always tolerate nasogastric tube feeding. Gastric residual volumes are widely used to evaluate feeding tolerance, but controversy exists about what constitutes the residual volume (diet formula or digestive juice). In this paper, we describe the use of the refractometer as a tool to monitor dietary formula concentration in gastric juice and evaluate gastric juice refractometry as a possible clinical application. Brix value (an index of the total solutes in solution) readings for polymeric diet at pH 1, 4, 7 and 8, and at 4 degrees C, 25 degrees C and 37 degrees C, and in fasting gastric juice were determined with a refractometer. We found that distilled water, minerals, and vitamins had low Brix values of 0+/-0, 1.2+/-0.1, and 0.4+/-0.1, respectively. On the other hand, because carbohydrate (17 g/100 ml), protein (5.3 g/100 ml), fat (4.1 g/100 ml), and full-strength polymeric diet had high concentrations of dissolved nutrients, they also had high Brix values (12.1+/-0.6, 6.5+/-0.1, 6.0+/-0.1, and 23.5+/-0.1, respectively). The Brix values of polymeric diet had a linear additive relationship with the diet formula concentration at various pHs, temperatures, and in the gastric juice. Brix value measurement can be used to monitor stomach dietary formula concentration. Such information can be obtained at the bedside and used to evaluate feeding-intolerant patients receiving enteral feeding.

  16. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  17. Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan

    2008-12-01

    A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).

  18. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    PubMed

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the main reasons for reduced sperm quality and fertility failure of cryopreserved spermatozoa. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Chromatic changes to artificial irises produced using different techniques

    NASA Astrophysics Data System (ADS)

    Bannwart, Lisiane Cristina; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Moreno, Amália; Pesqueira, Aldiéris Alves; Haddad, Marcela Filié; Andreotti, Agda Marobo; de Medeiros, Rodrigo Antonio

    2013-05-01

    Ocular prostheses are important determinants of their users' aesthetic recovery and self-esteem. Because of use, ocular prostheses longevity is strongly affected by instability of the iris color due to polymerization. The goal of this study is to examine how the color of the artificial iris button is affected by different techniques of artificial wear and by the application of varnish following polymerization of the colorless acrylic resin that covers the colored paint. We produce 60 samples (n=10) according to the wear technique applied: conventional technique without varnish (PE); conventional technique with varnish (PEV); technique involving a prefabricated cap without varnish (CA); technique involving a prefabricated cap with varnish (CAV); technique involving inverted painting without varnish (PI); and technique involving inverted painting with varnish (PIV). Color readings using a spectrophotometer are taken before and after polymerization. We submitted the data obtained to analyses of variance and Tukey's test (P<0.05). The color test shows significant changes after polymerization in all groups. The PE and PI techniques have clinically acceptable values of ΔE, independent of whether we apply varnish to protect the paint. The PI technique produces the least color change, whereas the PE and CA techniques significantly improve color stability.

  20. Impact of solvent selection on graft polymerization of acrylamide onto starch

    USDA-ARS?s Scientific Manuscript database

    The impact on polymer properties [molecular weight, monomer conversion, graft content, graft efficiency and anhydroglucose units between grafts (AGU/graft)] that result from changing the solvent for the graft co-polymerization of acrylamide onto starch from water to dimethylsulfoxide (DMSO) was eval...

  1. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

    PubMed

    Sebe, István; Kállai-Szabó, Barnabás; Kovács, Krisztián Norbert; Szabadi, Enikő; Zelkó, Romána

    2015-01-01

    The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.

  2. Chemical characterization of selected LDEF polymeric materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    Chemical characterization of selected polymeric materials which received exposure on the Long Duration Exposure Facility (LDEF) is reported. The specimens examined include silvered fluorinated ethylene propylene Teflon thermal blanket material, polysulfone, epoxy, polyimide matrix resin/graphite fiber reinforced composites, and several high performance polymer films. These specimens came from numerous LDEF locations, and thus received different environmental exposures. The results to date show no significant change at the molecular level in the polymer that survived exposure. Scanning electron and scanning tunneling microscopes show resin loss and a texturing of some specimens which resulted in a change in optical properties. The potential effect of a silicon-containing molecular contamination on these materials is addressed. The possibility of continued post-exposure degradation of some polymeric films is also proposed.

  3. Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report

    Treesearch

    Fred Hansen; Victoria Brun; Emily Keller; World Nieh; Theodore Wegner; Michael Meador; Lisa Friedersdorf

    2014-01-01

    Cellulose nanomaterials are primarily isolated from trees and other organisms; are naturally occurring polymeric materials that have demonstrated great promise for commercial applications across an array of industrial sectors; are renewable and environmentally sustainable; and have the potential to be produced in large volumes (i.e., millions of tons per year). The...

  4. Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.

    ERIC Educational Resources Information Center

    Mendoza-Bustos, S. A.; And Others

    1991-01-01

    Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)

  5. Effects of Bovine Polymerized Hemoglobin in Coagulation in Controlled Hemorrhagic Shock in Swine

    DTIC Science & Technology

    2005-01-01

    continuous blood pressure monitoring. A pulmonary artery catheter was also inserted. To mimic soft tissue injury, the rectus abdominus muscle was crushed in...volume by catheter withdrawal of blood over 15 min (;1.7 mL/kg/min). Time 0 designated initiation of the rectus abdominus crush and concomitant hemorrhage

  6. Experimental and FE displacement and polymerization stress of bonded restorations as a function of the C-Factor, volume and substrate stiffness.

    PubMed

    Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero

    2014-02-01

    To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relative toxicity of products of pyrolysis and combustion of polymeric materials using various test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1976-01-01

    Relative toxicity data for a large number of natural and synthetic polymeric materials are presented which were obtained by 11 pyrolysis and three flaming-combustion test methods. The materials tested include flexible and rigid polyurethane foams, different kinds of fabrics and woods, and a variety of commodity polymers such as polyethylene. Animal exposure chambers of different volumes containing mice, rats, or rabbits were used in the tests, which were performed over the temperature range from ambient to 800 C with and without air flow or recirculation. The test results are found to be sensitive to such variables as exposure mode, temperature, air flow and dilution, material concentration, and animal species, but relative toxicity rankings appear to be similar for many methods and materials. It is concluded that times to incapacitance and to death provide a more suitable basis for relative toxicity rankings than percent mortality alone, that temperature is the most important variable in the tests reported, and that variables such as chamber volume and animal species may not significantly affect the rankings.

  8. Preliminary Evaluation of Polyarylate Dielectric Films for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Fialla, Peter

    2002-01-01

    Polymeric materials are used extensively on spacecraft and satellites in electrical power and distribution systems, as thermal blankets and optical surface coatings, as well as mechanical support structures. The reliability of these systems when exposed to the harsh environment of space is very critical to the success of the mission and the safety of the crew in manned-flight ventures. In this work, polyarylate films were evaluated for potential use as capacitor dielectrics and wiring insulation for cryogenic applications. Two grades of the film were characterized in terms of their electrical and mechanical properties before and after exposure to liquid nitrogen (-196 C). The electrical characterization consisted of capacitance and dielectric loss measure Cents in the frequency range of 50 Hz to 100 kHz, and volume and surface resistivities. The mechanical measurements performed included changes in tensile (Young's modulus, elongation-at-break, and tensile strength) and structural properties (dimensional change, weight, and surface morphology). The preliminary results, which indicate good stability of the polymer after exposure to liquid nitrogen, are presented and discussed.

  9. The Effect of Surface Pressure on the Langmuir-Blodgett Polymerization of 2-Pentadecyl Aniline

    DTIC Science & Technology

    1992-05-19

    the mean molecular area was decreasing during the polymerization of 2-pentadecyl aniline . Also no polymer was found when the reaction was run at low...and polymer, we suppose, is the cause of Mma decrease during the polymerization of 2-pentadecyl aniline . Compared with the area of a long alkyl ...is put into changing its conformation at the surface. In the case of 2-pentadecyl aniline , the work done upon compressing the monolayer, we suppose, is

  10. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study

    PubMed Central

    Ju, Julia A.; Baek, Jin Hyen; Yalamanoglu, Ayla; Buehler, Paul W.; Gilkes, Daniele M.; Palmer, Andre F.

    2018-01-01

    A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage. PMID:29414985

  11. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  12. Relationship between Leakage Current and Pollution Deposits on the Surface of Polymeric Insulator

    NASA Astrophysics Data System (ADS)

    Miyake, Takuma; Seo, Yuya; Sakoda, Tatsuya; Otsubo, Masahisa

    Application of polymeric materials used for housing insulators is considered. However, because polymeric insulator is organic matter, the aged deterioration is anxious. The lifetime of polymeric insulator is influenced by environmental conditions such as ultraviolet, acid rain, and polluted deposits. A change of the surface condition of polymeric material causes the dry band arc discharge and the discharge may lower the insulation strength. To investigate the relationship between insoluble pollution and occurrence of dry band arc discharge, we performed a salt-fog test with ethylene vinyl acetate (EVA) samples. The results showed that the heavy erosion caused by frequent dry band arc discharges occurred even in the case of a light polluted condition. Additionally, a very characteristic increase tendency in leakage current with a period of about 5 h was observed during the mist period.

  13. Creation of biological module for self-regulating ecological system by the way of polymerization of composite materials in free space.

    PubMed

    Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E

    2004-01-01

    The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Recent advances and developments in composite dental restorative materials.

    PubMed

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  15. Recent Advances and Developments in Composite Dental Restorative Materials

    PubMed Central

    Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

    2011-01-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  16. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  17. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao

    2017-10-01

    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  18. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Sneed, Daniel; Smith, Quinlan; Billinghurst, Brant; May, Tim; White, Melanie; Dziubek, Kamil

    2016-12-01

    We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC2O4) pressurized to 7 GPa inside a diamond anvil cell (DAC). After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO2 even under ambient conditions with the sample exposed to air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part) with dispersed CO2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press) without the need for the dangerous and complex loading of toxic CO. A novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.

  19. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  20. Resilient self-assembling hydrogels from block copolypeptide amphiphiles

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew Paul

    The ability to produce well defined synthetic polypeptides has been greatly improved by the discovery of transition metal species that mediate the controlled polymerization of N-carboxyanhydrides (NCAs). These metal species create a living polymerization system by producing control over chain length, low polydispersities, and the ability to form complex block architectures. We have applied this system to the synthesis of block copolypeptide amphiphiles. Initial block copolymers synthesized were composed of hydrophilic, cationic poly(L-Lysine) combined with hydrophobic, alpha-helical poly(L-Leucine). These Lysine- block-Leucine copolypeptides were found to form stiff, clear hydrogels at low concentration (˜1 wt%) in low ionic strength water. Based on this unexpected result we used the flexibility of our transition metal polymerization chemistry to better understand the nature and mechanisms of gel formation in these materials. Systematic changes to the original Lysine-block-Leucine copolypeptides were made by altering overall chain size, relative block length, polyelectrolyte charge, and hydrophobic secondary structure. Rheological characterization revealed that the strength of these hydrogels was primarily dependent on degree of polymerization, relative block length, and a well ordered secondary structure in the hydrophobic segment. The Lysine-block-Leucine hydrogels were formed by direct addition of water to dry polypeptide material which swelled to homogeneously fill the entire volume of liquid with no special processing. CryoTEM showed a percolating cellular network at ˜100nm that appears to be comprised of both membranes and fibers. Larger length scales studied with Laser Scanning Confocal Microscopy revealed a spontaneously formed microporous network with large (˜10mum) water rich voids. These hydrogels also displayed interesting mechanical properties including rapid recovery of solid like behavior after being sheared to a liquid and mechanical stability with increased temperature (˜90°C). The behavior of the Lysine- block-Leucine system with salt was also thoroughly investigated. With proper tuning of the relative block composition it was found that hydrogels could be optimized to possess good solubility and mechanical strength in many useful ionic solutions (˜100--200mM) such as pH buffers and cell culture media.

  1. Surfactant-Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals “Caged” Inside Partially Filled Polymeric Capsules

    PubMed Central

    2015-01-01

    We report a study of the wetting and ordering of thermotropic liquid crystal (LC) droplets that are trapped (or “caged”) within micrometer-sized cationic polymeric microcapsules dispersed in aqueous solutions of surfactants. When they were initially dispersed in water, we observed caged, nearly spherical droplets of E7, a nematic LC mixture, to occupy ∼40% of the interior volume of the polymeric capsules [diameter of 6.7 ± 0.3 μm, formed via covalent layer-by-layer assembly of branched polyethylenimine and poly(2-vinyl-4,4-dimethylazlactone)] and to contact the interior surface of the capsule wall at an angle of ∼157 ± 11°. The internal ordering of LC within the droplets corresponded to the so-called bipolar configuration (distorted by contact with the capsule walls). While the effects of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) on the internal ordering of “free” LC droplets are similar, we observed the two surfactants to trigger strikingly different wetting and configurational transitions when LC droplets were caged within polymeric capsules. Specifically, upon addition of SDS to the aqueous phase, we observed the contact angles (θ) of caged LC on the interior surface of the capsule to decrease, resulting in a progression of complex droplet shapes, including lenses (θ ≈ 130 ± 10°), hemispheres (θ ≈ 89 ± 5°), and concave hemispheres (θ < 85°). The wetting transitions induced by SDS also resulted in changes in the internal ordering of the LC to yield states topologically equivalent to axial and radial configurations. Although topologically equivalent to free droplets, the contributions that surface anchoring, LC elasticity, and topological defects make to the free energy of caged LC droplets differ from those of free droplets. Overall, these results and others reported herein lead us to conclude that caged LC droplets offer a platform for new designs of LC-droplet-based responsive soft matter that cannot be realized in dispersions of free droplets. PMID:24911044

  2. Color characteristics of low-chroma and high-translucence dental resin composites by different measuring modes.

    PubMed

    Lee, Y K; Lim, B S; Kim, C W; Powers, J M

    2001-01-01

    The objective of the described research was the evaluation of the effects of the differences in the color-measuring geometry (SCE, SCI) and the standard illuminant on the color and color change after polymerization and thermocycling of resin composites. White, translucent, and conventional shades of two brands of resin composites were measured before and after polymerization and after thermocycling according to the CIE L*a*b* color scale on a reflection spectrophotometer with SCE and SCI geometry under the standard illuminants A, D65, and C. Under both SCE and SCI modes, the color differences (DeltaE*) of specimens between the values measured under illuminants A and D65 or A and C were larger than those between D65 and C in unpolymerized, polymerized, and thermocycled conditions. With SCE geometry, DeltaE* after polymerization of the white shade group was 8.7-9.8 under D65, and was higher than the conventional shade group (p < 0.05) in both materials. With SCE geometry, DeltaE* between polymerized and thermocycled white, translucent shade was 4.4-7.1 under D65. With SCI geometry, the results were in general agreement with those of SCE mode. After polymerization, DeltaE* measured under illuminant A was generally higher than that under D65 or C (p < 0.01). After thermocycling, the color change was different depending on the color-measuring geometry and standard illuminant. Copyright 2001 John Wiley & Sons, Inc.

  3. Altered native stability is the dominant basis for susceptibility of α1-antitrypsin mutants to polymerization

    PubMed Central

    Irving, James A.; Haq, Imran; Dickens, Jennifer A.; Faull, Sarah V.; Lomas, David A.

    2014-01-01

    Serpins are protease inhibitors whose most stable state is achieved upon transition of a central 5-stranded β-sheet to a 6-stranded form. Mutations, low pH, denaturants and elevated temperatures promote this transition, which can result in a growing polymer chain of inactive molecules. Different types of polymer are possible, but, experimentally only heat has been shown to generate polymers in vitro consistent with ex vivo pathological specimens. Many mutations that alter the rate of heat-induced polymerization have been described, but interpretation is problematic because discrimination is lacking between the effect of global changes in native stability and specific effects on structural mechanism. We show that the temperature midpoint (Tm) of thermal denaturation reflects the transition of α1-antitrypsin to the polymerization intermediate, and determine the relationship with fixed-temperature polymerization half-times (t0.5) in the presence of stabilizing additives [TMAO (trimethylamine N-oxide), sucrose and sodium sulfate], point mutations and disulfide bonds. Combined with a retrospective analysis of 31 mutants characterized in the literature, the results of the present study show that global changes to native state stability are the predominant basis for the effects of mutations and osmolytes on heat-induced polymerization, summarized by the equation: ln(t0.5,mutant/t0.5,wild-type)=0.34×ΔTm. It is deviations from this relationship that hold key information about the polymerization process. PMID:24552432

  4. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  5. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    PubMed

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  6. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated AAC/LDPE films.

  7. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  8. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  9. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  10. Investigation of structure-property relationships in systematic series of novel polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.

    1976-01-01

    Solid state transitions in polymeric materials was associated with the onset of sub-molecular motions of the polymer chains. Although these were considered to be intramolecular in general, the local environment of the polymer molecule exerts a strong influence through, for example, the effects of crystallinity, polarity and diluents. The manner of specimen preparation and previous history also affect transitions. The transitions are considered to arise when sufficient free volume is available to permit the occurrence of these side chain and backbone reorientations. The glass transition is the principal transition of amorphous polymeric materials and is associated with the onset of long range segmental motion of the polymer backbone. The various types of shorter range motion occurring below the glass transition have been catalogued.

  11. Morphology Control of Multicomponent Polymeric Surfactants Using Pressure

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    The development of nanoscale morphologies for a molten polymeric surfactant under pressure is investigated by using a recently formulated self-consistent field theory. A linear ABC block copolymer is taken as our model system that allows a disparity in the propensities for curved interfaces and pressure responses of ij-pairs. The interplay of those features lead the copolymer to new morphologies at a moderate segregation level and at ambient condition such as networks and pillars of 2-dimensional array. It is shown that pressure is an effective means of morphology control and identification for those new structures. The role of volume fluctuations in the development of those structures is discussed. J.C. acknowledges the support from Center for Photofunctional Energy Materials through Gyeonggi Regional Research Program.

  12. Multi-physics optimization of three-dimensional microvascular polymeric components

    NASA Astrophysics Data System (ADS)

    Aragón, Alejandro M.; Saksena, Rajat; Kozola, Brian D.; Geubelle, Philippe H.; Christensen, Kenneth T.; White, Scott R.

    2013-01-01

    This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.

  13. Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis.

    PubMed

    Chakraborty, Sanjiban; Colón, Yamil J; Snurr, Randall Q; Nguyen, SonBinh T

    2015-01-01

    Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores.

  14. Highly Permeable Oligo(ethylene oxide)- co-poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation

    DOE PAGES

    Hong, Tao; Lai, Sophia C.; Mahurin, Shannon Mark; ...

    2017-12-27

    Here, a series of cross–linked, freestanding oligo(ethylene oxide)– co–(polydimethylsiloxane–norbornene) membranes with varied composition is synthesized via in situ ring–opening metathesis polymerization. These membranes show remarkably high CO 2 permeabilities (3400 Barrer) and their separation performance approaches the Robeson upper bound. The excellent permeability of these copolymer membranes provides great potential for real–world applications where enormous volumes of gases must be separated. The gas transport properties of these films are found to be directly proportional to oligo(ethylene oxide) content incorporation, which stems from the increased solubility selectivity change within the copolymer matrix. This work provides a systematic study of how gasmore » separation performance in rubbery membranes can be enhanced by tuning the CO 2–philicity of their constituent monomeric subunits.« less

  15. Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage

    NASA Astrophysics Data System (ADS)

    Zeng, Lingxing; Liu, Renpin; Qiu, Heyuan; Chen, Xi; Huang, Xiaoxia; Xiong, Peixun; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-07-01

    Silicon-based nanostructures are receiving intense interest in lithium-ion batteries (LIBs) because they have ultrahigh lithium ion storage ability. However, the fast capacity fading induced by the considerably tremendous volume changes of Si anode during the Li-ion intercalation processes as well as the low intrinsic electric conductivity have hindered its deployment. Herein, we initially developed an effective technique to synthesize the core-shell Si/nitrogen-doped carbon (Si/N-C), composite by combining in situ interfacial polymerization and decorate with melamine, followed by carbonization. When used as anode material for LIBs, the Si/N-C composite delivered a notable reversible capacity (1084 mAh g-1 at 0.2 A g-1 for 50 cycles) and high rate capability (495 mAh g-1 at 1 A g-1).

  16. Evaluation of gloss changes of two denture acrylic resin materials in four different beverages.

    PubMed

    Keyf, Filiz; Etikan, Ilker

    2004-03-01

    The primary disadvantages of the materials which are used in construction of complete and removable partial dentures is that their esthetic, physical and mechanical properties change rapidly with time in the oral environment. For esthetics, color stability is one of the criteria that needs careful attention. Color may provide important information on the serviceability of these materials. Color change affects the gloss of these materials. The objective of the present study was to determine the gloss changes resulting from the testing process in four different beverages in one heat-polymerized denture base resin and one cold-polymerized denture base repair resin. Thirty-six samples were fabricated for each material. Each sample had a smooth polished and a rough unpolished surface. The gloss measurements were made with a glossmeter before testing. Four different beverages (tea, coffee, cola and cherry juice) were used for testing. Two angles of illumination (20 and 60 degrees) were used for the gloss measurements. The samples were immersed in water, tea, coffee, cola and cherry juice solutions. The gloss of the samples was measured again with the glossmeter at the end of the 45th day and 135th day of testing. The arithmetic mean and standard deviation of each of the samples were calculated and compared with each other statistically by using the Wilcoxon test (within times) (p < or = 0.05 significant), the Kruskal-Wallis analysis of variance (p < or = 0.05 significant) and the Mann-Whitney U-test with Bonforoni correction (when the difference between the samples was significant) (p < or = 0.05 significant). The results of this study revealed that gloss changes occurred after testing in heat-polymerized denture base resin and cold-polymerized denture base repair resin. The significance of the gloss changes exhibited by each sample, kept for different lengths of time in the same solution, were compared using the Wilcoxon test. The results were statistically significant (p < or = 0.05). According to the Kruskal-Wallis analysis of variance, the difference between measurements for angles of illumination was statistically significant (p < or = 0.05). Also according to the Mann-Whitney U-test, the difference between two polished surfaces or two unpolished surfaces was statistically insignificant (p > 0.05), but the difference between smooth polished and rough unpolished surfaces was statistically significant (p < or = 0.05). It was found that either the gloss of heat-polymerized denture base resin or the gloss of cold-polymerized denture base repair resin was affected by tested agents, and the four beverages demonstrated noticeable gloss changes. Cherry juice demonstrated the least change, while tea exhibited the greatest change.

