Sample records for polymerization-based bacterial motility

  1. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  2. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  4. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.

  5. Engineering bacterial motility towards hydrogen-peroxide.

    PubMed

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  6. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization.

    PubMed

    Itach, Sarit Bar-Sheshet; Finklestein, Maya; Etkovitz, Nir; Breitbart, Haim

    2012-02-15

    In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Control of actin-based motility through localized actin binding

    PubMed Central

    Banigan, Edward J.; Lee, Kun-Chun; Liu, Andrea J.

    2014-01-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disk. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. PMID:24225232

  8. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  9. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  10. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  11. Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations.

    PubMed

    Lee, Kun-Chun; Liu, Andrea J

    2009-09-02

    We report numerical simulation results for the force-velocity relation for actin-polymerization-driven motility. We use Brownian dynamics to solve a physically consistent formulation of the dendritic nucleation model with semiflexible filaments that self-assemble and push a disk. We find that at small loads, the disk speed is independent of load, whereas at high loads, the speed decreases and vanishes at a characteristic stall pressure. Our results demonstrate that at small loads, the velocity is controlled by the reaction rates, whereas at high loads the stall pressure is determined by the mechanical properties of the branched actin network. The behavior is consistent with experiments and with our recently proposed self-diffusiophoretic mechanism for actin-polymerization-driven motility. New in vitro experiments to measure the force-velocity relation are proposed.

  12. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  13. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  14. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  15. Quantification of Bacterial Twitching Motility in Dense Colonies Using Transmitted Light Microscopy and Computational Image Analysis.

    PubMed

    Smith, Benjamin; Li, Jianfang; Metruccio, Matteo; Wan, Stephanie; Evans, David; Fleiszig, Suzanne

    2018-04-20

    A method was developed to allow the quantification and mapping of relative bacterial twitching motility in dense samples, where tracking of individual bacteria was not feasible. In this approach, movies of bacterial films were acquired using differential interference contrast microscopy (DIC), and bacterial motility was then indirectly quantified by the degree to which the bacteria modulated the intensity of light in the field-of-view over time. This allowed the mapping of areas of relatively high and low motility within a single field-of-view, and comparison of the total distribution of motility between samples.

  16. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  17. Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞

    PubMed Central

    Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.

    2003-01-01

    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042

  18. Surfing pathogens and the lessons learned for actin polymerization.

    PubMed

    Frischknecht, F; Way, M

    2001-01-01

    A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia

  19. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    NASA Astrophysics Data System (ADS)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  20. Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays

    PubMed Central

    Morales-Soto, Nydia; Anyan, Morgen E.; Mattingly, Anne E.; Madukoma, Chinedu S.; Harvey, Cameron W.; Alber, Mark; Déziel, Eric; Kearns, Daniel B.; Shrout, Joshua D.

    2015-01-01

    Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more “temperate swarmers” that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. “Wettability”, or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment. PMID:25938934

  1. Actin-based motility of Listeria: Right-handed helical trajectories

    NASA Astrophysics Data System (ADS)

    Rangarajan, Murali

    2012-06-01

    Bacteria such as Listeria monocytogenes recruit cellular machinery to move in and between cells. Understanding the mechanism of motility, including force and torque generation and the resultant displacements, holds keys to numerous applications in medicine and biosensing. In this work, a simple back-of-the-envelope calculation is presented to illustrate that a biomechanical model of actin-based motility of a rigid surface through persistently attached filaments propelled by affinity-modulated molecular motors can produce a right-handed helical trajectory consistent with experimental observations. The implications of the mechanism to bacterial motility are discussed.

  2. Effect of Porous Media Particle Size on Bacterial Motility and Chemotaxis

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Smith, J. A.; Ford, R. M.; Fernandez, E. J.

    2003-12-01

    Many soil-inhabiting bacteria that degrade chemical contaminants are both motile and chemotactic. Chemotaxis refers to the ability of bacteria to sense pollutant concentration gradients in water and preferentially swim toward regions of high pollutant concentration, and is thought to be important in guiding subsurface microbial populations toward chemical contaminants. Bacterial motion consists of a series of smooth-swimming runs interrupted by changes in direction. In the presence of a chemical gradient, bacteria bias their frequency of changing direction and demonstrate longer run lengths in the direction of increasing attractant concentration. One concern when studying bacterial chemotaxis in porous media is that in small pores, the porous media may interrupt the extended run lengths of bacteria swimming in the direction of a positive chemical gradient. The purpose of this study is to examine how a decrease in particle size affects the motility and chemotactic response of bacteria traveling through porous media. We employ an innovative technique for noninvasive visualization of changes in bacterial density distributions in a packed column as a function of time. Paramagnetic magnetite particles are attached to the surface of Pseudomonas putida F1 cells using an antibody. Bacterial distributions within a column of glass-coated polystyrene beads are imaged using magnetic resonance imaging (MRI), with a spatial resolution of 300 μ m. Experiments are conducted with both 250-300 μ m beads and 90-150 μ m beads. Bacteria labeled with magnetite are introduced into a specially designed chromatography column packed with glass-coated polystyrene beads. Bacterial migration is monitored over time using MRI, with and without the presence of a chemical gradient of trichloroethylene (TCE). Comparisons of the motility and chemotactic transport coefficients for Pseudomonas putida F1 cells traveling through different-sized samples of porous media in the presence of TCE will be

  3. Persistent enhancement of bacterial motility increases tumor penetration.

    PubMed

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  4. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  5. Actin-based motility allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol.

    PubMed

    Cheng, Mandy I; Chen, Chen; Engström, Patrik; Portnoy, Daniel A; Mitchell, Gabriel

    2018-05-03

    Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin-based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin-based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time-lapse microscopy using green fluorescent protein-LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin-based motility moved away from LC3-positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin-based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol. © 2018 John Wiley & Sons Ltd.

  6. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber.

    PubMed

    Park, Daechul; Park, Sung Jun; Cho, Sunghoon; Lee, Yeonkyung; Lee, Yu Kyung; Min, Jung-Joon; Park, Bang Ju; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2014-01-01

    A bacteria-based microrobot (bacteriobot) was proposed and investigated as a new type of active drug delivery system because of its useful advantages, such as active tumor targeting, bacteria-mediated tumor diagnosis, and therapy. In this study, we fabricated a bacteriobot with enhanced motility by selective attachment of flagellar bacteria (Salmonella typhimurium). Through selective bovine serum albumin (BSA) pattering on hydrophobic polystyrene (PS) microbeads, many S. typhimurium could be selectively attached only on the unpatterned surface of PS microbead. For the evaluation of the chemotactic motility of the bacteriobot, we developed a microfluidic chamber which can generate a stable concentration gradient of bacterial chemotactic chemicals. Prior to the evaluation of the bacteriobot, we first evaluated the directional chemotactic motility of S. typhimurium using the proposed microfluidic chamber, which contained a bacterial chemo-attractant (L-aspartic acid) and a chemo-repellent (NiSO4 ), respectively. Compared to density of the control group in the microfluidic chamber without any chemical gradient, S. typhimurium increased by about 16% in the L-aspartic acid gradient region and decreased by about 22% in the NiSO4 gradient region. Second, we evaluated the bacteriobot's directional motility by using this microfluidic chamber. The chemotactic directional motility of the bacteriobot increased by 14% and decreased by 13% in the concentration gradients of L-aspartic acid and NiSO4 , respectively. These results confirm that the bacteriobot with selectively patterned S. typhimurium shows chemotaxis motility very similar to that of S. typhimurium. Moreover, the directional motilities of the bacteria and bacteriobot could be demonstrated quantitatively through the proposed microfluidic chamber. © 2013 Wiley Periodicals, Inc.

  7. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    PubMed

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. Copyright © 2015, American Association for the Advancement of Science.

  8. ERK reinforces actin polymerization to power persistent edge protrusion during motility

    PubMed Central

    Mendoza, Michelle C.; Vilela, Marco; Juarez, Jesus E.; Blenis, John; Danuser, Gaudenz

    2016-01-01

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. Here, we tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell-surface receptors and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy (qFSM) and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. Arp2/3 activity generates branched actin networks that can produce pushing force. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. PMID:25990957

  9. The Salmonella enterica serovar Typhimurium QseB Response Regulator Negatively Regulates Bacterial Motility and Swine Colonization in the Absence of the QseC Sensor Kinase

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (S. Typhimurium) responds to the catecholamine, norepinephrine by increasing bacterial growth and enhancing motility. In this study, iron with or without the siderophore, ferrioxamine E also enhanced bacterial motility. Iron-enhanced motility was growth-rate ...

  10. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Sendra, H.; Murialdo, S.; Passoni, L.

    2007-11-01

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon.

  11. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calciummore » binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.« less

  12. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    NASA Astrophysics Data System (ADS)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  13. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    PubMed

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  15. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    NASA Astrophysics Data System (ADS)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the

  16. Wall accumulation of bacteria with different motility patterns

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250 μ m , are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  17. Wall accumulation of bacteria with different motility patterns.

    PubMed

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  18. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    PubMed

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  19. Active motility in bimodular bacterial aggregates

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Liu, Bin

    2017-11-01

    Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  20. PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility

    PubMed Central

    Luo, Weibo; Lin, Benjamin; Wang, Yingfei; Zhong, Jun; O'Meally, Robert; Cole, Robert N.; Pandey, Akhilesh; Levchenko, Andre; Semenza, Gregg L.

    2014-01-01

    Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins. PMID:25079693

  1. Measuring Borrelia burgdorferi Motility and Chemotaxis.

    PubMed

    Zhang, Kai; Li, Chunhao

    2018-01-01

    Swimming plate, cell motion tracking, and capillary tube assays are very useful tools to quantitatively measure bacterial motility and chemotaxis. These methods were modified and applied to study Borrelia burgdorferi motility and chemotaxis. By using these methods, numerous motility and chemotaxis mutants have been characterized and several chemoattractants were identified. With the assistance of these tools, the role of motility and chemotaxis in the pathogenicity of B. burgdorferi has been established. In addition, these tools also facilitate the study of motility and chemotaxis in other spirochetes.

  2. Computational approaches to substrate-based cell motility

    DOE PAGES

    Ziebert, Falko; Aranson, Igor S.

    2016-07-15

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realization of active, self-propelled ‘particles’, a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity, and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recentlymore » in its modeling on the whole cell level. Furthermore we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organized systems such as living cells.« less

  3. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  4. The effect of loss of O-antigen ligase on phagocytic susceptibility of motile and non-motile Pseudomonas aeruginosa.

    PubMed

    Demirdjian, Sally; Schutz, Kristin; Wargo, Matthew J; Lam, Joseph S; Berwin, Brent

    2017-12-01

    The bacterial pathogen Pseudomonas aeruginosa undergoes adaptation and selection over the course of chronic respiratory tract infections which results in repeatedly-observed phenotypic changes that are proposed to enable its persistence. Two of the clinically significant P. aeruginosa phenotypic changes are loss of flagellar motility and modifications to LPS structure, including loss of O-antigen expression. The effect of loss of O-antigen, frequently described as conversion from smooth to rough LPS, and the combined effect of loss of motility and O-antigen on phagocytic susceptibility by immune cells remain unknown. To address this, we generated genetic deletion mutants of waaL, which encodes the O-antigen ligase responsible for linking O-antigen to lipid A-core oligosaccharide, in both motile and non-motile P. aeruginosa strains. With the use of these bacterial strains we provide the first demonstration that, despite a progressive selection for P. aeruginosa with rough LPS during chronic pulmonary infections, loss of the LPS O-antigen does not confer phagocytic resistance in vitro. However, use of the waaLmotABmotCD mutant revealed that loss of motility confers resistance to phagocytosis regardless of the smooth or rough LPS phenotype. These findings reveal how the O-antigen of P. aeruginosa can influence bacterial clearance during infection and expand our current knowledge about the impact of bacterial phenotypic changes during chronic infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. RickA Expression Is Not Sufficient to Promote Actin-Based Motility of Rickettsia raoultii

    PubMed Central

    Balraj, Premanand; Karkouri, Khalid El; Vestris, Guy; Espinosa, Leon; Raoult, Didier; Renesto, Patricia

    2008-01-01

    Background Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. Methodology/Principal Findings Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. Conclusion/Significance These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus. PMID:18612416

  6. A Cyanobacterium Capable of Swimming Motility

    NASA Astrophysics Data System (ADS)

    Waterbury, John B.; Willey, Joanne M.; Franks, Diana G.; Valois, Frederica W.; Watson, Stanley W.

    1985-10-01

    A novel cyanobacterium capable of swimming motility wass isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

  7. Surface Topography Hinders Bacterial Surface Motility.

    PubMed

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  8. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  9. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility

    PubMed Central

    2017-01-01

    Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin. PMID:28473602

  10. Motility versus fluctuations in mixtures of self-motile and passive agents.

    PubMed

    Hinz, Denis F; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2014-12-07

    Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However, little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase, and a vortical phase characterized by large-scale counter rotating vortices. We use numerical simulations to construct a phase diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions. Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic guidance for efficient technological realizations of artificial active matter.

  11. Actin polymerization drives septation of Listeria monocytogenes namA hydrolase mutants, demonstrating host correction of a bacterial defect.

    PubMed

    Alonzo, Francis; McMullen, P David; Freitag, Nancy E

    2011-04-01

    The Gram-positive bacterial cell wall presents a structural barrier that requires modification for protein secretion and large-molecule transport as well as for bacterial growth and cell division. The Gram-positive bacterium Listeria monocytogenes adjusts cell wall architecture to promote its survival in diverse environments that include soil and the cytosol of mammalian cells. Here we provide evidence for the enzymatic flexibility of the murein hydrolase NamA and demonstrate that bacterial septation defects associated with a loss of NamA are functionally complemented by physical forces associated with actin polymerization within the host cell cytosol. L. monocytogenes ΔnamA mutants formed long bacterial chains during exponential growth in broth culture; however, normal septation could be restored if mutant cells were cocultured with wild-type L. monocytogenes bacteria or by the addition of exogenous NamA. Surprisingly, ΔnamA mutants were not significantly attenuated for virulence in mice despite the pronounced exponential growth septation defect. The physical force of L. monocytogenes-mediated actin polymerization within the cytosol was sufficient to sever ΔnamA mutant intracellular chains and thereby enable the process of bacterial cell-to-cell spread so critical for L. monocytogenes virulence. The inhibition of actin polymerization by cytochalasin D resulted in extended intracellular bacterial chains for which septation was restored following drug removal. Thus, despite the requirement for NamA for the normal septation of exponentially growing L. monocytogenes cells, the hydrolase is essentially dispensable once L. monocytogenes gains access to the host cell cytosol. This phenomenon represents a notable example of eukaryotic host cell complementation of a bacterial defect.

  12. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  13. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  14. Actin-mediated bacterial propulsion: comet profile, velocity pulsations.

    PubMed

    Benza, V G

    2008-05-23

    The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel-bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel.

  15. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-03

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility.

  16. Motor-driven intracellular transport powers bacterial gliding motility

    PubMed Central

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W.; Mignot, Tâm

    2011-01-01

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility. PMID:21482768

  17. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB

    PubMed Central

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-01-01

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family. PMID:24550504

  18. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    PubMed

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  19. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior

    DOE PAGES

    Berleman, James E.; Zemla, Marcin; Remis, Jonathan P.; ...

    2016-05-06

    The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required formore » cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS - mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.« less

  20. Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation.

    PubMed

    Dixit, Swarnita; Dubey, Ramesh Chand; Maheshwari, Dinesh Kumar; Seth, Prahlad Kishore; Bajpai, Vivek K

    Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C 8 -HSL and 3-OH-C 14 -HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C 8 -HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C 8 -HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C 8 -HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation

    PubMed Central

    Xin, Hongbao; Liu, Qingyuan; Li, Baojun

    2014-01-01

    The dynamics and energy conversion of bacteria are strongly associated with bacterial activities, such as survival, spreading of bacterial diseases and their pathogenesis. Although different discoveries have been reported on trapped bacteria (i.e. immobilized bacteria), the investigation on the dynamics and energy conversion of motile bacteria in the process of trapping is highly desirable. Here, we report a non-contact optical trapping of motile bacteria using a modified tapered optical fiber. Using Escherichia coli as an example, both single and multiple motile bacteria have been trapped and manipulated in a non-contact manner. Bacterial dynamics has been observed and bacterial energy has been estimated in the trapping process. This non-contact optical trapping provides a new opportunity for better understanding the bacterial dynamics and energy conversion at the single cell level. PMID:25300713

  2. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane.

    PubMed

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.

  3. Copolymers enhance selective bacterial community colonization for potential root zone applications.

    PubMed

    Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E

    2017-11-21

    Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.

  4. Flagellated bacterial motility in polymer solutions

    PubMed Central

    Martinez, Vincent A.; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G.; Morozov, Alexander N.; Poon, Wilson C. K.

    2014-01-01

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale. PMID:25468981

  5. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  6. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  7. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    PubMed Central

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film. PMID:28902253

  8. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    NASA Astrophysics Data System (ADS)

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  9. High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans

    PubMed Central

    Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.

    2015-01-01

    Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643

  10. Micro-motors: A motile bacteria based system for liposome cargo transport.

    PubMed

    Dogra, Navneet; Izadi, Hadi; Vanderlick, T Kyle

    2016-07-05

    Biological micro-motors (microorganisms) have potential applications in energy utilization and nanotechnology. However, harnessing the power generated by such motors to execute desired work is extremely difficult. Here, we employ the power of motile bacteria to transport small, large, and giant unilamellar vesicles (SUVs, LUVs, and GUVs). Furthermore, we demonstrate bacteria-bilayer interactions by probing glycolipids inside the model membrane scaffold. Fluorescence Resonance Energy Transfer (FRET) spectroscopic and microscopic methods were utilized for understanding these interactions. We found that motile bacteria could successfully propel SUVs and LUVs with a velocity of 28 μm s(-1) and 13 μm s(-1), respectively. GUVs, however, displayed Brownian motion and could not be propelled by attached bacteria. Bacterial velocity decreased with the larger loaded cargo, which agrees with our calculations of loaded bacteria swimming at low Reynolds number.

  11. Multiscale Characterization of Bacterial Swarming Illuminates Principles Governing Directed Surface Motility

    NASA Astrophysics Data System (ADS)

    Strickland, Ben; Hoeger, Kentaro; Ursell, Tristan

    In many systems, individual characteristics interact, leading to the spontaneous emergence of order and complexity. In biological settings like microbes, such collective behaviors can imbue a variety of benefits to constituent individuals, including increased spatial range, improved access to nutrients, and enhanced resistance to antibiotic threats. To untangle the biophysical underpinnings of collective motility, we use passive tracers and a curated genetic library of Bacillus subtilis, including motile, non-motile, biofilm-deficient, and non-chemotactic mutants. We characterize and connect individual behavior on the microscopic scale to macroscopic colony morphology and motility of dendritic swarming. We analyze the persistence and dynamics of coordinated movement on length scales up to 4 orders of magnitude larger than that of individual cells, revealing rapid and directed responses of microbial groups to external stimuli, such as avoidance dynamics across chemical gradients. Our observations uncover the biophysical interplay between individual motility, surface wetness, phenotypic diversity, and external physical forces that robustly precipitate coordinated group behavior in microbes, and suggest general principles that govern the transition from individual to group behavior.

  12. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  13. Motility of Escherichia coli in a quasi-two-dimensional porous medium.

    PubMed

    Sosa-Hernández, Juan Eduardo; Santillán, Moisés; Santana-Solano, Jesús

    2017-03-01

    Bacterial migration through confined spaces is critical for several phenomena, such as biofilm formation, bacterial transport in soils, and bacterial therapy against cancer. In the present work, E. coli (strain K12-MG1655 WT) motility was characterized by recording and analyzing individual bacterium trajectories in a simulated quasi-two-dimensional porous medium. The porous medium was simulated by enclosing, between slide and cover slip, a bacterial-culture sample mixed with uniform 2.98-μm-diameter spherical latex particles. The porosity of the medium was controlled by changing the latex particle concentration. By statistically analyzing several trajectory parameters (instantaneous velocity, turn angle, mean squared displacement, etc.), and contrasting with the results of a random-walk model developed ad hoc, we were able to quantify the effects that different obstacle concentrations have upon bacterial motility.

  14. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials.

    PubMed

    O'May, Che; Tufenkji, Nathalie

    2011-05-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.

  15. The Swarming Motility of Pseudomonas aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials▿

    PubMed Central

    O'May, Che; Tufenkji, Nathalie

    2011-01-01

    Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds. PMID:21378043

  16. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-12-06

    Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior.

  17. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bacterial Motility Reveals Unknown Molecular Organization

    PubMed Central

    Duchesne, Ismaël; Rainville, Simon; Galstian, Tigran

    2015-01-01

    The water solubility of lyotropic liquid crystals (LCs) makes them very attractive to study the behavior of biological microorganisms in an environment where local symmetry is broken (as often encountered in nature). Several recent studies have shown a dramatic change in the behavior of flagellated bacteria when swimming in solutions of the lyotropic LC disodium cromoglycate (DSCG). In this study, the movements of Escherichia coli bacteria in DSCG-water solutions of different concentrations are observed to improve our understanding of this phenomenon. In addition, the viscosity of DSCG aqueous solutions is measured as a function of concentration at room temperature. We also experimentally identify a previously undescribed isotropic pretransition zone where bacteria start sticking to each other and to surfaces. Simple estimations show that the unbalanced osmotic pressure induced depletion force might be responsible for this sticking phenomenon. An estimate of the bacteria propulsive force and the DSCG aggregates length (versus concentration) are calculated from the measured viscosity of the medium. All these quantities are found to undergo a strong increase in the pretransition zone, starting at a threshold concentration of 6 ± 1 wt % DSCG that is well below the known isotropic-LC transition (∼10 wt %). This study also shines light on the motility of flagellated bacteria in realistic environments, and it opens new avenues for interesting applications such as the use of motile microorganisms to probe the physical properties of their host or smart bandages that could guide bacteria out of wounds. PMID:26588572

  19. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  20. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria.

    PubMed

    Nellimoottil, Tittu Thomas; Rao, Pinjala Nagaraju; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun

    2007-08-14

    In this letter, we report the observations of specific pattern formation from the evaporation of aqueous droplets containing motile and nonmotile bacteria. We found that when motile bacteria were present the droplet evaporated into disclike patterned deposits of bacteria. However, when the bacteria were made nonmotile by treatment with liquid nitrogen, the droplet evaporated into ringlike deposits. We also observed that bacteria with higher motility produced more uniformly deposited disclike patterns. Furthermore, we propose a model with numerical simulations to explain the mechanism of formation of these patterns. The model is based on the advective fluid flow from the center of the droplet toward the edge due to enhanced evaporation from the edge of the pinned droplet in comparison to that from the free surface. For the case of motile bacteria, we have added another velocity parameter toward the axis of the droplet and directed against the fluid flow in order to account for the disclike pattern formation. The numerical simulations match the experimental observations well. The present work, by qualitative and quantitative understanding of the evaporation of bacteria droplets, demonstrates that the inherent bacterial motility is primarily responsible for the formation of these differential patterns.

  1. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  2. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility.

    PubMed

    Yan, Catherine; Martinez-Quiles, Narcisa; Eden, Sharon; Shibata, Tomoyuki; Takeshima, Fuminao; Shinkura, Reiko; Fujiwara, Yuko; Bronson, Roderick; Snapper, Scott B; Kirschner, Marc W; Geha, Raif; Rosen, Fred S; Alt, Frederick W

    2003-07-15

    The Wiskott-Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement.

  3. Uncovering the Mystery of Gliding Motility in the Myxobacteria

    PubMed Central

    Nan, Beiyan; Zusman, David R.

    2012-01-01

    Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630

  4. Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies

    NASA Astrophysics Data System (ADS)

    Bisht, Konark; Klumpp, Stefan; Banerjee, Varsha; Marathe, Rahul

    2017-11-01

    A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length lp*, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that lp*˜L0.6 , where L ×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.

  5. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion.