  17. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  18. Fire Safety Aspects of Polymeric Materials. Volume 1. Materials. State of the Art

    DTIC Science & Technology

    1977-01-01

    polymers (e.g. silk, collagen) has not been investigated ( Crawshaw et a!., 1973). 4.3 Synthetic Fibers The production of man-made fibers and natural...Thornton, A. M., Modern Plastics 43(2), 154 (1964). Coskren, R. J., SAMPE Quart., 4, No. 4, July (1973). Crawshaw , G. H., Delman, A. D., and Mehta, P

  19. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information on the oligomers formed by gas-phase polymerization can be obtained using the mass-selected ion mobility technique where the measured collision cross-sections of the selected oligomer ions and collision-induced dissociation can provide fairly accurate structural identifications. The identification of the structures of the dimers and trimers formed in the gas-phase thermal polymerization of styrene confirms that the polymerization proceeds according to the Mayo mechanism. Similarly, the ion mobility technique has been utilized to confirm the formation of benzene cations by intracluster polymerization following the ionization of acetylene clusters. Finally, it has been shown that polymerization of styrene vapor on the surface of activated nanoparticles can lead to the incorporation of a variety of metal and metal oxide nanoparticles within polystyrene films. The ability to probe the reactivity and structure of the small growing oligomers in the gas phase can provide fundamental insight into mechanisms of polymerization that are difficult to obtain from condensed-phase studies. These experiments are also important for understanding the growth mechanisms of complex organics in flames, combustion processes, interstellar clouds, and solar nebula where gas-phase reactions, cluster polymerization, and surface catalysis on dust nanoparticles represent the major synthetic pathways. This research can lead to the discovery of novel initiation mechanisms and reaction pathways with applications in the synthesis of oligomers and nanocomposites with unique and improved properties.

  20. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    PubMed

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  1. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.

  2. A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns.

    PubMed

    Wenk, Jonathan F; Wall, Samuel T; Peterson, Robert C; Helgerson, Sam L; Sabbah, Hani N; Burger, Mike; Stander, Nielen; Ratcliffe, Mark B; Guccione, Julius M

    2009-12-01

    Heart failure continues to present a significant medical and economic burden throughout the developed world. Novel treatments involving the injection of polymeric materials into the myocardium of the failing left ventricle (LV) are currently being developed, which may reduce elevated myofiber stresses during the cardiac cycle and act to retard the progression of heart failure. A finite element (FE) simulation-based method was developed in this study that can automatically optimize the injection pattern of the polymeric "inclusions" according to a specific objective function, using commercially available software tools. The FE preprocessor TRUEGRID((R)) was used to create a parametric axisymmetric LV mesh matched to experimentally measured end-diastole and end-systole metrics from dogs with coronary microembolization-induced heart failure. Passive and active myocardial material properties were defined by a pseudo-elastic-strain energy function and a time-varying elastance model of active contraction, respectively, that were implemented in the FE software LS-DYNA. The companion optimization software LS-OPT was used to communicate directly with TRUEGRID((R)) to determine FE model parameters, such as defining the injection pattern and inclusion characteristics. The optimization resulted in an intuitive optimal injection pattern (i.e., the one with the greatest number of inclusions) when the objective function was weighted to minimize mean end-diastolic and end-systolic myofiber stress and ignore LV stroke volume. In contrast, the optimization resulted in a nonintuitive optimal pattern (i.e., 3 inclusions longitudinallyx6 inclusions circumferentially) when both myofiber stress and stroke volume were incorporated into the objective function with different weights.

  3. The effect of phase change materials on the frontal polymerization of a triacrylate

    NASA Astrophysics Data System (ADS)

    Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry

    2010-06-01

    The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.

  4. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application

    NASA Astrophysics Data System (ADS)

    Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza

    2017-09-01

    Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.

  5. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  6. Large-scale filament formation inhibits the activity of CTP synthetase

    PubMed Central

    Barry, Rachael M; Bitbol, Anne-Florence; Lorestani, Alexander; Charles, Emeric J; Habrian, Chris H; Hansen, Jesse M; Li, Hsin-Jung; Baldwin, Enoch P; Wingreen, Ned S; Kollman, Justin M; Gitai, Zemer

    2014-01-01

    CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable. DOI: http://dx.doi.org/10.7554/eLife.03638.001 PMID:25030911

  7. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst.

    PubMed

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications.

  8. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Schreiner, L. John

    2006-09-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  9. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst

    PubMed Central

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J.; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T.; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications. PMID:27741301

  10. Disrupting the biofilm matrix improves wound healing outcomes.

    PubMed

    Wolcott, R

    2015-08-01

    The most unyielding molecular component of biofilm communities is the matrix structure that it can create around the individual microbes that constitute the biofilm. The type of polymeric substances (polymeric sugars, bacterial proteins, bacterial DNA and even co-opted host substances) are dependent on the microbial species present within the biofilm. The extracellular polymeric substances that make up the matrix give the wound biofilm incredible colony defences against host immunity, host healing and wound care treatments. This polymeric slime layer, which is secreted by bacteria, encases the population of microbes, creating a physical barrier that limits the ingress of treatment agents to the bacteria. The aim of this study was to determine if degrading the wound biofilm matrix would improve wound healing outcomes and if so, if there was a synergy between treating agents that disrupted biofilm defenses with Next Science Wound Gel (wound gel) and cidal agents (topical antibiotics). A three-armed randomised controlled trial was designed to determine if standard of care (SOC) was superior to SOC plus wound gel (SOC + gel) and wound gel alone. The wound gel used in this study contains components that directly attack the biofilm extracellular polymeric substance. The gel was applied directly to the wound bed on a Monday-Wednesday-Friday interval, either alone or with SOC topical antibiotics. Using a surrogate endpoint of 50% reduction in wound volume, the results showed that SOC healed at 53%, wound gel healed at 80%, while SOC plus wound gel showed 93% of wounds being successfully treated. By directly targeting the wound biofilm matrix, wound healing outcomes are improved.

  11. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters.

    PubMed

    Babic, Steven; Schreiner, L John

    2006-09-07

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters.

  12. Clinical use and material wear of polymeric tracheostomy tubes.

    PubMed

    Björling, Gunilla; Axelsson, Sara; Johansson, Unn-Britt; Lysdahl, Michael; Markström, Agneta; Schedin, Ulla; Aune, Ragnhild E; Frostell, Claes; Karlsson, Sigbritt

    2007-09-01

    The objectives were to compare the duration of use of polymeric tracheostomy tubes, i.e., silicone (Si), polyvinyl chloride (PVC), and polyurethane (PU), and to determine whether surface changes in the materials could be observed after 30 days of patient use. Data were collected from patient and technical records for all tracheostomized patients attending the National Respiratory Center in Sweden. In the surface study, 19 patients with long-term tracheostomy were included: six with Bivona TTS Si tubes, eight with Shiley PVC tubes, and five with Trachoe Twist PU tubes. All tubes were exposed in the trachea for 30 days before being analyzed by scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). New tubes and tubes exposed in phosphate-buffered saline were used as reference. Si tubes are used for longer periods of time than those made of PVC (P<.0001) and PU (P=.021). In general, all polymeric tubes were used longer than the recommended 30-day period. Eighteen of the 19 tubes exposed in patients demonstrated, in one or more areas of the tube, evident surface changes. The morphologic changes identified by SEM correlate well with the results obtained by ATR-FTIR. Si tracheostomy tubes are in general used longer than those made of PVC and PU. Most of the tubes exposed in the trachea for 30 days suffered evident surface changes, with degradation of the polymeric chains as a result.

  13. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    NASA Astrophysics Data System (ADS)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  14. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  15. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  16. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  17. Mechanism of Cdc42-induced Actin Polymerization in Neutrophil Extracts

    PubMed Central

    Zigmond, Sally H.; Joyce, Michael; Yang, Changsong; Brown, Kevin; Huang, Minzhou; Pring, Martin

    1998-01-01

    Cdc42, activated with GTPγS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 μm in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 μm. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends. PMID:9722612

  18. Mechanism of Cdc42-induced actin polymerization in neutrophil extracts.

    PubMed

    Zigmond, S H; Joyce, M; Yang, C; Brown, K; Huang, M; Pring, M

    1998-08-24

    Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 micron in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 micron. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends.

  19. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  20. Drug Loading Capacity of Environmentally Sensitive Polymeric Microgels

    NASA Astrophysics Data System (ADS)

    McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu

    2009-10-01

    Microgel nanoparticles consisting of cross-linked polymer hydroxypropyl cellulose chains have a temperature dependent volume phase transition, prompting the use of microgels for controlled drug transport. Drug particles aggregate in the slightly hydrophobic interior of microgels. Microgels are stored in equilibrium until the critical temperature (Tv) is reached and the volume phase transition limits available space, thus expelling the drugs. Our study was designed to test this property of microgels using amperometric electrochemical methods. A critical assumption was that small molecules inside microgels would not interact via diffusion with the electrode surface and thus total current would be decreased across the electrodes in a microgel sample. A room temperature (Troom) flow amperometric measurement comparing microgel/tylenol solution with control tylenol samples yielded about 20% tylenol concentration reduction of the microgel sample. Results from the steady state electrochemical experiment confirm the presence of about 20% tylenol concentration drop of the microgel sample compared to control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the tylenol concentration change between the temperature extremes was greater for the microgel solution than for the control solution.

  1. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Tyler, Tom; Leang, Kam K.

    2017-10-01

    Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.

  2. [Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-06-01

    As reported in the quarterly report of March of 1992, the relative viscosity of a Newtonian Coal Water Slurry (CWS) in the presence of an anionic polymeric dispersant is an order of magnitude higher than the prediction of the well established Krieger-Dougherty Equation which describes the relative viscosity of a non-aggregated Newtonian suspension as a function of particle volume fraction. Note that the anionic dispersant is used in such a quantity that the resulting interparticle electrostatic repulsion counter-balances the interparticle van der Waals attraction. Investigation continues to determine the mechanisms of such excess energy dissipation under shear. New experimental resultsmore » are presented in this report to verify the role of the anionic polymeric dispersant in such excess energy dissipation of CWS.« less

  3. [Roles of additives and surface control in slurry atomization]. Quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-06-01

    As reported in the quarterly report of March of 1992, the relative viscosity of a Newtonian Coal Water Slurry (CWS) in the presence of an anionic polymeric dispersant is an order of magnitude higher than the prediction of the well established Krieger-Dougherty Equation which describes the relative viscosity of a non-aggregated Newtonian suspension as a function of particle volume fraction. Note that the anionic dispersant is used in such a quantity that the resulting interparticle electrostatic repulsion counter-balances the interparticle van der Waals attraction. Investigation continues to determine the mechanisms of such excess energy dissipation under shear. New experimental resultsmore » are presented in this report to verify the role of the anionic polymeric dispersant in such excess energy dissipation of CWS.« less

  4. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, Michael; Sneed, Daniel; Smith, Quinlan

    We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC 2O 4) pressurized to 7 GPa inside a diamond anvil cell (DAC). After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO 2 even under ambient conditions with the sample exposed tomore » air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part) with dispersed CO 2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO 2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press) without the need for the dangerous and complex loading of toxic CO. As a result, a novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.« less

  5. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    DOE PAGES

    Pravica, Michael; Sneed, Daniel; Smith, Quinlan; ...

    2016-03-30

    We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC 2O 4) pressurized to 7 GPa inside a diamond anvil cell (DAC). After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO 2 even under ambient conditions with the sample exposed tomore » air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part) with dispersed CO 2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO 2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press) without the need for the dangerous and complex loading of toxic CO. As a result, a novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.« less

  6. Ion Transport and Structural Properties of Polymeric Electrolytes and Ionic Liquids from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Borodin, Oleg

    2010-03-01

    Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.

  7. In-situ Frequency Dependent Dielectric Sensing of Cure

    NASA Technical Reports Server (NTRS)

    Kranbuehl, David E.

    1996-01-01

    With the expanding use of polymeric materials as composite matrices, adhesives, coatings and films, the need to develop low cost, automated fabrication processes to produce consistently high quality parts is critical. Essential to the development of reliable, automated, intelligent processing is the ability to continuously monitor the changing state of the polymeric resin in-situ in the fabrication tool. This final report discusses work done on developing dielectric sensing to monitor polymeric material cure and which provides a fundamental understanding of the underlying science for the use of frequency dependent dielectri sensors to monitor the cure process.

  8. Glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor differently modifies actin polymerization in neutrophils.

    PubMed

    Zucca, A; Brizzi, S; Riccioni, R; Azzarà, A; Ghimenti, M; Carulli, G

    2006-01-01

    Several neutrophil functions can be modified by rhG-CSF administration. Neutrophil morphology changes in the course of treatment with Filgrastim (nonglycosylated rhG-CSF), along with impairment of chemotaxis. Both morphology and chemotaxis are not affected by treatment with Lenograstim (glycosylated rhG-CSF). Thus, we evaluated actin polymerization in neutrophils induced by treatment with the two forms of rhG-CSF. In fact, actin polymerization is crucial for neutrophil motility. We evaluated twelve healthy subjects undergoing peripheral blood stem cells (PBSC) mobilization for allogeneic transplantation to HLA-identical siblings. Neutrophils were isolated by peripheral venous blood before and after administration of either Filgrastim (six PBSC donors) or Lenograstim (six PBSC donors). Actin polymerization was investigated by a flow cytometric assay, using FITC-phalloidin as a specific probe for F-actin, and two parameters were measured: spontaneous actin polymerization in resting neutrophils; fMLP-stimulated actin polymerization. Results were expressed as relative F-actin content. Fifteen blood donors were studied as a control group. Filgrastim administration induced an increased relative F-actin content in resting neutrophils; however, no further actin polymerization was observed after fMLP stimulation. Neutrophils from subjects treated with Lenograstim showed a normal behaviour in terms of both spontaneous and stimulated actin polymerization. Glycosylated and nonglycosylated rhG-CSF differently affect actin polymerization in newly generated neutrophils. Such effects may explain some previous findings concerning both morphology and chemotactic properties and may be due to different effects of the two forms of rhG-CSF on proteins involved in neutrophil motility regulation.

  9. Microporous carbons derived from melamine and isophthalaldehyde: One-pot condensation and activation in a molten salt medium for efficient gas adsorption.

    PubMed

    Rehman, Adeela; Park, Soo-Jin

    2018-04-17

    In the present work, mixture of melamine and isophthalaldehyde undergo simultaneous polymerization, carbonization, and in situ activation in the presence of molten salt media through a single all-in-one route to design microporous carbons with high specific surface areas (~3000 m 2 /g). The effect of the activation temperature and molten salts on the polymerization process and final texture of the carbon was explored. Carbon materials prepared at 700 °C, in the presence of KOH (referred as MIK-700), exhibited a narrower pore-size distribution ~1.05 nm than those prepared in the presence of the eutectic KOH-NaOH mixture (MIKN). Additionally, MIK-700 possesses an optimum micropore volume (1.33 cm 3 /g) along with a high nitrogen content (2.66 wt%), resulting in the excellent CO 2 adsorption capacity of 9.7 mmol/g at 273 K and 1 bar. Similarly, the high specific area and highest total pore volume play an important role in H 2 storage at 77 K, with 4.0 wt% uptake by MIKN-800 (specific surface area and pore volume of 2984 m 2 /g and 1.98 cm 3 /g, respectively.) Thus, the facile one-step solvent-free synthesis and activation strategy is an economically favorable avenue for designing microporous carbons as an efficient gas adsorbents.

  10. Analysis of Vaginal Microbicide Film Hydration Kinetics by Quantitative Imaging Refractometry

    PubMed Central

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery. PMID:24736376

  11. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    PubMed

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  12. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  13. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.

    PubMed

    Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan

    2018-05-16

    Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.

  14. Determining Serpin Conformational Distributions with Single Molecule Fluorescence

    PubMed Central

    Mushero, Nicole; Gershenson, Anne

    2012-01-01

    Conformational plasticity is key to inhibitory serpin function, and this plasticity gives serpins relatively easy access to alternative, dysfunctional conformations. Thus, a given serpin population may contain both functional and dysfunctional proteins. Single molecule fluorescence (SMF), with its ability to interrogate one fluorescently labeled protein at a time, is a powerful method for elucidating conformational distributions and monitoring how these distributions change over time. SMF and related methods have been particularly valuable for characterizing serpin polymerization. Fluorescence correlation spectroscopy experiments have revealed a second lag phase during in vitro α1-antitrypsin polymerization associated with the formation of smaller oligomers that then condense to form longer polymers [Purkayastha, P., Klemke, J. W., Lavender, S., Oyola, R., Cooperman, B. S., and Gai, F. (2005). Alpha 1-antitrypsin polymerization: A fluorescence correlation spectroscopic study. Biochemistry 44, 2642–2649.]. SMF studies of in vitro neuroserpin polymerization have confirmed that a monomeric intermediate is required for polymer formation while providing a test of proposed polymerization mechanisms [Chiou, A., Hägglöf, P., Orte, A., Chen, A. Y., Dunne, P. D., Belorgey, D., Karlsson-Li, S., Lomas, D., and Klenerman, D. (2009)]. Probing neuroserpin polymerization and interaction with amyloid-beta peptides using single molecule fluorescence. Biophys. J. 97, 2306–2315.]. SMF has also been used to monitor protease–serpin interactions. Single pair Förster resonance energy transfer studies of covalent protease–serpin complexes suggest that the extent of protease structural disruption in the complex is protease dependent [Liu, L., Mushero, N., Hedstrom, L., and Gershenson, A. (2006). Conformational distributions of protease-serpin complexes: A partially translocated complex. Biochemistry 45, 10865–10872.]. SMF techniques are still evolving and the combination of SMF with encapsulation methods has the potential to provide more detailed information on the conformational changes associated with serpin polymerization, protease–serpin complex formation, and serpin folding. PMID:22078542

  15. Conformational and Structural Properties of High Functionality Dendrimer-like Star Polymers Synthesized from Living Polymerization Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pople, John A

    2001-03-22

    The design, synthesis and solution properties of dendritic-linear hybrid macromolecules is described. The synthetic strategy employs living ring-opening polymerization in combination with selective and quantitative organic transformations for the preparation of new molecular architectures similar to classical star polymers and dendrimers. The polymers were constructed from high molecular weight poly(e-caprolactone) initiated from the surface hydroxyl groups of dendrimers derived from bis(hydroxymethyl) propionic acid (bis-MPA) in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2). In this way, star and hyperstar poly(e-caprolactones) were elaborated depending on the generation of dendrimer employed. The ROP from these hydroxy groups was found to be a facilemore » process leading to controlled molecular weight, low dispersity products (Mw/Mn) < 1.15. In addition to the use of dendrimers as building blocks to star polymers, functional dendrons derived from bis-MPA were attached to chain ends of the star polymers, yielding structures that closely resemble that of the most advanced dendrimers. Measurements of the solution properties (hydrodynamic volume vs. molecular weight) on the dendritic-linear hybrids show a deviation from linearity, with a lower than expected hydrodynamic volume, analogous to the solution properties of dendrimers of high generation number. The onset of the deviation begins with the polymers initiated from the second generation dendrimer of bis-MPA and becomes more exaggerated with the higher generations. It was found that polymerization amplifies the nonlinear solution behavior of dendrimers. Small angle neutron scattering (SANS) measurements revealed that the radius of gyration scaled with arm functionality (f) as f 2/3, in accordance with the Daoud-Cotton model for many arm star polymer.« less

  16. Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4% gelatin or 6% hydroxyethyl starch solution.

    PubMed

    Haas, Thorsten; Fries, Dietmar; Holz, Carmen; Innerhofer, Petra; Streif, Werner; Klingler, Anton; Hanke, Alexander; Velik-Salchner, Corinna

    2008-04-01

    Small-volume resuscitation using hypertonic saline/hydroxyethyl starch 200/0.62 (HS-HES) has been shown to be an effective alternative to the administration of crystalloids or colloids in trauma patients. All i.v. fluids cause dose-related dilutional coagulopathy and show intrinsic effects on the hemostatic system, but only few data refer to functional consequences after small-volume resuscitation. Using thrombelastometry (ROTEM), we studied 30 pigs (weighing 35-45 kg) after withdrawal of 60% of blood volume [1484 mL (1369-1624 mL)] and receiving 4 mL/kg HS-HES for compensation of blood loss or 4% gelatin or 6% HES 130/0.4 in a 1:1 ratio to lost blood volume. To compare the ROTEM variables (coagulation time, clot formation time, alpha angle, clot firmness, and fibrinogen polymerization) with bleeding tendency, a hepatic incision was made and blood loss was measured. Median (25th, 75th percentile) fibrinogen polymerization was significantly higher after HS-HES infusion [11 mm (10, 11), P = 0.0034] when compared with administration of 4% gelatin [4.5 mm (3.0, 5.8)] or HES 130/0.4 [3.5 mm (2.3, 4.0)]. Median blood loss after liver incision was 725 mL (900, 375) after HS-HES, 1625 mL (1275, 1950) after 4% gelatin, and 1600 mL (1500, 1800) after 6% HES 130/0.4 (P = 0.004). Hemodynamic stabilization was traceable in all groups but showed differences regarding filling pressures. Resuscitation from hemorrhagic shock with HS-HES 200/0.62 results in less impairment of clot formation when compared with compensation of blood loss by administering 6% HES 130/0.4 or 4% gelatin.

  17. LED Curing Lights and Temperature Changes in Different Tooth Sites

    PubMed Central

    Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ 2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282

  18. LED Curing Lights and Temperature Changes in Different Tooth Sites.

    PubMed

    Armellin, E; Bovesecchi, G; Coppa, P; Pasquantonio, G; Cerroni, L

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ (2). After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure.

  19. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  20. Comparison of temperature change among different adhesive resin cement during polymerization process.

    PubMed

    Alkurt, Murat; Duymus, Zeynep Yesil; Gundogdu, Mustafa; Karadas, Muhammet

    2017-01-01

    The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( n = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05). Significant differences were found among the time points and resin cements ( P < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( P < 0.05). Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  1. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    PubMed

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help remineralize demineralized dentin. Polylysine can be released from the composites at early time. This may kill residual bacteria.

  2. Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.

  3. The Installation Restoration Program Toxicology Guide. Volume 2

    DTIC Science & Technology

    1989-07-01

    producing substance. Carcinoma A malignant epithelial tumor. CAS REG NO Numeric designation assigned by the A.~’erican Chemical Socecty’s Chemica ...violent, exothermic, and capable of causing violent rupture of sealed containers. ABBREVIATIONS AB-I1 Polymerization A chemica reaction, usually carried...a deleterious effect on the taste and/or odor of human food derred from aquatic environments cannot be discharged into inland surface waters

  4. Fire Safety Aspects of Polymeric Materials. Volume 8. Land Transportation Vehicles

    DTIC Science & Technology

    1979-01-01

    Resins and Urea - and Melamine - Formaldehyde Resins ," in: Kurylaand Papa (1973). 188 I RtftHfcNCES...ting furfuryl alcohol and an aldehyde — most frequently formaldehyde (Siegfried 1967). Urea is often used as a modifying agent. The resins are hardened... melamine / formaldehyde and phenol/formaldehye resins may find significant utility as a char resistant coating on factory coated wood. 73 /’ I

  5. Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.

    PubMed

    Sugnaux, Caroline; Klok, H-A

    2014-08-01

    Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Membrane properties change in fine-pore aeration diffusers: full-scale variations of transfer efficiency and headloss.

    PubMed

    Rosso, Diego; Libra, Judy A; Wiehe, Wolfgang; Stenstrom, Michael K

    2008-05-01

    Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. Punched polymeric membranes are often used in fine-pore aeration due to their advantageous initial performance. These membranes are subject to fouling and scaling, resulting in increased headloss and reduced oxygen transfer efficiency, both contributing to increased plant energy costs. This paper describes and discusses the change in material properties for polymeric fine-pore diffusers, comparing new and used membranes. Three different diffuser technologies were tested and sample diffusers from two wastewater treatment facilities were analysed. The polymeric membranes analysed in this paper were composed of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicon. Transfer efficiency is usually lower with longer times in operation, as older, dilated orifices produce larger bubbles, which are unfavourable to mass transfer. At the same time, headloss increases with time in operation, since membranes increase in rigidity and hardness, and fouling and scaling phenomena occur at the orifice opening. Change in polymer properties and laboratory test results correlate with the decrease in oxygen transfer efficiency.

  7. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  8. SU-F-BRE-03: Consideration of a Track-Interaction Model for Radiochromic Film Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B; DeWerd, L

    2014-06-15

    Purpose: Conventional methods for characterizing the energy response of radiochromic film (RCF) typically involve assessing changes in response when exposed to various beam qualities and use Monte Carlo to determine absorbed dose. These methods represent RCF as a dose integrator of a homogeneous energy deposition volume. Apparent film saturation, nonlinearity, and intrinsic energy dependence are unpredicted with conventional methods. Recent work has shown significant RCF intrinsic energy dependence, which limits its use in absolute dosimetry. This work introduces a track-interaction model (TIM) for RCF and assesses its ability to predict total energy response. Methods: A TIM based on Katz single-hitmore » theory was developed to accumulate energy flux along particle tracks within active crystals, represented as (1×1×20)um{sup 3} prisms about the Gafchromic™ EBT3 active volume using MCNP5 and Matlab. Energy flux contributed to film response only if near the threshold energy for polymerization in polydiacetylenes (2.5eV/monomer). Energy deposition in excess of maximum efficiency represented crystal saturation and did not contribute to film response. The TIM was applied to RCF exposed in air to various monoenergetic photon beams and Co-60. Geometric distribution of energy flux was found for each beam quality in a (1×1)mm{sup 2} RCF area. RCF response relative to Co-60 absorbed dose-to-water (S-TIM) was determined and compared to published values (S-PUB). Results: TIM successfully predicted that lower energy radiation is less effective at inducing polymerization, though the magnitude of the phenomenon was overpredicted. S-TIM was −29% and +20% for 20 and 40 keV, respectively. This agreed qualitatively with S-PUB of −27% and +16%. TIM-generated sensitometric curves contained the non-linearity and saturation apparent in RCF. Conclusion: This work indicates the possibility for TIMs to predict changes in RCF response to various energies. Future work will refine TIM by considering size distributions of active elements, other RCF formulations, and response in complex treatment fields. Acknowledgements: The authors wish to thank Dr. Christopher Soares at NIST (Gaithersburg, MD) for performing film measurements and Dr. David Lewis of Ashland, Inc. (Wayne, NJ) for making the EBT3 film available to us.« less

  9. Development of a fiber shape polymeric humidity sensor

    NASA Astrophysics Data System (ADS)

    Cheng, Yen-Tse; Chen, Ling-Chih; Wang, Wei-Chih

    2017-04-01

    In this paper, we demonstrate a polymeric humidity sensor made of a cellulose based composite nanofiber. The device measures humidity via a humidity induced electrical impedance change. The compact, efficient design of the fiber makes it ideal to incorporate into textiles for biometrics applications such as body fluid monitoring. Initial test results show that the sensor can measure between 20 to 80% relative humidity with a sensitivity of about 2%. The impedance of the sensor material changes relatively linearly with relative humidity. The sensor also shows a relatively fast response ( 4s) compared to current commercial sensors.

  10. Polymerizable ultraviolet stabilizers for outdoor use

    NASA Technical Reports Server (NTRS)

    Vogl, O.

    1982-01-01

    Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.

  11. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    NASA Astrophysics Data System (ADS)

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju

    2009-02-01

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  12. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  13. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  14. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  15. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.

    PubMed

    Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe

    2016-01-01

    Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.

  16. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    DOE PAGES

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; ...

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s –1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less

  17. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization.

    PubMed

    Itach, Sarit Bar-Sheshet; Finklestein, Maya; Etkovitz, Nir; Breitbart, Haim

    2012-02-15

    In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    PubMed

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-01

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.

  20. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  1. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  2. Brownian cluster dynamics with short range patchy interactions: Its application to polymers and step-growth polymerization

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Babu, S. B.; Dolado, J. S.; Gimel, J.-C.

    2014-07-01

    We present a novel simulation technique derived from Brownian cluster dynamics used so far to study the isotropic colloidal aggregation. It now implements the classical Kern-Frenkel potential to describe patchy interactions between particles. This technique gives access to static properties, dynamics and kinetics of the system, even far from the equilibrium. Particle thermal motions are modeled using billions of independent small random translations and rotations, constrained by the excluded volume and the connectivity. This algorithm, applied to a single polymer chain leads to correct static and dynamic properties, in the framework where hydrodynamic interactions are ignored. By varying patch angles, various local chain flexibilities can be obtained. We have used this new algorithm to model step-growth polymerization under various solvent qualities. The polymerization reaction is modeled by an irreversible aggregation between patches while an isotropic finite square-well potential is superimposed to mimic the solvent quality. In bad solvent conditions, a competition between a phase separation (due to the isotropic interaction) and polymerization (due to patches) occurs. Surprisingly, an arrested network with a very peculiar structure appears. It is made of strands and nodes. Strands gather few stretched chains that dip into entangled globular nodes. These nodes act as reticulation points between the strands. The system is kinetically driven and we observe a trapped arrested structure. That demonstrates one of the strengths of this new simulation technique. It can give valuable insights about mechanisms that could be involved in the formation of stranded gels.

  3. An Interferometric Study of Epoxy Polymerization Kinetics

    NASA Astrophysics Data System (ADS)

    Page, Melissa A.; Tandy Grubbs, W.

    1999-05-01

    An interferometric method for monitoring polymerization kinetics is described. The experimental apparatus can be constructed from items commonly available in undergraduate laboratories. It consists of a low power helium-neon laser, a home-built Michelson interferometer, and a photodiode light detector. When a polymerizing sample is placed in one arm of the Michelson interferometer, the variation in refractive index will cause a corresponding shift in the phase of the coherent optical beam that passes through the sample, and the output of the interferometer will subsequently fluctuate between constructive and destructive interference. The oscillation in the interferometer output intensity is monitored as a function of time with the photodiode. The time between successive maxima (or minima) is used to calculate the change in refractive index with time (Dn/Dt), which is subsequently used as a phenomenological definition of polymerization rate. We have utilized this device to collect and compare curing profiles of commercially available epoxy glues.

  4. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity.

    PubMed

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A; Molaison, Jamie J; Ivanov, Ilia N; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing

    2017-01-01

    Transformation between different types of carbon-carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2 ) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.

  5. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    PubMed Central

    Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F; Scherer, Lukas J

    2015-01-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. PMID:27877791

  6. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    NASA Astrophysics Data System (ADS)

    Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.

    2015-06-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.

  7. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts.

    PubMed

    Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori

    2013-07-07

    Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.

  8. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  9. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    PubMed

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4), C(2)H(6), C(3)H(8), C(4)H(10), C(2)H(4), C(3)H(6), C(4)H(8) - 1, C(2)H(2), C(3)H(4)-m (methylacetylene) and C(3)H(4)-a (allen) is determined by using two above mentioned approaches. All of this allows calculating preliminary the permeability parameters of above mentioned gases for most part of known polymers based on limited experimental data. The new correlations suggested demonstrate that the available free volume of polymeric matrix plays an important role in providing of rate and selectivity of gas diffusion for glassy-like polymers; the rate and selectivity of gas diffusion in rubbers is affected mainly by cohesion energy density (CED) the both polymer parameters being calculated by traditional additive group contributions technique. Results of present study are demonstrated by calculation of expected permeability parameters in relation to lower hydrocarbons and some toxic gases for polynorbornene based polymers, PIM and PTMSP outlining potential of practical application for new membrane polymers. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Fire Safety Aspects of Polymeric Materials. Volume 10. Mines and Bunkers

    DTIC Science & Technology

    1980-01-01

    Formaldehyde and Melamine / Formaldehyde Resins The basic chemistry, properties, and applications of urea / formaldehyde and melamine / formaldehyde resins ... Formaldehyde and Melamine Formaldehyde Rosins 71 4.2.3.3 Unsaturated Polyester Resins 71 4.2.3.4 Epoxy Resins 72 4.2.3.5 Furan Resins 72 4.2.3.6 Amine...aldehyde — most frequently formaldehyde . Urea is often used as a modifying agent. The

  11. Fire Safety Aspects of Polymeric Materials. Volume 6. Aircraft. Civil and Military

    DTIC Science & Technology

    1977-01-01

    resistance of the existing Polyurethane foam- based seating sys- tems be improved through design, construction, and selection of covering materials. 12. A...aircraft interiors under real fire conditions. To provide the data base for developing improved fire safety standards for aircraft, four types of...the determination of immobilizing effect was based on performance in the swimming test, a simple exercise method also favored by Kimmerle to provide

  12. Displacement cascades in a borosilicate glass: Influence of the level of polymerization on the cascade morphology

    NASA Astrophysics Data System (ADS)

    Delaye, J. M.; Ghaleb, D.

    1998-02-01

    We have performed some molecular dynamics calculations of displacement cascades in a simplified nuclear glass (SiO 2 + B 2O 3 + Na 2O + Al 2O 3 + ZrO 2). We have observed that the damaged volume at the end of the collision sequence can be divided into a so called highly damaged volume and lightly damaged volume. The aim of this paper is to propose an explanation of this phenomenon by considering that some regions are easy to cross by the projectile and others are difficult to cross by the projectile. Regions which are easy to cross correspond to those containing Na atoms with a low level of polymerisation, and regions which are difficult to cross are areas no containing Na atoms with a high level of polymerisation.

  13. Space requirement of a prefabricated bar on two interforaminal implants: a prospective clinical study.

    PubMed

    Albrecht, Dominic; Ramierez, Ami; Kremer, Urs; Katsoulis, Joannis; Mericske-Stern, Regina; Enkling, Norbert

    2015-02-01

    This clinical study measured the dimensional changes of existing lower complete dentures due to the integration of a prefabricated implant bar. Additionally, the impact of this dimensional change on patient satisfaction and oral function was analyzed. Twenty edentulous patients (10 men/10 women; aged 65.9 ± 11.8 years) received two interforaminal implants. Subsequent to surgery, a chair side adapted, prefabricated bar (SFI Bar(®), C+M, Biel, Switzerland) was inserted, and the matrix was polymerized into the existing lower denture. The change of the denture's lingual dimension was recorded by means of a bicolored, silicone denture duplicate that was sectioned in the oro-vestibular direction in the regions of the symphysis (S) and the implants (I-left, I-right). On the sections, the dimensional increase was measured using a light microscope. Six months after bar insertion, patients answered a standardized questionnaire. All dentures exhibited increased lingual volume, more extensively at S than at I (P = 0.001). At S, the median diagonal size of the denture was doubled (+4.33 mm), and at I, the median increase was 50% (I-left/-right = +2.66/+2.62 mm). The original denture size influenced the volume increase (P = 0.024): smaller dentures led to a larger increase. The amount of denture increase did not have negative impact on either self-perceived oral function or patient satisfaction. Approximately, 95% of the patients were satisfied with the treatment results. The lingual size of a lower denture was enlarged by the integration of a prefabricated bar without any negative side effects. Thus, this attachment system is suitable to convert an existing full denture into an implant-supported overdenture. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Thermomechanical properties of polymeric materials and related stresses

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1990-01-01

    The thermomechanical properties of a number of widely used polymeric materials were determined by thermomechanical analysis and dynamic mechanical analysis. A combined profile of the coefficient of thermal expansion and the modulus change over a wide temperature range obtained by the analyses shows clearly the drastic effect of the glass transition on both the CTE and the modulus of a polymer, and the damaging potential due to such effect.

  15. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study.

    PubMed

    Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf

    2007-10-01

    To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.

  16. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    NASA Astrophysics Data System (ADS)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  17. Temperature rise in ion-leachable cements during setting reaction.

    PubMed

    Kanchanavasita, W; Pearson, G J; Anstice, H M

    1995-11-01

    Resin-modified ion-leachable cements have been developed for use as aesthetic restorative materials. Their apparent improved physical and handling properties can make them more attractive for use than conventional glass-ionomers. However, they contain monomers which are known to contract on polymerization and produce a polymerization exotherm. This study evaluated the temperature rise during setting and the rate of dimensional change of several ion-leachable materials. The resin-modified ion-leachable cements demonstrated greater temperature rises and higher rates of contraction than conventional materials. Generally, the behaviour of these resin-modified materials was similar to that of composite resins. However, some resin-modified cements produced a temperature rise of up to 20 degrees C during polymerization which was greater than that of the composite resin. This temperature rise must be taken into account when using the materials in direct contact with dentine in deep cavities without pulp protection. Longer irradiation time than the recommended 20 s did not significantly increase the maximum temperature rise but slightly extended the time before the temperature started to decline. The temperature of the environment had a significant effect on the rate of dimensional change in some materials. The rate of polymerization contraction of light-activated cements was directly related to the observed temperature rise.

  18. Preparation and characterization of triple shape memory composite foams.

    PubMed

    Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T

    2014-10-28

    Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.

  19. Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul

    2013-08-01

    High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.

  20. The Effect of Particles on Electrolytically Polymerized Thin Natural MCF Rubber for Soft Sensors Installed in Artificial Skin.

    PubMed

    Shimada, Kunio; Mochizuki, Osamu; Kubota, Yoshihiro

    2017-04-19

    The aim of this study is to investigate the effect of particles as filler in soft rubber sensors installed in artificial skin. We examine sensors made of natural rubber (NR-latex) that include magnetic particles of Ni and Fe₃O₄ using magnetic compound fluid (MCF). The 1-mm thickness of the electrolytically polymerized MCF rubber makes production of comparatively thin rubber sensors feasible. We first investigate the effect of magnetic particles Ni and Fe₃O₄ on the curing of MCF rubber. Next, in order to adjust the electric properties of the MCF rubber, we adopt Al₂O₃ dielectric particles. We investigate the effect of Al₂O₃ particles on changes in electric current, voltage and temperature of electrolytically polymerized MCF rubber liquid, and on the electric properties under the application of normal and shear forces. By adjusting the ratio of Ni, Fe₃O₄, Al₂O₃ and water in MCF rubber with Al₂O₃, it is possible to change the electric properties.

  1. Online SAXS investigations of polymeric hollow fibre membranes.

    PubMed

    Pranzas, P Klaus; Knöchel, Arndt; Kneifel, Klemens; Kamusewitz, Helmut; Weigel, Thomas; Gehrke, Rainer; Funari, Sérgio S; Willumeit, Regine

    2003-07-01

    Polymeric membranes are used in industrial and analytical separation techniques. In this study small-angle X-ray scattering (SAXS) with synchrotron radiation has been applied for in-situ characterisation during formation of polymeric membranes. The spinning of a polyetherimide (PEI) hollow fibre membrane was chosen for investigation of dynamic aggregation processes during membrane formation, because it allows the measurement of the dynamic equilibrium at different distances from the spinning nozzle. With this system it is possible to resolve structural changes in the nm-size range which occur during membrane formation on the time-scale of milliseconds. Integral structural parameters, like radius of gyration and pair-distance distribution, were determined. Depending on the chosen spinning parameters, e.g. the flow ratio between polymer solution and coagulant water, significant changes in the scattering curves have been observed. The data are correlated with the distance from the spinning nozzle in order to get information about the kinetics of membrane formation which has fundamental influence on structure and properties of the membrane.

  2. Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Yan, Mengguo; Cochran, Eric

    2014-03-01

    In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.

  3. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB

    PubMed Central

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-01-01

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family. PMID:24550504

  4. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    PubMed

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  5. Experimental investigation of the solubility of albite and jadeite in H 2O, with paragonite + quartz at 500 and 600 °C, and 1-2.25 GPa

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Manning, Craig E.; Thompson, Alan B.

    2011-05-01

    The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H 2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H 2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H 2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi 3O 6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P- T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.

  6. Preparation and mechanical characterization of a PNIPA hydrogel composite.

    PubMed

    Liu, Kaifeng; Ovaert, Timothy C; Mason, James J

    2008-04-01

    A poly (N-isopropylacrylamide) (PNIPA) hydrogel was synthesized by free radical polymerization and reinforced with a polyurethane foam to make a hydrogel composite. The temperature dependence of the elastic modulus of the PNIPA hydrogel and the composite due to volume phase transition was found using a uniaxial compression test, and the swelling property was investigated using an equilibrium swelling ratio experiment. The gel composite preserves the ability to undergo the volume phase transition and its elastic modulus has strong temperature dependence. The temperature dependence of the elastic modulus and swelling ratio of the gel composite were compared to the PNIPA hydrogel. Not surprisingly, the modulus and swelling ratio of the composite were less dramatic than in the gel.

  7. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  8. [Diet and polymer standard vs. standard in the nutritional status of elderly patients with fragility].

    PubMed

    Luna-Ramos, Gissel Karelly; Pedraza-Zárate, Miguel Ángel; Franco-Álvarez, Nubia; González-Velázquez, Felipe

    2016-01-01

    The elderly patients with fragility show different physiological changes, so they are given polymeric diets to maintain and/or alter their nutritional status. The aim of this paper is to demonstrate the effect of changing a standard polymeric diet and a standard diet on nutritional status in elderly patients with fragility. Clinical randomized controlled trial in 23 elderly patients, 70 years of age or older, with fragility, hospitalized in a Internal Medicine Unity in a period from July to December 2014. Nutritional status was determined through Minimum Nutritional Consulting (MNA) and body mass index (BMI). Descriptive statistics, Chi square, Student t test and McNemar. In the G1: 12 patients were in the G2 and 11, a positive change was observed in the nutritional status G1 initially being 14.00 (malnutrition) and end 22.75 (risk of malnutrition). According to BMI (kg/m2) was evident at the beginning 25 % of patients (3) with mild malnutrition, but the final results show figures with a zero percentage of malnourished patients. The use of standard polymeric diet increases body weight, BMI and nutritional status in elderly patients with fragility.

  9. Drug delivery properties of macroporous polystyrene solid foams.

    PubMed

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  10. Thiophene dendrimer-based low donor content solar cells

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Dani M.; Ma, Chang-Qi; Nagiri, Ravi C. R.; Clulow, Andrew J.; Bäuerle, Peter; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul

    2016-09-01

    Low donor content solar cells containing polymeric and non-polymeric donors blended with fullerenes have been reported to give rise to efficient devices. In this letter, we report that a dendrimeric donor can also be used in solution-processed low donor content devices when blended with a fullerene. A third generation dendrimer containing 42 thiophene units (42T) was found to give power conversion efficiencies of up to 3.5% when blended with PC70BM in optimized devices. The best efficiency was measured with 10 mole percent (mol. %) of 42T in PC70BM and X-ray reflectometry showed that the blends were uniform. Importantly, while 42T comprised 10 mol. % of the film, it made up 31% of the film by volume. Finally, it was found that solvent annealing was required to achieve the largest open circuit voltage and highest device efficiencies.