    PubMed

    Baum, Jake; Tonkin, Christopher J; Paul, Aditya S; Rug, Melanie; Smith, Brian J; Gould, Sven B; Richard, Dave; Pollard, Thomas D; Cowman, Alan F

    2008-03-13

    Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.

  6. Topological defects in a living nematic ensnare swimming bacteria [Linking bacterial motility and liquid crystallinity in a model of living nematic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less

  7. Topological defects in a living nematic ensnare swimming bacteria [Linking bacterial motility and liquid crystallinity in a model of living nematic

    DOE PAGES

    Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.; ...

    2017-03-08

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less

  8. Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion.

    PubMed

    Goo, Youn-Kyoung; Ueno, Akio; Terkawi, Mohamad Alaa; Aboge, G Oluga; Junya, Yamagishi; Igarashi, Makoto; Kim, Jung-Yeon; Hong, Yeon-Chul; Chung, Dong-Il; Nishikawa, Yoshifumi; Xuan, Xuenan

    2013-09-01

    Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility

    PubMed Central

    Yan, Catherine; Martinez-Quiles, Narcisa; Eden, Sharon; Shibata, Tomoyuki; Takeshima, Fuminao; Shinkura, Reiko; Fujiwara, Yuko; Bronson, Roderick; Snapper, Scott B.; Kirschner, Marc W.; Geha, Raif; Rosen, Fred S.; Alt, Frederick W.

    2003-01-01

    The Wiskott–Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement. PMID:12853475

  10. Apprenticeship-based training in neurogastroenterology and motility.

    PubMed

    Vasant, Dipesh H; Sharma, Amol; Bhagatwala, Jigar; Viswanathan, Lavanya; Rao, Satish S C

    2018-03-01

    Although neurogastroenterology and motility (NGM) disorders affect 50% of patients seen in clinics, many gastroenterologists receive limited NGM training. One-month apprenticeship-based NGM training has been provided at ten centers in the USA for a decade, however, outcomes of this training are unclear. Our goal was to describe the effectiveness of this program from a trainees perspective. Areas covered: We describe the training model, learning experiences, and outcomes of one-month apprenticeship-based training in NGM at a center of excellence, using a detailed individual observer account and data from 12 consecutive trainees that completed the program. During a one-month training period, 302 procedures including; breath tests (BT) n = 132, anorectal manometry (ARM) n = 29 and esophageal manometry (EM) n = 28, were performed. Post-training, all trainees (n = 12) knew indications for motility tests, and the majority achieved independence in basic interpretation of BT, EM and ARM. Additionally, in a multiple-choice NGM written-test paper, trainees achieved significant improvements in test scores post-training (P = 0.003). Expert commentary: One-month training at a high-volume center can facilitate rapid learning of NGM and the indications, basic interpretation and utility of motility tests. Trainees demonstrate significant independence, and this training model provides an ideal platform for those interested in sub-specialty NGM.

  11. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  12. Actin motility: formin a SCAry tail.

    PubMed

    Alberts, Art; Way, Michael

    2011-01-11

    A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions.

    PubMed

    Cheng, Changyong; Dong, Zhimei; Han, Xiao; Wang, Hang; Jiang, Li; Sun, Jing; Yang, Yongchun; Ma, Tiantian; Shao, Chunyan; Wang, Xiaodu; Chen, Zhongwei; Fang, Weihuan; Freitag, Nancy E; Huang, Huarong; Song, Houhui

    2017-01-01

    Microbes employ the thioredoxin system to defend against oxidative stress and ensure correct disulfide bonding to maintain protein function. Listeria monocytogenes has been shown to encode a putative thioredoxin, TrxA, but its biological roles and underlying mechanisms remain unknown. Here, we showed that expression of L. monocytogenes TrxA is significantly induced in bacteria treated with the thiol-specific oxidizing agent, diamide. Deletion of trxA markedly compromised tolerance of the pathogen to diamide, and mainly impaired early stages of infection in human intestinal epithelial Caco-2 cells. In addition, most trxA mutant bacteria were not associated with polymerized actin, and the rare bacteria that were associated with polymerized actin displayed very short tails or clouds during infection. Deletion or constitutive overexpression of TrxA, which was regulated by SigH, severely attenuated the virulence of the pathogen. Transcriptome analysis of L. monocytogenes revealed over 270 genes that were differentially transcribed in the Δ trxA mutant compared to the wild-type, especially for the virulence-associated genes plcA, mpl, hly, actA , and plcB . Particularly, deletion of TrxA completely reduced LLO expression, and thereby led to a thoroughly impaired hemolytic activity. Expression of these virulence factors are positively regulated by the master regulator PrfA that was found here to use TrxA to maintain its reduced forms for activation. Interestingly, the trxA deletion mutant completely lacked flagella and was non-motile. We further confirmed that this deficiency is attributable to TrxA in maintaining the reduced intracellular monomer status of MogR, the key regulator for flagellar formation, to ensure correct dimerization. In summary, we demonstrated for the first time that L. monocytogenes thioredoxin A as a vital cellular reductase is essential for maintaining a highly reducing environment in the bacterial cytosol, which provides a favorable condition for

  14. Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, Michael W.; Conway, Leslie; Liang, Winnie H.; Labastide, Joelle A.; King, Stephen J.; Xu, Jing; Ross, Jennifer L.

    2017-03-01

    The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell’s control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.

  15. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA.

    PubMed

    Mauriello, Emilia M F; Mouhamar, Fabrice; Nan, Beiyan; Ducret, Adrien; Dai, David; Zusman, David R; Mignot, Tâm

    2010-01-20

    Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a DeltamglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA-YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator.

  16. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA

    PubMed Central

    Mauriello, Emilia M F; Mouhamar, Fabrice; Nan, Beiyan; Ducret, Adrien; Dai, David; Zusman, David R; Mignot, Tâm

    2010-01-01

    Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a ΔmglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA–YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator. PMID:19959988

  17. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  18. Competitive Advantage Provided by Bacterial Motility in the Formation of Nodules by Rhizobium meliloti

    PubMed Central

    Ames, Peter; Bergman, Kostia

    1981-01-01

    The effect of motility on the competitive success of Rhizobium meliloti in nodule production was investigated. A motile strain formed more nodules than expected when mixed at various unfavorable ratios with either flagellated or nonflagellated nonmotile derivatives. We conclude that motility confers a selective advantage on rhizobia when competing with nonmotile strains. PMID:7298580

  19. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization.

    PubMed

    Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav

    2011-07-15

    Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.

  20. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  1. Motility and peristaltic flow in maintaining microbiome populations

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2016-11-01

    Bacteria are an important component of the microbiome in the digestive tract, and must be able to maintain their population despite the fact that the contents of the intestines are constantly flowing towards evacuation. Many bacteria accomplish this by colonizing the surfaces of the intestines where flows diminish, but some species live in the lumen. We attempt to address whether swimming motility of these species plays an important role in maintaining bacterial population in the face of peristaltic pumping out of the intestine. Using a two-dimensional model of peristaltic flows induced by small-amplitude traveling waves we examine the Lagrangian trajectories of passive bacteria as well as motile bacteria, which are treated as Brownian particles undergoing enhanced diffusion due to the bacteria's run-and-tumble motility. We examine how the densities of growing populations of bacteria depend on the combination of motility and peristaltic flow.

  2. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation

    PubMed Central

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H.; Quijada-Garrido, Isabel

    2017-01-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO3 to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag–PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation. PMID:28763050

  3. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation.

    PubMed

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H; Quijada-Garrido, Isabel; Guarrotxena, Nekane

    2017-08-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO₃ to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag-PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation.

  4. Novel Single-Tube Agar-Based Test System for Motility Enhancement and Immunocapture of Escherichia coli O157:H7 by H7 Flagellar Antigen-Specific Antibodies

    PubMed Central

    Murinda, Shelton E.; Nguyen, Lien T.; Ivey, Susan J.; Almeida, Raul A.; Oliver, Stephen P.

    2002-01-01

    This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility. Twenty-six E. coli strains, including 19 O157:H7 strains, 1 O157:H− strain, and 6 generic E. coli strains, were evaluated. Test bacteria were stab inoculated in the center of the agar column, and tubes were incubated at 37°C for 18 to 96 h. Nineteen to 24 of the 26 test strains (73.1 to 92.3%) were motile in the different media. TSBA medium performed best and was employed in subsequent studies of motility enhancement and H7 flagellar immunocapture. H7 flagellar antiserum (30 and 60 μl) mixed with TSBA was placed as a band (1 ml) in the middle of an agar column separating the top (3-ml) and bottom (3-ml) agar layers. The top agar layer was inoculated with the test bacterial strains. The tubes were incubated at 37°C for 12 to 18 h and for 18 to 96 h. The specificity and sensitivity of the H7 flagellar immunocapture tests were 75 and 100%, respectively. The procedure described is simple and sensitive and could be adapted easily for routine use in laboratories that do not have sophisticated equipment and resources for confirming the presence of H7 flagellar antigens. Accurate and rapid identification of H7 flagellar antigen is critical for the complete characterization of E. coli O157:H7, owing to the immense clinical, public health, and economic significance of this food-borne pathogen. PMID:12454173

  5. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.

    PubMed

    Lee, Ai-Yun; Kao, Cheng-Yen; Wang, Yao-Kuan; Lin, Ssu-Yuan; Lai, Tze-Ying; Sheu, Bor-Shyang; Lo, Chien-Jung; Wu, Jiunn-Jong

    2017-08-01

    Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching. © 2017 John Wiley & Sons Ltd.

  6. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.

    PubMed

    Figueiredo, Ana R P; Figueiredo, Andrea G P R; Silva, Nuno H C S; Barros-Timmons, Ana; Almeida, Adelaide; Silvestre, Armando J D; Freire, Carmen S R

    2015-06-05

    Antimicrobial bacterial cellulose/poly(2-aminoethyl methacrylate) (BC/PAEM) nanocomposites were prepared by in situ radical polymerization of 2-aminoethyl methacrylate, using variable amounts of N,N-methylenebis(acrylamide) (MBA) as cross-linker. The obtained nanocomposites were characterized in terms of their structure, morphology, thermal stability, mechanical properties and antibacterial activity. The ensuing composite membranes were significantly more transparent than those of pure BC and showed improved thermal and mechanical properties. The antibacterial activity of the obtained nanocomposites was assessed towards a recombinant bioluminescent Escherichia coli and only the non-crosslinked nanocomposite (BC/PAEM) proved to have antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Flagellar motility of the pathogenic spirochetes

    PubMed Central

    Wolgemuth, Charles W.

    2016-01-01

    Bacterial pathogens are often classified by their toxicity and invasiveness. The invasiveness of a given bacterium is determined by how capable the bacterium is at invading a broad range of tissues in its host. Of mammalian pathogens, some of the most invasive come from a group of bacteria known as the spirochetes, which cause diseases such as syphilis, Lyme disease, relapsing fever and leptospirosis. Most of the spirochetes are characterized by their distinct shapes and unique motility. They are long, thin bacteria that can be shaped like flat-waves, helices, or have more irregular morphologies. Like many other bacteria, the spirochetes use long, helical appendages known as flagella to move; however, the spirochetes enclose their flagella in the periplasm, the narrow space between the inner and outer membranes. Rotation of the flagella in the periplasm causes the entire cell body to rotate and/or undulate. These deformations of the bacterium produce the force that drives the motility of these organisms, and it is this unique motility that likely allows these bacteria to be highly invasive in mammals. This review will describe the current state of knowledge on the motility and biophysics of these organisms and provide evidence on how this knowledge can inform our understanding of spirochetal diseases. PMID:26481969

  8. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  9. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and

  10. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  11. Actin-related protein 2/3 complex-based actin polymerization is critical for male fertility.

    PubMed

    Lee, J S; Kwon, W S; Rahman, M S; Yoon, S J; Park, Y J; Pang, M G

    2015-09-01

    The actin-related protein 2/3 (Arp2/3) complex is critical for regulation of actin polymerization, which is associated with sperm motility and capacitation status. However, the function of the Arp2/3 complex in male fertility has not yet been fully elucidated. Therefore, this study was designed to investigate the role of the Arp2/3 complex in different processes in spermatozoa and its consequences on fertilization and early embryonic development. In this in vitro study, mouse spermatozoa were incubated with different concentrations (10, 100, and 500 μm) of CK-636, an Arp2/3 complex antagonist. Our results demonstrated that inhibition of the Arp2/3 complex by high concentrations (100 and 500 μm) of CK-636 induced hyper-activated motility and acrosomal reaction, whereas intracellular calcium and tyrosine phosphorylation levels in spermatozoa were inhibited. Moreover, exposure of spermatozoa to the highest concentration of CK-636 reduced fertilization and embryo development. Interestingly, fertilization was significantly increased after treatment with 100 μm CK-636, whereas embryonic development was significantly decreased. Therefore, we conclude that the Arp2/3 complex plays a decisive role in regulation of sperm function and male fertility via actin polymerization. We anticipate that the Arp2/3 complex may have clinical application as marker for male fertility and male contraceptive targeting. © 2015 American Society of Andrology and European Academy of Andrology.

  12. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  13. Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media

    PubMed Central

    Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.

    1993-01-01

    Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075

  14. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  15. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  16. A Novel Action of the Proton Pump Inhibitor Rabeprazole and Its Thioether Derivative against the Motility of Helicobacter pylori

    PubMed Central

    Tsutsui, Nanako; Taneike, Ikue; Ohara, Tatsuki; Goshi, Satoshi; Kojio, Seiichi; Iwakura, Nobuhiro; Matsumaru, Hiroyuki; Wakisaka-Saito, Noriko; Zhang, Hui-Min; Yamamoto, Tatsuo

    2000-01-01

    The motility of Helicobacter pylori was maximum at 37°C and at pH 6. A newly developed proton pump inhibitor, rabeprazole (RPZ), and its thioether derivative (RPZ-TH) markedly inhibited the motility of H. pylori. The concentrations of the drug necessary to inhibit 50% of the motility were 0.25, 16, 16, and >64 μg/ml for RPZ-TH, RPZ, lansoprazole, and omeprazole, respectively. No such inhibitory effects were observed with H2 blockers or anti-H. pylori agents. The motilities of Campylobacter jejuni and C. coli—but not those of Vibrio cholerae O1 and O139, Vibrio parahaemolyticus, Salmonella enterica serovar Typhimurium, and Proteus mirabilis—were also inhibited. Prolonged incubation with RPZ or RPZ-TH inhibited bacterial growth of only H. pylori, except for a turbid colony mutant. The results indicate that RPZ and RPZ-TH have a characteristic inhibitory effect against the motility of H. pylori (spiral-shaped bacteria), which is distinguished from that against bacterial growth. PMID:11036024

  17. Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy

    PubMed Central

    Asada, Masahito; Goto, Yasuyuki; Yahata, Kazuhide; Yokoyama, Naoaki; Kawai, Satoru; Inoue, Noboru; Kaneko, Osamu; Kawazu, Shin-ichiro

    2012-01-01

    Background Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed “gliding motility”. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite. Methodology/Principal Findings Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. Conclusions/Significance This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding. PMID:22506073

  18. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B

  19. LBP based detection of intestinal motility in WCE images

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Granata, Eliana

    2011-03-01

    In this research study, a system to support medical analysis of intestinal contractions by processing WCE images is presented. Small intestine contractions are among the motility patterns which reveal many gastrointestinal disorders, such as functional dyspepsia, paralytic ileus, irritable bowel syndrome, bacterial overgrowth. The images have been obtained using the Wireless Capsule Endoscopy (WCE) technique, a patented, video colorimaging disposable capsule. Manual annotation of contractions is an elaborating task, since the recording device of the capsule stores about 50,000 images and contractions might represent only the 1% of the whole video. In this paper we propose the use of Local Binary Pattern (LBP) combined with the powerful textons statistics to find the frames of the video related to contractions. We achieve a sensitivity of about 80% and a specificity of about 99%. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

  20. Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing

    NASA Astrophysics Data System (ADS)

    Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.

  1. Spontaneous symmetry breaking in active droplets provides a generic route to motility

    PubMed Central

    Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    2012-01-01

    We explore a generic mechanism whereby a droplet of active matter acquires motility by the spontaneous breakdown of a discrete symmetry. The model we study offers a simple representation of a “cell extract” comprising, e.g., a droplet of actomyosin solution. (Such extracts are used experimentally to model the cytoskeleton). Actomyosin is an active gel whose polarity describes the mean sense of alignment of actin fibres. In the absence of polymerization and depolymerization processes (‘treadmilling’), the gel’s dynamics arises solely from the contractile motion of myosin motors; this should be unchanged when polarity is inverted. Our results suggest that motility can arise in the absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity inversion symmetry. Adapting our model to wall-bound cells in two dimensions, we find that as wall friction is reduced, treadmilling-induced motility falls but SSB-mediated motility rises. The latter might therefore be crucial in three dimensions where frictional forces are likely to be modest. At a supracellular level, the same generic mechanism can impart motility to aggregates of nonmotile but active bacteria; we show that SSB in this (extensile) case leads generically to rotational as well as translational motion. PMID:22797894

  2. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrodynamic effects on microcapillary motility and chemotaxis assays of Methylosinus trichosporium OB3b.

    PubMed Central

    Shonnard, D R; Taylor, R T; Tompson, A; Knapp, R B

    1992-01-01

    A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities. PMID:1444383

  4. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    NASA Astrophysics Data System (ADS)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  5. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections.

    PubMed

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-11

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml(-1), compared with the free Ce6 value of 29.85 μg ml(-1). Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  6. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  7. Glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor differently modifies actin polymerization in neutrophils.

    PubMed

    Zucca, A; Brizzi, S; Riccioni, R; Azzarà, A; Ghimenti, M; Carulli, G

    2006-01-01

    Several neutrophil functions can be modified by rhG-CSF administration. Neutrophil morphology changes in the course of treatment with Filgrastim (nonglycosylated rhG-CSF), along with impairment of chemotaxis. Both morphology and chemotaxis are not affected by treatment with Lenograstim (glycosylated rhG-CSF). Thus, we evaluated actin polymerization in neutrophils induced by treatment with the two forms of rhG-CSF. In fact, actin polymerization is crucial for neutrophil motility. We evaluated twelve healthy subjects undergoing peripheral blood stem cells (PBSC) mobilization for allogeneic transplantation to HLA-identical siblings. Neutrophils were isolated by peripheral venous blood before and after administration of either Filgrastim (six PBSC donors) or Lenograstim (six PBSC donors). Actin polymerization was investigated by a flow cytometric assay, using FITC-phalloidin as a specific probe for F-actin, and two parameters were measured: spontaneous actin polymerization in resting neutrophils; fMLP-stimulated actin polymerization. Results were expressed as relative F-actin content. Fifteen blood donors were studied as a control group. Filgrastim administration induced an increased relative F-actin content in resting neutrophils; however, no further actin polymerization was observed after fMLP stimulation. Neutrophils from subjects treated with Lenograstim showed a normal behaviour in terms of both spontaneous and stimulated actin polymerization. Glycosylated and nonglycosylated rhG-CSF differently affect actin polymerization in newly generated neutrophils. Such effects may explain some previous findings concerning both morphology and chemotactic properties and may be due to different effects of the two forms of rhG-CSF on proteins involved in neutrophil motility regulation.

  8. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  10. Mechanics and polarity in cell motility

    NASA Astrophysics Data System (ADS)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  11. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  12. The Differential Effects of Anesthetics on Bacterial Behaviors

    PubMed Central

    Chamberlain, Matthew; Koutsogiannaki, Sophia; Schaefers, Matthew; Babazada, Hasan; Liu, Renyu; Yuki, Koichi

    2017-01-01

    Volatile anesthetics have been in clinical use for a long period of time and are considered to be promiscuous by presumably interacting with several ion channels in the central nervous system to produce anesthesia. Because ion channels and their existing evolutionary analogues, ion transporters, are very important in various organisms, it is possible that volatile anesthetics may affect some bacteria. In this study, we hypothesized that volatile anesthetics could affect bacterial behaviors. We evaluated the impact of anesthetics on bacterial growth, motility (swimming and gliding) and biofilm formation of four common bacterial pathogens in vitro. We found that commonly used volatile anesthetics isoflurane and sevoflurane affected bacterial motility and biofilm formation without any effect on growth of the common bacterial pathogens studied here. Using available Escherichia coli gene deletion mutants of ion transporters and in silico molecular docking, we suggested that these altered behaviors might be at least partly via the interaction of volatile anesthetics with ion transporters. PMID:28099463

  13. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  14. Actin Filament Elasticity and Retrograde Flow Shape the Force-Velocity Relation of Motile Cells

    PubMed Central

    Zimmermann, Juliane; Brunner, Claudia; Enculescu, Mihaela; Goegler, Michael; Ehrlicher, Allen; Käs, Josef; Falcke, Martin

    2012-01-01

    Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium. PMID:22339865

  15. Bacterial accumulation in viscosity gradients

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  16. Tuning bacterial hydrodynamics with magnetic fields

    NASA Astrophysics Data System (ADS)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  17. Soft micromachines with programmable motility and morphology

    PubMed Central

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  18. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-07-22

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  19. Evaluation of bacterial motility from non-Gaussianity of finite-sample trajectories using the large deviation principle

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Kawano, Satoyuki

    2013-11-01

    Motility of bacteria is usually recognized in the trajectory data and compared with Brownian motion, but the diffusion coefficient is insufficient to evaluate it. In this paper, we propose a method based on the large deviation principle. We show that it can be used to evaluate the non-Gaussian characteristics of model Escherichia coli motions and to distinguish combinations of the mean running duration and running speed that lead to the same diffusion coefficient. Our proposed method does not require chemical stimuli to induce the chemotaxis in a specific direction, and it is applicable to various types of self-propelling motions for which no a priori information of, for example, threshold parameters for run and tumble or head/tail direction is available. We also address the issue of the finite-sample effect on the large deviation quantities, but we propose to make use of it to characterize the nature of motility.

  20. Large behavioral variability of motile E. coli revealed in 3D spatial exploration

    NASA Astrophysics Data System (ADS)

    Figueroa-Morales, N.; Darnige, T.; Martinez, V.; Douarche, C.; Soto, R.; Lindner, A.; Clement, E.

    2017-11-01

    Bacterial motility determines the spatio-temporal structure of microbial communities, controls infection spreading and the microbiota organization in guts or in soils. Quantitative modeling of chemotaxis and statistical descriptions of active bacterial suspensions currently rely on the classical vision of a run-and-tumble strategy exploited by bacteria to explore their environment. Here we report a large behavioral variability of wild-type E. coli, revealed in their three-dimensional trajectories. We found a broad distribution of run times for individual cells, in stark contrast with the accepted vision of a single characteristic time. We relate our results to the slow fluctuations of a signaling protein which triggers the switching of the flagellar motor reversal responsible for tumbles. We demonstrate that such a large distribution of run times introduces measurement biases in most practical situations. These results reconcile a notorious conundrum between observations of run times and motor switching statistics. Our study implies that the statistical modeling of transport properties and of the chemotactic response of bacterial populations need to be profoundly revised to correctly account for the large variability of motility features.

  1. Bacterial aggregation and biofilm formation in a vortical flow

    PubMed Central

    Yazdi, Shahrzad; Ardekani, Arezoo M.

    2012-01-01

    Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of “ring”-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria. PMID:24339847

  2. Current Insights into the Modulation of Oral Bacterial Degradation of Dental Polymeric Restorative Materials

    PubMed Central

    Zhang, Ning; Ma, Yansong; Weir, Michael D.; Xu, Hockin H. K.; Bai, Yuxing; Melo, Mary Anne S.