  11. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  12. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE PAGES

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei; ...

    2017-11-28

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  14. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  15. Biopolymer dynamics driven by helical flagella

    NASA Astrophysics Data System (ADS)

    Balin, Andrew K.; Zöttl, Andreas; Yeomans, Julia M.; Shendruk, Tyler N.

    2017-11-01

    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.

  16. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 1: Discussion, figures, and references

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Based upon extensive contacts with vendors, a broad array of non-flammable polymeric specie, and additives generally noted to have flame retarding properties, were considered. The following polymeric matrices were examined: modified silicone and fluorosilicone RTV's polyesters, epoxies, urethanes, and epoxy-urethanes. Optimization of formulations to obtain a suitable balance between the various properties and flammability resistance led to the final selection of a silicone RTV/additive-loaded compound which meets almost all program requirements. The very low valued properties found are within a realistic level of design toleration. Complete formulation, processing, and test data is provided for this compound, EPOCAST 87517-A/B, and the other formulations prepared by the project. Details of those test methods are presented along with procedures utilized in the program. In addition, a description of the special flammability facility previously designed and then modified for this program is also presented.

  17. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  18. Physical re-examination of parameters on a molecular collisions-based diffusion model for diffusivity prediction in polymers.

    PubMed

    Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-29

    Molecular collisions, which are the microscopic origin of molecular diffusive motion, are affected by both the molecular surface area and the distance between molecules. Their product can be regarded as the free space around a penetrant molecule defined as the "shell-like free volume" and can be taken as a characteristic of molecular collisions. On the basis of this notion, a new diffusion theory has been developed. The model can predict molecular diffusivity in polymeric systems using only well-defined single-component parameters of molecular volume, molecular surface area, free volume, and pre-exponential factors. By consideration of the physical description of the model, the actual body moved and which neighbor molecules are collided with are the volume and the surface area of the penetrant molecular core. In the present study, a semiempirical quantum chemical calculation was used to calculate both of these parameters. The model and the newly developed parameters offer fairly good predictive ability. © 2011 American Chemical Society

  19. Ion-dependent Polymerization Differences between Mammalian β- and γ-Nonmuscle Actin Isoforms*

    PubMed Central

    Bergeron, Sarah E.; Zhu, Mei; Thiem, Suzanne M.; Friderici, Karen H.; Rubenstein, Peter A.

    2010-01-01

    β- and γ-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. β-Actin contains an Asp1-Asp2-Asp3 and Val10 whereas γ-actin has a Glu1-Glu2-Glu3 and Ile10. Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20–25% insect actin. Surprisingly, Ca-γ-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than β-actin. In the Mg-form, this difference between the two is much smaller. Ca-γ-actin depolymerizes half as fast as does β-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing β-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with γ-actin. Phosphate release during treadmilling is twice as fast with β- as with γ-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of γ-actin may cause a selective energy barrier relative to β-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the γ-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist. PMID:20308063

  20. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    PubMed

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  1. Color and shape changing polymeric ribbons and sheets

    DOEpatents

    Stevens, Raymond C.; Cheng, Quan; Song, Jie

    2006-05-23

    The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.

  2. Cell Protrusion and Retraction Driven by Fluctuations in Actin Polymerization: A Two-Dimensional Model

    PubMed Central

    Ryan, Gillian L.; Holz, Danielle; Yamashiro, Sawako; Taniguchi, Daisuke; Watanabe, Naoki; Vavylonis, Dimitrios

    2017-01-01

    Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Traveling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations. PMID:28752950

  3. Influence of the collection tube on metabolomic changes in serum and plasma.

    PubMed

    López-Bascón, M A; Priego-Capote, F; Peralbo-Molina, A; Calderón-Santiago, M; Luque de Castro, M D

    2016-04-01

    Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fire Safety Aspects of Polymeric Materials. Volume 7. Buildings

    DTIC Science & Technology

    1979-01-01

    are used to collect and disperse condensation. These may be constructed of wood, metal (e.g., anodized aluminum ) or rigid plastic (e.g., PVC). The...Vice President-Science and Technology Aluminum Company of America 1501 Alcoa Building Pittsburgh, PA 15219 Dr. Jason M. Salsbury Director Chemical...decabromod- iphenyl ether) with or without antimony oxide . Part or all of the halogen com- ponent may be incorporated in the form of halogenated polymers

  5. Fire Safety Aspects of Polymeric Materials. Volume 4. Fire Dynamics and Scenarios

    DTIC Science & Technology

    1978-01-01

    Toxicology and In- dustrial Medicine, E. I. duPont de Nemours and Co., Newark Delaware ARNOLD ROSENTHAL, Celanese Research Company, Summit, New Jersey...Station, Atlantic City, N.J. PAUL W. SMITH, Aviation Toxicology Laboratory, Civil A^romedical Institute, Oklahoma City, Oklahoma ROBERT C. MCQUIRE, DoT...research. Table 1, based on estimates, is a representation of the total funding for fire dynamics research. (In Table 1, research on the toxicology

  6. Fire Safety Aspects of Polymeric Materials. Volume 9. Ships

    DTIC Science & Technology

    1980-01-01

    insulation. Structural Insulation - Varying thickness of non-combustible mineral wool . Decks - 1%- to ’A-inch stiffened steel, covered with magnesite deck...valve requited in cer- Gypsum board faced with steel ra i onfigutron Mineral wool . reinforced with steel Mi:neral wool, tenforved with .laed Plaat.o...Aluminumi faced mineral wool .C-Class 46 CE-K 164.009--Noncombsible All nonoecmbusribln, metals. com- Pout’es of alumnum and fiber- glass "A-Class

  7. US Army Biomedical Laboratory Annual Progress Report, 1 October 1986-30 September 1987. Volume 1

    DTIC Science & Technology

    1987-12-07

    support of casualties during evacuation within the theater of operations . To fulfill this requirement USABRDL has initiated a project to identify and...Tests of its operational capabilities will be conducted. Aerial application of granular pesticide was done to control ticks at Fort A.P. Hill, Virginia...with limited amounts of hypochlorous acid ; and the testing of several polymeric and monomeric diacetylene compounds as potential indicators to be used

  8. Fire Safety Aspects of Polymeric Materials. Volume 2. Test Methods, Specifications and Standards

    DTIC Science & Technology

    1979-01-01

    San Francisco, California. RAYMOND R. HINDERSINN, Section Manager, Research Center, Hooker Chemi- cal Co., Niagara Falls, New York. WILLIAM C ...Administration, Washington, D. C . DANIEL F. SHEEHAN, DoT, U. S. Coast Guard, Washington, D. C . WILLIAM J. WERNER, Department of Housing and Urban Development...Executive Scientists and Director Advances Research Program Laboratory 3M Company P. 0. Box 33221 St. Paul, MIM 55133 Mr. William D. Manly

  9. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity

    DOE PAGES

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; ...

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  10. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  12. Evaluation of the physical properties of dental resin composites using optical fiber sensing technology.

    PubMed

    Rajan, Ginu; Shouha, Paul; Ellakwa, Ayman; Bhowmik, Kishore; Xi, Jiangtao; Prusty, Gangadhara

    2016-09-01

    The characterization of the physical properties of dental resin composites is fraught with difficulties relating to significant intra and inter test parameter variabilities and is relatively time consuming and expensive. The main aim of this study was to evaluate whether optical fiber Bragg grating (FBG) sensing system may become a viable tool to study dental material characteristics. Of particular focus was the potential for the system to demonstrate a multi parameter all-in-one feature. A miniature FBG was embedded in six different dental resin composites and employed as a sensor to evaluate linear polymerization shrinkage, thermal expansion and water sorption. Six commercially available dental composites with different filler types and volume are evaluated. The tests are repeated with three sets of samples. The curing characteristics and residual strain gradient exhibited by the cured dental composites were also observed and commented. Among the studied samples, SDR shows lowest polymerization shrinkage, while Beautifil FO3 shows the highest. The results also show clear distinction between particle filler type and fiber reinforcement based composites in their polymerization shrinkage properties. The agreement of the results with existing literatures show that FBG based system provides accurate results. Polymerization shrinkage rate of the samples are also obtained. Thermal expansion of the composites are measured using the FBG sensing method for the first time and is correlated with resin type, volume, filler type and glass transition temperature. The water sorption characteristics of the dental composite are also successfully measured using the FBG sensing method. The high level of repeatability and the low standard deviations shown in the results indicate good reliability with the use of FBG sensors. This study demonstrates how optical fiber technology can provide simple and reliable methods of measuring the critical physical properties of dental composites. In addition due to the embedding and preservation of the sensor within the samples multiple parameters can be tested for with the same sample. These features are expected to greatly assist material science researchers in dentistry as well as other biomedical fields. Of some interest the phenomenon of stress relaxation of dental composite at higher temperature was observed. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Development, optimisation and application of polyurethane foams as new polymeric phases for stir bar sorptive extraction.

    PubMed

    Neng, N R; Pinto, M L; Pires, J; Marcos, P M; Nogueira, J M F

    2007-11-09

    In this contribution, polyurethane foams are proposed as new polymeric phases for stir bar sorptive extraction (SBSE). Assays performed for polyurethane synthesis demonstrated that four series of formulations (P(1), P(2), P(3) and P(4)) present remarkable stability and excellent mechanical resistance to organic solvents. For polymer clean-up treatment, acetonitrile proved to be the best solvent under sonification, ensuring the reduction of the contamination and interferences. SBSE assays performed on these polyurethane polymers followed by liquid desorption and high-performance liquid chromatography-diode array detection (LD-HPLC-DAD) or large volume injection-capillary gas chromatography-mass spectrometry (LD-LVI-GC-MS), showed that P(2) presents the best recovery yields for atrazine, 2,3,4,5-tetrachlorophenol and fluorene, used as model compounds in water samples at a trace level. SBSE(P(2)) assays performed on this polymer mixed up with several adsorbent materials, i.e. activated carbon, a mesoporous material and a calixarene, did not bring any advantages in relation with the polymeric matrix alone. The comparison between assays performed by SBSE(P(2)) and by the conventional SBSE(PDMS) showed much better performance for the former phase on aqueous samples spiked with atrazine, 2,3,4,5-tetrachlorophenol and fluorene, in which the foremost two analytes present recovery values 3- and 10-fold higher, respectively. The polyurethanes proposed as new polymeric phases for SBSE provided powerful capabilities for the enrichment of organic compounds from aqueous matrices, showing to be indicated mainly in the case of the more polar analytes.

  14. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    PubMed

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  16. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  17. Physico-chemical effects of supercritical carbon dioxide post polymerization treatment on HCl-doped polyaniline prepared via oxidative chemical polymerization

    NASA Astrophysics Data System (ADS)

    Fernando, J. G.; Vequizo, R. M.; Odarve, M. K. G.; Sambo, B. R. B.; Alguno, A. C.; Malaluan, R. M.; Candidato, R. T., Jr.; Gambe, J. E.; Jabian, M.; Paylaga, G. J.; Bagsican, F. R. G.; Miyata, H.

    2015-06-01

    Polyanilinefilms doped with varying HClconcentrations (0.2 M, 0.6 M and 1.0 M) were synthesized on glass substrates via oxidative polymerization of aniline. The films were treated with supercritical carbon dioxide (SC-CO2) at 30 MPa and 40°C for 30 minutes. Their structural, optical and morphological properties were studied and compared to conventionally prepared polyanilinefilms using FTIR analysis, UVVisspectroscopy and scanning electron microscopy. It was observed that supercritical carbon dioxide (SC-CO2) could interact with PANI films that consequently altered the bandgapsand changed the film thickness. SC-CO2 treatment also increased the oxidation level of polyanilinefilms and modified the morphology of polyanilinefilm doped with 1M HCl.

  18. Clinical and laboratory evaluation of microstructural changes in the physical, mechanical and chemical properties of dental filling materials under the influence of an electromagnetic field.

    PubMed

    Moiseeva, Natalia S; Kunin, Anatoly A

    2018-03-01

    Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.

  19. The role of ependymin in the development of long lasting synaptic changes.

    PubMed

    Shashoua, V E

    1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.

  20. Test of the ``radical-like polymerization'' scheme in molecular dynamics on the behavior of polymers under shock loading

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire; Bousquet, David; Schnell, Benoît; Pineau, Nicolas

    2017-06-01

    The behavior of polymer melts under shock loading is a question attracting more and more attention because of applications such as polymer-bonded explosives, light-weight armor and civilian protective equipment, like sports and car equipment. Molecular dynamics (MD) simulations are a very good tool to characterize the microscopic response of the polymer to a shock wave. To do so, the initial configuration of the polymer melt needs to be realistic. The ``radical-like polymerization'' scheme is a method to obtain near equilibrium configurations of a melt of long polymer chains. It consists in adding one neighboring monomer at a time to each growing chain. Between each polymerization step an MD run is performed to relax the new configuration. We test how details of our implementation of the ``radical-like polymerization'' scheme can impact or not Hugoniot curves and changes of chain configuration under shock. We compare our results to other simulation and experimental results on reference polymers.

  1. Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes.

    PubMed

    Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András

    2016-02-01

    The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.

    We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and severalmore » other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  4. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.

    PubMed

    He, Peng; He, Lin

    2009-07-13

    We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.

  5. Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Cao, Ruofan; Wu, Xiaofei; Huang, Jianhan; Deng, Shuguang; Lu, Xiuyang

    2013-06-15

    A hypercrosslinked poly(styrene-co-divinylbenzene) resin (TEPA) was synthesized and characterized as a specific polymeric adsorbent for concentrating berberine hydrochloride from aqueous solutions. Three organic molecules of different sizes (2-naphthol, berberine hydrochloride, and Congo red) were used as target molecules to elucidate the molecular sieving effect of the TEPA adsorbent. Because the TEPA adsorbent has a pore structure consisting mainly of micropores and mesopores, the adsorption of 2-naphthol from aqueous solutions is very efficient due to the micropore filling effect. The adsorption of berberine hydrochloride mostly takes place in the mesopores as well as macropores, while the adsorption of Congo red mainly occurs in the macropores. The smaller adsorbate molecule (2-naphthol) reaches the adsorption equilibrium much faster than the larger ones (berberine hydrochloride and Congo red). An adsorption breakthrough experiment with an aqueous solution containing 2-naphthol and berberine hydrochloride demonstrated that the TEPA adsorbent could effectively remove 2-naphthol from berberine hydrochloride at 0-107 BV (bed volume, 1 BV=10 ml), and the berberine hydrochloride concentration was increased from 66.7% to 99.4%, suggesting that this polymeric adsorbent is promising for purifying berberine hydrochloride and similar alkaloids from herbal plant extracts. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(lactic acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers.

    PubMed

    Wang, Lei; Zhang, De-Zhong; Wang, Yu-Xia

    2017-02-01

    In this study, tocopherol based polymeric micelles were successfully prepared to enhance the anticancer effect of fisetin (FIS) in breast cancer cells. The drug-loaded carrier was characterized in terms of physicochemical and in vivo parameters. Compared to FIS, FIS-TPN showed higher cellular uptake in MCF-7 breast cancer cells as revealed by CLSM and flow cytometry. The cytotoxicity assay results clearly showed that the free FIS and FIS-TPN exhibited a typical dose-dependent toxic effect in MCF-7 breast cancer cells. Especially, enhanced cytotoxic effect of FIS was observed when loaded in a nanocarrier. Free FIS induced a ~11% apoptosis whereas FIS-TPN induced a significantly greater apoptosis of ~20% by the end of 24 h. At 48 h, similar trend continued and free FIS showed ~30% of apoptosis whereas ~42% cell apoptosis was observed in FIS-TPN treated group. Notably, migration of cancer cell was significantly inhibited when treated with FIS-TPN formulations. The FIS-TPN significantly reduced to tumor burden and H&E staining showed the lowest tumor volume and higher cell apoptosis. All the findings suggest that the fisetin-loaded TPGS-PLA polymeric micelles serve as a potential candidate and promising alternative for the effective treatment of breast cancers.

  7. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  8. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  9. Optical CO2 sensing with ionic liquid doped electrospun nanofibers.

    PubMed

    Aydogdu, Sibel; Ertekin, Kadriye; Suslu, Aslihan; Ozdemir, Mehtap; Celik, Erdal; Cocen, Umit

    2011-03-01

    The first use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based optical CO(2) sensors is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric materials. Sensing slides were fabricated by electrospinning technique. A fiber-optic bundle was used for the gas detection. CO(2) sensors based on the change in the fluorescence signal intensity of ion pair form of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The sensor slides showed high sensitivities due to the high surface area-to-volume ratio of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect CO(2) are 24 to 120 fold higher than those of the thin film based sensors. The response times of the sensing reagents were short and the signal changes were fully reversible. The stability of ion pair form of HPTS in the employed matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 7 months. Our stability tests are still in progress. © Springer Science+Business Media, LLC 2010

  10. Rotor vibration reduction with polymeric sectors

    NASA Astrophysics Data System (ADS)

    Dutt, J. K.; Toi, T.

    2003-05-01

    This work has been undertaken principally with an idea to improving the dynamic performance of rotor-shaft systems, which often suffer from two major problems (a) resonance and (b) loss of stability, resulting in excessive vibration of such systems. Polymeric material in the form of sectors has been considered in this work as bearing supports. Polymeric material has been considered in this work as both stiffness and loss factor of such materials varies with the frequency of excitation. Stiffness and loss factor have been found out for the proposed support system comprising of polymeric sectors. Depending upon the frequency of excitation the system matrix, in this case, changes and dynamic performance of the rotor-shaft system also changes accordingly. Here in this work avoidance of resonance and application of optimum damping in the support have been investigated by finding out the optimum dimension, i.e., the optimum thickness and optimum length of the sectors. It has been theoretically found that use of such sectors reduces the rotor unbalanced response, increases the stability limit speed for simple rotor-shaft systems and thus improves the dynamic characteristics. Parameters of the system have been presented in terms of non-dimensional quantities. Many examples have been presented in support of the conclusion. The life of such supports, particularly in the presence of chemicals and other reagents has not been investigated.

  11. Long Duration Exposure Facility M0003-5 recent results on polymeric films

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Jones, Michele D.

    1992-01-01

    The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.

  12. Gel-sol transition of the cytoplasm and its regulation

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.

    1991-05-01

    The cytoplasm of motile cells contains a dynamic system of filamentous protein polymers that endow the cell with elasticity permitting it to maintain its shape in the presence of mechanical forces encountered in vivo. Part of this cytoskeleton is composed of filaments of polymerized actin. Remodeling of this network is required for cell motility and cytoplasmic restructuring, and the reversible polymerization of actin per se has been suggested to cause morphologic changes such as cell ruffling and pseudopd extension. Changes in the degree of polymerization of acting and in the association of actin filaments into supramolecular structures are often associated with cell activation. Such activation is initiated by extracellular signals that bind to receptors which are often coupled by G-proteins to the production of intracellular second messangers. Cytoplasmic gel-sol transitions therefore can occur by formation and dissolution of actin networks, mediated by a variety of actin-binding proteins which are regulated by intracellular signalling molecules such as Ca2+ and polyphosphoinositides. The effects of three actin binding proteins: profilin, gelsolin and ABP (Tilamin) on the polymerization of actin and the viscoelasticity of the resulting networks measured in vitro suggest possible roles of these proteins in vivo. In particular, gelsolin, which activated by Ca2+ to sever and cap actin filaments, and released from filament ends by PIP2, appears to be a likely candidate for regulation of gel-sol transitions in response to cell activation. Recent results demonstrate that the hydrolysis of ATP that occurs following actin polymerization also influences the structure of the resulting filament. In addition being regulated by acting-binding proteins, the viscoelasticity of actin networks is also affected by the presence of the other two classes of cytoplasmic protein polymers, microtubules and intermediate filaments.

  13. High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes.

    PubMed

    Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T

    2000-08-04

    A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.

  14. Electrochromic properties of polyaniline-coated fiber webs for tissue engineering applications.

    PubMed

    Beregoi, Mihaela; Busuioc, Cristina; Evanghelidis, Alexandru; Matei, Elena; Iordache, Florin; Radu, Mihaela; Dinischiotu, Anca; Enculescu, Ionut

    2016-08-30

    By combining the electrospinning method advantages (high surface-to-volume ratio, controlled morphology, varied composition and flexibility for the resulting structures) with the electrical activity of polyaniline, a new core-shell-type material with potential applications in the field of artificial muscles was synthesized. Thus, a poly(methylmethacrylate) solution was electrospun in optimized conditions to obtain randomly oriented polymer fiber webs. Further, a gold layer was sputtered on their surface in order to make them conductive and improve the mechanical properties. The metalized fiber webs were then covered with a PANI layer by in situ electrochemical polymerization starting from aniline and using sulphuric acid as oxidizing agent. By applying a small voltage on PANI-coated fiber webs in the presence of an electrolyte, the oxidation state of PANI changes, which is followed by the device color modification. The morphological, electrical and biological properties of the resulting multilayered material were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Internal structure and swelling behaviour of in silico microgel particles

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  16. Smart membranes: Hydroxypropyl cellulose for flavor delivery

    NASA Astrophysics Data System (ADS)

    Heitfeld, Kevin A.

    2007-12-01

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.

  17. Kinetic study of isothermal crystallization process of Gd2Ti2O7 precursor's powder prepared through the Pechini synthetic approach

    NASA Astrophysics Data System (ADS)

    Janković, Bojan; Marinović-Cincović, Milena; Dramićanin, Miroslav

    2015-10-01

    Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták-Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.