    2017-01-01

    Dental polymeric composites have become the first choice for cavity restorations due to their esthetics and capacity to be bonded to the tooth. However, the oral cavity is considered to be harsh environment for a polymeric material. Oral biofilms can degrade the polymeric components, thus compromising the marginal integrity and leading to the recurrence of caries. Recurrent caries around restorations has been reported as the main reason for restoration failure. The degradation of materials greatly compromises the clinical longevity. This review focuses on the degradation process of resin composites by oral biofilms, the mechanisms of degradation and its consequences. In addition, potential future developments in the area of resin-based dental biomaterials with an emphasis on anti-biofilm strategies are also reviewed. PMID:28772863

  3. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  4. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  5. Motility Determinants in WASP Family ProteinsD⃞

    PubMed Central

    Yarar, Defne; D'Alessio, Joseph A.; Jeng, Robert L.; Welch, Matthew D.

    2002-01-01

    In response to upstream signals, proteins in the Wiskott-Aldrich Syndrome protein (WASP) family regulate actin nucleation via the Arp2/3 complex. Despite intensive study of the function of WASP family proteins in nucleation, it is not yet understood how their distinct structural organization contributes to actin-based motility. Herein, we analyzed the activities of WASP and Scar1 truncation derivatives by using a bead-based motility assay. The minimal region of WASP sufficient to direct movement was the C-terminal WCA fragment, whereas the corresponding region of Scar1 was insufficient. In addition, the proline-rich regions of WASP and Scar1 and the Ena/VASP homology 1 (EVH1) domain of WASP independently enhanced motility rates. The contributions of these regions to motility could not be accounted for by their direct effects on actin nucleation with the Arp2/3 complex, suggesting that they stimulate motility by recruiting additional factors. We have identified profilin as one such factor. WASP- and Scar1-coated bead motility rates were significantly reduced by depletion of profilin and VASP and could be more efficiently rescued by a combination of VASP and wild-type profilin than by VASP and a mutant profilin that cannot bind proline-rich sequences. Moreover, motility of WASP WCA beads was not affected by the depletion or addback of VASP and profilin. Our results suggest that recruitment of factors, including profilin, by the proline-rich regions of WASP and Scar1 and the EVH1 domain of WASP stimulates cellular actin-based motility. PMID:12429845

  6. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574

  7. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  8. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle

    PubMed Central

    Linder, Ewert; Varjo, Sami; Thors, Cecilia

    2016-01-01

    Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.” PMID:27322330

  9. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  10. Inhibition of Swarming motility of Pseudomonas aeruginosa by Methanol extracts of Alpinia officinarum Hance. and Cinnamomum tamala T. Nees and Eberm.

    PubMed

    Lakshmanan, Divya; Nanda, Jishudas; Jeevaratnam, K

    2018-06-01

    Bacterial drug resistance is a challenge in clinical settings, especially in countries like India. Hence, discovery of novel alternative therapeutics has become a necessity in the fight against drug resistance. Compounds that inhibit bacterial virulence properties form new therapeutic alternatives. Pseudomonas aeruginosa is an opportunistic, nosocomial pathogen that infects immune-compromised patients. Swarming motility is an important virulence property of Pseudomonas which aids it in reaching host cells under nutrient limiting conditions. Here, we report the screening of five plant extracts against swarming motility of P. aeruginosa and show that methanol extracts of Alpinia officinarum and Cinnamomum tamala inhibit swarming motility at 5 μg mL -1 without inhibiting its growth. These extracts did not inhibit swimming and twitching motilities indicating a mode of action specific to swarming pathway. Preliminary experiments indicated that rhamnolipid production was not affected. This study reveals the potential of the two plants in anti-virulence drug discovery.

  11. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters

    PubMed Central

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong

    2016-01-01

    ABSTRACT The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. IMPORTANCE Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. PMID:27068592

  12. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.

    PubMed

    Mukherjee, Tanmoy; Kumar, Dhivya; Burriss, Nathan; Xie, Zhihong; Alexandre, Gladys

    2016-06-15

    The genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems. Azospirillum brasilense is a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motile A. brasilense cells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response of A. brasilense in gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage. Chemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. The unusual dynamics of parasite actin result from isodesmic polymerization

    PubMed Central

    Skillman, Kristen M.; Ma, Christopher I.; Fremont, Daved H.; Diraviyam, Karthikeyan; Cooper, John A.; Sept, David; Sibley, L. David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers. PMID:23921463

  14. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.

    PubMed

    Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao

    2008-04-01

    Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.

  15. Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose

    PubMed Central

    Zorraquino, Violeta; García, Begoña; Latasa, Cristina; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione

    2013-01-01

    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition. PMID:23161026

  16. Earthquake-like dynamics in Myxococcus xanthus social motility

    PubMed Central

    Gibiansky, Maxsim L.; Hu, Wei; Dahmen, Karin A.; Shi, Wenyuan; Wong, Gerard C. L.

    2013-01-01

    Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social (“S”)-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick–slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete “avalanche” motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading “locomotive” cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible. PMID:23341622

  17. About GI Motility

    MedlinePlus

    ... eNewsletter Sidebar × MOBILE MENU About Us Learn About GI Motility Digestive Tract Disorders of the Esophagus Disorders ... Floor Motility Testing Personal Stories Contact Search About GI Motility Twitter Facebook YouTube Search Search ... About Us ...

  18. Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.

    PubMed

    Gov, Nir S; Bernheim-Groswasser, Anne

    2012-01-01

    Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.

  19. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  20. Swimming Motility Reduces Deposition to Silica Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation pointmore » flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.« less

  1. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  2. Membrane tension feedback on shape and motility of eukaryotic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell’s two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane’s bending energy to the shape and integrity of the cell. As inmore » experiments, we investigate two pertinent observables — the cell’s velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.« less

  3. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    PubMed Central

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  4. Social Motility in African Trypanosomes

    PubMed Central

    McLelland, Bryce T.; Hill, Kent L.

    2010-01-01

    African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions. PMID:20126443

  5. Effects of minimal exposures to atmospheric pressure plasma on the activity of Salmonella Typhimurium: Deactivation of bacterial motility and suppression of host-cell invasion.

    PubMed

    Park, Jin-Sung; Kim, Kijung; Han, Je-Hyun; Gweon, Bomi; Ko, Ung Hyun; Yoo, Suk Jae; Choe, Wonho; Shin, Jennifer H

    2016-09-01

    Atmospheric pressure plasma (APP) has been shown effective in sterilization by reducing the number of viable microbes during surface cleaning, food processing, or human tissue treatment. For safe conduct, the majority of previous research focused on complete abolition of microbes, which may require severe treatments. Our aim is to investigate the minimal treatment conditions necessary for effective inactivation of bacteria in such a manner that the APP treated bacteria would not be able to harm the host cells. For this, we ought to identify the objective criteria to make the bacteria dysfunctional. We choose the motile properties and the host-cell invasion capability as two measures to quantify the pathogenic state of bacteria. In this paper, we investigated how the APP treatment in a minimal dosage affects the activity of Salmonella Typhimurium. At 100 W and 15 kHz for 20 s, the APP treatment effectively suppressed active "run and tumble" type motility and induced formation of abnormally long structures. With 20 s exposure, the bacterial cells failed to cause pyroptosis in the host cells with >90% survival after 12 h of co-incubation. Our results suggest novel measures to evaluate the functional pathogenic state for identifying safe APP treatment conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility.

    PubMed

    Ge, Xiaolong; Pan, Junhai; Liu, Yichang; Wang, Hongkan; Zhou, Wei; Wang, Xianfa

    2018-05-27

    The gastrointestinal tract harbours a diverse bacterial community that contributes to health and disease. A number of studies have demonstrated that the gut microbiota plays a critical role in the metabolism of serotonin. Microbial-derived metabolites, such as bile acids and short-chain fatty acids, are reported to affect the production of serotonin which, in turn, directly or indirectly regulates gut motility. Enterochromaffin cells are important specialized endocrine cells found in the intestine, which is the major location of serotonin biosynthesis. The relationship between microbiota and gut motility are studied depended on microbial-derived metabolites and serotonin. Both bile acids and short-chain fatty acids can modulate serotonin metabolism in hosts by affecting key intermediates of the serotonin pathway. Thus, gut motility may be regulated through microbial modifications of host serotonin biosynthesis, which continues to be evaluated as a target for functional gastrointestinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Exploratory Research on Latent Esophageal Motility Disorders in Dysphagia Patients.

    PubMed

    Kawaguchi, Shinpei; Takeuchi, Toshihisa; Inoue, Yousuke; Takahashi, Yoshiaki; Ozaki, Haruhiko; Ota, Kazuhiro; Harada, Satoshi; Edogawa, Shoko; Kojima, Yuichi; Yamashita, Hiroshi; Fukuchi, Takumi; Ashida, Kiyoshi; Higuchi, Kazuhide

    2017-01-01

    High-resolution manometry (HRM) has been applied to assess esophageal motility disorders. However, the frequency and types of motility disorders in patients with dysphagia, which are frequently seen in clinical practice, are not clear. We evaluated latent esophageal motility disorders associated with dysphagia. The study included patients without erosive esophageal mucosal damage and with dysphagia symptoms refractory to at least 8 weeks of standard-dose proton pump inhibitors. After enrolment, HRM was used to evaluate for esophageal motility disorder based on the Chicago classification. Esophageal motility disorder was found in 58 of 100 patients and was classified based on the causes: achalasia (13%), esophagogastric junction outflow obstruction (16%), distal esophageal spasms (3%), weak peristalsis (14%), frequently failed peristalsis (5%), and hypertensive peristalsis (7%). Primary esophageal motility disorder was found in approximately 50% of cases in dysphagia patients. Therefore, esophageal motility disorder is not an uncommon condition and should be sought for in order to elucidate precisely the cause of dysphagia. © 2017 S. Karger AG, Basel.

  8. A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus

    PubMed Central

    Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm

    2013-01-01

    Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744

  9. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    PubMed Central

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820

  10. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.

    PubMed

    Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang

    2015-04-01

    Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.

  11. Determining the relative contribution and hierarchy of hha and qseBC in the regulation of flagellar motility of Escherichia coli O157:H7.

    PubMed

    Sharma, Vijay K; Casey, Thomas A

    2014-01-01

    In recent studies, we demonstrated that a deletion of hha caused increased secretion of locus of enterocyte encoded adherence proteins and reduced motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7. In addition to the importance of hha in positive regulation of motility, a two-component quorum sensing pathway encoded by the qseBC genes has been shown to activate bacterial motility in response to mammalian stress hormones epinephrine and norepinephrine as well as bacterially produced autoinducer-3. In this study, we compared regulatory contribution and hierarchy of hha, a member of the Hha/YmoA family of nucleoid-associated proteins, to that of qseBC in the expression of EHEC O157:H7 motility. Since norepinephrine affects motility of EHEC O157:H7 through a qseBC-encoded two-component quorum sensing signaling, we also determined whether the hha-mediated regulation of motility is affected by norepinephrine and whether this effect is qseBC dependent. We used single (Δhha or ΔqseC) and double (Δhha ΔqseC) deletion mutants to show that hha exerts a greater positive regulatory effect in comparison to qseBC on the expression of motility by EHEC O157:H7. We also show that Hha is hierarchically superior in transcriptional regulation of motility than QseBC because transcription of qseC was significantly reduced in the hha deletion mutant compared to that in the parental and the hha-complemented mutant strains. These results suggest that hha regulates motility of EHEC O157:H7 directly as well as indirectly by controlling the transcription of qseBC.

  12. Determining the Relative Contribution and Hierarchy of hha and qseBC in the Regulation of Flagellar Motility of Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Casey, Thomas A.

    2014-01-01

    In recent studies, we demonstrated that a deletion of hha caused increased secretion of locus of enterocyte encoded adherence proteins and reduced motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7. In addition to the importance of hha in positive regulation of motility, a two-component quorum sensing pathway encoded by the qseBC genes has been shown to activate bacterial motility in response to mammalian stress hormones epinephrine and norepinephrine as well as bacterially produced autoinducer-3. In this study, we compared regulatory contribution and hierarchy of hha, a member of the Hha/YmoA family of nucleoid-associated proteins, to that of qseBC in the expression of EHEC O157:H7 motility. Since norepinephrine affects motility of EHEC O157:H7 through a qseBC-encoded two-component quorum sensing signaling, we also determined whether the hha-mediated regulation of motility is affected by norepinephrine and whether this effect is qseBC dependent. We used single (Δhha or ΔqseC) and double (Δhha ΔqseC) deletion mutants to show that hha exerts a greater positive regulatory effect in comparison to qseBC on the expression of motility by EHEC O157:H7. We also show that Hha is hierarchically superior in transcriptional regulation of motility than QseBC because transcription of qseC was significantly reduced in the hha deletion mutant compared to that in the parental and the hha-complemented mutant strains. These results suggest that hha regulates motility of EHEC O157:H7 directly as well as indirectly by controlling the transcription of qseBC. PMID:24465756

  13. Toward the reconstitution of synthetic cell motility

    PubMed Central

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-01-01

    ABSTRACT Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell. PMID:27019160

  14. Mechanics of biomimetic systems propelled by actin comet tails

    NASA Astrophysics Data System (ADS)

    Kang, Hyeran; Tambe, Dhananjay; Shenoy, Vivek; Tang, Jay

    2009-03-01

    The motility of intracellular bacterial pathogens such as Listeria monocytogenes is driven by filamentous actin comet tails in a variety of trajectories. Here, we present the in vitro study on the actin-based movements using spherical beads of different sizes coated with VCA protein, a partial domain of N-Wasp, in platelet extracts. Long term two-dimensional trajectories of the spherical beads motility show characteristic difference than those observed for bacteria, which have both elongated shape and asymmetric expression of the polymerization inducing enzyme. The trajectories also vary sensitively with the bead size and shape. These results provide a useful test to our new analytical model including the rotation of the bead relative to the tail.

  15. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  16. A light-regulated type I pilus contributes to Acinetobacter baumannii biofilm, motility and virulence functions.

    PubMed

    Wood, Cecily R; Ohneck, Emily J; Edelmann, Richard E; Actis, Luis A

    2018-06-11

    Transcriptional analyses of A. baumannii ATCC 17978 showed that the expression of A1S_2091 was enhanced in cells cultured in darkness at 24°C through a process that depended on the BlsA photoreceptor. Disruption of A1S_2091, a component of the A1S_2088-A1S_2091 polycistronic operon predicted to code for a type I chaperone/usher pilus assembly system, abolished surface motility and pellicle formation but significantly enhanced biofilm formation on plastic by bacteria cultured under darkness. Based on these observations, the A1S_2088-A1S_2091 operon was named the p hoto- r egulated p ilus ABCD ( prpABCD ) operon, with A1S_2091 coding for the PrpA pilin subunit. Unexpectedly, the comparative analyses of ATCC 17978 and prpA isogenic mutant cells cultured at 37°C showed the expression of light-regulated biofilm biogenesis and motility functions under a temperature condition that drastically affects BlsA production and its light sensing activity. These assays also suggest that 17978 cells produce alternative light-regulated adhesins and/or pili systems that enhance bacterial adhesion and biofilm formation both at 24°C and 37°C on plastic as well as on the surface of polarized A549 alveolar epithelial cells, where formation of bacterial filaments and cell chains was significantly enhanced. The inactivation of prpA also resulted in a significant reduction in virulence when tested using the Galleria mellonella virulence model. All these observations provide strong evidence showing the capacity of A. baumannii to sense light and interact with biotic and abiotic surfaces using undetermined alternative sensing and regulatory systems as well as alternative adherence and motility cellular functions that allow this pathogen to persist in different ecological niches. Copyright © 2018 American Society for Microbiology.

  17. Learn About GI Motility

    MedlinePlus

    ... eNewsletter Sidebar × MOBILE MENU About Us Learn About GI Motility Digestive Tract Disorders of the Esophagus Disorders ... Floor Motility Testing Personal Stories Contact Search About GI Motility Twitter Facebook YouTube Search Search ... About Us ...

  18. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    PubMed

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p < 0.05). The elastic modulus showed a significant increase in the major base resin, while a significant decrease was seen for Vertex Implacryl in all groups (p < 0.05); however, there was no significant difference in surface roughness between autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  19. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  20. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    PubMed Central

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  1. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins.

    PubMed

    Durkan, Rukiye; Ozel, Mehmet Birol; Bağiş, Bora; Usanmaz, Ali

    2008-07-01

    The aim of this study was to determine the effect of autoclave polymerization on the transverse strength of denture base polymers. To this end, 30 rectangular test specimens were fabricated of two heat-polymerized denture base polymers. The test groups were: (I) control, i.e., conventional water bath to polymerize resins by heat at 100 degrees C for 30 minutes; (II) autoclave polymerization at 60 degrees C for 30 minutes followed by 130 degrees C for 10 minutes; and (III) autoclave polymerization at 60 degrees C for 30 minutes followed by 130 degrees C for 20 minutes. The specimens were tested with three-point bending test at a crosshead speed of 5 mm/min. It was revealed that the transverse strength of specimens increased with statistical significance when the autoclave was used for polymerization.

  2. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  3. Light-controlled motility in prokaryotes and the problem of directional light perception

    PubMed Central

    Wilde, Annegret

    2017-01-01

    Abstract The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. PMID:29077840

  4. Light-controlled motility in prokaryotes and the problem of directional light perception.

    PubMed

    Wilde, Annegret; Mullineaux, Conrad W

    2017-11-01

    The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. © FEMS 2017.

  5. Motility Disorders in Children.

    PubMed

    Nurko, Samuel

    2017-06-01

    Gastrointestinal motility disorders in the pediatric population are common and can range from benign processes to more serious disorders. Performing and interpreting motility evaluations in children present unique challenges. There are primary motility disorders but abnormal motility may be secondary due to other disease processes. Diagnostic studies include radiographic scintigraphic and manometry studies. Although recent advances in the genetics, biology, and technical aspects are having an important impact and have allowed for a better understanding of the pathophysiology and therapy for gastrointestinal motility disorders in children, further research is needed to be done to have better understanding of the pathophysiology and for better therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    PubMed

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum.

    PubMed

    Burns, Justin L; Jariwala, Parth B; Rivera, Shannon; Fontaine, Benjamin M; Briggs, Laura; Weinert, Emily E

    2017-08-18

    Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O 2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O 2 -dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.

  8. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.

    PubMed

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-04-06

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.

  9. Polymeric Coatings for Combating Biocorrosion

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  10. Bacterial Chemotaxis: The Early Years of Molecular Studies

    PubMed Central

    Hazelbauer, Gerald L.

    2014-01-01

    This review focuses on the early years of molecular studies of bacterial chemotaxis and motility, beginning in the 1960s with Julius Adler's pioneering work. It describes key observations that established the field and made bacterial chemotaxis a paradigm for the molecular understanding of biological signaling. Consideration of those early years includes aspects of science seldom described in journals: the accidental findings, personal interactions, and scientific culture that often drive scientific progress. PMID:22994495

  11. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  12. Development of a Novel Method for Analyzing Pseudomonas aeruginosa Twitching Motility and Its Application to Define the AmrZ Regulon

    PubMed Central

    Xu, Binjie; Wozniak, Daniel J.

    2015-01-01

    Twitching motility is an important migration mechanism for the Gram-negative bacterium Pseudomonas aeruginosa. In the commonly used subsurface twitching assay, the sub-population of P. aeruginosa with active twitching motility is difficult to harvest for high-throughput studies. Here we describe the development of a novel method that allows efficient isolation of bacterial sub-populations conducting highly active twitching motility. The transcription factor AmrZ regulates multiple P. aeruginosa virulence factors including twitching motility, yet the mechanism of this activation remains unclear. We therefore set out to understand this mechanism by defining the AmrZ regulon using DNA microarrays in combination with the newly developed twitching motility method. We discovered 112 genes in the AmrZ regulon and many encode virulence factors. One gene of interest and the subsequent focus was lecB, which encodes a fucose-binding lectin. DNA binding assays revealed that AmrZ activates lecB transcription by directly binding to its promoter. The lecB gene was previously shown to be required for twitching motility in P. aeruginosa strain PAK; however, our lecB deletion had no effect on twitching motility in strain PAO1. Collectively, in this study a novel condition was developed for quantitative studies of twitching motility, under which the AmrZ regulon was defined. PMID:26309248

  13. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  14. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms

    PubMed Central

    Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched ‘volcano-like’ to round and front-elevated ‘crater-like’. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms. PMID:28253348

  15. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms.

    PubMed

    Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.

  16. The Wireless Motility Capsule: a One-Stop Shop for the Evaluation of GI Motility Disorders.

    PubMed

    Saad, Richard J

    2016-03-01

    The wireless motility and pH capsule (WMC) provides an office-based test to simultaneously assess both regional and whole gut transit. Ingestion of this non-digestible capsule capable of measuring temperature, pH, and the pressure of its immediate surroundings allows for the measurement of gastric, small bowel, and colonic transit times in an ambulatory setting. Approved by the US Food and Drug Administration for the evaluation of suspected conditions of delayed gastric emptying and the evaluation of colonic transit in chronic idiopathic constipation, WMC should be considered in suspected gastrointestinal motility disorders as it provides a single study capable of simultaneously assessing for regional, multiregional, or generalized motility disorders. Specific indications for testing with the WMC should include the evaluation of suspect cases of gastroparesis, small bowel dysmotility, and slow transit constipation, as well as symptom syndromes suggestive of a multiregional or generalized gastrointestinal transit delay.

  17. Bacterial flagellin—a potent immunomodulatory agent

    PubMed Central

    Hajam, Irshad A; Dar, Pervaiz A; Shahnawaz, Imam; Jaume, Juan Carlos; Lee, John Hwa

    2017-01-01

    Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. PMID:28860663

  18. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    NASA Astrophysics Data System (ADS)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  19. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases

    PubMed Central

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits. PMID:25839217

  20. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.

    PubMed

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.

  1. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF

    PubMed Central

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-01-01

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins. PMID:15775965

  2. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    PubMed

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  3. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  4. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  5. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    PubMed Central

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  6. The Effect of a Low Fluoride Delivery System on Bacterial Metabolism.

    DTIC Science & Technology

    1981-08-25

    of motile to non-motile bacteria in subgingival plaque samples is approximately 1:50; whereas in periodontally diseased sites, the ratio is approxi...parameters are indicated to assess the feasibility of this system as an adjunct in the control of caries and periodontal disease . 32 Antiplaque Determinants...of SnF2: pH and Ions INTRODUCTION The pathology of dental caries and periodontal disease is associated with the accumulation of bacterial plaque on

  7. Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease

    NASA Astrophysics Data System (ADS)

    Kusdarwati, R.; Rozi; Dinda, N. D.; Nurjanah, I.

    2018-04-01

    Fish suffer, from bacteria, fungi, virus and parasites or by physical ailments. Gurami (Osphronemus gouramy), nila (Oreochromis niloticus), carp (Cyprinus carpio), catfish (Clarias sp.) were the most reported infections caused by Aeromonas are bacterial hemorrhagic septicemia or Motile Aeromonas Septicemia (MAS). Antibiotics are drugs of natural or synthetic origin that have the capacity to kill or to inhibit the growth of micro-organisms included MAS. However, the use of antibiotics in the long term can cause negative impacts, among others, feared the occurrence of bacterial resistance in certain antibiotics. The results showed five of isolates were sensitive to antibiotics of chloramphenicol, gentamycin, oxytetracycline, cefradoxil and nalidixic acid but resistant to vancomycin colistin sulphate, rifampisin, cephalosporin and novobiocin.

  8. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The generation of an electrical membrane potential (''), the major constituent of the proton motive force (pmf) is crucial for the ATP synthesis, bacterial growth and motility. The pmf drives the rotation of flagella and is vital for the microaerophilic human pathogen Campylobacter jejuni to coloniz...

  9. How accelerated biological aging can affect solar reflective polymeric based building materials

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  10. Actin Depolymerizing Factor (ADF/Cofilin) Enhances the Rate of Filament Turnover: Implication in Actin-based Motility

    PubMed Central

    Carlier, Marie-France; Laurent, Valérie; Santolini, Jérôme; Melki, Ronald; Didry, Dominique; Xia, Gui-Xian; Hong, Yan; Chua, Nam-Hai; Pantaloni, Dominique

    1997-01-01

    Actin-binding proteins of the actin depolymerizing factor (ADF)/cofilin family are thought to control actin-based motile processes. ADF1 from Arabidopsis thaliana appears to be a good model that is functionally similar to other members of the family. The function of ADF in actin dynamics has been examined using a combination of physical–chemical methods and actin-based motility assays, under physiological ionic conditions and at pH 7.8. ADF binds the ADPbound forms of G- or F-actin with an affinity two orders of magnitude higher than the ATP- or ADP-Pi– bound forms. A major property of ADF is its ability to enhance the in vitro turnover rate (treadmilling) of actin filaments to a value comparable to that observed in vivo in motile lamellipodia. ADF increases the rate of propulsion of Listeria monocytogenes in highly diluted, ADF-limited platelet extracts and shortens the actin tails. These effects are mediated by the participation of ADF in actin filament assembly, which results in a change in the kinetic parameters at the two ends of the actin filament. The kinetic effects of ADF are end specific and cannot be accounted for by filament severing. The main functionally relevant effect is a 25-fold increase in the rate of actin dissociation from the pointed ends, while the rate of dissociation from the barbed ends is unchanged. This large increase in the rate-limiting step of the monomer-polymer cycle at steady state is responsible for the increase in the rate of actin-based motile processes. In conclusion, the function of ADF is not to sequester G-actin. ADF uses ATP hydrolysis in actin assembly to enhance filament dynamics. PMID:9087445

  11. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  12. Pharyngeal swallowing and oesophageal motility during a solid meal test: a prospective study in healthy volunteers and patients with major motility disorders.

    PubMed

    Hollenstein, Michael; Thwaites, Philip; Bütikofer, Simon; Heinrich, Henriette; Sauter, Matthias; Ulmer, Irina; Pohl, Daniel; Ang, Daphne; Eberli, Daniel; Schwizer, Werner; Fried, Michael; Distler, Oliver; Fox, Mark; Misselwitz, Benjamin

    2017-09-01

    The factors that determine how people eat when they are healthy or have disease have not been defined. We used high resolution manometry (HRM) to assess pharyngeal swallowing and oesophageal motility during ingestion of a solid test meal (STM) in healthy volunteers and patients with motility disorders. This study was based at University Hospital Zurich (Zürich, Switzerland). Healthy volunteers who responded to an advertisement completed HRM with ten single water swallows (SWS) in recumbent and upright positions followed by a 200 g rice STM in the upright position. Healthy volunteers were stratified for age and sex to ensure a representative population. For comparison, consecutive patients with major motility disorders on SWS and patients with dysphagia but no major motility disorders on SWS (disease controls) were selected from a database that was assembled prospectively; the rice meal data were analysed retrospectively. During STM, pharyngeal swallows were timed and oesophageal contractions were classified as representing normal motility or different types of abnormal motility in accordance with established metrics. Factors that could potentially be associated with eating speed were investigated, including age, sex, body-mass index, and presence of motility disorder. We compared diagnoses based on SWS findings, assessed with the Chicago Classification v3.0, with those based on STM findings, assessed with the Chicago Classification adapted for solids. These studies are registered with ClinicalTrials.gov, numbers NCT02407938 and NCT02397616. Between April 2, 2014, and May 13, 2015, 72 healthy volunteers were recruited and underwent HRM. Additionally, we analysed data from 54 consecutive patients with major motility disorders and 53 with dysphagia but no major motility disorders recruited between April 2, 2013, and Dec 18, 2014. We found important variations in oesophageal motility and eating speed during meal ingestion in healthy volunteers and patients. Increased

  13. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    NASA Astrophysics Data System (ADS)

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  14. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  15. Equine spermatozoal motility and fertility associated with the incorporation of d-(+)-mannose into semen extender.

    PubMed

    King, Sheryl S; Speiser, Stephanie A; Jones, Karen L; Apgar, Gary A; Wessels, Sarah E

    2006-04-01

    Mannose is capable of decreasing bacterial attachment to the uterine mucosa in mares. Bacteria gain entry into the mare's uterus during breeding; therefore, a practical method to deliver mannose to the uterus is to incorporate it into semen extenders. The effect of mannose on spermatozoal motility and subsequent sperm fertilizing capability is unknown. The present study evaluated progressive spermatozoal motility in semen extender formulations incorporating mannose and assessed the fertility of mares inseminated with a mannose-containing semen extender. In Experiment 1, progressive spermatozoal motility in extender mixtures containing 0 mannose (control), 25, 37 or 49 mg/mL mannose was evaluated at 20 degrees C or 5 degrees C holding temperatures for 0, 12, 24 and 48 h post-dilution. Measures were repeated three times using five stallions of proven fertility. High concentrations of mannose in the extender affected progressive motility beyond the time and temperature effects noted in the controls. Extender containing only mannose sugar (49 mg/mL) displayed an immediate depression in progressive motility compared with controls (45.5% versus 62.9%, respectively; P<0.001). The 37 mg/mL mannose extender had a less dramatic decrease in motility (P<0.05) and only after storage at 5 degrees C for > or =12h (48.7% versus 58.0%, respectively). Extender with 25 mg/mL mannose performed no differently than the control formulation under all conditions. In Experiment 2, two groups of mares (n=11 each) were inseminated with 500 x 10(6) progressively motile spermatozoa extended in a traditional skim milk (control) extender or the 37 mg/mL mannose extender preparation. A single-cycle pregnancy rate of 72% was achieved by both groups. Present data suggest that a semen extender containing up to 37 mg/mL mannose could maintain motile spermatozoa for on-farm use and 25 mg/mL mannose concentrations preserved motility during long-term cooling. Likewise, sperm extended with up to 37 mg

  16. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm.

    PubMed

    Horne, Shelley M; Sayler, Joseph; Scarberry, Nicholas; Schroeder, Meredith; Lynnes, Ty; Prüß, Birgit M

    2016-11-08

    Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an 'optimal' biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10

  17. Modulation of Neutrophil Motility by Curcumin: Implications for Inflammatory Bowel Disease

    PubMed Central

    Larmonier, C.B.; Midura-Kiela, M.T.; Ramalingam, R.; Laubitz, D.; Janikashvili, N.; Larmonier, N.; Ghishan, F.K.; Kiela, P.R.

    2010-01-01

    Background Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in Inflammatory Bowel Disease (IBD), transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. Methods We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. Results Curcumin attenuated LPS-stimulated expression and secretion of MIP-2, IL-1β, KC and MIP-1α in colonic epithelial cells (CEC) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At non-toxic concentrations, curcumin inhibited random neutrophil migration suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. Conclusion Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis. PMID:20629184

  18. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    PubMed Central

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  19. Recent advances in "bioartificial polymeric materials" based nanovectors

    NASA Astrophysics Data System (ADS)

    Conte, Raffaele; De Luca, Ilenia; Valentino, Anna; Di Salle, Anna; Calarco, Anna; Riccitiello, Francesco; Peluso, Gianfranco

    2017-04-01

    This chapter analyzes the advantages of the use of bioartificial polymers as carriers and the main strategies used for their design. Despite the enormous progresses in this field, more studies are required for the fully evaluation of these nanovectors in complex organisms and for the characterization of the pharmacodynamic and pharmacokinetic of the loaded drugs. Moreover, progresses in polymer chemistry are introducing a wide range of functionalities in the bioartificial polymeric material (BPM) nanostructures leading to a second generation of bioartificial polymer therapeutics based on novel and heterogeneous architectures with higher molecular weight and predictable structures, in order to achieve greater multivalency and increased loading capacity. Therefore, research on bioartificial polymeric nanovectors is an "on-going" field capable of attracting medical interest.

  20. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins

    PubMed Central

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W.

    2016-01-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function is still poorly understood. In this study we show that L. amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin and phosphorylated FAK when compared to non-infected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. PMID:27641840

  1. The Chicago classification of motility disorders: an update.

    PubMed

    Roman, Sabine; Gyawali, C Prakash; Xiao, Yinglian; Pandolfino, John E; Kahrilas, Peter J

    2014-10-01

    The Chicago Classification defines esophageal motility disorders in high resolution manometry. This is based on individual scoring of 10 swallows performed in supine position. Disorders of esophago-gastric junction (EGJ) outflow obstruction are defined by a median integrated relaxation pressure above the limit of normal and divided into 3 achalasia subtypes and EGJ outflow obstruction. Major motility disorders (aperistalsis, distal esophageal spasm, and hypercontractile esophagus) are patterns not encountered in controls in the context of normal EGJ relaxation. Finally with the latest version of the Chicago Classification, only two minor motor disorders are considered: ineffective esophageal motility and fragmented peristalsis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay

    PubMed Central

    Leung, Jacqueline M.; Rould, Mark A.; Konradt, Christoph; Hunter, Christopher A.; Ward, Gary E.

    2014-01-01

    T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility. PMID:24489670

  3. Involvement of Mismatch Repair in the Reciprocal Control of Motility and Adherence of Uropathogenic Escherichia coli

    PubMed Central

    Cooper, Lauren A.; Simmons, Lyle A.

    2012-01-01

    Type 1 fimbriae and flagella, two surface organelles critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC), mediate opposing virulence objectives. Type 1 fimbriae facilitate adhesion to mucosal cells and promote bacterial persistence in the urinary tract, while flagella propel bacteria through urine and along mucous layers during ascension to the upper urinary tract. Using a transposon screen of the E. coli CFT073 fim locked-ON (L-ON) mutant, a construct that constitutively expresses type 1 fimbriae and represses motility, we identified six mutants that exhibited a partial restoration of motility. Among these six mutated genes was mutS, which encodes a component of the methyl-directed mismatch repair (MMR) system. When complemented with mutS in trans, motility was again repressed. To determine whether the MMR system, in general, is involved in this reciprocal control, we characterized the effects of gene deletions of other MMR components on UPEC motility. Isogenic deletions of mutS, mutH, and mutL were constructed in both wild-type CFT073 and fim L-ON backgrounds. All MMR mutants showed an increase in motility in the wild-type background, and ΔmutH and ΔmutS mutations increased motility in the fim L-ON background. Cochallenge of the wild-type strain with an MMR-defective strain showed a subtle but significant competitive advantage in the bladder and spleen for the MMR mutant using the murine model of ascending urinary tract infection after 48 h. Our findings demonstrate that the MMR system generally affects the reciprocal regulation of motility and adherence and thus could contribute to UPEC pathogenesis during urinary tract infections. PMID:22473602

  4. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  5. Formation and dissolution of bacterial colonies.

    PubMed

    Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.

  6. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  7. Primary Esophageal Motility Disorders: Beyond Achalasia.

    PubMed

    Schlottmann, Francisco; Patti, Marco G

    2017-06-30

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia.

  8. Primary Esophageal Motility Disorders: Beyond Achalasia

    PubMed Central

    Schlottmann, Francisco; Patti, Marco G.

    2017-01-01

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia. PMID:28665309

  9. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  10. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    PubMed

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  11. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

    PubMed Central

    Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza; Horatzek, Sonja; Salunkhe, Prabhakar; Munder, Antje; van Barneveld, Andrea; Jordan, Doris; Bredenbruch, Florian; Häußler, Susanne; Riedel, Kathrin; Eberl, Leo; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Hoiby, Niels; Tümmler, Burkhard; Wiehlmann, Lutz

    2008-01-01

    Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population. PMID:19054330

  12. Mathematical models of cell motility.

    PubMed

    Flaherty, Brendan; McGarry, J P; McHugh, P E

    2007-01-01

    Cell motility is an essential biological action in the creation, operation and maintenance of our bodies. Developing mathematical models elucidating cell motility will greatly advance our understanding of this fundamental biological process. With accurate models it is possible to explore many permutations of the same event and concisely investigate their outcome. While great advancements have been made in experimental studies of cell motility, it now has somewhat fallen on mathematical models to taking a leading role in future developments. The obvious reason for this is the complexity of cell motility. Employing the processing power of today's computers will give researches the ability to run complex biophysical and biochemical scenarios, without the inherent difficulty and time associated with in vitro investigations. Before any great advancement can be made, the basics of cell motility will have to be well-defined. Without this, complicated mathematical models will be hindered by their inherent conjecture. This review will look at current mathematical investigations of cell motility, explore the reasoning behind such work and conclude with how best to advance this interesting and challenging research area.

  13. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  14. Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer

    NASA Astrophysics Data System (ADS)

    Jallapuram, Raghavendra; Naydenova, Izabela; Byrne, Hugh J.; Martin, Suzanne; Howard, Robert; Toal, Vincent

    2008-01-01

    Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607 cm-1 corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm-1 corresponding to the carbon-carbon double bond of methylenebisacrylamide using Raman spectroscopy. To study the dependence of the polymerization rate on intensity and to find the dependence parameter, the polymerization rate constant is measured at different intensities. A comparison with a commercially available photopolymer shows that the polymerization rate in this photopolymer is much faster.

  15. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells.

    PubMed

    Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios

    2012-04-01

    A characteristic feature of motile cells as they undergo a change in motile behavior is the development of fluctuating exploratory motions of the leading edge, driven by actin polymerization. We review quantitative models of these protrusion and retraction phenomena. Theoretical studies have been motivated by advances in experimental and computational methods that allow controlled perturbations, single molecule imaging, and analysis of spatiotemporal correlations in microscopic images. To explain oscillations and waves of the leading edge, most theoretical models propose nonlinear interactions and feedback mechanisms among different components of the actin cytoskeleton system. These mechanisms include curvature-sensing membrane proteins, myosin contraction, and autocatalytic biochemical reaction kinetics. We discuss how the combination of experimental studies with modeling promises to quantify the relative importance of these biochemical and biophysical processes at the leading edge and to evaluate their generality across cell types and extracellular environments. Copyright © 2012 Wiley Periodicals, Inc.

  16. Shear alters motility of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  17. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.

    PubMed

    Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie

    2014-07-01

    In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation.

    PubMed

    Volz, Carsten; Kegler, Carsten; Müller, Rolf

    2012-11-21

    Motile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  1. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    PubMed

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers.

    PubMed

    Ohta, Aaron T; Garcia, Maurice; Valley, Justin K; Banie, Lia; Hsu, Hsan-Yin; Jamshidi, Arash; Neale, Steven L; Lue, Tom; Wu, Ming C

    2010-12-07

    Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured. Viable sperm are attracted to OET fields and can be induced to move at an average maximal velocity of 8.8 ± 4.2 µm s(-1), while non-viable sperm are repelled to OET, and are induced to move at an average maximal velocity of -0.8 ± 1.0 µm s(-1). Manipulation of the sperm using OET does not appear to result in increased DNA fragmentation, making this a potential method by which to identify viable non-motile sperm for assisted reproductive technologies.

  3. Curved trajectories of actin-based motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  4. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  5. Bacterial nucleotide-based second messengers.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  6. How Bacterial Population Soliton Waves Can Defeat a Funnel Ring

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Morris, Ryan; Phan, Average; Black, Matthew; Lin, Ke-Chih; Bos, Julia

    We have constructed using microfabrication a circular corral for bacteria made of rings of concentric funnels which channel motile bacteria outwards via non-hydrodynamic interactions with the funnel walls. Although initially bacteria do move rapidly outwards with the funnels, they are able with increasing cell density on the perimeter to defeat the physical constraints of the funnel by launching collective, soliton like waves of bacteria inwards against the funnel ring. We present the basic data and some non-linear modeling which can explain the basic way that bacterial population solitons propagate across a funnel landscape. There are three surprising aspects to the experiments: (1) The bifurcation of the population into motile bacteria which are pumped by the funnels and bacteria which are non-motile (i.e., not pumped); (2) The launching of a collective wave which rapidly circles the device and radiates inwards against the pumping action of the funnel; (3) the subsequent loss of motility by all the bacteria after this burst of very high motility. Engineering and Physical Sciences Research Council [EP/J007404/1], National Cancer Institute (Grant No U54CA143803), and NSF PoLS program NSF PHY1521553.

  7. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  8. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and certain...

  9. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and certain...

  10. Correlation between extraocular muscle size and motility restriction in thyroid eye disease.

    PubMed

    Dagi, Lora R; Zoumalan, Christopher I; Konrad, Hindola; Trokel, Stephen L; Kazim, Michael

    2011-01-01

    Evaluate the relationship between extraocular muscle (EOM) size, measured by computed tomography, and ocular motility in thyroid eye disease (TED). This case series is based on a retrospective review of the records of 54 patients (108 orbits) with TED. Main outcome measures included EOM size and degree of motility restriction. The average diameter of each rectus muscle was compared with published norms. Four subpopulations based on Age (< 40 or ≥ 40 years) and State of thyroid eye disease (active or stable) were studied. Versions were measured by the corneal light reflex method. The trend of muscle diameter versus motility restriction was evaluated. The average EOM diameter was greater than the norm in the study cohort and 4 subpopulations. The average diameter was largest in the Older and Active TED subpopulations. The inferior rectus and medial rectus were most frequently restricted in the study cohort and 4 subpopulations. The medial rectus had the strongest trend between increasing diameter and motility restriction, followed by the inferior rectus and the superior muscle group (comprised of the superior rectus and levator palpebrae superioris). However, there was a general lack of strong correlation between the diameter of the rectus muscles and their respective motility, especially in the Younger subpopulation. EOM diameters are larger and have more restricted motility in the Older and Active TED subpopulations. Contrary to prior publications, the correlation between EOM diameters and motility was weak, especially in the Younger subpopulation. These findings suggest that the pathophysiology of EOM enlargement is different based upon the age of the patient and the activity of the orbitopathy.

  11. Computer vision-based diameter maps to study fluoroscopic recordings of small intestinal motility from conscious experimental animals.

    PubMed

    Ramírez, I; Pantrigo, J J; Montemayor, A S; López-Pérez, A E; Martín-Fontelles, M I; Brookes, S J H; Abalo, R

    2017-08-01

    When available, fluoroscopic recordings are a relatively cheap, non-invasive and technically straightforward way to study gastrointestinal motility. Spatiotemporal maps have been used to characterize motility of intestinal preparations in vitro, or in anesthetized animals in vivo. Here, a new automated computer-based method was used to construct spatiotemporal motility maps from fluoroscopic recordings obtained in conscious rats. Conscious, non-fasted, adult, male Wistar rats (n=8) received intragastric administration of barium contrast, and 1-2 hours later, when several loops of the small intestine were well-defined, a 2 minutes-fluoroscopic recording was obtained. Spatiotemporal diameter maps (Dmaps) were automatically calculated from the recordings. Three recordings were also manually analyzed for comparison. Frequency analysis was performed in order to calculate relevant motility parameters. In each conscious rat, a stable recording (17-20 seconds) was analyzed. The Dmaps manually and automatically obtained from the same recording were comparable, but the automated process was faster and provided higher resolution. Two frequencies of motor activity dominated; lower frequency contractions (15.2±0.9 cpm) had an amplitude approximately five times greater than higher frequency events (32.8±0.7 cpm). The automated method developed here needed little investigator input, provided high-resolution results with short computing times, and automatically compensated for breathing and other small movements, allowing recordings to be made without anesthesia. Although slow and/or infrequent events could not be detected in the short recording periods analyzed to date (17-20 seconds), this novel system enhances the analysis of in vivo motility in conscious animals. © 2017 John Wiley & Sons Ltd.

  12. How actin network dynamics control the onset of actin-based motility

    PubMed Central

    Kawska, Agnieszka; Carvalho, Kévin; Manzi, John; Boujemaa-Paterski, Rajaa; Blanchoin, Laurent; Martiel, Jean-Louis; Sykes, Cécile

    2012-01-01

    Cells use their dynamic actin network to control their mechanics and motility. These networks are made of branched actin filaments generated by the Arp2/3 complex. Here we study under which conditions the microscopic organization of branched actin networks builds up a sufficient stress to trigger sustained motility. In our experimental setup, dynamic actin networks or “gels” are grown on a hard bead in a controlled minimal protein system containing actin monomers, profilin, the Arp2/3 complex and capping protein. We vary protein concentrations and follow experimentally and through simulations the shape and mechanical properties of the actin gel growing around beads. Actin gel morphology is controlled by elementary steps including “primer” contact, growth of the network, entanglement, mechanical interaction and force production. We show that varying the biochemical orchestration of these steps can lead to the loss of network cohesion and the lack of effective force production. We propose a predictive phase diagram of actin gel fate as a function of protein concentrations. This work unveils how, in growing actin networks, a tight biochemical and physical coupling smoothens initial primer-caused heterogeneities and governs force buildup and cell motility. PMID:22908255

  13. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins.

    PubMed

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W

    2017-03-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. © 2016 John Wiley & Sons Ltd.

  14. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  15. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times.

    PubMed

    Kaastrup, Kaja; Sikes, Hadley D

    2012-10-21

    Although polymerization-based amplification (PBA) has demonstrated promise as an inexpensive technique for use in molecular diagnostics, oxygen inhibition of radical photopolymerization has hindered its implementation in point-of-care devices. The addition of 0.3-0.7 μM eosin to an aqueous acrylate monomer solution containing a tertiary amine allows an interfacial polymerization reaction to proceed in air only near regions of a test surface where additional eosin initiators coupled to proteins have been localized as a function of molecular recognition events. The dose of light required for the reaction is inversely related to eosin concentration. This system achieves sensitivities comparable to those reported for inert gas-purged systems and requires significantly shorter reaction times. We provide several comparisons of this system with other implementations of polymerization-based amplification.

  16. Laser polymerization-based novel lift-off technique

    NASA Astrophysics Data System (ADS)

    Bhuian, B.; Winfield, R. J.; Crean, G. M.

    2009-03-01

    The fabrication of microstructures by two-photon polymerization has been widely reported as a means of directly writing three-dimensional nanoscale structures. In the majority of cases a single point serial writing technique is used to form a polymer model. Single layer writing can also be used to fabricate two-dimensional patterns and we report an extension of this capability by using two-photon polymerization to form a template that can be used as a sacrificial layer for a novel lift-off process. A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to write 2D grid patterns with pitches of 0.8 and 1.0 μm in a urethane acrylate resin that was spun on to a lift-off base layer. This was overcoated with gold and the grid lifted away to leave an array of gold islands. The optical transmission properties of the gold arrays were measured and found to be in agreement with a rigorous coupled-wave analysis simulation.

  17. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    NASA Astrophysics Data System (ADS)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  18. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments

    PubMed Central

    Lindensmith, Christian A.; Rider, Stephanie; Bedrossian, Manuel; Wallace, J. Kent; Serabyn, Eugene; Showalter, G. Max; Deming, Jody W.; Nadeau, Jay L.

    2016-01-01

    Sea ice is an analog environment for several of astrobiology’s near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages. PMID:26812683

  19. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments.

    PubMed

    Lindensmith, Christian A; Rider, Stephanie; Bedrossian, Manuel; Wallace, J Kent; Serabyn, Eugene; Showalter, G Max; Deming, Jody W; Nadeau, Jay L

    2016-01-01

    Sea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages.

  20. Numerical studies of bacterial-carpet microflows

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Tillberg, Dan; Powers, Thomas R.

    2004-03-01

    Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.

  1. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  2. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    PubMed

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  3. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    PubMed Central

    Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom

    2017-01-01

    Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776

  4. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs.

    PubMed

    Basilico, N; Pagani, E; Monti, D; Olliaro, P; Taramelli, D

    1998-07-01

    The malaria parasite metabolizes haemoglobin and detoxifies the resulting haem by polymerizing it to form haemozoin (malaria pigment). A polymer identical to haemozoin, beta-haematin, can be obtained in vitro from haematin at acidic pH. Quinoline-containing anti-malarials (e.g. chloroquine) inhibit the formation of either polymer. Haem polymerization is an essential and unique pharmacological target. To identify molecules with haem polymerization inhibitory activity (HPIA) and quantify their potency, we developed a simple, inexpensive, quantitative in-vitro spectrophotometric microassay of haem polymerization. The assay uses 96-well U-bottomed polystyrene microplates and requires 24 h and a microplate reader. The relative amounts of polymerized and unpolymerized haematin are determined, based on solubility in DMSO, by measuring absorbance at 405 nm in the presence of test compounds as compared with untreated controls. The final product (a solid precipitate of polymerized haematin) was validated using infrared spectroscopy and the assay proved reproducible; in this assay, activity could be partly predicted based on the compound's chemical structure. Both water-soluble and water-insoluble compounds can be quantified by this method. Although the throughput of this assay is lower than that of radiometric methods, the assay is easier to set up and cheaper, and avoids the problems related to radioactive waste disposal.