  18. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj

    2007-09-01

    A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.

  19. Stochastic response of human blood platelets to stimulation of shape changes and secretion.

    PubMed Central

    Deranleau, D A; Lüthy, R; Lüscher, E F

    1986-01-01

    Stopped-flow turbidimetric data indicate that platelets stimulated with low levels of thrombin undergo a shape transformation from disc to "sphere" to smaller spiny sphere that is indistinguishable from the shape change induced by ADP through different membrane receptor sites and a dissimilar receptor trigger mechanism. Under conditions where neither secretion nor aggregation occur, the extinction coefficients for total scattering by each of the three platelet forms are independent of the stimulus applied, and both reaction mechanisms can be described as stochastic (Poisson) processes in which the rate constant for the formation of the transient species is equal to the rate constant for its disappearance. This observation is independent of the shape assignment, and as the concentration of thrombin is increased and various storage organelles secrete increasing amounts of their contents into the external medium, the stochastic pattern persists. Progressively larger decreases in the extinction coefficients of the intermediate and final platelet forms, over and above those that reflect shape alterations alone, accompany or parallel the reaction induced by the higher thrombin concentrations. The excess turbidity decrease observed when full secretion occurs can be wholly accounted for by a decrease in platelet volume equal in magnitude to the fraction of the total platelet volume occupied by alpha granules. Platelet activation, as reported by the whole body light scattering of either shape changes alone or shape changes plus parallel (but not necessarily also stochastic) alpha granule secretion, thus manifests itself as a random series of transient events conceivably with its origins in the superposition of a set of more elementary stochastic processes that could include microtubule depolymerization, actin polymerization, and possibly diffusion. Although the real nature of the control mechanism remains obscure, certain properties of pooled stochastic processes suggest that a reciprocal connection between microtubule fragmentation and the assembly of actin-containing pseudopodal structures and contractile elements--processes that may exhibit reciprocal requirements for calcium--might provide a hypothetical basis for a rate-limiting step. PMID:3457375

  20. Stimuli-sensitive polymeric micelles as anticancer drug carriers.

    PubMed

    Na, Kun; Sethuraman, Vijay T; Bae, You Han

    2006-11-01

    Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.

  1. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear moduli, and Poisson's ratios) from the numerical solutions of the RVEs undergone these three load tests. Validation of the obtained micro-scale mechanical properties will be performed using rule of mixture (ROM), 1st, and 2nd order of the mathematical model and experimental data.

  2. Fire Safety Aspects of Polymeric Materials. Volume 3. Smoke and Toxicity (Combustion Toxicology of Polymers)

    DTIC Science & Technology

    1978-01-01

    Analytical Test Methodology Sampling and analysis of thermal decomposition products are formidable tasks (Rasbash, 1967; Gaskill, 1973; Bankston ...by a flowing solution. A Sample Gas Inlet B Alkali Solution Inlet C Gas and Solution Outlet D Specific Ion Electrode E Reference Electrode E D 1 0 1 2...of radiant heat (Zinn, Powell, Cassanova and Bankston , 1977) ° Seader and Ou have recently proposed a theory relating optical density to particulate

  3. The DARPA High-Performance Polymer Program. Volume 1. Program Background and Highlights of the Program Review Held on 14-15 January 1992

    DTIC Science & Technology

    1992-09-01

    conducting polyaniline for military systems is extensive and ranges from lightning-strike protection to utilization in honeycomb structures in aircraft...Conducting polyanilines are representative of a new class of materials known as synthetic metals. This technology is still discovering new and varied...metals using polyaniline chemistry 2" High-definition liquid crystal displays 3 Polymeric piezoelectric materials 4 Drag-reducing polymers for ship

  4. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Abstracts of Phase 1 Awards. 1990

    DTIC Science & Technology

    1990-01-01

    EXCELLENT DIELECTRIC PROPERTIES AND HIGH THERMAL CONDUCTIVITY. ASSUMING A GLASS -EPOXY DIELECTRIC, THE PWB THERMAL EXPANSION MUST BE MATCHED TO CHIP AND CASE...OF A GLASS FIBER-REINFORCED POLYMERIC RESIN AND IS PROJECTED TO REDUCE THE WEIGHT OF THE CARTRIDGE CASE ALONE BY 67%. THE TOTAL M855 CARTRIDGE WOULD...SENSOR DESIGN UTILIZES SURFACE PLASMON POLARITON(SPPs), TWO-DIMENSIONAL ELECTROGMAGNETIC WAVES GENERATED AT A METAL- GLASS BOUNDARY BY TAKING ENERGY FROM

  5. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples.

    PubMed

    Chen, Lei; Pei, Junxian; Huang, Xiaojia; Lu, Min

    2018-06-05

    On-site sample preparation is highly desired because it avoids the transportation of large-volume samples and ensures the accuracy of the analytical results. In this work, a portable prototype of tip microextraction device (TMD) was designed and developed for on-site sample pretreatment. The assembly procedure of TMD is quite simple. Firstly, polymeric ionic liquid (PIL)-based adsorbent was in-situ prepared in a pipette tip. After that, the tip was connected with a syringe which was driven by a bidirectional motor. The flow rates in adsorption and desorption steps were controlled accurately by the motor. To evaluate the practicability of the developed device, the TMD was used to on-site sample preparation of waters and combined with high-performance liquid chromatography with diode array detection to measure trace estrogens in water samples. Under the most favorable conditions, the limits of detection (LODs, S/N = 3) for the target analytes were in the range of 4.9-22 ng/L, with good coefficients of determination. Confirmatory study well evidences that the extraction performance of TMD is comparable to that of the traditional laboratory solid-phase extraction process, but the proposed TMD is more simple and convenient. At the same time, the TMD avoids complicated sampling and transferring steps of large-volume water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  7. Polymer chain collapse induced by many-body dipole correlations.

    PubMed

    Budkov, Yu A; Kalikin, N N; Kolesnikov, A L

    2017-04-01

    We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

  8. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callens, M; Verboven, E; Van Den Abeele, K

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are polymerizable under influence of ionizing radiation and are a promising design concept within the development of a novel non-invasive in-vivo radiation dosimeter for external beam radiation therapy. This work was funded by the Research Foundation - Flanders (FWO)« less

  9. The Effect of Particles on Electrolytically Polymerized Thin Natural MCF Rubber for Soft Sensors Installed in Artificial Skin

    PubMed Central

    Shimada, Kunio; Mochizuki, Osamu; Kubota, Yoshihiro

    2017-01-01

    The aim of this study is to investigate the effect of particles as filler in soft rubber sensors installed in artificial skin. We examine sensors made of natural rubber (NR-latex) that include magnetic particles of Ni and Fe3O4 using magnetic compound fluid (MCF). The 1-mm thickness of the electrolytically polymerized MCF rubber makes production of comparatively thin rubber sensors feasible. We first investigate the effect of magnetic particles Ni and Fe3O4 on the curing of MCF rubber. Next, in order to adjust the electric properties of the MCF rubber, we adopt Al2O3 dielectric particles. We investigate the effect of Al2O3 particles on changes in electric current, voltage and temperature of electrolytically polymerized MCF rubber liquid, and on the electric properties under the application of normal and shear forces. By adjusting the ratio of Ni, Fe3O4, Al2O3 and water in MCF rubber with Al2O3, it is possible to change the electric properties. PMID:28422061

  10. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  11. Equilibrium Polymerization of Butyl Methacrylate in Bulk and in Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Tian, Qian; Simon, Sindee

    The equilibrium between monomer and polymer in free radical polymerization can be shifted towards monomer under nanoconfinement. This decrease in ceiling temperature is due to a decrease in the entropy associated with the constrained polymer chains, resulting in a larger negative change in entropy of reaction. Here, we investigate the equilibrium polymerization of butyl methacrylate (BMA) in bulk and in nanopore confinement with differential scanning calorimetry (DSC) using di-tert-butyl peroxide (DTBP) as initiator. This system has several advantages compare to the previously studied system of methyl methacrylate (MMA) initiated with 2,2'-azo-bis-isobutyronitrile (AIBN), namely, a reduced rate of reaction, higher boiling point of monomer, and higher initiator utilization temperature range, all of which facilitate the study of the reaction at high temperatures near the ceiling temperature. Interestingly, for BMA, there is no change in limiting conversion between material reacted in bulk and that in controlled pore glass having pore diameters of 7.5 and 50 nm. This unexpected result may be due to the greater flexibility of the PBMA chains compared to PMMA, suggesting that in the BMA/PBMA system, the degree of confinement is relatively low. Future studies will continue to investigate how the entropy change on reaction is affected by confinement.

  12. Polymer-based materials to be used as the active element in microsensors: a scanning force microscopy study

    PubMed

    Porter; Eastman; Pace; Bradley

    2000-09-01

    Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.

  13. Actin Hydrophobic Loop (262-274) and Filament Nucleation and Elongation

    PubMed Central

    Shvetsov, Alexander; Galkin, Vitold E.; Orlova, Albina; Phillips, Martin; Bergeron, Sarah E.; Rubenstein, Peter A.; Egelman, Edward H.; Reisler, Emil

    2014-01-01

    Summary The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently using a yeast actin mutant, L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked G-actin does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin - to assist with actin nucleation - and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not alone, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin the helical twist of F-actin changes by ~ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin, and a change of twist by ~ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or a competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics to both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors. PMID:18037437

  14. IUPAC-NIST Solubility Data Series 70. The Solubility of Gases in Glassy Polymers

    NASA Astrophysics Data System (ADS)

    Paterson, Russell; Yampol'Skii, Yuri P.; Fogg, Peter G. T.; Bokarev, Alexandre; Bondar, Valerii; Ilinich, Oleg; Shishatskii, Sergey

    1999-09-01

    Solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. Sorption of small molecules in polymers is a fundamental concern in such areas as food packaging, beverage storage, and polymer processing. However, by far the main interest in the solubility of gases in polymers, and especially in glassy polymers, is related to development of novel advanced materials for gas separation membranes. This is because the concentration gradient of a dissolved gas is the driving force of membrane processes. Development of these novel separation methods resulted in a rapid accumulation, in the recent literature, of thermodynamic data related to the solubility of gases in polymers at different temperatures and pressures. Polymers can be regarded as special cases of media intermediate between liquids and solids. As a consequence, modeling of gas sorption in polymers is very difficult and presents a permanent challenge to theoreticians and experimenters. The collection and critical evaluation of solubility data for various gas-polymer systems is relevant to both practical aspects of polymer applications and to fundamental studies of polymer behavior. This volume of the IUPAC-NIST Solubility Data Series summarizes the compilations and critical evaluations of the data on solubility of gases in glassy polymers. It is implied in this edition that "gases" are the components that are either permanent gases (supercitical fluids) or have saturated vapor pressure more than 1 atm at ambient conditions (298 K). The polymeric components of compilations and critical evaluations are primarily high molecular mass, amorphous, linear (noncross-linked) compounds that have the glass transition temperatures above ambient temperature. The data for each gas-polymer system have been evaluated, if the results of at least three independent and reliable studies have been reported. Where the data of sufficient accuracy and reliability are available, values are recommended, and in some cases smoothing equations are given to represent variations of solubility with changes in gas pressure and temperature. Referenced works are presented in the standard IUPAC-NIST Solubility Data Series format. Depending on the gas-polymer system, reported data are given in tabular form or in the form of sorption isotherms. The data included in the volume comprise solubilities of 30 different gases in more than 80 primarily amorphous homo and copolymers. Where available, the compilation or critical evaluation sheets include enthalpies of sorption and parameters for sorption isotherms. Throughout the volume, SI conventions have been employed as the customary units in addition to the units used in original publications.

  15. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    PubMed

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  16. Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition.

    PubMed

    Bindon, Keren; Kassara, Stella; Hayasaka, Yoji; Schulkin, Alex; Smith, Paul

    2014-11-26

    To explore the effect of tannin composition on pigment formation, model ferments of purified 3-O-monoglucoside anthocyanins (ACN) were conducted either alone or in the presence of two different tannins. Tannins were isolated from grape seeds (Sd) or skins (Sk) following exhaustive extraction in 70% v/v acetone. The Sd and Sk tannin fractions had a mean degree of polymerization of 5.2 and 25.6, respectively. The Sd fraction was highly galloylated, at 22%, but galloylation was <2% in the Sk fraction. The Sk fraction was distinguished by a high proportion of prodelphinidin, at 58%. After a 6 month aging period, polymeric pigments were quantified and their color properties determined following isolation by solid-phase extraction. Wine color and polymeric pigment were highest in the treatment containing ACN+Sd and similar in the ACN+Sk and ACN treatments. The same trend between treatments was observed for total and polymeric nonbleachable pigments. Only minor changes in tannin subunit composition were found following ACN incorporation, but the size distribution of polymeric pigments determined by gel permeation chromatography decreased, in particular for the ACN+Sk treatment. Color incorporation in the higher molecular mass range was lower for ACN+Sk wines than for ACN+Sd wines. Compositional differences between the two tannin fractions may therefore limit the incorporation of ACNs in the colored form. The results suggest that in the ACN+Sk and ACN treatments, the formation of lower molecular mass oligomeric pigments was favored. In polymeric pigments derived from ACNs, the presence of ethyl- and vinyl-linked ACNs to the level of trimers was identified using mass spectrometry.

  17. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates.

    PubMed

    Wang, Bin-Bin; Liu, Xue-Ting; Chen, Jian-Meng; Peng, Dang-Cong; He, Feng

    2018-02-01

    Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPS Mono-ProS , the proportion of proteins in EPS LoP-ProS and EPS HiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPS LoP-ProS and EPS HiP-ProS were ∼6 and ∼16-fold higher than that in EPS Mono-ProS , respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPS HiP-ProS , indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tumor environment changed by combretastatin derivative (Cderiv) pretreatment that leads to effective tumor targeting, MRI studies, and antitumor activity of polymeric micelle carrier systems.

    PubMed

    Shiraishi, Kouichi; Harada, Yoshiko; Kawano, Kumi; Maitani, Yoshie; Hori, Katsuyoshi; Yanagihara, Kazuyoshi; Takigahira, Misato; Yokoyama, Masayuki

    2012-01-01

    To evaluate effect of a vascular disrupting agent, a combretastatin derivative (Cderiv), on tumor targeting for polymeric micelle carrier systems, containing either a diagnostic MRI contrast agent or a therapeutic anticancer drug. Cderiv was pre-administered 72 h before polymeric micelle MRI contrast agent injection. Accumulation of the MRI contrast agent in colon 26 murine tumor was evaluated with or without pretreatment of Cderiv by ICP and MRI. Significantly higher accumulation of the MRI contrast agent was found in tumor tissues when Cderiv was administered at 72 h before MRI contrast agent injection. T(1)-weighted images of the tumor exhibited substantial signal enhancement in tumor area at 24 h after the contrast agent injection. In T(1)-weighted images, remarkable T(1)-signal enhancements were observed in part of tumor, not in whole tumor. These results indicate that Cderiv pretreatment considerably enhanced the permeability of the tumor blood vessels. Antitumor activity of adriamycin encapsulated polymeric micelles with the Cderiv pretreatment suppressed tumor growth in 44As3 human gastric scirrhous carcinoma-bearing nude mice. Pretreatment of Cderiv enhanced tumor permeability, resulting in higher accumulation of polymeric micelle carrier systems in solid tumors.

  19. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water.

    PubMed

    Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun

    2017-05-15

    In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Allosteric Models for Cooperative Polymerization of Linear Polymers

    PubMed Central

    Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura

    2008-01-01

    In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809

  1. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties.

    PubMed

    Panyayong, W; Oshida, Y; Andres, C J; Barco, T M; Brown, D T; Hovijitra, S

    2002-01-01

    Acrylic resins have been used in many different applications in dentistry, especially in the fabrication of provisional fixed partial dentures. Ideally, a provisional crown and bridge material should be easy to handle and should protect teeth against physical, chemical, and thermal injuries. Some of the problems associated with this use are related to the material's poor mechanical properties. It has been demonstrated that acrylic resin can be strengthened through the addition of structural component of different size distributed in the acrylic matrix, thus forming a composite structure. The purpose of this study was to investigate the addition effects of mixtures of titania (titanium dioxide, TiO(2)) powder and zirconia (zirconium dioxide, ZrO(2)) powder being incorporated with pre-polymerized beads mixed in monomer liquid, on some mechanical and physical properties of PMMA resin. The pre-polymerized powder poly(methyl methacrylate) resin was admixed with titania and zirconia powder. A mixing ratio was controlled by volume % of 0, 1.0, 2.0, and 3.0 (samples with 0 v/o served as control groups). For using mixture of titania and zirconia, total amount of the mixture was controlled by volume % of 1.0, 2.0, and 3.0, in which titania and zirconia were mixed at the ratio 1 :1, 1 :2 and 2 :1. Prior to mechanical tests, all rectangular-shaped samples (25 mm x 2 mm x 5 mm) were stored in 37 degrees C distilled water for 7 days after polishing all six sides of samples. Samples were then subjected to the three-point bending flexion test to evaluate the bending strength as well as the modulus of elasticity. Weight gain and exothermic reaction survey were investigated as well. All data were collected and analyzed with one-way analysis of variance (ANOVA) and Sidak method (p=0.05). It was found that the addition of particles generally decreased the water absorbed by the composite system. Only 1 percent by volume concentration of 1 :1 ratio and 2 percent by volume concentration of 1 :2 and 2 :1 ratios had significantly higher strength than control group. There was significantly higher toughness (in terms of energy-to-break) for 1 percent by volume concentration of 1 :1 ratio and 2 percent by volume concentration of 2 :1 ratio than control group. There was no significant difference between control group and all percent by volume combinations in modulus of elasticity. In addition, there was no significant variations of exothermic reaction.

  2. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking" shell cross-linked micelles is achieved by changing solution pH and salt concentration. The reversible "self-locking" is attained from the interactions of zwitterionic groups in the middle block that constitutes the shell of the micelles. The structure slowly dissociates into unimers in 2-3 days at pH above the pKa of the PAMBA block.

  3. Polymeric Sulfated Amino Acid Surfactants: A New Class of Versatile Chiral Selectors for Micellar Electrokinetic Chromatography (MEKC) and MEKC-MS

    PubMed Central

    Ali Rizvi, Syed Asad; Zheng, Jie; Apkarian, Robert P.; Dublin, Steven N.; Shamsi, Shahab A.

    2008-01-01

    In this work, three amino acids derived (L-leucinol, L-isoleucinol and L-valinol) sulfated chiral surfactants are synthesized and polymerized. These chiral sulfated surfactants are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation and partial specific volume. For the first time the morphological behavior of polymeric sulfated surfactants is revealed using cryogenic high-resolution electron microscopy (cryo-HRSEM). The polysodium N-undecenoyl-L-leucine sulfate (poly-L-SUCLS) shows distinct tubular structure, while polysodium N-undecenoyl-L-valine sulfate (poly-L-SUCVS) also shows tubular morphology but without any distinct order of the tubes. On the other hand, polysodium N-undecenoyl-L-isoleucine sulfate (poly-L-SUCILS) displays random distribution of coiled/curved filaments with heavy association of tightly and loosely bound water. All three polymeric sulfated surfactants are compared for enantio-separation of broad range of structurally diverse racemic compounds at very acidic, neutral and basic pH conditions in micellar electrokinetic chromatography (MEKC). A small combinatorial library of 10 structurally related phenylethylamines (PEAs) is investigated for chiral separation under acidic and moderately acidic to neutral pH conditions using an experimental design. In contrast to neutral pH conditions, at acidic pH, significantly enhanced chiral resolution is obtained for class I and class II PEAs due to the compact structure of polymeric sulfated surfactants. It is observed that the presence of hydroxy group on the benzene ring of PEAs resulted in deterioration of enantioseparation. A sensitive MEKC-mass spectrometry (MS) method is developed for one of the PEA (e.g., (±)-pseudoephedrine) in human urine. Very low limit of detection (LOD) is obtained at pH 2.0 (LOD 325 ng/mL), which is ca 16 times better compared to pH 8.0 (LOD 5.2 µg/mL). Other broad range of chiral analytes (β-blockers, phenoxypropionic acid, benzoin derivatives, PTH-amino acids, and benzodiazepinones) studied also provided improved chiral separation at low pH compared to high pH conditions. Among the three polymeric sulfated surfactants, poly-L-SUCILS with two chiral centers on the polymer head group provided overall higher enantioresolution for the investigated acidic, basic and neutral compounds. This work clearly demonstrates for the first time the superiority of chiral separation and sensitive MS detection at low pH over conventional high pH chiral separation and detection employing anionic chiral polymeric surfactants in MEKC and MEKC-MS. PMID:17263313

  4. Stimuli-responsive cement-reinforced rubber.

    PubMed

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  5. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  6. A new photoelectrochemical biosensors based on DNA conformational changes and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Zhang, Xiaoru; Xu, Yunpeng; Zhao, Yanqing; Song, Weiling

    2013-01-15

    We report a strategy for the transduction of DNA hybridization into a readily detectable photoelectrochemical signal by means of a conformational change analogous to electrochemical DNA (E-DNA) approach. To demonstrate the effect of distance change for photosensitizer to the surface of electrode on the change of photocurrent, photosensitizer Ru(bpy)(2)(dcbpy)(2+) tagged DNA stem-loop structures were self-assembled onto a nanogold modified ITO electrode. Hybridization induced a large conformational change in DNA structure, which in turn significantly altered the electron-transfer tunneling distance between the electrode and photosensitizer. The resulting change in photocurrent was proportional to the concentration of DNA in the range of 1.0×10(-10)-8.0×10(-9)M. In order to improve the sensitivity of the photoelectrochemical biosensor, an amplified detection method based on isothermal strand displacement polymerization reaction was employed. With multiple rounds of isothermal strand replication, which led to strand displacement and constituted consecutive signal amplification, a detection limit of 9.4×10(-14)M target DNA was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Rheological properties of concentrated, nonaqueous silicon nitride suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstroem, L.