  5. A technique for improved maxillary record base adaptation through controlled polymerization of light-activated dental resins.

    PubMed

    Hopkins, D S; Phoenix, R D; Abrahamsen, T C

    1997-09-01

    A technique for the fabrication of light-activated maxillary record bases is described. The use of a segmental polymerization process provides improved palatal adaptation by minimizing the effects of polymerization shrinkage. Utilization of this technique results in record bases that are well adapted to the corresponding master casts.

  6. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  7. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface

    PubMed Central

    Dilanji, Gabriel E.; Teplitski, Max; Hagen, Stephen J.

    2014-01-01

    Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively ‘surfing’ on those forces. PMID:24741008

  8. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  9. Ostrich specific semen diluent and sperm motility characteristics during in vitro storage.

    PubMed

    Smith, A M J; Bonato, M; Dzama, K; Malecki, I A; Cloete, S W P

    2018-06-01

    The dilution of semen is a very important initial process for semen processing and evaluation, storage and preservation in vitro and efficient artificial insemination. The aim of the study was to evaluate the effect of two synthetic diluents (OS1 and OS2) on ostrich sperm motility parameters during in vitro storage. Formulation of OS1 was based on macro minerals (Na, K, P, Ca, Mg) and OS2 on the further addition of micro minerals (Se and Zn), based on mineral concentration determined in the ostrich seminal plasma (SP). Sperm motility was evaluated at different processing stages (neat, after dilution, during storage and after storage) by measuring several sperm motility variables using the Sperm Class Analyzer® (SCA). Processing (dilution, cooling and storage) of semen for in vitro storage purposes decreased the values for all sperm motility variables measured. The percentage motile (MOT) and progressive motile (PMOT) sperm decreased 20% to 30% during 24 h of storage, independent of diluent type. Quality of sperm swim (LIN, STR and WOB), however, was sustained during the longer storage periods (48 h) with the OS2 diluent modified with Se and Zn additions. Quality of sperm swim with use of OS1 was 6% to 8% less for the LIN, STR, and WOB variables. Male fitted as a fixed effect accounted for >60% of the variation for certain sperm motility variables (PMOT, MOT, VCL, VSL, VAP and ALH) evaluated at different processing stages. Semen from specific males had sustained sperm motility characteristics to a greater extent than that of other males during the 24-h storage period. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme

    PubMed Central

    Taguchi, Seiichi; Yamada, Miwa; Matsumoto, Ken'ichiro; Tajima, Kenji; Satoh, Yasuharu; Munekata, Masanobu; Ohno, Katsuhiro; Kohda, Katsunori; Shimamura, Takashi; Kambe, Hiromi; Obata, Shusei

    2008-01-01

    Polylactate (PLA) is synthesized as a representative bio-based polyester by the chemo-bio process on the basis of metal catalyst-mediated chemical polymerization of lactate (LA) supplied by microbial fermentation. To establish the one-step microbial process for synthesis of LA-based polyesters, we explored whether polyhydroxyalkanoate (PHA) synthase would exhibit polymerizing activity toward a LA-coenzyme A (CoA), based on the fact that PHA monomeric constituents, especially 3-hydroxybutyrate (3HB), are structurally analogous to LA. An engineered PHA synthase was discovered as a candidate by a two-phase in vitro polymerization system previously developed. An LA-CoA producing Escherichia coli strain with a CoA transferase gene was constructed, and the generation of LA-CoA was demonstrated by capillary electrophoresis/MS analysis. Next, when the engineered PHA synthase gene was introduced into the resultant recombinant strain, we confirmed the one-step biosynthesis of the LA-incorporated copolyester, P(6 mol% LA-co-94 mol% 3HB), with a number-average molecular weight of 1.9 × 105, as revealed by gel permeation chromatography, gas chromatography/MS, and NMR. PMID:18978031

  11. Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy

    2006-03-01

    Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.

  12. Undersized description on motile gyrotactic micro-organisms individualities in MHD stratified water-based Newtonian nanofluid

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Tahir, M.; Malik, M. Y.

    2018-03-01

    The current pagination summarized the influence of bio-convection Schmidt number, bio-convection Peclet number and micro-organisms concentration difference parameter on the density of motile gyrotactic micro-organisms when they have interaction with the thermally stratified magneto-nanofluid flow past a vertical stretching surface. It is observed that the density of motile microorganisms is the decreasing function of the bio-convection Schmidt and Peclet numbers. It is trusted that the outcomes of present analysis will serve as a helping source for the upcoming developments regarding individualities of motile gyrotactic micro-organisms subject to boundary layer flows induced by stretching surfaces.

  13. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  14. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  15. Polymeric dental composites based on remineralizing amorphous calcium phosphate fillers

    PubMed Central

    Skrtic, Drago; Antonucci, Joseph M.

    2017-01-01

    For over two decades we have systematically explored structure-composition-property relationships of amorphous calcium phosphate (ACP)-based polymeric dental composites. The appeal of these bioactive materials stems from their intrinsic ability to prevent demineralization and/or restore defective tooth structures via sustained release of remineralizing calcium and phosphate ions. Due to the compositional similarity of the ACP to biological tooth mineral, ACP-based composites should exhibit excellent biocompatibility. Research described in this article has already yielded remineralizing sealants and orthodontic adhesives as well as a prototype root canal sealer. Our work has also contributed to a better understanding on how polymer matrix structure and filler/matrix interactions affect the critical properties of these polymeric composites and their overall performance. The addition of antimicrobial compounds to the formulation of ACP composites could increase their medical and dental regenerative treatment applications, thereby benefiting an even greater number of patients. PMID:29599572

  16. Function of bacterial cells and their exuded extracellular polymeric substances (EPS) in virus removal by red soils.

    PubMed

    Zhao, Bingzi; Jiang, Yan; Jin, Yan; Zhang, Jiabao

    2014-01-01

    The potential influence of autochthonous microorganisms on virus fate in soil is usually determined through extreme conditions of sterilization vs. nonsterilization; however, the relative importance of microbial cells and their exudates remains unclear. In this study, bacterial cells (cell) were harvested, and their exuded extracellular polymeric substances (EPS) were extracted from three strains of bacteria, namely, Gram-negative bacteria Pseudomonas putida and Pseudomonas aeruginosa as well as Gram-positive bacterium Bacillus subtilis. This study aimed to evaluate virus removal in solutions in the presence of cell, EPS, and their combination (cell/EPS), as well as to investigate how their presence affects virus removal efficiencies by four red soils based on batch experiments. Results showed that virus removal percentage in solutions ranged from 11 to 23 in the presence of cells only and from 12 to 15 in the presence of EPS only. The removal percentage in the combined cell/EPS treatment can be estimated by summing the results achieved by the cell and EPS treatments, separately. Meanwhile, cell presence had a negligible effect on virus removal by red soils. EPS and combined cell/EPS significantly reduced virus removal by 20 to 69% and 16 to 50%, respectively, which indicated that EPS served a dominant function in reducing virus removal. This study clearly demonstrated that the prediction of virus removal by red soils must consider the effect of bacteria, especially those producing large quantities of EPS, which can be responsible for the underestimation of viral load in certain studies.

  17. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns.

    PubMed

    Goodson, Summer G; White, Sarah; Stevans, Alicia M; Bhat, Sanjana; Kao, Chia-Yu; Jaworski, Scott; Marlowe, Tamara R; Kohlmeier, Martin; McMillan, Leonard; Zeisel, Steven H; O'Brien, Deborah A

    2017-11-01

    The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  19. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  20. Effect of polymerization technique and glass fiber addition on the surface roughness and hardness of PMMA denture base material.

    PubMed

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M

    2018-06-20

    The current study evaluated the effects of autoclave polymerization both with and without glass fiber (GF) reinforcement on the surface roughness and hardness of acrylic denture base material. Ninety disc specimens (30×2.5 mm) were prepared from Vertex resin and divided according to polymerization techniques into a water bath, short and long autoclave polymerization groups. Tested groups were divided into three subgroups according to the GF concentration (0, 2.5, and 5 wt%). Profilometer and Vickers hardness tests were performed to measure surface roughness and hardness. ANOVA and Tukey-Kramer multiple comparison tests analyzed the results, and p≤0.05 was considered statistically significant. Autoclave polymerization significantly decreased the surface roughness and increased the hardness of acrylic resin without GF reinforcement (p<0.05). However, 5 wt% GF addition significantly increased surface roughness and decreased hardness of the autoclave polymerized denture base resin (p<0.05). Surface properties of Polymethyl methacrylate (PMMA) denture base material improved with autoclave polymerization and negatively affected with GFs addition.

  1. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    PubMed

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  2. Asian motility studies in irritable bowel syndrome.

    PubMed

    Lee, Oh Young

    2010-04-01

    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotility in Asian IBS patients were reviewed. MEDLINE search work was performed including following terms, 'IBS,' 'motility,' 'transit time,' 'esophageal motility,' 'gastric motility,' 'small intestinal motility,' 'colonic motility,' 'anorectal function,' and 'gallbladder motility' and over 100 articles were categorized under 'esophagus,' 'stomach,' 'small intestine,' 'colon,' 'anorectum,' 'gallbladder,' 'transit,' 'motor pattern,' and 'effect of stressors.' Delayed gastric emptying, slow tansit in constipation predominant IBS patients, rapid transit in diarrhea predominant IBS patients, accelerated motility responses to various stressors such as meals, mental stress, or corticotrophin releasing hormones, and altered rectal compliance and altered rectal accomodation were reported in many Asian studies regarding IBS. Many conflicting results were found among these studies and there are still controversies to conclude these as unique features of Asian IBS patients. Multinational and multicenter studies are needed to be performed vigorously in order to elaborate characteristics as well as differences of altered motililty in Asian patients with IBS.

  3. Cellular Motility--Experiments on Contractile and Motile Mechanisms in the Slime Mould, Physarum Polycephalum

    ERIC Educational Resources Information Center

    Holmes, R. P.; Stewart, P. R.

    1977-01-01

    Actin and myosin have now been demonstrated to be important constituents of many eukaryotic cells. Their role is primarily that of a contractile system underlying all aspects of cellular motility. Described here is a simple experimental system to demonstrate quantitatively aspects of motility and its regulation in a slime mold. (Author/MA)

  4. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer.

    PubMed

    Zhao, Rui; Sun, Ying

    2018-02-03

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  5. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer

    PubMed Central

    Sun, Ying

    2018-01-01

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances. PMID:29401669

  6. Antagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance.

    PubMed

    Vahedi-Shahandashti, Roya; Kasra-Kermanshahi, Rouha; Shokouhfard, Maliheh; Ghadam, Parinaz; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2017-12-01

    Serratia marcescens , a potentially pathogenic bacterium, benefits from its swarming motility and resistance to antibiotic as two important virulence factors. Inappropriate use of antibiotics often results in drug resistance phenomenon in bacterial population. Use of probiotic bacteria has been recommended as partial replacement. In this study, we investigated the effects of some lactobacilli culture supernatant on swarming, motility and antibiotic resistance of S. marcescens . Antimicrobial activity of lactobacilli supernatant and susceptibility testing carried out on S. marcescens isolates. Pretreatment effect of lactobacilli culture supernatant on antibiotic - resistance pattern in S. marcescens was determined by comparison of the MIC of bacteria before and after the treatment. Our results showed that pretreatment with L. acidophilus ATCC 4356 supernatant can affect the resistance of Serratia strains against ceftriaxone, but it had no effect on the resistance to other antibiotics. Furthermore, culture supernatant of lactobacilli with concentrations greater than 2%, had an effect on the swarming ability of S. marcescens ATCC 13880 and inhibited it. Probiotic bacteria and their metabolites have the ability to inhibit virulence factors such as antibiotic resistance and swarming motility and can be used as alternatives to antibiotics.

  7. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  8. Physics of Bacterial Morphogenesis

    PubMed Central

    Sun, Sean X.; Jiang, Hongyuan

    2011-01-01

    Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed. PMID:22126993

  9. Photonic devices based on patterning by two photon induced polymerization techniques

    NASA Astrophysics Data System (ADS)

    Fortunati, I.; Dainese, T.; Signorini, R.; Bozio, R.; Tagliazucca, V.; Dirè, S.; Lemercier, G.; Mulatier, J.-C.; Andraud, C.; Schiavuta, P.; Rinaldi, A.; Licoccia, S.; Bottazzo, J.; Franco Perez, A.; Guglielmi, M.; Brusatin, G.

    2008-04-01

    Two and three dimensional structures with micron and submicron resolution have been achieved in commercial resists, polymeric materials and sol-gel materials by several lithographic techniques. In this context, silicon-based sol-gel materials are particularly interesting because of their versatility, chemical and thermal stability, amount of embeddable active compounds. Compared with other micro- and nano-fabrication schemes, the Two Photon Induced Polymerization is unique in its 3D processing capability. The photopolymerization is performed with laser beam in the near-IR region, where samples show less absorption and less scattering, giving rise to a deeper penetration of the light. The use of ultrashort laser pulses allows the starting of nonlinear processes like multiphoton absorption at relatively low average power without thermally damaging the samples. In this work we report results on the photopolymerization process in hybrid organic-inorganic films based photopolymerizable methacrylate-containing Si-nanobuilding blocks. Films, obtained through sol-gel synthesis, are doped with a photo-initiator allowing a radical polymerization of methacrylic groups. The photo-initiator is activated by femtosecond laser source, at different input energies. The development of the unexposed regions is performed with a suitable solvent and the photopolymerized structures are characterized by microscopy techniques.

  10. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    PubMed

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  11. Polyurethane/polymeric N-halamine antimicrobial and biofilm controlling semi-interpenetrating polymer network

    NASA Astrophysics Data System (ADS)

    Xiu, Kemao

    Bacterial infection and biofilm formation cause serious medical, industrial, and environmental problems. In biomedical applications, bacterial contamination of medical devices often leads to infectious diseases accompanied with pain, suffer, and even death. Polyurethane (PU) is widely in biomedical applications due to its good mechanical properties and biocompatibility. However, its vulnerability to bacterial biofilm formation seriously limits its wider uses. Prior studies have shown that N-halamines could be incorporated into PU to achieve antimicrobial and biofilm-controlling effects through grafting, blending, and/or coating. To broaden the selection of modification methods in the development antimicrobial PU, this study synthesized polyurethane/polymeric N-halamine semi-interpenetrating polymer networks (semi-IPN). Polymerizable monomeric N-halamines were swollen into PU with initiators and crosslink agents. Post polymerization of the monomers led to the formation of semi-IPN with linear PU and N-halamine polymer networks. The semi-IPNs showed excellent antimicrobial and biofilm controlling ability towards both gram-positive and gram-negative bacteria. The effects of hydrophilicity, surface grafted N-halamine and structural characteristics of N-halamine on the antimicrobial behavior of the resulting semi-IPNs were also investigated.

  12. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes

    PubMed Central

    2016-01-01

    Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell. PMID:27706163

  13. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes.

    PubMed

    Khetan, Neha; Athale, Chaitanya A

    2016-10-01

    Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.

  14. PG-Metrics: A chemometric-based approach for classifying bacterial peptidoglycan data sets and uncovering their subjacent chemical variability

    PubMed Central

    Kumar, Keshav; Espaillat, Akbar; Cava, Felipe

    2017-01-01

    Bacteria cells are protected from osmotic and environmental stresses by an exoskeleton-like polymeric structure called peptidoglycan (PG) or murein sacculus. This structure is fundamental for bacteria’s viability and thus, the mechanisms underlying cell wall assembly and how it is modulated serve as targets for many of our most successful antibiotics. Therefore, it is now more important than ever to understand the genetics and structural chemistry of the bacterial cell walls in order to find new and effective methods of blocking it for the treatment of disease. In the last decades, liquid chromatography and mass spectrometry have been demonstrated to provide the required resolution and sensitivity to characterize the fine chemical structure of PG. However, the large volume of data sets that can be produced by these instruments today are difficult to handle without a proper data analysis workflow. Here, we present PG-metrics, a chemometric based pipeline that allows fast and easy classification of bacteria according to their muropeptide chromatographic profiles and identification of the subjacent PG chemical variability between e.g. bacterial species, growth conditions and, mutant libraries. The pipeline is successfully validated here using PG samples from different bacterial species and mutants in cell wall proteins. The obtained results clearly demonstrated that PG-metrics pipeline is a valuable bioanalytical tool that can lead us to cell wall classification and biomarker discovery. PMID:29040278

  15. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  16. Novel Prevention Strategies for Bacterial Infections in Cirrhosis

    PubMed Central

    Yan, Kathleen; Garcia-Tsao, Guadalupe

    2016-01-01

    Introduction Bacterial infections are a serious complication of cirrhosis, as they can lead to decompensation, multiple organ failure, and/or death. Preventing infections is therefore very relevant. Because gut bacterial translocation is their main pathogenic mechanism, prevention of infections is mostly based on the use of orally administered poorly absorbed antibiotics such as norfloxacin (selective intestinal decontamination). However, antibiotic prophylaxis leads to antibiotic resistance, limiting therapy and increasing morbidity and mortality. Prevention of bacterial infections in cirrhosis should therefore move away from antibiotics. Areas Covered This review focuses on various potentially novel methods to prevent infections in cirrhosis focusing on non-antibiotic strategies. The use of probiotics, nonselective intestinal decontamination with rifaximin, prokinetics and beta-blockers or fecal microbiota transplant as means of targeting altered gut microbiota, bile acids and FXR agonists are all potential alternatives to selective intestinal decontamination. Prokinetics and beta-blockers can improve intestinal motility, while bile acids and FXR agonists help by improving the intestinal barrier. Finally, granulocyte colony stimulating factor (G-CSF) and statins are emerging therapeutic strategies that may improve immune dysfunction in cirrhosis. Expert Opinion Evidence for these strategies has been restricted to animal studies and proof-of concept studies but we expect this to change in coming years. PMID:26799197

  17. Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E.

    2013-01-01

    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. PMID:24204227

  18. Allosteric Models for Cooperative Polymerization of Linear Polymers

    PubMed Central

    Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura

    2008-01-01

    In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809

  19. The toxic effect of opioid analgesics on human sperm motility in vitro.

    PubMed

    Xu, Bo; Wang, Zhi-Ping; Wang, Yan-Juan; Lu, Pei-Hua; Wang, Li-Jun; Wang, Xiao-Hai

    2013-04-01

    Opioid analgesics are the most common therapeutic analgesic for acute pain. In this study, the toxicological and pharmacological features of a group of opioid analgesics were characterized by the motility of human sperm. Aliquots of sperm were incubated with various concentrations of opioid analgesics in vitro. Computer-assisted sperm analysis was used to assess sperm motility at 15 minutes, 2 hours, and 4 hours after drug addition to the medium. Butorphanol and dezocine showed marked reduction of motility after incubation with sperm for 15 minutes. Butorphanol was more effective than dezocine in immobilizing sperm. Other opioids studied, such as fentanyl, alfentanil, and sufentanil, showed only partial inhibitory activity. Based on the data reported herein, we have found that butorphanol and dezocine exert a sperm-immobilizing effect. However, fentanyl, alfentanil, and sufentanil exhibit only partial inhibition of sperm motility. Given the increasing use of opioids and their potential effect on sperm motility, these findings are greatly relevant to male reproductive health.

  20. Semiautomated Motility Assay For Determining Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond

    1996-01-01

    Improved method of assessing toxicities of various substances based on observation of effects of those substances on motilities of manageably small number of cells of protozoan species Tetrahema pyriformis. Provides repeatable, standardized tests with minimal handling by technicians and with minimal exposure of technicians to chemicals. Rapid and economical alternative to Draize test.

  1. Exopolysaccharide-Independent Social Motility of Myxococcus xanthus

    PubMed Central

    Hu, Wei; Hossain, Muhaiminu; Lux, Renate; Wang, Jing; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2011-01-01

    Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces. PMID:21245931

  2. Effects of physical factors on the swarming motility of text itPseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Si, Tieyan; Ma, Zidong; Tang, Wai Shing; Yang, Alexander; Tang, Jay

    Many species of bacteria can spread over a semi-solid surface via a particular form of collective motion known as surface swarming. Using Pseudomonas aeruginosa as a model organism, we investigate physical factors that either facilitate or restrict the swarming motility. The semi-solid surface is typically formed by 0.5-1% agar containing essential nutrients for the bacterial growth and proliferation. Most bacterial species, including P. aeruginosa, synthesize bio-surfactants to aid in swarming. We found addition of exogenous surfactants such as triton into the agar matrix enhances the swarming. In contrast, increasing agar percentage, infusing osmolites, and adding viscous agents all decrease swarming. We propose that the swarming speed is restricted by the rate of water supply from within the agar gel and by the line tension at the swarm front involving three materials in contact: the air, the bacteria propelled liquid film, and the agar substrate.

  3. Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori

    PubMed Central

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L.; Schumacher, Michael A.; Engevik, Amy C.; Zavros, Yana; Ottemann, Karen M.; Montrose, Marshall H.

    2014-01-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (106) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (106) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases

  4. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    PubMed

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L; Schumacher, Michael A; Engevik, Amy C; Zavros, Yana; Ottemann, Karen M; Montrose, Marshall H

    2014-07-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (10(6)) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6)) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby

  5. Species and Scale Dependence of Bacterial Motion Dynamics

    NASA Astrophysics Data System (ADS)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  6. Comparison of orbital prosthesis motility following enucleation or evisceration with sclerotomy with or without a motility coupling post in dogs.

    PubMed

    Yi, Na Young; Park, Shin Ae; Jeong, Man Bok; Kim, Won Tae; Kim, Se Eun; Kim, Ji Youn; Chae, Je Min; Jang, Kyoung Jin; Seong, Je Kyung; Seo, Kang Moon

    2009-01-01

    To evaluate motility of silicone orbital implants and corneoscleral prostheses, with and without use of a motility coupling post (MCP) in dogs. Eighteen mixed-breed dogs. The motility of an orbital silicone implant and corneoscleral prosthesis after enucleation (n = 6), evisceration (n = 6), or use of a MCP with evisceration (n = 6) in dogs were compared. One eye from each dog had surgery whereas the opposite eye was used as a control. Clinical evaluations were performed three times a week. Histopathology of the orbital tissues was performed 8 and 12 weeks after surgery. Implant motility in dogs with evisceration (vertical movement [VM] 8.04 +/- 2.13; horizontal movement [HM] 11 +/- 3.05) and evisceration with MCP (VM 9.61 +/- 1.59); HM was significantly greater than the enucleation group (VM 0.51 +/- 0.5; HM 1.22 +/- 0.68) (P < 0.01). Prosthetic motility in dogs with evisceration with MCP was significantly greater than in dogs with evisceration; dogs with evisceration had significantly greater motility than dogs with enucleation (P < 0.01). No postoperative complications were observed in any of the groups. No significant abnormalities were noted on histopathology. MCP placement in silicone orbital implants significantly enhanced the prosthetic motility in dogs. This study supports the use of MCP in silicone orbital implants to enhance corneoscleral prosthesis motility and cosmetics in dogs.

  7. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment.

    PubMed

    Piotrowski, Damian; Boroń-Kaczmarska, Anna

    2017-09-01

    Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  8. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    NASA Astrophysics Data System (ADS)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  9. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy.

    PubMed

    Davis, Michael L; Mounteer, Leslie C; Stevens, Lindsey K; Miller, Charles D; Zhou, Anhong

    2011-05-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout the exponential growth phase (~20.9 μm/s), while maximum velocities peak early in the exponential growth phase at a velocity of 51.2 μm/s. P. putida KT2440 also favors smaller turn angles indicating that they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Flagella bending affects macroscopic properties of bacterial suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions ofmore » bacteria with shear flow and walls or obstacles.« less

  11. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  12. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Motility and Adhesiveness in Human Neutrophils

    PubMed Central

    Smith, C. Wayne; Hollers, James C.; Patrick, Richard A.; Hassett, Clare

    1979-01-01

    Human peripheral blood neutrophils (PMN) obtained from healthy adults were examined in vitro with techniques adapted to assess the effects of chemotactic factors (CF) on cellular configuration and adhesiveness. The results were compared with those that use certain conventional techniques for assessing chemotaxis and chemokinesis. Exposure of PMN to N-formyl-l-methionyl-l-phenylalanine (f-Met-Phe), zymosan-activated serum, bacterial chemotactic factor, or a low molecular weight chemotactic factor from activated serum (C5a) in the absence of a gradient resulted in a change in cellular shape from a spherical to a polarized configuration in a high percentage of cells. This occurred rapidly in suspension, under conditions designed to exclude a role for cell adhesiveness, and was reversible upon removal of the CF. Restimulation of cells with the CF resulted in reappearance of the polarized configuration to the same extent as on initial stimulation with one exception: f-Met-Phe pretreated cells failed to respond to f-Met-Phe, though they responded fully to the other CF. Each CF caused a significant increase in PMN attachment to protein-coated glass. This enhanced adhesiveness was not reversible upon removal of the CF when the cells were treated under conditions shown to produce chemotactic deactivation. Cells treated under these conditions also exhibited significantly reduced motility on glass and in micropore filters in the absence of a gradient of CF. Bacterial chemotactic factor, even at high concentrations, failed to produce deactivation and did not cause a sustained enhancement of adhesiveness. Images PMID:372238

  14. Motility modes of the parasite Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  15. Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

    PubMed Central

    Muniyappa, Kalappa; Yan, Jie

    2013-01-01

    The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559

  16. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  17. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a device used to measure peristalic activity or pressure in the stomach or esophagus by means of a probe...

  18. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism.

    PubMed

    Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Nagashima, Shigehiro; Shaikh, Tanvir R; Thomas, Dennis R; Chen, James Z; Derosier, David J; Kitao, Akio; Namba, Keiichi

    2004-10-28

    The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.

  19. Characterizing motility dynamics in human RPE cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  20. Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria.

    PubMed

    Park, Hye-Jee; Jung, Ho Won; Han, Sang-Wook

    2014-09-26

    The bacterial envelope possesses diverse functions, including protection against environmental stress and virulence factors for host infection. Here, we report the function of wxcB in Xanthomonas campestris pv. vesicatoria (Xcv), a causal agent of bacterial leaf spot disease in tomato and pepper. To characterize roles of wxcB, we generated a knockout mutant (XcvΔwxcB) and found that the virulence of the mutant was weaker than that of the wild type in tomato plants. To predict the mechanism affected by wxcB, we compared protein expressions between the wild type and the mutant. Expression of 152 proteins showed a greater than 2-fold difference. Proteins involved in motility and cell wall/membrane were the most abundant. Through phenotypic assays, we further demonstrated that the mutant displayed reduced motility and tolerance to treatment, but it showed increased biofilm formation. Interestingly, the LPS profile was unchanged. These results lead to new insights into the functions of wxcB that is associated with cell wall/membrane functions, which contributes to pathogen virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Thyroid-intestinal motility interactions summary].

    PubMed

    Pustorino, S; Foti, M; Calipari, G; Pustorino, E; Ferraro, R; Guerrisi, O; Germanotta, G

    2004-12-01

    Thyroid diseases may be related to gastrointestinal motility symptoms. Such symptoms can vary in degree and, sometimes, are the only clue of a thyroid disease or, at least, the first. The mechanism by which the thyroid hormones can influence gastrointestinal motility, even if not still completely elucidated, can be found in a synergism between a direct effect of the thyronins and an indirect effect mediated by cathecolamines on the muscle cell receptors. Neck discomfort and dysphagia are common findings in patients with thyroid diseases. Hyper- and hypothyroidism can impair esophageal motility, modifying pharyngo-esophageal structure and/or muscular function and interacting with the neuro-humoral regulation of the esophageal peristalsis. Oesophageal motility alterations, observed in patients affected by small non-toxic goiter, are less understandable. At the gastro-duodenal level, basic and postprandial electric rhythm alterations have been observed in hyperthyroid patients, often associated with delayed gastric emptying, too. In such patients, the autonomous nervous system dysfunction may even modify the neuro-hormonal mutual regulation (vagal influence decrease) of the gastro-duodenal myoelectric activity. Hypothyroidism may cause a delay of the gastric emptying too, but such pattern may also be related to an associated autoimmune disease or to an independent chronic modification of the gastric mucosa. Diarrhoea and malabsorption are common findings together with hyperthyroidism, whereas constipation is frequently observed in hypothyroidism. The clinically most demanding situation is certainly the secondary chronic intestinal pseudo-obstruction syndrome, which involves the bowel in most cases, but may also show up by means of a mega-small bowel or a mega-duodenum, or even all of the above. In conclusion it may be stated that: 1) thyroid diseases may be related to symptoms due to digestive motility dysfunction. 2) Any segment of the gastrointestinal trait may be

  2. The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility

    PubMed Central

    Lowry, Rebecca C; Parker, Jennifer L; Kumbhar, Ramhari; Mesnage, Stephane; Shaw, Jonathan G; Stafford, Graham P

    2015-01-01

    Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6–8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering

  3. Coupling Active Hair Bundle Mechanics, Fast Adaptation, and Somatic Motility in a Cochlear Model

    PubMed Central

    Meaud, Julien; Grosh, Karl

    2011-01-01

    One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility. PMID:21641302

  4. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    PubMed

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Distribution of bacterial morphotypes around natural teeth and titanium implants ad modum Brånemark.

    PubMed

    Quirynen, M; Listgarten, M A

    1990-12-01

    The subgingival plaque around both teeth and implants was analysed by means of differential phase-contrast microscopy. It was noted that, in comparison to natural teeth, the subgingival samples from implants were more frequently too small to provide adequate bacterial counts. In 24 partially edentulous patients (with implants and teeth in the same jaw), no significant differences in the distribution of bacterial morphotypes could be found between implants and natural teeth. The %s of coccoid cells, motile rods, spirochetes and other bacteria were 65.8, 2.3, 2.1, and 29.8 for implants and 55.6, 4.9, 3.6, and 34.9 for teeth, respectively. However, when the plaque composition on the implants of fully edentulous patients was compared with those of teeth or implants of partially edentulous patients (with teeth and implants in the same and/or opposite jaw), significant differences appeared. In fully edentulous patients, more coccoid cells (71.3%) and significant fewer motile rods (0.4%) and spirochetes (0.0) were found around the implants. The results suggest that teeth may serve as a reservoir for the bacterial colonisation of titanium implants in the same mouth.

  6. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  7. Measurement of anal pressure and motility.

    PubMed Central

    Hancock, B D

    1976-01-01

    A fine open perfused system and a closed balloon system for the measurement of anal pressure and motility have been compared. Measurements were made in 40 normal subjects and 84 patients with haemorrhoids. The rate of perfusion had a marked effect on the recorded pressure and motility details. The motility pattern was seen most clearly with the balloon probe and the pressure recorded was reproducible and easy to measure, making this a convenient method for recording activity of the internal anal sphincter. Anal motility in normal subjects was characterised by slow pressure waves (10-20/min). The frequency was fastest in the distal anal canal and this frequency gradient may represent a normal mechanism to keep the anal canal empty. Ultra slow pressure waves (0-6-1-9/min) were seen in 42% of patients with haemorrhoids and 5% of normal subjects and arose from a synchronous contraction of the whole internal sphincter. Images Fig. 1 PMID:976803

  8. Combing bacterial turbulence.

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Nishiguchi, Daiki; Aronson, Igor

    Living systems represented by ensembles of motile organisms demonstrate a transition from a chaotic motion to a highly ordered state. Examples of such living systems include suspensions of bacteria, schools of fish, flocks of birds and even crowds of people. In spite of significant differences in interacting mechanisms and motion scales, ordered living systems have many similarities: short-range alignment of organism, turbulent-like motion, emergence of large-scale flows and dynamic vortices. In this work, we rectify a turbulent dynamics in suspensions of swimming bacteria Bacillus subtilis by imposing periodical constraints on bacterial motion. Bacteria, swimming between periodically placed microscopic vertical pillars, may self-organize in a stable lattice of vortices. We demonstrate the emergence of a strong anti-ferromagnetic order of bacterial vortices in a rectangular lattice of pillars. Hydrodynamic interaction between vortices increases the stability of an emerged pattern. The highest stability of vortices in the anti-ferromagnetic lattice and the fastest vortices speed were observed in structures with the periods comparable with a correlation length of bacterial unconstrained motion. A.S and I.A were supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under contract No. DE AC02-06CH11357 and D.N was supported by ALPS and JSPS Grant No. 26-9915.

  9. Microfluidic separation of motile sperm with millilitre-scale sample capacity

    NASA Astrophysics Data System (ADS)

    Nosrati, Reza; Vollmer, Marion; Eamer, Lise; Zeidan, Krista; San Gabriel, Maria C.; Zini, Armand; Sinton, David

    2012-11-01

    Isolating motile from non-motile spermatozoa has been a challenge since the establishment of in vitro fertilization. Microfluidic approaches have been employed for this purpose, but current devices are limited by low sample volume. Here, we present a high-throughput microfluidic device that separates spermatozoa from one millilitre of raw semen sample based on the hydrodynamic characteristics of swimming sperm in a confined geometry. The device consists of two layers: an outer injection ring on top aligned with a network of radial microchannels at the bottom guiding motile sperm into an inner collection chamber. This approach (1) maximizes exposure of the sperm to the fluid channels, (2) maximizes surface area density (3) prevents fluid flow bias, and (4) employs a non-Newtonian viscoelastic medium consistent with the in vivo environment. Tests with human and bull spermatozoa indicate an increase in motile sperm concentration from 62.2% in raw semen to 99.2% in separated sample combined with a higher incidence of normal morphology. DNA integrity testing is currently underway. In conclusion, we present an effective one-step procedure to perform semen purification and separation on a millilitre-scale with clinically relevant numbers.

  10. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  11. Cell-micropatterning by micromolding in capillary technique based on UV polymerization

    NASA Astrophysics Data System (ADS)

    Park, Min J.; Choi, Won M.; Park, O. O.

    2006-01-01

    Although optical lithography or photolithography is one of the most well-established techniques for micro, nano-fabrication, its usage with proteins and cells is restricted by steps that must be carried out in harsh organic solvents. Here, we present simple methods for cell-micropatterning using poly(dimethylsiloxane) (PDMS) as a mold. Cell non-adhesive surface or nonfouling surface providing a physico-chemical barrier to cell attachment was introduced for biomaterial pattering, where cells fail to interact with the surface over desired periods of time determined by each application. Poly(ethylene glycol) (PEG) was selected as nonfouling material to inhibit protein adsorption from biological media. The fouling resistance of PEG polymer is often explained by a steric repulsion interaction, resulting from the compression of PEG chains as proteins approach the surface. We also chose fibronectin to direct cell attachment because it is an extracellular matrix protein that is involved in the adhesion and spreading of anchorage-dependent cells. In our experiment, we propose two methods by application of micromolding in capillary (MIMIC) method based on UV polymerization to obtain a surface of alternating PEG and fibronectin. First to fabricate PEG microstructure via MIMIC method, a pre-patterned PDMS mold is placed on a desired substrate, and then the relief structure in the mold forms a network of empty channels. A drop of ethylene glycol monomer solution containing initiator for UV polymerization is placed at the open ends of the network of channels, which is then polymerized by exposure to UV light at room temperature. Once PEG microstructure is fabricated, incubation of the patterned surface in a fibronectin-containing solution allows back-filling of only the bare regions with fibronectin via adsorption. In the alternative method, a substrate is first incubated in a fibronectin-containing solution, leading to the adsorption of fibronectin over the entire surface, and

  12. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    USDA-ARS?s Scientific Manuscript database

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  13. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    PubMed

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  14. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  15. A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    PubMed Central

    Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong

    2014-01-01

    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671

  16. RON kinase isoforms demonstrate variable cell motility in normal cells.

    PubMed

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  17. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    PubMed Central

    BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen

    2011-01-01

    Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the

  18. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  19. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  20. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.

    PubMed

    Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L

    2015-03-26

    Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.

  1. Transverse loop colostomy and colonic motility.

    PubMed

    Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P

    2014-11-01

    The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.

  2. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  3. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP

    PubMed Central

    Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.

    2016-01-01

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070

  4. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    PubMed

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model.

    PubMed

    Meaud, Julien; Grosh, Karl

    2011-06-08

    One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect

  7. Esophageal motility in eosinophilic esophagitis.

    PubMed

    Weiss, A H; Iorio, N; Schey, R

    2015-01-01

    Eosinophilic esophagitis (EoE) is characterized by eosinophilic infiltration of the esophagus and is a potential cause of dysphagia and food impaction, most commonly affecting young men. Esophageal manometry findings vary from normal motility to aperistalsis, simultaneous contractions, diffuse esophageal spasm, nutcracker esophagus or hypotonic lower esophageal sphincter (LES). It remains unclear whether esophageal dysmotility plays a significant role in the clinical symptoms of EoE. Our aim is to review the pathogenesis, diagnosis, and effect of treatment on esophageal dysmotility in EoE. A literature search utilizing the PubMed database was performed using keywords: eosinophilic esophagitis, esophageal dysmotility, motility, manometry, impedance planimetry, barium esophagogram, endoscopic ultrasound, and dysphagia. Fifteen studies, totaling 387 patients with eosinophilic esophagitis were identified as keeping in accordance with the aim of this study and included in this review. The occurrence of abnormal esophageal manometry was reported to be between 4 and 87% among patients with EoE. Esophageal motility studies have shown reduced distensibility, abnormal peristalsis, and hypotonicity of the LES in patients with EoE, which may also mimic other esophageal motility disorders such as achalasia or nutcracker esophagus. Studies have shown conflicting results regarding the presence of esophageal dysmotility and symptoms with some reports suggesting a higher rate of food impaction, while others report no correlation between motor function and dysphagia. Motility dysfunction of the esophagus in EoE has not been well reported in the literature and studies have reported conflicting evidence regarding the clinical significance of dysmotility seen in EoE. The correlation between esophageal dysmotility and symptoms of EoE remains unclear. Larger studies are needed to investigate the incidence of esophageal dysmotility, clinical implications, and effect of treatment on

  8. Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants.

    PubMed

    Peláez-Vico, María A; Bernabéu-Roda, Lydia; Kohlen, Wouter; Soto, María J; López-Ráez, Juan A

    2016-04-01

    Strigolactones (SLs) are multifunctional molecules acting as modulators of plant responses under nutrient deficient conditions. One of the roles of SLs is to promote beneficial association with arbuscular mycorrhizal (AM) fungi belowground under such stress conditions, mainly phosphorus shortage. Recently, a role of SLs in the Rhizobium-legume symbiosis has been also described. While SLs' function in AM symbiosis is well established, their role in the Rhizobium-legume interaction is still emerging. Recently, SLs have been suggested to stimulate surface motility of rhizobia, opening the possibility that they could also act as molecular cues. The possible effect of SLs in the motility in the alfalfa symbiont Sinorhizobium meliloti was investigated, showing that the synthetic SL analogue GR24 stimulates swarming motility in S. meliloti in a dose-dependent manner. On the other hand, it is known that SL production is regulated by nutrient deficient conditions and by AM symbiosis. Using the model alfalfa-S. meliloti, the impact of phosphorus and nitrogen deficiency, as well as of nodulation on SL production was also assessed. The results showed that phosphorus starvation promoted SL biosynthesis, which was abolished by nitrogen deficiency. In addition, a negative effect of nodulation on SL levels was detected, suggesting a conserved mechanism of SL regulation upon symbiosis establishment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of Surface Passivation on Gliding Motility Assays

    PubMed Central

    Maloney, Andy; Herskowitz, Lawrence J.; Koch, Steven J.

    2011-01-01

    In this study, we report differences in the observed gliding speed of microtubules dependent on the choice of bovine casein used as a surface passivator. We observed differences in both speed and support of microtubules in each of the assays. Whole casein, comprised of αs1, αs2, β, and κ casein, supported motility and averaged speeds of 966±7 nm/s. Alpha casein can be purchased as a combination of αs1 and αs2 and supported gliding motility and average speeds of 949±4 nm/s. Beta casein did not support motility very well and averaged speeds of 870±30 nm/s. Kappa casein supported motility very poorly and we were unable to obtain an average speed. Finally, we observed that mixing alpha, beta, and kappa casein with the proportions found in bovine whole casein supported motility and averaged speeds of 966±6 nm/s. PMID:21674032

  10. Effects of prophylactic incisional gastropexy on markers of gastric motility in dogs as determined by use of a novel wireless motility device.

    PubMed

    Gazzola, Krista M; Nelson, Laura L; Fritz, Michele C; Clancy, Michelle R; Hauptman, Joe G

    2017-01-01

    OBJECTIVE To evaluate effects of laparoscopic-assisted incisional gastropexy (LAIG) on gastric motility in dogs by use of a wireless motility device (WMD). ANIMALS 10 healthy client-owned large or giant-breed dogs. PROCEDURES 10 dogs owned by clients interested in prophylactic LAIG were enrolled. To determine effects of LAIG on gastrointestinal motility in dogs during the nonfed state, each dog was evaluated by use of a noninvasive WMD before and > 4 weeks after LAIG. All dogs underwent LAIG, with or without concurrent elective gonadectomy. Data obtained before and after LAIG were analyzed by use of proprietary software to determine the gastric emptying time, small bowel transit time, large bowel transit time, whole bowel transit time, and motility index. RESULTS No changes in variables were detected between measurements obtained before and after prophylactic LAIG. CONCLUSIONS AND CLINICAL RELEVANCE In this study, prophylactic LAIG did not have an effect on gastrointestinal motility. The WMD was tolerated well by all dogs and appeared to be a safe and effective method for evaluating gastrointestinal motility in this population of dogs.

  11. Polymeric membrane materials for artificial organs.

    PubMed

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  12. The Bacterial Cytoskeleton Modulates Motility, Type 3 Secretion, and Colonization in Salmonella

    PubMed Central

    Bulmer, David M.; Kharraz, Lubna; Grant, Andrew J.; Dean, Paul; Morgan, Fiona J. E.; Karavolos, Michail H.; Doble, Anne C.; McGhie, Emma J.; Koronakis, Vassilis; Daniel, Richard A.; Mastroeni, Pietro; Anjam Khan, C. M.

    2012-01-01

    Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase Rcs

  13. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    PubMed Central

    Álvarez, Belén; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field. PMID:28769942

  14. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    PubMed

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  15. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  16. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    PubMed

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  17. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  18. The measurement of bacterial translation by photon correlation spectroscopy.

    PubMed Central

    Stock, G B; Jenkins, T C

    1978-01-01

    Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques. PMID:346073

  19. Supraspinal inhibitory effects of chimeric peptide MCRT on gastrointestinal motility in mice.

    PubMed

    He, Chunbo; Li, Hailan; Zhang, Jing; Kang, Yanping; Jia, Fang; Dong, Shouliang; Zhou, Lanxia

    2017-09-01

    Chimeric peptide MCRT, based on morphiceptin and PFRTic-NH 2 , was a bifunctional ligand of μ- and δ-opioid receptors (MOR-DOR) and produced potent analgesia in tail-withdrawal test. The study focused on the supraspinal effects of morphiceptin, PFRTic-NH 2 and MCRT on gastrointestinal motility. Moreover, opioid receptor antagonists, naloxone (non-selective), cyprodime (MOR selective) and naltrindole (DOR selective) were utilized to explore the mechanisms. Intracerebroventricular administration was achieved via the implanted cannula. Gastric emptying and intestinal transit were measured to evaluate gastrointestinal motility. (1) At supraspinal level, morphiceptin, PFRTic-NH 2 and MCRT significantly decreased gastric emptying and intestinal transit; (2) MCRT at 1 nmol/mouse, far higher than its analgesic dose (ED 50  = 29.8 pmol/mouse), failed to regulate the gastrointestinal motility; (3) MCRT-induced gastrointestinal dysfunction could be completely blocked by naloxone and naltrindole, but not affected by cyprodime. (1) Morphiceptin and PFRTic-NH 2 played important roles in the regulation of gastrointestinal motility; (2) MCRT possessed higher bioactivity of pain relief than gastrointestinal regulation, suggesting its promising analgesic property; (3) MCRT-induced motility disorders were sensitive to DOR but not to MOR blockade, indicating the pain-relieving specificity of speculated MOR subtype or splice variant or MOR-DOR heterodimer. © 2017 Royal Pharmaceutical Society.

  20. Emergence of HGF/SF-Induced Coordinated Cellular Motility

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2012-01-01

    Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation-based

  1. Group X secreted phospholipase A₂ specifically decreases sperm motility in mice.

    PubMed

    Escoffier, Jessica; Pierre, Virginie J; Jemel, Ikram; Munch, Léa; Boudhraa, Zied; Ray, Pierre F; De Waard, Michel; Lambeau, Gérard; Arnoult, Christophe

    2011-10-01

    Different mammalian secreted phospholipases A(2) (sPLA(2) s) are expressed in male reproductive organs and/or in sperm cells but their cellular functions are still not fully characterized. Because several reports indicate a link between cellular lipids and sperm motility, we have investigated the effect of mouse group IIA, IID, IIE, V, and X sPLA(2) s on sperm motility. Among these enzymes, only mouse group X sPLA(2) (mGX sPLA(2) ) acts as a potent inhibitor of sperm motility that decreases track speed (VCL) and lateral displacement of the head (ALH) of both noncapacitated and capacitated sperm. The inhibitory effect of mGX sPLA(2) is dependent on its enzymatic activity because (i) both the proenzyme form of mGX sPLA(2) (pro-mGX) and the H48Q mutant of mGX sPLA(2) have very weak enzymatic activity and are unable to modulate sperm motility and (ii) LY329722, a specific inhibitor of sPLA(2) s, blocks the inhibitory effect of mGX sPLA(2) . Moreover, mGX sPLA(2) exerts a gradual potency on sperm subpopulations with different velocities, an effect which may be linked to the heterogeneity of lipid composition in these sperm subpopulations. Finally, we found that endogenous mGX sPLA(2) released during spontaneous acrosome reaction modulates sperm motility of capacitated sperm. Together, our results suggest a new role of sPLA(2) in sperm physiology where the sPLA2 selects a sperm subpopulation for fertilization based on its effect on sperm motility. Copyright © 2010 Wiley-Liss, Inc.

  2. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum.

    PubMed

    Wang, Luyao; Wang, Ning; Mi, Dandan; Luo, Yuming; Guo, Jianhua

    2017-07-01

    In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.

  3. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  4. Bacterial flagellar capping proteins adopt diverse oligomeric states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins atmore » the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.« less

  5. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo.

    PubMed

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran; Newsome, Timothy P

    2018-03-05

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.

  6. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo

    PubMed Central

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran

    2018-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted. PMID:29510577

  7. [Congenital skull base defect causing recurrent bacterial meningitis].

    PubMed

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  8. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism.

    PubMed

    Zhang, Yuetao; Miyake, Garret M; John, Mallory G; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2012-08-14

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C(6)F(5))(3) with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl-α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C(6)F(5))(3)-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C(6)F(5))(3), can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P(t)Bu(3)), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P(4)-(t)Bu). The P(4)-(t)Bu/Al(C(6)F(5))(3) pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10(4) h(-1) (0.125 mol% catalyst, 100% MMA conversion in 30 s, M(n) = 2.12 × 10(5) g mol(-1), PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P(γ)MMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C(6)F(5))(3) adduct with P(t)Bu(3) and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the (t)Bu(3)P/Al(C(6)F(5))(3) pair is zero-order in monomer concentration after an initial

  9. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as

  10. Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    NASA Astrophysics Data System (ADS)

    Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be'er, Avraham

    2015-01-01

    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.