    1996-12-01

    The rheological properties of nonaqueous silicon nitride powder suspensions have been investigated using steady shear and viscoelastic measurements. The polymeric dispersant, Hypermer KD-3, adsorbed strongly on the powder surfaces, and colloidally stable, fluid suspensions up to a volume fraction of {Phi} = 0.50 could be prepared. The concentrated suspensions all displayed a shear thinning behavior which could be modeled using the high shear form of the Cross equation. The viscoelastic response at high concentrations was dominated by particle interactions, probably due to interpenetration of the adsorbed polymer layers, and a thickness of the adsorbed Hypermer KD-3 layer, {Delta} {approx} 10more » nm, was estimated. The volume fraction dependences of the high shear viscosity of three different silicon nitride powders were compared and the differences, analyzed by using a modified Krieger-Dougherty model, were related to effective volume effects and the physical characteristics of the powders. The significantly lower maximum volume fraction, {Phi}{sub m} = 0.47, of the SN E-10 powder was referred to the narrow particle size distribution and the possibility of an unfavorable particle morphology.« less

  8. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave.

    PubMed

    Figuerôa, Rosana Marques Silva; Conterno, Bruna; Arrais, César Augusto Galvão; Sugio, Carolina Yoshi Campos; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2018-01-01

    The proper selection of polymerization cycle is important to prevent overheating of the monomer that could cause degradation, porosity and, consequently, deleterious effects on the denture base properties. Objective This study evaluated the porosity, water sorption and solubility of acrylic resins (Vipi Cril-VC and Vipi Wave-VW) after conventional or microwave polymerization cycles. Material and Methods Specimens (n = 10) were made and cured: 1-WB = 65°C during 90 min + boiling during 90 min (VC cycle - control group); 2-M25 = 10 min at 270 W + 5 min at 0 W + 10 min at 360 W (VW cycle); 3-M3 = 3 min at 550 W; and 4-M5 = 5 min at 650 W. Afterward, they were polished and dried in a dessicator until a constant mass was reached. Specimens were then immersed in distilled water at 37°C and weighed regularly until a constant mass was achieved. For porosity, an additional weight was made with the specimen immediately immersed in distilled water. For water sorption and solubility, the specimens were dried again until equilibrium was reached. Data were submitted to 2 way-ANOVA and Tukey HSD (α=0.05). Results Porosity mean values below 1.52% with no significant difference among groups for both materials were observed. Resins showed water sorption and solubility values without a significant difference. However, there was a significant difference among groups for these both properties (P<0.013). The highest sorption (2.43%) and solubility (0.13%) values were obtained for WB and M3, respectively. Conclusions The conventional acrylic resin could be polymerized in a microwave since both the materials showed similar performance in the evaluated properties. Shorter microwave cycles could be used for both the materials without any detectable increase in volume porosity.

  9. Computationally efficient algorithms for Brownian dynamics simulation of long flexible macromolecules modeled as bead-rod chains

    NASA Astrophysics Data System (ADS)

    Moghani, Mahdy Malekzadeh; Khomami, Bamin

    2017-02-01

    The computational efficiency of Brownian dynamics (BD) simulation of the constrained model of a polymeric chain (bead-rod) with n beads and in the presence of hydrodynamic interaction (HI) is reduced to the order of n2 via an efficient algorithm which utilizes the conjugate-gradient (CG) method within a Picard iteration scheme. Moreover, the utility of the Barnes and Hut (BH) multipole method in BD simulation of polymeric solutions in the presence of HI, with regard to computational cost, scaling, and accuracy, is discussed. Overall, it is determined that this approach leads to a scaling of O (n1.2) . Furthermore, a stress algorithm is developed which accurately captures the transient stress growth in the startup of flow for the bead-rod model with HI and excluded volume (EV) interaction. Rheological properties of the chains up to n =350 in the presence of EV and HI are computed via the former algorithm. The result depicts qualitative differences in shear thinning behavior of the polymeric solutions in the intermediate values of the Weissenburg number (10

  10. The cohesive law of particle/binder interfaces in solid propellants

    NASA Astrophysics Data System (ADS)

    Tan, H.

    2011-10-01

    Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.

  11. Ballistic Performance of Alimina/S-2 Glass-Reinforced Polymer-Matrix Composite Hybrid Lightweight Armor Against Armor Piercing (AP) and Non-AP Projectiles

    DTIC Science & Technology

    2007-01-01

    and a phenolic -resin based polymeric matrix. Such armor panels offer superior protection against fragmented ballistic threats when compared to...database does not contain a material model for the HJ1 composite but provides a model for a Kevlar Fiber Reinforced Polymer (KFRP) containing 53 vol... phenolic resin and epoxy yield stresses and then with a ratio of the S-2 glass and aramid fibers volume fractions. To test the validity of the

  12. Fire Safety Aspects of Polymeric Materials. Volume 5. Elements of Polymer Fire Safety and Guide to the Designer

    DTIC Science & Technology

    1979-01-01

    usually aided by the addition of certain "driers" such as cobalt naphthenate and lead soaps. Alkyd coatings are of value because of their...effort has been spent on the synthesis of polymers that retain their properties at high temperatures. The impetus for this work arose from the...Japan) has announced developmental quantities of polyethylene naphthenate ) (PEN) in film form ("Q" film), which might be expected to have greater

  13. A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances

    PubMed Central

    Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-hui; Meldrum, Deirdre R.

    2013-01-01

    A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter (SM1) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter (SM2) in poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 (PSM1) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 (PSM2) in the polymer matrices exhibited a vastly different response when compared to PSM1. The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor (PSM1,2) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2, which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and pKa). PMID:24078772

  14. Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Jones, R. O.

    2002-10-01

    Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.

  15. A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances.

    PubMed

    Tian, Yanqing; Fuller, Emily; Klug, Summer; Lee, Fred; Su, Fengyu; Zhang, Liqiang; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-10-01

    A fluorescent colorimetric pH sensor was developed by a polymerization of a monomeric fluorescein based green emitter ( SM1 ) with a monomeric 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran derived red emitter ( SM2 ) in poly(2-hydroxyethyl methacrylate)- co -polyacrylamide (PHEMA-co-PAM) matrices. Polymerized SM1 ( PSM1 ) in the polymer matrices showed bright emissions at basic conditions and weak emissions at acidic conditions. Polymerized SM2 ( PSM2 ) in the polymer matrices exhibited a vastly different response when compared to PSM1 . The emissions of PSM2 are stronger under acidic conditions than those under basic conditions. When SM1 and SM2 were polymerized in the same polymer matrix, a dual emission sensor acting as a ratiometric pH sensor ( PSM1,2 ) was successfully developed. Because the PSM1 and PSM2 exhibited different pH responses and separated emission windows, the changes in the emission colors were clearly observed in their dual color sensor of PSM1,2 , which changed emission colors dramatically from green at pH 7 to red at pH 4, which was detected visually and/or by using a color camera under an excitation of 488 nm. In addition to the development of the dual color ratiometric pH sensor, we also studied the effects of different matrix compositions, crosslinkers, and charges on the reporting capabilities of the sensors (sensitivity and p K a ).

  16. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.

    1995-01-01

    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  17. Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions.

    PubMed

    Avens, Heather J; Randle, Thomas James; Bowman, Christopher N

    2008-10-17

    Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm(2)) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities.

  18. Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions

    PubMed Central

    Avens, Heather J.; Randle, Thomas James; Bowman, Christopher N.

    2008-01-01

    Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm2) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities. PMID:19838291

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  20. 405 nm diode laser, halogen lamp and LED device comparison in dental composites cure: an "in vitro" experimental trial.

    PubMed

    Fornaini, C; Lagori, G; Merigo, E; Rocca, J-P; Chiusano, M; Cucinotta, A

    2015-12-30

    A 405 nm diode laser is indicated for composite materials polymerizing, thanks to the recent evolution in their compositions, absorbing in blue part of the spectrum. The purpose of this research was to evaluate its performance on two different kinds of composite resins. Two different composites were polymerized with a traditional halogen lamp, a LED device and a 405 nm diode laser. The depth of the cure, the volumetric shrinkage, and the degree of the conversion (DC%) of the double bond during the curing process were measured. One-way ANOVA test, Kruskal-Wallis tests, and Dunn comparison tests were used for statistic analysis. Regarding the depth of polymerization, the laser had the worst performance on one composite while on the other, no significant difference with the other devices was observed. The volumetric shrinkage showed that laser produced the lowest change in both of the composites. The DC% measure confirmed these findings. Based on the results of this preliminary study, it is not possible to recommend the 405 nm diode laser for the polymerization of dental composites.

  1. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    PubMed

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  2. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    PubMed

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  3. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station

    NASA Technical Reports Server (NTRS)

    Startsev, Oleg V.; Nikishin, Eugene F.

    1995-01-01

    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  4. Study of changes in properties of solar sail materials from radiation exposure

    NASA Technical Reports Server (NTRS)

    Smith, T.

    1977-01-01

    Techniques for monitoring changes in preparation of solar sail materials resulting from space radiation simulation, stressing (e.g., thermal, mechanical) and exposure to terrestrial environments are developed. The properties of interest are: metallic coating deterioration, polymeric film deterioration, interfacial debonding and possible metallic coating diffusion into the polymeric film. Four accelerated tests were devised to simulate the possible degradation processes mentioned above. These four tests are: a thermal shock test to simulate the wide variation of temperature expected in space (260 C to -100 C), a cyclic temperature test to stimulate the 6 minute temperature cycle anticipated in space, a mechanical vibration test to simulate mechanical bonding, folding and handling, and a humidity test to simulate terrestrial environment effects. The techniques for monitoring property changes are: visual and microscopic examination, ellipsometry, surface potential difference (SPD), photoelectron emission (PEE), and water contact angles.

  5. Gas separation mechanism of CO 2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes

    DOE PAGES

    Feng, Hongbo; Hong, Tao; Mahurin, Shannon Mark; ...

    2017-05-09

    Polymeric membranes for CO 2 separation have drawn significant attention in academia and industry. We prepared amidoxime-functionalized poly(1-trimethylsilyl-1-propyne) (AO-PTMSP) membranes through hydrosilylation and post-polymerization modification. Compared to neat PTMSP membranes, the AO-PTMSP membranes showed significant enhancements in CO 2/N 2 gas separation performance (CO 2 permeability ~6000 Barrer; CO 2/N 2 selectivity 17). This systematic study provides clear guidelines on how to tune the CO 2-philicity within PTMSP matrices and the effects on gas selectivity. Key parameters for elucidating the gas transport mechanism were discussed based on CO 2 sorption measurements and fractional free volume estimates. The effect of themore » AO content on CO 2/N 2 selectivity was further examined by means of density functional theory calculations. Here, both experimental and theoretical data provide consistent results that conclusively show that CO 2/N 2 separation performance is enhanced by increased CO 2 polymer interactions.« less

  6. Gas separation mechanism of CO 2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hongbo; Hong, Tao; Mahurin, Shannon Mark

    Polymeric membranes for CO 2 separation have drawn significant attention in academia and industry. We prepared amidoxime-functionalized poly(1-trimethylsilyl-1-propyne) (AO-PTMSP) membranes through hydrosilylation and post-polymerization modification. Compared to neat PTMSP membranes, the AO-PTMSP membranes showed significant enhancements in CO 2/N 2 gas separation performance (CO 2 permeability ~6000 Barrer; CO 2/N 2 selectivity 17). This systematic study provides clear guidelines on how to tune the CO 2-philicity within PTMSP matrices and the effects on gas selectivity. Key parameters for elucidating the gas transport mechanism were discussed based on CO 2 sorption measurements and fractional free volume estimates. The effect of themore » AO content on CO 2/N 2 selectivity was further examined by means of density functional theory calculations. Here, both experimental and theoretical data provide consistent results that conclusively show that CO 2/N 2 separation performance is enhanced by increased CO 2 polymer interactions.« less

  7. Impact of tuning CO 2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation

    DOE PAGES

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...

    2017-02-22

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  8. Surface morphology of refractive-index waveguide gratings fabricated in polymer films

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Song, Yan-fang; Ma, Lei; Gao, Fang-fang

    2016-09-01

    The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.

  9. Thermo-Plasmonics for Localized Graphitization and Welding of Polymeric Nanofibers

    PubMed Central

    Zillohu, Ahnaf Usman; Alissawi, Nisreen; Abdelaziz, Ramzy; Elbahri, Mady

    2014-01-01

    There is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs) have played an important role to pave the way for a new branch of plasmonics, i.e., thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry. Here, we demonstrate the first proof of concept experiment of local chemistry and graphitization of metalized polymeric nanofibers through thermo-plasmonic effect. In particular, by tuning the plasmonic absorption of the nanohybrid through a change in the thickness of the deposited silver film on the fibers, the thermo-plasmonic effect can be adjusted in such a way that high enough temperature is generated enabling local welding and graphitization of the polymeric nanofibers. PMID:28788459

  10. Comparison of expandable endotracheal stents in the treatment of surgically induced piglet tracheomalacia.

    PubMed

    Mair, E A; Parsons, D S; Lally, K P; Van Dellen, A F

    1991-09-01

    Present surgical alternatives for pediatric tracheobronchomalacia are limited and associated with many potentially undesirable complications. The feasibility of different intraluminal expandable endotracheal stents for the treatment of surgically induced tracheomalacia was analyzed in 27 piglets. A potentially fatal tracheomalacia was surgically created. Either a stainless steel "zig-zag" stent or a woven polymeric stent was then implanted. Tracheal patency, mucosal function, histopathologic respiratory tract changes, and effects of the stent on esophageal motility were evaluated over a 16-week period. Piglets with steel stents uniformly experienced intense inflammation leading to tracheal dysfunction and death. Piglets with polymeric stents experienced minimal respiratory symptoms. Expandable polymeric endotracheal stents alleviate surgically induced piglet tracheomalacia, were easy to insert, allowed for tracheal growth, and reduced the need for high-risk surgical procedures with prolonged ventilatory support.

  11. Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis.

    PubMed

    Cifuentes, S C; Frutos, E; Benavente, R; Lorenzo, V; González-Carrasco, J L

    2017-01-01

    This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions

    PubMed Central

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura

    2016-01-01

    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  13. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  14. Evaporative Optical Marangoni Assembly: Tailoring the Three-Dimensional Morphology of Individual Deposits of Nanoparticles from Sessile Drops.

    PubMed

    Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien

    2017-10-25

    We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.

  15. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    PubMed

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  16. High temperature polymerization monitoring of an epoxy resin using ultrasound

    NASA Astrophysics Data System (ADS)

    Maréchal, P.; Ghodhbani, N.; Duflo, H.

    2018-05-01

    In this study, the real time ultrasonic monitoring is investigated to quantify changes in physical and mechanical properties during the manufacture of composite structures. In this context, an experimental transmission was developed with the aim of characterizing a high temperature polymerization reaction and post-curing properties using an ultrasonic method. First, the monitoring of ultrasonic parameters of a thermosetting resin is carried out in a device reproducing the experimental conditions for manufacturing a composite material with a process known as RTM, that is to say an isothermal polymerization at T = 160°C. During this curing, the resin is changing from its initial viscous liquid state to its final viscous solid state. Between those states, a glassy transition stage is observed, during which the physical properties are strongly changing, i.e. an increase of the ultrasonic velocity up to its steady value and a transient increase of the ultrasonic attenuation. Second, the ultrasonic inspection of the thermosetting resin is performed during a heating and cooling process to study the temperature sensitivity after curing. This type of characterization leads to identifying the ultrasonic properties dependence before, during and after the glassy transition temperature Tg . Eventually, this study is composed of two complementary parts: the first is useful for the curing optimization, while the second one is fruitful for the post-processing characterization in a temperature range including the glassy transition temperature Tg .

  17. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  18. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    PubMed

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  19. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 3D printing with polymers: Challenges among expanding options and opportunities.

    PubMed

    Stansbury, Jeffrey W; Idacavage, Mike J

    2016-01-01

    Additive manufacturing, which is more colloquially referred to as 3D printing, is quickly approaching mainstream adoption as a highly flexible processing technique that can be applied to plastic, metal, ceramic, concrete and other building materials. However, taking advantage of the tremendous versatility associated with in situ photopolymerization as well as the ability to select from a variety of preformed processible polymers, 3D printing predominantly targets the production of polymeric parts and models. The goal of this review is to connect the various additive manufacturing techniques with the monomeric and polymeric materials they use while highlighting emerging material-based developments. Modern additive manufacturing technology was introduced approximately three decades ago but this review compiles recent peer-reviewed literature reports to demonstrate the evolution underway with respect to the various building techniques that differ significantly in approach as well as the new variations in polymer-based materials being employed. Recent growth of 3D printing has been dramatic and the ability of the various platform technologies to expand from rapid production prototypic models to the greater volume of readily customizable production of working parts is critical for continued high growth rates. This transition to working part production is highly dependent on adapting materials that deliver not only the requisite design accuracy but also the physical and mechanical properties necessary for the application. With the weighty distinction of being called the next industrial revolution, 3D printing technologies is already altering many industrial and academic operations including changing models for future healthcare delivery in medicine and dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Smart polyaniline nanoparticles with thermal and photothermal sensitivity

    NASA Astrophysics Data System (ADS)

    Bongiovanni Abel, Silvestre; Molina, María A.; Rivarola, Claudia R.; Kogan, Marcelo J.; Barbero, Cesar A.

    2014-12-01

    Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, in the presence of polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that the size of the nanoparticles obtained depends on the polymeric stabilizer used, suggesting a mechanism where the aggregation of polyaniline molecules is arrested by adsorption of the polymeric stabilizer. Indeed, polymerization in the presence of a mixture of two polymers having different stabilizing capacity (PVP and PNIPAM) allows tuning of the size of the nanoparticles. Stabilization with biocompatible PVP, HPC and PNIPAM allows use of the nanoparticle dispersions in biological applications. The nanoparticles stabilized by thermosensitive polymers (PNIPAM and HPC) aggregate when the temperature exceeds the phase transition (coil to globule) temperature of each stabilizer (Tpt = 32 °C for PNIPAM or Tpt = 42 °C for HPC). This result suggests that an extended coil form of the polymeric stabilizer is necessary to avoid aggregation. The dispersions are reversibly restored when the temperature is lowered below Tpt. In that way, the effect could be used to separate the nanoparticles from soluble contaminants. On the other hand, the PANI NPs stabilized with PVP are unaffected by the temperature change. UV-visible spectroscopy measurements show that the nanoparticle dispersion changes their spectra with the pH of the external solution, suggesting that small molecules can easily penetrate the stabilizer shell. Near infrared radiation is absorbed by PANI NPs causing an increase of their temperature which induces the collapse of the thermosensitive polymer shell and aggregation of the NPs. The effect reveals that it is possible to locally heat the nanoparticles, a phenomenon that can be used to destroy tumor cells in cancer therapy or to dissolve protein aggregates of neurodegenerative diseases (e.g. Alzheimer). Moreover, the long range control of aggregation can be used to modulate the nanoparticle residence inside biological tissues.

  2. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Treesearch

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  3. The effect of impression volume and double-arch trays on the registration of maximum intercuspation.

    PubMed

    Hahn, Sara M; Millstein, Philip L; Kinnunen, Taru H; Wright, Robert F

    2009-12-01

    The type of double-arch trays used may affect occlusion. The purpose of this study was to determine what effect, if any, double-arch tray design and impression material volume had on the registration of maximum intercuspation (MI). Quadrant impressions were made on articulated fracture-resistant dental casts mounted in maximum intercuspation occlusion. Three types of sideless double-arch impression trays were used: First Bite with nylon webbing, Sultan's 3-Way with double crosshatch webbing, and Premium's 3-in-1 Tray with single crosshatch webbing. Vinyl polysiloxane impression material (Aquasil Ultra Rigid Fast Set) was distributed at 2 different volumes (5.4 ml and 8.3 ml), and 60 impressions were made (n=10). A weight of 1.2 kg was placed on the upper arm of an Artex articulator, ensuring complete closure. The impressions were allowed to polymerize for 5 minutes. After polymerization, specimens were placed on a light box, and a camera set at a fixed distance was used to capture the light transmission that was projected through the impression material. The camera transferred the information to an image analysis program (ImageJ). This system allowed the different amounts of light projected through the impression to be translated into a gray scale value (GSV), which was assigned a thickness value, in millimeters, of a specified occlusal contact area. To assess reliability of the experimental design, 10 control impressions were made by directly applying impression material onto the typodont. These were analyzed in the same manner as the impressions made with trays. A 2-way ANOVA comparing volume by tray type was used (alpha=.05). This was followed by a Tukey HSD test. There was no main effect for volume of impression material (P=.71). Tray type was significantly different (P<.001). Impressions made with Sultan trays were significantly less accurate than impressions made with First Bite or Premium impression trays. The Premium tray type had the highest mean (SD) GSV, 179.8 (8.1), significantly higher than First Bite (164.7 (19.8); P<.001) or Sultan (82.8 (7.4); P<.001) trays. This in vitro study demonstrated that certain trays hinder closure into MI, which may negatively affect the accuracy of record making.

  4. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  5. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  6. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-03-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

  7. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application

    DOE PAGES

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...

    2015-11-24

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less

  8. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    PubMed

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.

  9. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams

    NASA Astrophysics Data System (ADS)

    Hoy, Carlton F. O.

    The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.