  11. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    PubMed

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacterial swimmers that infiltrate and take over the biofilm matrix

    PubMed Central

    Houry, Ali; Gohar, Michel; Deschamps, Julien; Tischenko, Ekaterina; Aymerich, Stéphane; Gruss, Alexandra; Briandet, Romain

    2012-01-01

    Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations. PMID:22773813

  13. Polymorphism in Bacterial Flagella Suspensions

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  14. Hindered bacterial mobility in porous media flow enhances dispersion

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  15. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

    PubMed Central

    Galperin, Michael Y.; Gomelsky, Mark

    2013-01-01

    SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger. PMID:23471616

  16. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging.

    PubMed

    Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber.

    PubMed

    McClaine, Jennifer W; Ford, Roseanne M

    2002-04-20

    A parallel-plate flow chamber was used to measure the attachment and detachment rates of Escherichia coli to a glass surface at various fluid velocities. The effect of flagella on adhesion was investigated by performing experiments with several E. coli strains: AW405 (motile); HCB136 (nonmotile mutant with paralyzed flagella); and HCB137 (nonmotile mutant without flagella). We compared the total attachment rates and the fraction of bacteria retained on the surface to determine how the presence and movement of the flagella influence transport to the surface and adhesion strength in this dynamic system. At the lower fluid velocities, there was no significant difference in the total attachment rates for the three bacterial strains; nonmotile strains settled at a rate that was of the same order of magnitude as the diffusion rate of the motile strain. At the highest fluid velocity, the effect of settling was minimized to better illustrate the importance of motility, and the attachment rates of both nonmotile strains were approximately five times slower than that of the motile bacteria. Thus, different processes controlled the attachment rate depending on the parameter regime in which the experiment was performed. The fractions of motile bacteria retained on the glass surface increased with increasing velocity, whereas the opposite trend was found for the nonmotile strains. This suggests that the rotation of the flagella enables cells to detach from the surface (at the lower fluid velocities) and strengthens adhesion (at higher fluid velocities), whereas nonmotile cells detach as a result of shear. There was no significant difference in the initial attachment rates of the two nonmotile species, which suggests that merely the presence of flagella was not important in this stage of biofilm development. Copyright 2002 Wiley Periodicals, Inc.

  18. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.

    PubMed

    Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A

    2008-04-01

    To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.

  19. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022).

    PubMed

    González Barrios, Andrés F; Zuo, Rongjun; Hashimoto, Yoshifumi; Yang, Li; Bentley, William E; Wood, Thomas K

    2006-01-01

    The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass and thickness and reduced the interstitial space between microcolonies. As expected, the addition of AI-2 to cells which lack the ability to transport AI-2 (lsr null mutant) failed to stimulate biofilm formation. Since the addition of AI-2 increased cell motility through enhanced transcription of five motility genes, we propose that AI-2 stimulates biofilm formation and alters its architecture by stimulating flagellar motion and motility. It was also found that the uncharacterized protein B3022 regulates this AI-2-mediated motility and biofilm phenotype through the two-component motility regulatory system QseBC. Deletion of b3022 abolished motility, which was restored by expressing b3022 in trans. Deletion of b3022 also decreased biofilm formation significantly, relative to the wild-type strain in three media (46 to 74%) in 96-well plates, as well as decreased biomass (8-fold) and substratum coverage (19-fold) in continuous-flow cells with minimal medium (growth rate not altered and biofilm restored by expressing b3022 in trans). Deleting b3022 changed the wild-type biofilm architecture from a thick (54-mum) complex structure to one that contained only a few microcolonies. B3022 positively regulates expression of qseBC, flhD, fliA, and motA, since deleting b3022 decreased their transcription by 61-, 25-, 2.4-, and 18-fold, respectively. Transcriptome analysis also revealed that B3022 induces crl (26-fold) and flhCD (8- to 27-fold). Adding AI-2 (6.4 muM) increased biofilm formation of wild-type K-12 MG1655 but not that of the isogenic b3022, qseBC, fliA, and motA mutants. Adding

  20. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  1. Bacterial Colonization and Tissue Compatibility of Denture Base Resins.

    PubMed

    Olms, Constanze; Yahiaoui-Doktor, Maryam; Remmerbach, Torsten W; Stingu, Catalina Suzana

    2018-06-15

    Currently, there is minimal clinical data regarding biofilm composition on the surface of denture bases and the clinical tissue compatibility. Therefore, the aim of this experimental study was to compare the bacterial colonization and the tissue compatibility of a hypoallergenic polyamide with a frequently used PMMA resin tested intraorally in a randomized split-mouth design. Test specimens made of polyamide ( n = 10) and PMMA ( n = 10) were attached over a molar band appliance in oral cavity of 10 subjects. A cytological smear test was done from palatal mucosa at baseline and after four weeks. The monolayers were inspected for micronuclei. After four weeks in situ, the appliance was removed. The test specimens were immediately cultivated on non-selective and selective nutrient media. All growing colonies were identified using VITEK-MS. The anonymized results were analyzed descriptively. A total of 110 different bacterial species could be isolated, including putative pathogens. An average of 17.8 different bacterial species grew on the PMMA specimens, and 17.3 on the polyamide specimens. The highest number of different bacterial species was n = 24, found on a PMMA specimen. On the two specimens, a similar bacterial distribution was observed. Micronuclei, as a marker for genotoxic potential of dental materials, were not detected. This study indicates that the composition of bacterial biofilm developed on these resins after four weeks is not influenced by the type of resin itself. The two materials showed no cytological differences. This investigation suggests that polyamide and PMMA are suitable for clinical use as denture base material.

  2. Endocytic reawakening of motility in jammed epithelia

    NASA Astrophysics Data System (ADS)

    Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V.; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio

    2017-05-01

    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

  3. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    PubMed

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages.

    PubMed

    Belgini, D R B; Dias, R S; Siqueira, V M; Valadares, L A B; Albanese, J M; Souza, R S; Torres, A P R; Sousa, M P; Silva, C C; De Paula, S O; Oliveira, V M

    2014-10-01

    Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.

  5. Effects of hydrodynamic interactions in bacterial swimming.

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  6. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    PubMed

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation.

    PubMed

    Anifandis, George; Katsanaki, Katerina; Lagodonti, Georgia; Messini, Christina; Simopoulou, Mara; Dafopoulos, Konstantinos; Daponte, Alexandros

    2018-05-30

    Glyphosate is the active ingredient of Roundup ® , which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF). Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time) and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm ® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.

  8. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  9. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog

    PubMed Central

    Cruz, Luisa F.; Parker, Jennifer K.; Cobine, Paul A.

    2014-01-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. PMID:25217013

  10. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.

    PubMed

    Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo

    2014-12-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Motility of vestibular hair cells in the chick.

    PubMed

    Ogata, Y; Sekitani, T

    1993-01-01

    Recent studies of the outer hair cells in cochlea have demonstrated active motilities. However, very little study has been done on the vestibular hair cells (VHCs). The present study shows the motile response of the VHCs induced by application of Ca2+/ATP promoting contraction. Reversible cell shape changes could be shown in 10 of 16 isolated type I hair cells and 9 of 15 isolated type II hair cells by applying the contraction solution. Furthermore, the sensory hair bundles in the utricular epithelium pivoted around the base and stood perpendicularly to the apical borderline of the epithelium in response to the application of the same solution. It is suggested that the contraction of the isolated VHCs may be transferred to tension which causes the sensory hair bundles to restrict their motion in normal tissue, instead of changing the cell shape.

  12. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  13. Redox reaction triggered nanomotors based on soft-oxometalates with high and sustained motility

    NASA Astrophysics Data System (ADS)

    Mallick, Apabrita; Laskar, Abhrajit; Adhikari, R.; Roy, Soumyajit

    2018-05-01

    The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of ̴ 370 body lengths per second and remain motile over a period of approximately three days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.

  14. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    PubMed

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  15. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  16. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  17. Adaptation of Motility Analysis Apparatus for Space Science and Microgravity Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Johnson, Jacqueline U.

    1996-01-01

    Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.

  18. Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)

    PubMed Central

    Bland, Charles E.

    1970-01-01

    The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal dises and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils. Images PMID:4098725

  19. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    PubMed Central

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects. PMID:20702416

  20. Cell motility assays.

    PubMed

    Hague, Angela; Jones, Gareth E

    2008-10-01

    This report summarises practical aspects to measuring cell motility in culture. The methods described here were discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop organised by John Masters and Gareth E Jones that was held at University College London on 19th April 2007.

  1. Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

    PubMed Central

    Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.

    2010-01-01

    Summary: In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review. PMID:20508248

  2. Purification and Characterization of the Bacterial Flagellar Basal Body from Salmonella enterica.

    PubMed

    Aizawa, Shin-Ichi

    2017-01-01

    The bacterial flagellum is a motility organelle. The flagellum is composed of three main structures: the basal body as a rotary engine embedded in the cellular membranes and cell wall, the long external filament that acts as a propeller, and the hook acting as a universal joint that connects them. I describe protocols for the purification of the filament and hook-basal body from Salmonella enterica serovar Typhimurium.

  3. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    PubMed

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  4. Increased count, motility, and total motile sperm cells collected across three consecutive ejaculations within 24 h of oocyte retrieval: implications for management of men presenting with low numbers of motile sperm for assisted reproduction.

    PubMed

    Said, Al-Hasen; Reed, Michael L

    2015-07-01

    The purpose of this study was to quantitate changes in seminal volume, sperm count, motility, qualitative forward progression, and total motile sperm cells per ejaculate, across three consecutive ejaculates collected from individuals within 24 h preceding an IVF cycle. Men presenting with oligoasthenozoospermia or asthenozoospemia attempted three ejaculates within 24 h preceding IVF. Ejaculate 1 was produced the afternoon prior to oocyte retrieval, and ejaculates 2 and 3 were produced the morning of oocyte retrieval with 2-3 h between collections. Ejaculates 1 and 2 were extended 1:1 v/v with room temperature rTYBS. Test tubes were placed into a beaker of room temperature water, then placed at 4 °C for gradual cooling. Ejaculate 3 was not extended, but pooled with ejaculates 1 and 2 and processed for intracytoplasmic sperm injection (ICSI). Out of 109 oocyte retrievals, 28 men were asked to attempt multiple consecutive ejaculations. Among this population, 25/28 (89.3 %) were successful, and 3/28 men (10.7 %) could only produce two ejaculates. Mean volumes for ejaculates 1, 2, and 3 were significantly different from each other (p < 0.01); the volume decreased for each ejaculate. Mean sperm counts, motility, qualitative forward progression, and total motile cells per ejaculate for the ejaculates1, 2, and 3 demonstrated the following: ejaculates 2 and 3 were not significantly different, but counts, motility, and total motile sperm were improved over ejaculate 1 (p < 0.01). Pooling three consecutive ejaculates within 24 h increased the numbers of available motile sperm in this population by 8-fold compared to the first ejaculate alone, facilitating avoidance of sperm cryopreservation and additional centrifugation steps that could affect sperm viability and/or function.

  5. Borrelia burgdorferi CheY2 Is Dispensable for Chemotaxis or Motility but Crucial for the Infectious Life Cycle of the Spirochete

    PubMed Central

    Xu, Hui; Sultan, Syed; Yerke, Aaron; Moon, Ki Hwan; Wooten, R. Mark

    2016-01-01

    ABSTRACT The requirements for bacterial chemotaxis and motility range from dispensable to crucial for host colonization. Even though more than 50% of all sequenced prokaryotic genomes possess at least one chemotaxis signaling system, many of those genomes contain multiple copies of a chemotaxis gene. However, the functions of most of those additional genes are unknown. Most motile bacteria possess at least one CheY response regulator that is typically dedicated to the control of motility and which is usually essential for virulence. Borrelia burgdorferi appears to be notably different, in that it has three cheY genes, and our current studies on cheY2 suggests that it has varied effects on different aspects of the natural infection cycle. Mutants deficient in this protein exhibit normal motility and chemotaxis in vitro but show reduced virulence in mice. Specifically, the cheY2 mutants were severely attenuated in murine infection and dissemination to distant tissues after needle inoculation. Moreover, while ΔcheY2 spirochetes are able to survive normally in the Ixodes ticks, mice fed upon by the ΔcheY2-infected ticks did not develop a persistent infection in the murine host. Our data suggest that CheY2, despite resembling a typical response regulator, functions distinctively from most other chemotaxis CheY proteins. We propose that CheY2 serves as a regulator for a B. burgdorferi virulence determinant that is required for productive infection within vertebrate, but not tick, hosts. PMID:27799336

  6. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of

  7. Analysis of bacterial migration. 2: Studies with multiple attractant gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, I.; Frymier, P.D.; Hahn, C.M.

    1995-02-01

    Many motile bacteria exhibit chemotaxis, the ability to bias their random motion toward or away from increasing concentrations of chemical substances which benefit or inhibit their survival, respectively. Since bacteria encounter numerous chemical concentration gradients simultaneously in natural surroundings, it is necessary to know quantitatively how a bacterial population responds in the presence of more than one chemical stimulus to develop predictive mathematical models describing bacterial migration in natural systems. This work evaluates three hypothetical models describing the integration of chemical signals from multiple stimuli: high sensitivity, maximum signal, and simple additivity. An expression for the tumbling probability for individualmore » stimuli is modified according to the proposed models and incorporated into the cell balance equation for a 1-D attractant gradient. Random motility and chemotactic sensitivity coefficients, required input parameters for the model, are measured for single stimulus responses. Theoretical predictions with the three signal integration models are compared to the net chemotactic response of Escherichia coli to co- and antidirectional gradients of D-fucose and [alpha]-methylaspartate in the stopped-flow diffusion chamber assay. Results eliminate the high-sensitivity model and favor the simple additivity over the maximum signal. None of the simple models, however, accurately predict the observed behavior, suggesting a more complex model with more steps in the signal processing mechanism is required to predict responses to multiple stimuli.« less

  8. Efficient degradation of lube oil by a mixed bacterial consortium.

    PubMed

    Wang, Haifeng; Xu, Ran; Li, Fengting; Qiao, Junlian; Zhang, Bingru

    2010-01-01

    A laboratory study was performed to assess the biodegradation of lube oil in bio-reactor with 304# stainless steel as a biofilm carrier. Among 164 oil degrading bacterial cultures isolated from oil contaminated soil samples, Commaonas acidovorans Pxl, Bacillus sp. Px2, Pseudomonas sp. Px3 were selected to prepare a mixed consortium for the study based on the efficiency of lube oil utilization. The percentage of oil degraded by the mixed bacterial consortium decreased slightly from 99% to 97.2% as the concentration of lube oil was increased from 2000 to 10,000 mg/L. The degradation of TDOC (total dissolved organic carbon) showed a similar tendency compared with lube oil removal, which indicated that the intermediates in degradation process hardly accumulated. Selected mixed bacterial consortium showed their edge compared to activated sludge. Scanning electron microscopy (SEM) photos showed that biofilms on stainless steel were robust and with a dimensional framework constructed by EPS (extracellular polymeric substances), which could promote the biodegradation of hydrocarbons. The increase of biofilm followed first-order kinetics with rate of 0.216 microg glucose/(cm2-day) in logarithm phase. With analysis of Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) combined with removal of lube oil and TDOC, mixed bacterial consortium could degrade benzene and its derivatives, aromatic ring organic matters with a percentage over 97%.

  9. A WASp–VASP complex regulates actin polymerization at the plasma membrane

    PubMed Central

    Castellano, Flavia; Le Clainche, Christophe; Patin, Delphine; Carlier, Marie-France; Chavrier, Philippe

    2001-01-01

    Proteins of the Wiskott–Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of ∼106 M–1. In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge. PMID:11598004

  10. Wet-surface–enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility

    PubMed Central

    Ducret, Adrien; Valignat, Marie-Pierre; Mouhamar, Fabrice; Mignot, Tâm; Theodoly, Olivier

    2012-01-01

    In biology, the extracellular matrix (ECM) promotes both cell adhesion and specific recognition, which is essential for central developmental processes in both eukaryotes and prokaryotes. However, live studies of the dynamic interactions between cells and the ECM, for example during motility, have been greatly impaired by imaging limitations: mostly the ability to observe the ECM at high resolution in absence of specific staining by live microscopy. To solve this problem, we developed a unique technique, wet-surface enhanced ellipsometry contrast (Wet-SEEC), which magnifies the contrast of transparent organic materials deposited on a substrate (called Wet-surf) with exquisite sensitivity. We show that Wet-SEEC allows both the observation of unprocessed nanofilms as low as 0.2 nm thick and their accurate 3D topographic reconstructions, directly by standard light microscopy. We next used Wet-SEEC to image slime secretion, a poorly defined property of many prokaryotic and eukaryotic organisms that move across solid surfaces in absence of obvious extracellular appendages (gliding). Using combined Wet-SEEC and fluorescent-staining experiments, we observed slime deposition by gliding Myxococcus xanthus cells at unprecedented resolution. Altogether, the results revealed that in this bacterium, slime associates preferentially with the outermost components of the motility machinery and promotes its adhesion to the substrate on the ventral side of the cell. Strikingly, analogous roles have been proposed for the extracellular proteoglycans of gliding diatoms and apicomplexa, suggesting that slime deposition is a general means for gliding organisms to adhere and move over surfaces. PMID:22665761

  11. Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; Medintz, Igor L; Walper, Scott A

    2015-07-01

    Nanoparticle-based therapeutics are poised to play a critical role in treating disease. These complex multifunctional drug delivery vehicles provide for the passive and active targeted delivery of numerous small molecule, peptide and protein-derived pharmaceuticals. This article will first discuss some of the current state of the art nanoparticle classes (dendrimers, lipid-based, polymeric and inorganic), highlighting benefits/drawbacks associated with their implementation. We will then discuss an emerging class of nanoparticle therapeutics, bacterial outer membrane vesicles, that can provide many of the nanoparticle benefits while simplifying assembly. Through molecular biology techniques; outer membrane vesicle hijacking potentially allows for stringent control over nanoparticle production allowing for targeted protein packaged nanoparticles to be fully synthesized by bacteria.

  12. Nucleotide variability of protamine genes influencing bull sperm motility variables.

    PubMed

    H M, Yathish; Kumar, Subodh; Chaudhary, Rajni; Mishra, Chinmoy; A, Sivakumar; Kumar, Amit; Chauhan, Anuj; Ghosh, S K; Mitra, Abhijit

    2018-06-01

    Protamines (PRMs), important proteins of chromatin condensation in spermiogenesis, are promising candidate genes to explore markers of sperm motility. The coding and in-silico predicted promoter regions of these genes were investigated in 102 crossbred and 32 purebred cattle. Also, mRNA quantification was done to explore its possibility as diagnostic tool of infertility. The PCR-SSCP analysis indicated there were two band patterns only in fragment I of the PRM1 and fragment II of the PRM2 gene. The sequence analysis revealed A152G and G179A transitions in the PRM1 gene. Similarly, G35A, A49G and A64G transitions were identified in the PRM2 gene which resulted in altered amino acid sequences from arginine (R) to glutamine (Q), from arginine (R) to glycine (G) and from arginine (R) to glycine (G), respectively. This caused the reduction in molecular weight of PRM2 from 2157.66 to 1931.33 Da due to reduction in the number of basic amino acids. These altered properties of the PRM2 protein led to the reduction in Mass Motility (MM: P < 0.01), Initial Progressive Motility (IPM; P < 0.05) and Post Thaw Motility (PTM; P < 0.05) in crossbred bulls. The least squares analysis of variance indicated there was an effect of PRM2 haplotypes on MM (P = 0.0069), IPM (P = 0.0306) and PTM (P = 0.0500) in crossbred cattle and on PTM (P = 0.0408) in the overall cattle population. Based on the RT-qPCR analysis, however, there was not any significant variation of PRM1 and PRM2 gene expression among sperm of Vrindavani bulls with relatively lesser and greater sperm motility. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Physical models of collective cell motility: from cell to tissue

    NASA Astrophysics Data System (ADS)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  14. Risk of bacterial cross infection associated with inspiration through flow-based spirometers.

    PubMed

    Bracci, Massimo; Strafella, Elisabetta; Croce, Nicola; Staffolani, Sara; Carducci, Annalaura; Verani, Marco; Valentino, Matteo; Santarelli, Lory

    2011-02-01

    Bacterial contamination of spirometers has been documented in water-sealed devices, mouthpieces, and connection tubes. Little information is available about bacterial contamination of flow-based apparatuses such as turbine-type spirometers and pneumotachographs. Inspiration through contaminated equipment is a potential source of cross infection. To investigate bacteria mobilization (ie, bacteria detachment and aerosolization from the instrument) during routine spirometric testing, 2 types of flow-based spirometers were used. Bacteria mobilization during artificial inspiration through in-line filters or cardboard mouthpieces was evaluated. Nine hundred workers undergoing periodic spirometric testing were enrolled at the occupational physician office in 30 sessions of 30 subjects each. The participants were asked to perform a forced vital capacity test in a turbine-type spirometer and in an unheated pneumotachograph fitted with disposable in-line filters or cardboard mouthpieces. To evaluate bacterial mobilization, an artificial inspiration was performed and bacterial growth determined. The bacterial growth analysis was assessed after the first and the thirtieth spirometric tests of each session without disinfecting the instruments between tests. In addition, instrument bacterial contamination was evaluated. No significant bacterial mobilization and instrument contamination were found in spirometric tests executed with in-line filters. Conversely, a significant bacterial mobilization and instrument contamination were observed in tests performed with cardboard mouthpieces. Differences between the 2 spirometers were not significant. In-line filters may effectively reduce the risk of bacterial cross infection. Inspiration through flow-based spirometers fitted with disposable cardboard mouthpieces is completely safe when combined with spirometer disinfection/sterilization between subjects. Copyright © 2011 Association for Professionals in Infection Control and

  15. Actin polymerization in neutrophils from donors of peripheral blood stem cells: divergent effects of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor.

    PubMed

    Carulli, Giovanni; Mattii, Letizia; Azzarà, Antonio; Brizzi, Stefania; Galimberti, Sara; Zucca, Alessandra; Benedetti, Edoardo; Petrini, Mario

    2006-05-01

    Neutrophil functions can be modified by Recombinant human G-CSF (rhG-CSF) treatment, with divergent effects on phagocytosis, motility, bactericidal activity, and surface molecule expression. Neutrophil morphology is modified by treatment with filgrastim (the nonglycosylated form of rhG-CSF), while it is not affected by lenograstim (the glycosylated type of rhG-CSF). Little information is available about actin polymerization in neutrophils from subjects treated with the two types of rhG-CSF. In the current paper we evaluated two groups of donors of peripheral blood stem cells (PBSC) for allogeneic transplantation. Ten subjects were treated with filgrastim and 10 with lenograstim to mobilize PBSC; 15 blood donors were evaluated as a control group. Actin polymerization (both spontaneous and fMLP-stimulated) was studied by a flow cytometric assay. A microscopic fluorescent assay was also carried out to evaluate F-actin distribution in neutrophils. We found that filgrastim induced an increased F-actin content in resting neutrophils, along with morphologic evidence for increased actin polymerization distributed principally at the cell membrane and frequently polarized in focal areas; in addition, fMLP was not able to induce further actin polymerization. On the contrary, treatment with lenograstim was associated with F-actin content, distribution, and polymerization kinetics indistinguishable from those displayed by control neutrophils. Such experimental results show that filgrastim and lenograstim display divergent effects also on neutrophil actin polymerization and provide further explanation for previous experimental findings. 2006 Wiley-Liss, Inc.

  16. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  17. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  18. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  19. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  20. Involvement of gut microbiota in association between GLP-1/GLP-1 receptor expression and gastrointestinal motility.