  10. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  11. Poly(ionic liquid) based chemosensors for detection of basic amino acids in aqueous medium

    NASA Astrophysics Data System (ADS)

    Li, Xinjuan; Wang, Kai; Ma, Nana; Jia, Xianbin

    2017-09-01

    Naked-eye detection of amino acids in water is of great significance in the field of bio-analytical applications. Herein, polymerized ionic liquids (PILs) with controlled chain length structures were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and post-quaternization approach. The amino acids recognition performance of PILs with different alkyl chain lengths and molecular weights was evaluated by naked-eye color change and ultraviolet-visible (UV-vis) spectral studies. These PILs were successfully used for highly sensitive and selective detection of Arg, Lys and His in water. The recognition performance was improved effectively with increased molecular weight of PILs. The biosensitivity of the PILs in water was strongly dependent on their aggregation effect and polarization effect. Highly sensitive and selective detection of amino acids was successfully accomplished by introducing positively charged pyridinium moieties and controlled RAFT radical polymerization.

  12. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive Earth.

  13. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  14. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    NASA Astrophysics Data System (ADS)

    Diao, Y.; Hinson, K.; Sun, Y.; Arsuaga, J.

    2015-10-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the physical properties of the polymeric chains and at the same time remain faithful to their description of kDNA.

  15. In Situ Forming Polymeric Drug Delivery Systems

    PubMed Central

    Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.

    2009-01-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  16. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei

    2012-08-01

    Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization. Electronic supplementary information (ESI) available: Methods for preparing and characterizing UCN, TCN and DCN samples. Methods for examining the photocatalytic hydrogen production. FTIR, XPS, and digital photos of three products are shown in Fig. S1-6. See DOI: 10.1039/c2nr30948c

  17. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns.

    PubMed

    Tunc, Elif Pak

    2007-06-01

    Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.

  18. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  19. The influence of temperature on the formation of liquid fuel from Polypropylene plastic wastes

    NASA Astrophysics Data System (ADS)

    Martynis, M.; Mulyazmi; Praputri, E.; Witri, R.; Putri, N.

    2018-03-01

    The current trend of municipal waste management in urban areas is caused by rapid changes in social, economic, political and cultural life. As a non-biodegradable polymers that have become essential materials, plastic wastes have created a very serious environmental challenge because of the huge quantities and their disposal problems. Recycling of plastics is seen as one method for reducing environmental and resource depletion. The most attractive technique of plastics recycling is pyrolysis involving the degradation of the polymeric materials by heating in the absence of oxygen. This study investigated the characteristics of pyrolysis liquid fuel (PLF) produced from polypropylene plastic wastes with temperature variations. Pyrolisis was carried out on 200 grams of polypropylene waste plastics at the operating temperature of 200°C, 250°C, 300 °C and 350 °C for 45 minutes. The liquid products were found to have carbon chain length in the range of C8-C9, similar with gasoline. The maximum density, volume and calorific value of the oil obtained were 0.8 g/cm3, 61 ml and 1307 cal/gr, respectively.

  20. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  1. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    PubMed

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  2. Overexpression of Avenin-Like b Proteins in Bread Wheat (Triticum aestivum L.) Improves Dough Mixing Properties by Their Incorporation into Glutenin Polymers

    PubMed Central

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength. PMID:23843964

  3. Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method

    NASA Astrophysics Data System (ADS)

    Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.

    2017-09-01

    The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.

  4. Oil-Soluble Polymer Brush Grafted Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Roger A. E.; Wang, Kewei; Qu, Jun

    Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less

  5. Modified atmosphere packaging of fruits and vegetables.

    PubMed

    Kader, A A; Zagory, D; Kerbel, E L

    1989-01-01

    Modified atmospheres (MA), i.e., elevated concentrations of carbon dioxide and reduced levels of oxygen and ethylene, can be useful supplements to provide optimum temperature and relative humidity in maintaining the quality of fresh fruits and vegetables after harvest. MA benefits include reduced respiration, ethylene production, and sensitivity to ethylene; retarded softening and compositional changes; alleviation of certain physiological disorders; and reduced decay. Subjecting fresh produce to too low an oxygen concentration and/or to too high a carbon dioxide level can result in MA stress, which is manifested by accelerated deterioration. Packaging fresh produce in polymeric films can result in a commodity-generated MA. Atmosphere modification within such packages depends on film permeability, commodity respiration rate and gas diffusion characteristics, and initial free volume and atmospheric composition within the package. Temperature, relative humidity, and air movement around the package can influence the permeability of the film. Temperature also affects the metabolic activity of the commodity and consequently the rate of attaining the desired MA. All these factors must be considered in developing a mathematical model for selecting the most suitable film for each commodity.

  6. Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Lee, Jim Y.; Liu, Z. L.

    The Pechini process [Ceram. Bull. 68 (1989) 1002] is used to obtain fine tin oxide powders that reduce the specific volume change in Li + insertion and extraction reactions. The suitability of these tin oxides as active materials for negative electrodes in lithium-ion batteries is investigated. From elemental analysis, it is found that the templating polymer network is almost completely obliterated after heating at 500 °C. The best tin oxide does not exhibit extensive crystallization of tin atoms even after 30 cycles of alloying and de-alloying reactions with Li. The structure and the specific capacity of the oxides are dependent on the heat treatment and remnants of the polymeric CH network can impose an unfavorable outcome. A capacity of 600 mAh g -1, which is unchanged for 30 cycles, can be obtained from tin oxide heat treated at 1000 °C. Composites of graphite and SnO 2 are also prepared and exhibit synergistic interactions between graphite and tin oxide which are similar to those reported previously [Electrochem. Solid State Lett. 3 (2000) 167].

  7. Oil-Soluble Polymer Brush Grafted Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction

    DOE PAGES

    Wright, Roger A. E.; Wang, Kewei; Qu, Jun; ...

    2016-06-06

    Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less

  8. Structural changes in S. epidermidis biofilms after transmission between stainless steel surfaces.

    PubMed

    Gusnaniar, Niar; Sjollema, Jelmer; Nuryastuti, Titik; Peterson, Brandon W; van de Belt-Gritter, Betsy; de Jong, Ed D; van der Mei, Henny C; Busscher, Henk J

    2017-10-01

    Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm -3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm -3 ). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.

  9. The directional response of chemotactic cells depends on a balance between cytoskeletal architecture and the external gradient.

    PubMed

    Wang, Ming-Jie; Artemenko, Yulia; Cai, Wen-Jie; Iglesias, Pablo A; Devreotes, Peter N

    2014-11-06

    Polarized migrating cells display signal transduction events, such as activation of phosphatidylinositol 3-kinase (PI3K) and Scar/Wave, and respond more readily to chemotactic stimuli at the leading edge. We sought to determine the basis of this polarized sensitivity. Inhibiting actin polymerization leads to uniform sensitivity. However, when human neutrophils were "stalled" by simultaneously blocking actin and myosin dynamics, they maintained the gradient of responsiveness to chemoattractant and also displayed noise-driven PIP3 flashes on the basal membrane, localized toward the front. Thus, polarized sensitivity does not require migration or cytoskeletal dynamics. The threshold for response is correlated with the static F-actin distribution, but not cell shape or volume changes, membrane fluidity, or the preexisting distribution of PI3K. The kinetics of responses to temporal and spatial stimuli were consistent with the local excitation global inhibition model, but the overall direction of the response was biased by the internal axis of polarity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zou, Yongjin; Huang, Liyan; Yin, Hao; Xi, Chengqiao; Chen, Xin; Shentu, Hongwei; Li, Chao; Zhang, Jingjing; Lv, ChunJu; Fan, Meiqiang

    2018-06-01

    Sandwich-structured carbon nanotubes, silicon oxide, and polyaniline (hereafter denoted as CNTs/SiOx/PANI) were prepared by combining a sol-gel method, magnesiothermic reduction at 250 °C, and chemical oxidative polymerization. The CNTs, SiOx and PANI in the composite was 16 wt%, 51 wt% and 33 wt%, respectively. The CNTs/SiOx/PANI electrodes exhibited excellent cycle and high-rate performance as anodes in Li-ion batteries, including charge/discharge capacities of 1156/1178 mAh g-1 after 60 cycles at 0.2 A g-1 current density and 728/725 mAh g-1 at 8 A g-1 current density. The improvement was due to the synergy between CNTs and PANI. The SiOx scattered on the CNTs core and coated by PANI improved its conductivity and accommodated the volume change during repeated lithiation/delithiation cycles. This simple synthesis provided a scalable route for the large-scale production of CNTs/SiOx/PANI nanostructures, with various applications such as in Li-ion batteries.

  11. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  12. Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.

    PubMed

    Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo

    2017-08-30

    We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.

  13. Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs

    NASA Astrophysics Data System (ADS)

    Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova

    2018-03-01

    The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.

  14. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  15. Early resuscitation with polymerized bovine hemoglobin reverses acidosis, but not peripheral tissue oxygenation, in a severe hamster shock model.

    PubMed

    Wettstein, Reto; Tsai, Amy G; Harder, Yves; Erni, Dominique; Intaglietta, Marcos

    2006-11-01

    Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.

  16. In-port derivatization coupled to different extraction techniques for the determination of alkylphenols in environmental water samples.

    PubMed

    Cavalheiro, J; Monperrus, M; Amouroux, D; Preud'Homme, H; Prieto, A; Zuloaga, O

    2014-05-02

    Large volume injection (LVI)-in port silylation coupled to gas chromatography-mass spectrometry (GC-MS) for the determination of alkylphenols (APs) in water samples applying four different extraction approaches was evaluated. Among the variables studied for in-port derivatization, vent time, cryo-focusing temperature and the ratio solvent volume/N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) volume were optimized using an experimental design approach. Regarding the extraction techniques, different approaches previously optimized in the research group were tested. On the one hand different polymeric materials were tested: silicon rod (SR), polyethersulfone (PES) and polydimethylsiloxane (PDMS), the latter in the stir-bar sorptive extraction format (SBSE-PDMS). PES was chosen among the polymeric materials due to the higher recoveries (compared with SR) and lower price (compared to PDMS in the stir-bar sorptive extraction, SBSE-PDMS). Both MASE and PES protocols were selected at this point for further method validation and application to real samples. Finally, the developed methods were validated and applied to the determination of target analytes in various aqueous environmental matrices, including estuarine water and wastewater. Acceptable repeatability in the case of MASE (5-17%) and PES (7-21%) procedures and method detection limits (MDLs, 5-123 and 28-328 ng L(-1) for PES and MASE, respectively) were obtained for most analytes. In terms of apparent recoveries in the presence of matrix, estuarine and effluent samples showed no significant matrix effect (apparent recoveries in the 73-121% for PES and 74-128% for MASE), while a stronger matrix effect was observed for influent wastewater samples (98-132% for PES and 65-156% for MASE). Both MASE and PES extractions combined with LVI-in-port derivatization-GC-MS were applied to the determination of APs in the estuary of Bilbao (Gulf of Biscay, Spain). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Preparation and characterization of Phase change material microcapsules by a core-shell-like emulsion polymerization method

    NASA Astrophysics Data System (ADS)

    Ding, Li-ming; Pei, Guang-ling

    2015-07-01

    Phase change material microcapsules (MicroPCMs) were synthesized by a coreshell-like emulsion polymerization method. Styrene and methylacrylic acid copolymer (PS- MAA) was used as a wall material, and paraffin was used as a core material in order to prepare spherical, high resistance and high enthalpy MicroPCMs. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG) and Differential Scanning Calorimeter (DSC) were employed to characterize the MicroPCMs. The results indicated that the average particle size of MicroPCMs was 42.29 μm, and the content of paraffin within microcapsules was 57.6%. The melting temperature and crystallization temperature were 30.7°C and 25.2°C.The melting enthalpy and crystallization enthalpy were -84.1 J/g and 91.3 J/g, respectively.

  18. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  19. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies.

    PubMed

    Chaurasia, Sundeep; Chaubey, Pramila; Patel, Ravi R; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-01-01

    Curcumin (CUR), can inhibit proliferation and induce apoptosis of tumor cells, its extreme insolubility and limited bioavailability restricted its clinical application. An innovative polymeric nanoparticle of CUR has been developed to enhance the bioavailability and anti-cancer efficacy of CUR, in vitro and in vivo. Cationic copolymer Eudragit E 100 was selected as carrier, which can enhance properties of poor bioavailable chemotherapeutic drugs (CUR). The CUR-loaded Eudragit E 100 nanoparticles (CENPs) were prepared by emulsification-diffusion-evaporation method. The in vitro cytotoxicity study of CENPs was carried out using sulphorhodamine B assay. Pharmacokinetic and anti-cancer efficacy of CENPs was investigated in Wister rats as well as colon-26 tumor-bearing mice after oral administration. CENPs showed acceptable particle size and percent entrapment efficiency. In vitro cytotoxicity studies in terms of 50% cell growth inhibition values demonstrated ∼19-fold reduction when treated with CENPs as compared to pure CUR. ∼91-fold increase in Cmax and ∼95-fold increase in AUC0-12h were observed indicating a significant enhancement in the oral bioavailability of CUR when orally administered as CENPs compared to pure CUR. The in vivo anti-cancer study performed with CENPs showed a significant increase in efficacy compared with pure CUR, as observed by tumor volume, body weight and survival rate. The results clearly indicate that the developed polymeric nanoparticles offer a great potential to improve bioavailability and anticancer efficacy of hydrophobic chemotherapeutic drug.

  20. Formation of polymeric toroidal-spiral particles.

    PubMed

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  1. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  2. Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicholson, Marjorie Anne

    1991-01-01

    A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.

  3. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    PubMed

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids.

    PubMed

    Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth

    2012-11-15

    The thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed. Analysis of thermodynamic behaviour was performed by differential scanning calorimetry (DSC) and by assessment of their interaction with scCO(2) in a high-pressure variable volume view cell. The key criterion was to demonstrate a strong interaction with scCO(2) and to show liquefaction of the polymeric material at acceptable processing temperatures and pressures. Positive results should then indicate the suitability of these materials for processing by the Particle from Gas Saturated Solutions (PGSS) technique using scCO(2) to create microparticles for pulmonary administration. It was found that the materials tested interacted with scCO(2) and showed a sufficient lowering of their melting temperature (T(m)) to make them suitable for use in the PGSS microparticle production rig. Fatty acids of low T(m) were shown to act as a plasticising agent and to lower the T(m) of PEG further during interaction with scCO(2). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sub acute toxicity assessment of glipizide engineered polymeric nanoparticles.

    PubMed

    Lekshmi, U M Dhana; Kishore, Narra; Reddy, P Neelakanta

    2011-08-01

    To our knowledge, no such polymeric nanoparticle formulation toxicity study has been reported for oral use. The oral route of drug administration is generally preferred because of its versatility, safety and relative patient comfort. Hence, there is an outstanding need of research for polymeric nanoparticles to find whether they are stable for prolonged shelf life, and yet have no toxicity when administered orally. The main objective of this study is to assess the safety of Glipizide (GZ) loaded polymeric nanoparticle systematically and to observe the toxic effects of nanoparticles on the functions of various tissues and organs in rats. The rats were randomly divided into 7 groups (6 in each group); viz. one normal control group (received saline), two groups (1:2 and 1:5 ratio of GZ-Chitosan nanoparticle), two groups (1:2 and 1:5 ratio of GZ-Poly(methyl methacrylate) nanoparticle) and two groups (1:2 and 1:5 ratio of GZ-Ethyl Cellulose nanoparticle). After 30 days of nanoparticle administration, the blood haematology and biochemistry were investigated, along with the histopathological examination. The rats did not show any significant changes in all the parameters studied and the results clearly evidenced its safety. All formulations showed in vitro haemolytic activity less than 5%. Conclusion drawn from the present study is that the polymeric nanoparticles may be a suitable device for safe oral administration. A rigorous safety of these nanoparticles would enable their use in the field of diabetic therapy.

  6. Analysis of the temporal effects on grating evolution in photopolymer

    NASA Astrophysics Data System (ADS)

    Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.; O'Neill, Feidhlim T.; Sheridan, John T.; Gallego, Sergi; Neipp, Cristian

    2006-04-01

    The nonlocal polymerization driven diffusion model is used to describe holographic grating formation in acrylamidebased photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. A Gaussian spatial material response function and an exponential temporal material response function are used to account for these effects. In this paper we firstly examine the nature of the temporal evolution of grating formation for short recording periods. It is shown that in this case, temporal effects become most notable and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure selfamplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. Incorporating each of these effects into our model, the model is then solved using a Finite-Difference Time- Domain method (FDTD). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Fits are then carried out to experimental data for 1 second exposures. Good quality fits are achieved and material parameters extracted. Monomer diffusion rates are determined to be of the order of D ~ 10 -10 cm 2/s and the time constant of the nonlocal material temporal response function being of the order of τ n ~ 10 -2s. Material shrinkage occurring over these recording periods is also determined.

  7. Modeling photopolymers for holographic data storage applications

    NASA Astrophysics Data System (ADS)

    Sheridan, John T.; Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.

    2006-09-01

    The Nonlocal Polymerization Driven Diffusion model, NPDD, is can be used to describe holographic grating formation in Acrylamide-based photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. Temporal nonlocality can be used to describepost exposure dark effects. Nonlinear response and the effects of dye bleaching have been examined. Both primary and bimolecular chain termination mechanisms have been included and examined. Recently 3-D, and inhibition effects have also been included. In this paper we review of our recent work. It is shown that temporal effects become most notable for short exposres and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure self-amplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Inhibition is typically observed at the start of grating growth during which the formation of polymer chains is suppressed. In this paper experiments are reported, carried out with the specific aim of understanding of these processes. The results support our description of the inhibition process in an PVA/Acrylamide based photopolymer and can be used to predict behaviour under certain conditions.

  8. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    PubMed

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  9. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  10. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a potential application of the method. Molecular weight control was found to be achieved via diffusion of the CFRP agents through the aqueous phase owing to limited water solubilities. The effects of adsorption rate and energy on the droplet size and size distribution of miniemulsions using different surfactants (sodium lauryl sulfate (SLS), sodium dodecylbenzene sulfonate (SDBS), Dowfax 2A1, Aerosol OT-75PG, sodium n-octyl sulfate (SOS), and sodium n-hexadecyl sulfate (SHS)) were analyzed. For this purpose, first, the dynamics of surfactant adsorption at an oil/water interface were examined over a range of surfactant concentrations by the drop volume method and then adsorption rates of the different surfactants were determined for the early stages of adsorption. The results do not show a direct relationship between adsorption rate and miniemulsion droplet size and size distribution. Adsorption energies of these surfactants were also calculated by the Langmuir adsorption isotherm equation and no correlation between adsorption energy and miniemulsion droplet size was found. In order to understand the mechanism of miniemulsification process, the effects of breakage and coalescence processes on droplet size distributions were observed at different surfactant concentrations, monomer ratios, and homogenization conditions. A coalescence and breakup mechanism for miniemulsification is proposed to explain the size distribution of droplets. The multimodal droplet size distribution of ODMA miniemulsions was controlled by the breakage mechanism. The results also showed that, at a surfactant concentration when 100% surface coverage was obtained, the droplet size distribution became unimodal.

  11. Power law cross-correlations between price change and volume change of Indian stocks

    NASA Astrophysics Data System (ADS)

    Hasan, Rashid; Mohammed Salim, M.

    2017-05-01

    We study multifractal long-range correlations and cross-correlations of daily price change and volume change of 50 stocks that comprise Nifty index of National Stock Exchange, Mumbai, using MF-DFA and MF-DCCA methods. We find that the time series of price change are uncorrelated, whereas anti-persistent long-range multifractal correlations are found in volume change series. We also find antipersistent long-range multifractal cross-correlations between the time series of price change and volume change. As multifractality is a signature of complexity, we estimate complexity parameters of the time series of price change, volume change, and cross-correlated price-volume change by fitting the fourth-degree polynomials to their multifractal spectra. Our results indicate that the time series of price change display high complexity, whereas the time series of volume change and cross-correlated price-volume change display low complexity.

  12. Structural Relaxation of Vit4Amorphous Alloy by the Enthalpy Relaxation

    NASA Astrophysics Data System (ADS)

    O'Reilly, James; Hammond, Vincent

    2002-03-01

    The structural relaxation of an amorphous alloy designated Vit4 has been investigated as a function of thermal history using differential scanning calorimetry. Results indicate that the width of the glass transition region is approximately 30 °C, which is broader than molecular or polymeric glasses but similar to inorganic glasses. The broad transition implies a large distribution of relaxation times, a low activation energy, or a combination of these effects. The Tool-Narayanaswamy model for structural relaxation has been used to analyze the change in fictive temperature that occurs for a series of cooling rates. The activation energy calculated from these data the is 187 kJ/mol, a value that is low compared to other glasses. Using optimization programs, the other relaxation parameters, the characteristic relaxation time, the non-linearity parameter, x, and the fractional exponent of distribution of relaxation times, b, were determined from the experimental specific heat curves. Although the parameters were in good agreement with values typical of other glassy materials, there appears to be less correlation between them than is observed in molecular and polymeric glasses. The results obtained in this study indicate that the structural relaxation of Vit 4 is similar to other glasses except for a low activation energy with high glass transition. This could be due to a low free volume or configurational entropy. The width of the glass transition could result from a large distribution of relaxation times or a low activation energy. The exponent of the distribution of relaxation times, b, is 0.45±0.1 and the non-linearity parameter, x =0.5±0.2. The structural relaxation of Vit 4 is dominated by a low activation energy which is related to the atomic jump motion of hard spheres. The DCp at Tg should be 11.7 J/mol. deg per bead according to Wunderlich’s rule. This means that the change in Cp at Tg in Vit4 can be accounted for by one bead although there are five metal components in the glass. More detailed comparisons with other glass formers will be presented.

  13. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  14. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  15. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    NASA Astrophysics Data System (ADS)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  16. Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher

    NASA Astrophysics Data System (ADS)

    Pikulin, Alexander; Bityurin, Nikita; Sokolov, Viktor I.

    2015-12-01

    Diffusion-assisted direct laser writing (DA-DLW) by multiphoton polymerization has been recently shown to be one of the most promising methods for the high-resolution 3D nanofabrication [I. Sakellari, et al., ACS Nano 6, 2302 (2012)]. The improvement of the writing spatial resolution has been observed under certain conditions when the mobile radical quencher (polymerization inhibitor) is added to the photosensitive composition. In this work, we present a theoretical study of this method, focusing on the resolution capabilities and optimal writing parameters. The laser beam absorption in the polymerizable composition causes the localized depletion of the quencher molecules. If the quencher depletion is balanced by its diffusion from the outside of the focal volume, the quasi-stationary non-equillibrium concentration spatial profile with zero minimum can be obtained. The polymer is then effectively formed only in the domain where the quencher is depleted. The spatially-distributed quencher, in this case, has the effect similar to that of the vortex beam in STimulated Emission Microscopy (STED).

  17. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  18. Conductivity Scaling Relationships of Nanostructured Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel

    Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.

  19. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Ranjani V.; Martin, Charles R.

    1994-05-01

    CURRENT methods for immobilizing enzymes for use in bioreactors and biosensors1-20 include adsorption on or covalent attachment to a support2-4, micro-encapsulation5,6, and entrapment within a membrane/film7,8,11-20 or gel9. The ideal immobilization method should employ mild chemical conditions, allow for large quantities of enzyme to be immobilized, provide a large surface area for enzyme-substrate contact within a small total volume, minimize barriers to mass transport of substrate and product, and provide a chemically and mechanically robust system. Here we describe a method for enzyme immobilization that satisfies all of these criteria. We have developed a template-based synthetic method that yields hollow polymeric microcapsules of uniform diameter and length. These microcapsules are arranged in a high-density array in which the individual capsules protrude from a surface like the bristles of a brush. We have developed procedures for filling these microcapsules with high concentrations of enzymes. The enzyme-loaded microcapsule arrays function as enzymatic bioreactors in both aqueous solution and organic solvents.

  20. Model of diffusion-assisted direct laser writing by means of nanopolymerization in the presence of radical quencher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikulin, Alexander, E-mail: pikulin@ufp.appl.sci-nnov.ru; Bityurin, Nikita; Institute of Applied Physics of Russian Academy of Sciences, 46, Ul’yanov Str., Nizhniy Novgorod, 603950

    Diffusion-assisted direct laser writing (DA-DLW) by multiphoton polymerization has been recently shown to be one of the most promising methods for the high-resolution 3D nanofabrication [I. Sakellari, et al., ACS Nano 6, 2302 (2012)]. The improvement of the writing spatial resolution has been observed under certain conditions when the mobile radical quencher (polymerization inhibitor) is added to the photosensitive composition. In this work, we present a theoretical study of this method, focusing on the resolution capabilities and optimal writing parameters. The laser beam absorption in the polymerizable composition causes the localized depletion of the quencher molecules. If the quencher depletionmore » is balanced by its diffusion from the outside of the focal volume, the quasi-stationary non-equillibrium concentration spatial profile with zero minimum can be obtained. The polymer is then effectively formed only in the domain where the quencher is depleted. The spatially-distributed quencher, in this case, has the effect similar to that of the vortex beam in STimulated Emission Microscopy (STED)« less

  1. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).

    PubMed

    Pei, Yiwen; Lowe, Andrew B; Roth, Peter J

    2017-01-01

    Polymerization-induced self-assembly (PISA) is an extremely versatile method for the in situ preparation of soft-matter nanoparticles of defined size and morphologies at high concentrations, suitable for large-scale production. Recently, certain PISA-prepared nanoparticles have been shown to exhibit reversible polymorphism ("shape-shifting"), typically between micellar, worm-like, and vesicular phases (order-order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus-responsive nano-objects. Reversible pH-responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature-triggered order-order transitions, conversely, do not rely on inherently thermo-responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post-modification of reactive PISA-made particles. Emerging applications and future research directions of this "smart" nanoparticle behavior are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m 2 g –1),more » large pore volume (2.26 cm –3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  3. Polymeric monolith column composited with multiwalled carbon nanotubes-β-cyclodextrin for the selective extraction of psoralen and isopsoralen.

    PubMed

    Ling, Xu; Zou, Li; Chen, Zilin

    2017-09-01

    A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Hassib, Lamyaa

    2005-06-01

    Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.

  5. Solvent-Vapor-Mitigation of Electrostatics in 3D Cyclopropenium Diblock Copolyelectrolyte Network

    NASA Astrophysics Data System (ADS)

    Russell, Sebastian; Kumar, Sanat; Campos, Luis

    Photolithography is progressively becoming an obsolete manufacturing technique in the microelectronic industry as block copolymer (BCP) nanoassembles approach sub 10-nm features sizes. Thermodynamically, the morphology and limiting feature size, for BCP, are determined by the relative volume fraction and magnitude of the incompatibility (χN) between each block. Therefore, to achieve smaller dimensions, it is imperative to devise copolymer systems that are strongly segregating (χN >>10) by utilizing high monomer incompatibility, large χ. For synthetic cylinder forming BCPs, achieving sub-10 nm features with a high degree of lateral ordering still remains a challenge. Covalently bound ions could potentially be a route towards enhancing the segmental incompatibility and this presentation will focus on the self-assembly of post-polymerization functionalized cyclopropenium-ion diblock copolyelectrolytes (DBCPE) through solvent vapor annealing. By varying the BCPE's total degree of polymerization and charge fraction we have mapped the kinetic phase-space. This control over morphology has opened the door to sub-10nm features with tunable densities by varying the length of the neutral and polyelectrolyte block, respectively. Chemical Engineering Department.

  6. Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis† †Electronic supplementary information (ESI) available: Complete procedures for the synthesis of hierarchically porous organic polymers and characterization data (gas adsorption–desorption isotherms, pore size distribution graphs, SEM images, and density data). Detailed procedures for propane uptake experiments and calculation of diffusion constants. See DOI: 10.1039/c4sc02502d Click here for additional data file.

    PubMed Central

    Chakraborty, Sanjiban; Colón, Yamil J.; Snurr, Randall Q.

    2015-01-01

    Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores. PMID:28966764

  7. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion

    NASA Astrophysics Data System (ADS)

    Kim, Inhwan; Cho, Gilsoo

    2018-07-01

    Strain sensors made of intrinsically conductive polymers (ICPs) and nanofibers were fabricated and tested for suitability for use in wearable technology. The sensors were fabricated and evaluated based on their surface appearances, and electrical, tensile, and chemical/thermal properties. Polypyrrole (PPy) was in situ polymerized onto polyurethane (PU) nanofiber substrates by exposing pyrrole monomers to ammonium persulfate as oxidant and 2,6-naphthalenedisulfonic acid disodium salt as doping agents in an aqueous bath. The PPy treated PU nanofibers were then coated with polydimethylsiloxane (PDMS). Both pyrrole concentrations and layer numbers were significantly related to change in electrical conductivity. Specimen treated with 0.1 M of PPy and having three layered structure showed the best electrical conductivity. Regarding tensile strength, the in situ polymerization process decreased tensile strength because the oxidant chemically degraded the PU fibers. Adding layers and PDMS treatment generally improved tensile properties while adding layers created fracture parts in the stress–strain curves. The treatment condition of 0.1 M of PPy, two layered, and PDMS treated specimen showed the best tensile properties as a strain sensor. The chemical property evaluation with Fourier transform infrared and x-ray photoelectron spectroscopy tests showed successful PPy polymerization and PDMS treatments. The functional groups and chemical bonds in polyol, urethane linkage, backbone ring structure in PPy, silicon-based functional groups in PDMS, and elemental content changes by treatment at each stage were characterized. The real-time data acquired from the dummy and five human subjects with repetition of motion at three different speeds of 0.16, 0.25 and 0.5 Hz generated similar trends and tendencies. The PU nanofiber sensors based on PPy and PDMS treatments in this study point to the possibility of developing textiles based wearable strain sensors developed using ICPs.

  8. Time dependence of composite shrinkage using halogen and LED light curing.

    PubMed

    Uhl, Alexander; Mills, Robin W; Rzanny, Angelika E; Jandt, Klaus D

    2005-03-01

    The polymerization shrinkage of light cured dental composites presents the major drawback for these aesthetically adaptable restorative materials. LED based light curing technology has recently become commercially available. Therefore, the aim of the present study was to investigate if there was a statistically significant difference in linear and volumetric composite shrinkage strain if a LED LCU is used for the light curing process rather than a conventional halogen LCU. The volumetric shrinkage strain was determined using the Archimedes buoyancy principle after 5, 10, 20, 40 s of light curing and after 120 s following the 40 s light curing time period. The linear shrinkage strain was determined with a dynamic mechanical analyzer for the composites Z100, Spectrum, Solitaire2 and Definite polymerized with the LCUs Trilight (halogen), Freelight I (LED) and LED63 (LED LCU prototype). The changes in irradiance and spectra of the LCUs were measured after 0, 312 and 360 min of duty time. In general there was no considerable difference in shrinkage of the composites Z100, Spectrum or Solitaire2 when the LED63 was used instead of the Trilight. There was, however, a statistically significant difference in shrinkage strain when the composite Definite was polymerized with the LED63 instead of the Trilight. The spectrum of the Trilight changed during the experiment considerably whereas the LED63 showed an almost constant light output. The Freelight I dropped considerably in irradiance and had to be withdrawn from the study because of technical problems. The composites containing only the photoinitiator camphorquinone showed similar shrinkage strain behaviour when a LED or halogen LCU is used for the polymerization. The irradiance of some LED LCUs can also decrease over time and should therefore be checked on a regular basis.

  9. Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation-reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus.

    PubMed

    Xing, Fang-Zhou; Zhao, Yan-Gang; Zhang, Yuan-Yuan; He, Li; Zhao, Ji-Kai; Liu, Meng-Ying; Liu, Yan; Zhang, Ji-Qiang

    2018-06-01

    Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long-term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A-443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC-1 expression, mTORC2 signaling (rictor and phospho-AKTSer473), actin polymerization (phospho-cofilin and profilin-1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p-cofilin, GluR1, and spinophilin expression. The ER antagonist-induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC-1, rictor, and synaptophysin expression. nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal-dependent dementia such as Alzheimer's disease as proposed by previous studies. © 2018 John Wiley & Sons Ltd.

  10. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very small volume - typically to 1/20 of its full size in one dimension. 4) At a temperature above its glass-transition temperature (T(sub g)), the foam strongly damps vibrations. Even at a temperature below T(sub g), the damping should exceed that of other materials. 5) In its macroscopic mechanical properties, an open-cell foam is isotropic. This isotropy facilitates computational modeling of antenna structures. 6) Through chemical formulation, the T(sub g) of an open-cell polyurethane foam can be set at a desired value between about - 100 and about 0 C. Depending on the application, it may or may not be necessary to rigidify a foam structure after deployment. If rigidification is necessary, then the T(sub g) of the foam can be tailored to exceed the temperature of the deployment environment, in conjunction with providing a heater to elasticize the foam for deployment. Once deployed, the foam would become rigidified by cooling to below T(sub g). 7) Techniques for molding or machining polymeric foams (especially including open-cell polyurethane foams) to desired sizes and shapes are well developed.

  11. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  12. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  13. Three dimensional colorimetric assay assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  14. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  15. Three-dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichert, Anke

    2001-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  16. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cofilin and DNase I affect the conformation of the small domain of actin.

    PubMed Central

    Dedova, Irina V; Dedov, Vadim N; Nosworthy, Neil J; Hambly, Brett D; dos Remedios, Cris G

    2002-01-01

    Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells. PMID:12023237

  18. Thermochemical nanolithography components, systems, and methods

    DOEpatents

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  19. Optical characterization of composite layers prepared by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Radeva, E.; Hikov, T.; Mitev, D.; Stroescu, H.; Nicolescu, M.; Gartner, M.; Presker, R.; Pramatarova, L.

    2016-02-01

    Thin composite layers from polymer/nanoparticles (Ag-nanoparticles and detonation nanodiamonds) were prepared by plasma polymerization process on the base of hexamethyldisiloxane. The variation of the layer composition was achieved by changing the type of nanoparticles. The optical measurement techniques used were UV-VIS-NIR ellipsometry (SE), Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy. The values of the refractive index determined are in the range 1.30 to 1.42. All samples are transparent with transmission between 85-95% and very smooth. The change in Raman and FTIR spectra of the composites verify the expected bonding between polymer and diamond nanoparticles due to the penetration of the fillers in the polymer matrix. The comparison of the spectra of the corresponding NH3 plasma treated composites revealed that the composite surface becomes more hydrophilic. The obtained results indicate that preparation of layers with desired compositions is possible at a precise control of the detonation nanodiamond materials.

  20. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.

    PubMed

    Lego, Béatrice; Skene, W G; Giasson, Suzanne

    2008-01-15

    Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.

  1. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    PubMed

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  2. Synthesis and characterization of nanoporous silica aerogel beads using cheap industrial grade sodium silacte precursor

    NASA Astrophysics Data System (ADS)

    Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.

    2018-05-01

    We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.

  3. Pressurized vascular systems for self-healing materials

    PubMed Central

    Hamilton, A. R.; Sottos, N. R.; White, S. R.

    2012-01-01

    An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen. PMID:21957119

  4. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  5. Analysis of peptides using an integrated microchip HPLC-MS/MS system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Brian J.; Chirica, Gabriela S.; Reichmuth, David S.

    Hyphendated LC-MS techniques are quickly becoming the standard tool for protemic analyses. For large homogeneous samples, bulk processing methods and capillary injection and separation techniques are suitable. However, for analysis of small or heterogeneous samples, techniques that can manipulate picoliter samples without dilution are required or samples will be lost or corrupted; further, static nanospray-type flowrates are required to maximize SNR. Microchip-level integration of sample injection with separation and mass spectrometry allow small-volume analytes to be processed on chip and immediately injected without dilution for analysis. An on-chip HPLC was fabricated using in situ polymerization of both fixed and mobilemore » polymer monoliths. Integration of the chip with a nanospray MS emitter enables identification of peptides by the use of tandem MS. The chip is capable of analyzing of very small sample volumes (< 200 pl) in short times (< 3 min).« less

  6. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  7. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.

  8. Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres.

    PubMed

    Oliveira, Serafim M; Almeida, Isabel F; Costa, Paulo C; Barrias, Cristina C; Ferreira, M Rosa Pena; Bahia, M Fernanda; Barbosa, Mário A

    2010-06-01

    A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25 degrees C or at 4 degrees C.

  9. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning.

    PubMed

    Puppi, D; Pirosa, A; Lupi, G; Erba, P A; Giachi, G; Chiellini, F

    2017-06-07

    Biodegradable stents have emerged as one of the most promising approaches in obstructive cardiovascular disease treatment due to their potential in providing mechanical support while it is needed and then leaving behind only the healed natural vessel. The aim of this study was to develop polymeric biodegradable stents for application in small caliber blood vessels. Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHHx), a renewable microbial aliphatic polyester, and poly(ε-caprolactone), a synthetic polyester approved by the US Food and Drug Administration for different biomedical applications, were investigated as suitable polymers for stent development. A novel manufacturing approach based on computer-aided wet-spinning of a polymeric solution was developed to fabricate polymeric stents. By tuning the fabrication parameters, it was possible to develop stents with different morphological characteristics (e.g. pore size and wall thickness). Thermal analysis results suggested that material processing did not cause changes in the molecular structure of the polymers. PHBHHx stents demonstrated great radial elasticity while PCL stents showed higher axial and radial mechanical strength. The developed stents resulted able to sustain proliferation of human umbilical vein endothelial cells within two weeks of in vitro culture and they showed excellent results in terms of thromboresistivity when in contact with human blood.

  10. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  11. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  12. The use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J.D.; Chughtai, A.R.; Czanderna, A.W.

    1981-10-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (UV) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  13. Use of FT-IR reflection-absorbance spectroscopy to study photochemical degradation of polymeric coatings on mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J D; Schissel, P; Czanderna, A W

    1981-01-01

    A technique is presented for in situ study of degradative changes in polymeric coatings on metallic substrates. The technique uses a controlled environment chamber in conjunction with a Fourier-transform infrared (FT-IR) spectrophotometer. The chamber design permits collection of IR reflection-absorbance spectra from a sample undergoing exposure to controlled ultraviolet (uv) radiation, gas mixtures, and temperatures. Initial data presented confirm the ability of the technique to provide information regarding the bulk photochemistry of bisphenol-A polycarbonate coatings on gold and aluminum substrates. Refinements of this technique should allow a detailed kinetic study of degradative reactions at the polymer/metal interface.

  14. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer.

    PubMed

    Albrecht, Ken; Hirabayashi, Yuki; Otake, Masaya; Mendori, Shin; Tobari, Yuta; Azuma, Yasuo; Majima, Yutaka; Yamamoto, Kimihisa

    2016-12-01

    The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl 2 ) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers.

  15. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  16. Visualizing polynucleotide polymerase machines at work

    PubMed Central

    Steitz, Thomas A

    2006-01-01

    The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, that of φ29 DNA polymerase bound to a primer protein and those of the multisubunit RNAPs bound to initiating factors provide insights into how these proteins can initiate RNA synthesis and synthesize 6–10 nucleotides while remaining bound to the site of initiation. Structural insight into the translocation of the product transcript and the separation of the downstream duplex DNA is provided by the structures of the four states of nucleotide incorporation. Single molecule and biochemical studies show a distribution of primer terminus positions that is altered by the binding of NTP and PPi ligands. This article reviews the insights that imaging the structure of polynucleotide polymerases at different steps of the polymerization reaction has provided on the mechanisms of the polymerization reaction. Movies are shown that allow the direct visualization of the conformational changes that the polymerases undergo during the different steps of polymerization. PMID:16900098

  17. Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process.

    PubMed

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Gao, Ding; Wang, Li

    2016-09-01

    Biodrying, an economical and energy-saving biomass waste treatment, removes water from waste using the biological heat generated by organic matter degradation. Technical limitations associated with dewatering complicate the biodrying of sewage sludge. This study investigated the sludge alteration associated with its water removal, focusing on sludge form, extracellular polymeric substances, and free water release. An auto-feedback control technology was used for the biodrying; a scanning electron microscope was used to record the morphological change; three-dimensional excitation-emission matrix fluorescence spectroscopy was used to analyze extracellular polymeric substances (EPS) variation, and time domain reflectometry was used to assess the free water release. Over the 20-day biodrying, there was a 62% water removal rate during the first thermophilic phase. Biodrying created a hollow and stratified sludge structure. Aromatic proteins and soluble microbial byproducts in the EPS were significantly degraded. The thermophilic phase was the phase resulting in the greatest free water release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Monitoring of Diisopropyl Fluorophosphate Hydrolysis by Fluoride-Selective Polymeric Films Using Absorbance Spectroscopy

    PubMed Central

    Ramanathan, Madhumati; Wang, Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2012-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of Type G Chemical Warfare Agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride-ion-selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethylporphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous co-extraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 µM DFP. PMID:20441875

  19. Impact of adding white pomace to red grapes on the phenolic composition and color stability of Syrah wines from a warm climate.

    PubMed

    Gordillo, Belén; Cejudo-Bastante, María Jesús; Rodríguez-Pulido, Francisco J; Jara-Palacios, M José; Ramírez-Pérez, Pilar; González-Miret, M Lourdes; Heredia, Francisco J

    2014-03-26

    The influence of the fermentative addition of Pedro Ximenez grape pomace (PXGP, white variety) on the phenolic composition and color of Syrah red wines from a warm climate was studied. Changes on phenolic composition (HPLC), copigmentation/polymerization (spectrophotometry), and color (tristimulus colorimetry) allowed differences among the maceration treatments to be established. PXGP additions at the rates studied increased the extraction of total phenolics, phenolic acids, and monomeric flavanols. However, the effect on the anthocyanins, copigmentation, and polymerization depended on the doses applied, with important consequences on the color. PXGP addition at 10% led to wines with higher polymerization, more stable colors, and bluish hues. in contrast, perceptibly lighter and less intense wines were obtained with PXGP addition at 20%. Thus, the use of white grape byproducts as wine additives at appropriate levels (10% w/w) could improve the phenolic potential of red young wines from a warm climate, contributing to preserve their color characteristic.

  20. Influence of polymerization properties of 4-META/MMA-based resin on the activity of fibroblast growth factor-2.

    PubMed

    Kitagawa, Haruaki; Takeda, Kahoru; Tsuboi, Ririko; Hayashi, Mikako; Sasaki, Jun-Ichi; Imazato, Satoshi

    2017-11-29

    Dental adhesive resins based on 4-methacryloxyethyl trimellitate anhydride (4-META)/methyl methacrylate (MMA) have been utilized for root-end filling and the bonding of fractured roots. To increase the success rate of these treatments, it would be beneficial to promote the healing of surrounding tissue by applying growth factors. In this study, the influences of the polymerization properties of 4-META/MMA-based resins on the activity of fibroblast growth factor-2 (FGF-2) were evaluated in vitro. The temperature increase caused by the heat generation during polymerization of the 4-META/MMA-based resin was insufficient to change the structure and function of FGF-2. Unpolymerized monomers released from the cured 4-META/MMA-based resin had no negative influences on the ability of FGF-2 to promote the proliferation of osteoblast-like cells. These findings suggest that it is possible to use FGF-2 in combination with 4-META/MMA-based resins.

Top