    PubMed

    Yang, Mo; Fukui, Hirokazu; Eda, Hirotsugu; Xu, Xin; Kitayama, Yoshitaka; Hara, Ken; Kodani, Mio; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Miwa, Hiroto

    2017-04-01

    The microbiota in the gut is known to play a pivotal role in host physiology by interacting with the immune and neuroendocrine systems in gastrointestinal (GI) tissues. Glucagon-like peptide 1 (GLP-1), a gut hormone, is involved in metabolism as well as GI motility. We examined how gut microbiota affects the link between GLP-1/GLP-1 receptor (GLP-1R) expression and motility of the GI tract. Germ-free (GF) mice (6 wk old) were orally administered a fecal bacterial suspension prepared from specific pathogen-free (SPF) mice, and then after fecal transplantation (FT) GI tissues were obtained from the GF mice at various time points. The expression of GLP-1 and its receptor was examined by immunohistochemistry, and gastrointestinal transit time (GITT) was measured by administration of carmine red solution. GLP-1 was expressed in endocrine cells in the colonic mucosa, and GLP-1R was expressed in myenteric neural cells throughout the GI wall. GLP-1R-positive cells throughout the GI wall were significantly fewer in GF mice with FT than in GF mice without gut microbiota reconstitution. GITT was significantly shorter in GF mice with FT than in control GF mice without FT and correlated with the number of GLP-1R-positive cells throughout the GI wall. GITT was significantly longer in GF control mice than in SPF mice. When those mice were treated with GLP-1 agonist extendin4, GITT was significantly longer in the GF mice. The gut microbiota may accelerate or at least modify GI motility while suppressing GLP-1R expression in myenteric neural cells throughout the GI tract. NEW & NOTEWORTHY The gut microbiota has been intensively studied, because it plays a pivotal role in various aspects of host physiology. On the other hand, glucagon-like peptide 1 (GLP-1) plays important roles in metabolism as well as gastrointestinal motility. In the present study, we have suggested that the gut microbiota accelerates gastrointestinal motility while suppressing the expression of GLP-1 receptor in

  1. Bidirectional helical motility of cytoplasmic dynein around microtubules

    PubMed Central

    Can, Sinan; Dewitt, Mark A; Yildiz, Ahmet

    2014-01-01

    Cytoplasmic dynein is a molecular motor responsible for minus-end-directed cargo transport along microtubules (MTs). Dynein motility has previously been studied on surface-immobilized MTs in vitro, which constrains the motors to move in two dimensions. In this study, we explored dynein motility in three dimensions using an MT bridge assay. We found that dynein moves in a helical trajectory around the MT, demonstrating that it generates torque during cargo transport. Unlike other cytoskeletal motors that produce torque in a specific direction, dynein generates torque in either direction, resulting in bidirectional helical motility. Dynein has a net preference to move along a right-handed helical path, suggesting that the heads tend to bind to the closest tubulin binding site in the forward direction when taking sideways steps. This bidirectional helical motility may allow dynein to avoid roadblocks in dense cytoplasmic environments during cargo transport. DOI: http://dx.doi.org/10.7554/eLife.03205.001 PMID:25069614

  2. Guaifenesin and increased sperm motility: a preliminary case report.

    PubMed

    Means, Gary; Berry-Cabán, Cristóbal S; Hammermeuller, Kurt

    2010-12-20

    A review of the literature and an extensive Medline search revealed that this is the first case report of the use of guaifenesin to increase sperm motility. A 32-year-old male presented for an infertility evaluation. He reported an inability to conceive with his wife after 18 months of unprotected intercourse. A semen analysis was performed that included spermatozoa count, liquefaction, morphology, motility, viscosity and volume. Initial results of the semen analysis demonstrated low sperm count and motility. The provider offered treatment with guaifenesin 600 mg extended release tablets twice daily. Two months after guaifenesin therapy the semen analysis was repeated that demonstrated marked improvement in both total sperm count and motility. Evidence for the effectiveness of guaifenesin is almost entirely anecdotal. Given the mechanism of action of guaifenesin, it is not clear from this case why the patient demonstrated such a large improvement in both sperm count and motility. Additional studies of the effects of guaifenesin on male fertility could yield information of the medication's effect on men with normal or decreased total sperm counts.

  3. Guaifenesin and increased sperm motility: a preliminary case report

    PubMed Central

    Means, Gary; Berry-Cabán, Cristóbal S; Hammermeuller, Kurt

    2011-01-01

    Background A review of the literature and an extensive Medline search revealed that this is the first case report of the use of guaifenesin to increase sperm motility. Case A 32-year-old male presented for an infertility evaluation. He reported an inability to conceive with his wife after 18 months of unprotected intercourse. A semen analysis was performed that included spermatozoa count, liquefaction, morphology, motility, viscosity and volume. Initial results of the semen analysis demonstrated low sperm count and motility. The provider offered treatment with guaifenesin 600 mg extended release tablets twice daily. Two months after guaifenesin therapy the semen analysis was repeated that demonstrated marked improvement in both total sperm count and motility. Conclusion Evidence for the effectiveness of guaifenesin is almost entirely anecdotal. Given the mechanism of action of guaifenesin, it is not clear from this case why the patient demonstrated such a large improvement in both sperm count and motility. Additional studies of the effects of guaifenesin on male fertility could yield information of the medication’s effect on men with normal or decreased total sperm counts. PMID:21403786

  4. Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish

    PubMed Central

    Park, Daniel S.; Egnatchik, Robert A.; Bordelon, Hali; Tiersch, Terrence R.; Monroe, W. Todd

    2013-01-01

    Sperm viability in aquatic species is increasingly being evaluated by motility analysis via computer-assisted sperm analysis (CASA) following activation of sperm with manual dilution and mixing by hand. User variation can limit the speed and control over the activation process, preventing consistent motility analysis. This is further complicated by the short interval (i.e., less than 15 s) of burst motility in these species. The objectives of this study were to develop a staggered herringbone microfluidic mixer to: 1) activate small volumes of Danio pearl zebrafish (Danio albolineatus) sperm by rapid mixing with diluent, and 2) position sperm in a viewing chamber for motility evaluation using a standard CASA system. A herringbone micromixer was fabricated in polydimethylsiloxane (PDMS) to yield high quality smooth surfaces. Based on fluorescence microscopy, mixing efficiency exceeding 90% was achieved within 5 s for a range of flow rates (from 50 to 250 μL/h), with a correlation of mixing distances and mixing efficiency. For example, at the nominal flow rate of 100 μL/h, there was a significant difference in mixing efficiency between 3.5 mm (75 ± 4%; mean ± SD) and 7 mm (92 ± 2%; P = 0.002). The PDMS micromixer, integrated with standard volumetric slides, demonstrated activation of fresh zebrafish sperm with reduced user variation, greater control, and without morphologic damage to sperm. Analysis of zebrafish sperm viability by CASA revealed a statistically higher motility rate for activation by micromixing (56 ± 4%) than manual activation (45 ± 7%; n = 5, P = 0.011). This micromixer represented a first step in streamlining methods for consistent, rapid assessment of sperm quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the PDMS micromixer described herein will improve studies of germplasm physiology and cryopreservation. PMID:22494680

  5. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    PubMed

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Automated motile cell capture and analysis with optical traps.

    PubMed

    Shao, Bing; Nascimento, Jaclyn M; Shi, Linda Z; Botvinick, Elliot L

    2007-01-01

    Laser trapping in the near infrared regime is a noninvasive and microfluidic-compatible biomedical tool. This chapter examines the use of optical trapping as a quantitative measure of sperm motility. The single point gradient trap is used to directly measure the swimming forces of sperm from several different species. These forces could provide useful information about the overall sperm motility and semen quality. The swimming force is measured by trapping sperm and subsequently decreasing laser power until the sperm is capable of escaping the trap. Swimming trajectories were calculated by custom built software, an automatic sperm tracking algorithm called the single sperm tracking algorithm or SSTA. A real-time automated tracking and trapping system, or RATTS, which operates at video rate, was developed to perform experiments with minimal human involvement. After the experimenter initially identifies and clicks the computer mouse on the sperm-of-interest, RATTS performs all further tracking and trapping functions without human intervention. Additionally, an annular laser trap which is potentially useful for high-throughput sperm sorting based on motility and chemotaxis was developed. This low power trap offers a more gentle way for studying the effects of laser radiation, optical force, and external obstacles on sperm swimming pattern.

  7. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  9. Automated measurement of cell motility and proliferation

    PubMed Central

    Bahnson, Alfred; Athanassiou, Charalambos; Koebler, Douglas; Qian, Lei; Shun, Tongying; Shields, Donna; Yu, Hui; Wang, Hong; Goff, Julie; Cheng, Tao; Houck, Raymond; Cowsert, Lex

    2005-01-01

    Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the

  10. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  11. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  12. The Iron-Responsive Fur/RyhB Regulatory Cascade Modulates the Shigella Outer Membrane Protease IcsP ▿ †

    PubMed Central

    Africa, Lia A. A.; Murphy, Erin R.; Egan, Nicholas R.; Wigley, Amanda F.; Wing, Helen J.

    2011-01-01

    Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells. PMID:21859852

  13. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    PubMed

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  14. Sperm motility in fishes. (II) Effects of ions and osmolality: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2006-01-01

    The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.

  15. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  16. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study.

    PubMed

    Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf

    2007-10-01

    To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.

  17. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    NASA Astrophysics Data System (ADS)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  18. All-polymeric sensing platform based on packaged self-assembled bottle microresonator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Grimaldi, Immacolata A.; Persichetti, Gianluca; Testa, Genni

    2017-02-01

    In recent years, microbottle resonators that support non-degenerate whispering gallery modes (WGMs), propagating by successive total internal reflections close to the resonator surface and all along its axis, have been widely investigated due to their potential applications in optical sensing, microlasers and nonlinear optics. To overcome some drawbacks of the standard silica microbottle resonators, we focused our attention on polymers such as SU-8 resist and NOA resins. A drop of polymeric material is dispensed onto a fiber stem, providing a mechanical support for the bottle resonator, and is photo-polymerized by an UV lamp. The interrogation system, usually constituted by a tapered silica fiber evanescently coupled with the microresonator, is substituted by a more stable planar waveguide realized in SU-8 by means of standard photolithography technique. Moreover, for guarantying the stability to surrounding disturbance of the coupling between the microbottle resonator and the planar waveguide, the fiber stem is glued to substrate. Two drilled holes in the substrate allow the rise of the glue at the ends of the fiber stem and the fixing of sensor on PMMA substrate. In the present work, we presented an integrated full polymeric platform with self-assembled bottle microresonators packaged in a stable structure. SU-8 and NOA based microbottles are realized and morphologically characterized. The low autofluorescence emission and long term stability make the NOA based bottles suitable to be employed in a great variety of conditions. Bulk sensing measurements are performed by using water:ethanol solutions and a bulk sensitivity of 120 nm/RIU is estimated.

  19. Bacterial Trapping in Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2016-11-01

    Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.

  20. A Structural Basis for How Motile Cilia Beat

    PubMed Central

    Satir, Peter; Heuser, Thomas; Sale, Winfield S.

    2014-01-01

    The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke–central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation. PMID:26955066

  1. Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2003-01-01

    We examined the Arctic bacterium Colwellia psychrerythraea strain 34H for motility at temperatures from −1 to −15°C by using transmitted-light microscopy in a temperature-controlled laboratory. The results, showing motility to −10°C, indicate much lower temperatures to be permissive of motility than previously reported (5°C), with implications for microbial activity in frozen environments. PMID:12839815

  2. Running and tumbling with E. coli in polymeric solutions

    PubMed Central

    Patteson, A. E.; Gopinath, A.; Goulian, M.; Arratia, P. E.

    2015-01-01

    Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic and eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even small amounts of polymer in solution can drastically change E. coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell translational diffusion and a sharp decline in rotational diffusion. We show that suppression of tumbling is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity. Visualization of single fluorescently labeled DNA polymers reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the fluid, which in turn can act on the cell in such a way to enhance its transport. Our results show that the transport and spread of chemotactic cells can be independently modified and controlled by the fluid material properties. PMID:26507950

  3. Running and tumbling with E. coli in polymeric solutions

    NASA Astrophysics Data System (ADS)

    Patteson, A. E.; Gopinath, A.; Goulian, M.; Arratia, P. E.

    2015-10-01

    Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic and eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even small amounts of polymer in solution can drastically change E. coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell translational diffusion and a sharp decline in rotational diffusion. We show that suppression of tumbling is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity. Visualization of single fluorescently labeled DNA polymers reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the fluid, which in turn can act on the cell in such a way to enhance its transport. Our results show that the transport and spread of chemotactic cells can be independently modified and controlled by the fluid material properties.

  4. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.

    PubMed

    Pesavento, Christina; Becker, Gisela; Sommerfeldt, Nicole; Possling, Alexandra; Tschowri, Natalia; Mehlis, Anika; Hengge, Regine

    2008-09-01

    During the transition from post-exponential to stationary phase, Escherichia coli changes from the motile-planktonic to the adhesive-sedentary "lifestyle." We demonstrate this transition to be controlled by mutual inhibition of the FlhDC/motility and sigma(S)/adhesion control cascades at two distinct hierarchical levels. At the top level, motility gene expression and the general stress response are inversely coordinated by sigma(70)/sigma(FliA)/sigma(S) competition for core RNA polymerase and the FlhDC-controlled FliZ protein acting as a sigma(S) inhibitor. At a lower level, the signaling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (c-di-GMP) reduces flagellar activity and stimulates transcription of csgD, which encodes an essential activator of adhesive curli fimbriae expression. This c-di-GMP is antagonistically controlled by sigma(S)-regulated GGDEF proteins (mainly YegE) and YhjH, an EAL protein and c-di-GMP phosphodiesterase under FlhDC/FliA control. The switch from motility-based foraging to the general stress response and curli expression requires sigma(S)-modulated down-regulation of expression of the flagellar regulatory cascade as well as proteolysis of the flagellar master regulator FlhDC. Control of YhjH by FlhDC and of YegE by sigma(S) produces a fine-tuned checkpoint system that "unlocks" curli expression only after down-regulation of flagellar gene expression. In summary, these data reveal the logic and sequence of molecular events underlying the motile-to-adhesive "lifestyle" switch in E. coli.

  5. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  6. Population-based surveillance for bacterial meningitis in China, September 2006-December 2009.

    PubMed

    Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S; Hadler, Stephen C; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W; Novak, Ryan T; Zhu, Bingqing; Xu, Li; Luo, Huiming

    2014-01-01

    During September 2006-December 2009, we conducted active population and sentinel laboratory-based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country.

  7. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  8. Turbulent unmixing: how marine turbulence drives patchy distributions of motile phytoplankton

    NASA Astrophysics Data System (ADS)

    Durham, William; Climent, Eric; Barry, Michael; de Lillo, Filippo; Boffetta, Guido; Cencini, Massimo; Stocker, Roman

    2013-11-01

    Centimeter-scale patchiness in the distribution of phytoplankton increases the efficacy of many important ecological interactions in the marine food web. We show that turbulent fluid motion, usually synonymous with mixing, instead triggers intense small-scale patchiness in the distribution of motile phytoplankton. We use a suite of experiments, direct numerical simulations of turbulence, and analytical tools to show that turbulent shear and acceleration directs the motility of cells towards well-defined regions of flow, increasing local cell concentrations more than ten fold. This motility-driven `unmixing' offers an explanation for why motile cells are often more patchily distributed than non-motile cells and provides a mechanistic framework to understand how turbulence, whose strength varies profoundly in marine environments, impacts ocean productivity.

  9. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material

    PubMed Central

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-01-01

    Objective: The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Materials and Methods: Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. Results: E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). Conclusion: The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface. PMID:24966729

  10. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    PubMed

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  11. Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.

    PubMed

    Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R

    2018-05-02

    Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.

  12. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin.

    PubMed

    Alkurt, Murat; Yeşil Duymuş, Zeynep; Gundogdu, Mustafa

    2014-01-01

    Acrylic resin denture fracture is common in prosthodontic practice. When fractured denture bases are repaired, recurrent fractures frequently occur at the repair surface interface or adjacent areas. The purpose of this study was to evaluate the effect of different surface treatments on the flexural strength of the acrylic resin denture base repaired with heat-polymerized acrylic resin, autopolymerizing resin, and light-polymerized acrylic resin. Ninety-six specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association Specification No. 12 (65.0 × 10.0 × 2.5 mm) and sectioned into halves to create a repair gap (3.0 × 10 × 2.5 mm). The sectioned specimens were divided into 3 groups according to their repair materials. The specimens from each group were divided into 4 subgroups according to their surface treatments: a control group without any surface treatment; an experimental group treated with methyl methacrylate monomer (MMA group); an experimental group treated with airborne-particle abrasion with aluminum oxide particles of 250-μm particle size (abrasion group); and an experimental group treated with erbium:yttrium-aluminum-garnet laser (laser group). After the surface treatments, the 3 materials were placed into the repair gaps and then polymerized. After all of the specimens had been ground and polished, they were stored in distilled water at 37°C for 1 week and subjected to a 3-point bend test. Data were analyzed with a 2-way analysis of variance, and the Tukey honestly significant difference test was performed to identify significant differences (α=.05). The effects of the surface treatments and repair resins on the surface of the denture base resin were examined with scanning electron microscopy. Significant differences were found among the groups in terms of repair resin type (P<.001). All surface-treated specimens had higher flexural strength than controls, except the surface treated with the methyl

  13. Borrelia burgdorferi CheY2 Is Dispensable for Chemotaxis or Motility but Crucial for the Infectious Life Cycle of the Spirochete.

    PubMed

    Xu, Hui; Sultan, Syed; Yerke, Aaron; Moon, Ki Hwan; Wooten, R Mark; Motaleb, M A

    2017-01-01

    The requirements for bacterial chemotaxis and motility range from dispensable to crucial for host colonization. Even though more than 50% of all sequenced prokaryotic genomes possess at least one chemotaxis signaling system, many of those genomes contain multiple copies of a chemotaxis gene. However, the functions of most of those additional genes are unknown. Most motile bacteria possess at least one CheY response regulator that is typically dedicated to the control of motility and which is usually essential for virulence. Borrelia burgdorferi appears to be notably different, in that it has three cheY genes, and our current studies on cheY2 suggests that it has varied effects on different aspects of the natural infection cycle. Mutants deficient in this protein exhibit normal motility and chemotaxis in vitro but show reduced virulence in mice. Specifically, the cheY2 mutants were severely attenuated in murine infection and dissemination to distant tissues after needle inoculation. Moreover, while ΔcheY2 spirochetes are able to survive normally in the Ixodes ticks, mice fed upon by the ΔcheY2-infected ticks did not develop a persistent infection in the murine host. Our data suggest that CheY2, despite resembling a typical response regulator, functions distinctively from most other chemotaxis CheY proteins. We propose that CheY2 serves as a regulator for a B. burgdorferi virulence determinant that is required for productive infection within vertebrate, but not tick, hosts. Copyright © 2016 American Society for Microbiology.

  14. Instability in bacterial populations and the curvature tensor

    NASA Astrophysics Data System (ADS)

    Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia

    2016-09-01

    In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.

  15. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.

    PubMed

    Boryshpolets, S; Kowalski, R K; Dietrich, G J; Dzyuba, B; Ciereszko, A

    2013-10-15

    In this study, we examined different computer-assisted sperm analysis (CASA) systems (CRISMAS, Hobson Sperm Tracker, and Image J CASA) on the exact same video recordings to evaluate the differences in sperm motility parameters related to the specific CASA used. To cover a wide range of sperm motility parameters, we chose 12-second video recordings at 25 and 50 Hz frame rates after sperm motility activation using three taxonomically distinct fish species (sterlet: Acipenser ruthenus L.; common carp: Cyprinus carpio L.; and rainbow trout: Oncorhynchus mykiss Walbaum) that are characterized by essential differences in sperm behavior during motility. Systematically higher values of velocity and beat cross frequency (BCF) were observed in video recordings obtained at 50 Hz frame frequency compared with 25 Hz for all three systems. Motility parameters were affected by the CASA and species used for analyses. Image J and CRISMAS calculated higher curvilinear velocity (VCL) values for rainbow trout and common carp at 25 Hz frequency compared with the Hobson Sperm Tracker, whereas at 50 Hz, a significant difference was observed only for rainbow trout sperm recordings. No significant difference was observed between the CASA systems for sterlet sperm motility at 25 and 50 Hz. Additional analysis of 1-second segments taken at three time points (1, 6, and 12 seconds of the recording) revealed a dramatic decrease in common carp and rainbow trout sperm speed. The motility parameters of sterlet spermatozoa did not change significantly during the 12-second motility period and should be considered as a suitable model for longer motility analyses. Our results indicated that the CASA used can affect motility results even when the same motility recordings are used. These results could be critically altered by the recording quality, time of analysis, and frame rate of camera, and could result in erroneous conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  17. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility.

    PubMed

    Hoppe, Julia; Ünal, Can M; Thiem, Stefanie; Grimpe, Louisa; Goldmann, Torsten; Gaßler, Nikolaus; Richter, Matthias; Shevchuk, Olga; Steinert, Michael

    2017-01-01

    Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa . PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila , we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue.

  18. Mechanical stress as a regulator of cell motility

    NASA Astrophysics Data System (ADS)

    Putelat, T.; Recho, P.; Truskinovsky, L.

    2018-01-01

    The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.

  19. Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis.

    PubMed

    Be'er, Avraham; Florin, E-L; Fisher, Carolyn R; Swinney, Harry L; Payne, Shelley M

    2011-01-01

    Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting

  20. Bacterial streamers in curved microchannels

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  1. Simple optical method of qualitative assessment of sperm motility: preliminary results

    NASA Astrophysics Data System (ADS)

    Sozanska, Agnieszka; Kolwas, Krystyna; Galas, Jacek; Blocki, Narcyz; Czyzewski, Adam

    2005-09-01

    The examination of quality of the sperm ejaculate is one of the most important steps in artificial fertilization procedure. The main aim of semen storage centres is to characterise the best semen quality for fertilization. Reliable information about sperm motility is also one the most important parameters for in vitro laboratory procedures. There exist very expensive automated methods for semen analysis but they are unachievable for most of laboratories and semen storage centres. Motivation for this study is to elaborate a simple, cheap, objective and repeatable method for semen motility assessment. The method enables to detect even small changes in motility introduced by medical, physical or chemical factors. To test the reliability of the method we used cryopreserved bull semen from Lowicz Semen Storage Centre. The examined sperm specimen was warmed in water bath and then centrifuged. The best semen was collected by the swim-up technique and diluted to a proper concentration. Several semen concentrations and dilutions were tested in order to find the best probe parameters giving repeatable results. For semen visualization we used the phase-contrast microscope with a CCD camera. A PC computer was used to acquire and to analyse the data. The microscope table equipped with a microscope glass pool 0.7mm deep instead of some conventional plane microscope slides was stabilised at the temperature of 37°C. The main idea of our method is based on a numerical processing of the optical contrast of the sperm images which illustrates the dynamics of the sperm cells movement and on appropriate analysis of a grey scale level of the superimposed images. An elaborated numerical algorithm allows us to find the relative amount of motile sperm cells. The proposed method of sperm motility assessment seems to be objective and repeatable.

  2. Color Stability Behavior of Methacrylate-based Resin Composites Polymerized with Light-emitting Diodes and Quartz-Tungsten-Halogen.

    PubMed

    Sabatini, C

    2015-01-01

    Despite significant developments in improving the optical properties of resin composite materials, their color stability remains a challenge. This study aimed to evaluate the shade stability of light-polymerized, methacrylate-based resin composites with different filler particle composition (microfill, minifill, nanohybrids, and microhybrids) polymerized with quartz-tungsten-halogen (QTH) and light-emitting diodes (LED). Composite discs were fabricated from Tetric EvoCeram, Premise, Artiste, and Beautifil II (nanohybrids); Filtek Supreme Plus and Vit-l-escence (microhybrids); Heliomolar (microfill); and Estelite Sigma Quick (minifill) using a Teflon mold. The specimens were irradiated either with QTH (Elipar 2500; 600 mW/cm(2)) for 40 seconds or with LED (Bluephase G2; 1200 mW/cm(2)) for 20 seconds. Color parameters were measured with a colorimeter before and after polymerization and at 24 hours, one week, one month, and three months. Color change was calculated among the different storage periods. There was a significant effect of the composite, time, and their interaction (p<0.001) but no effect of the polymerization unit on the color stability. Color changes immediately after polymerization and at 24 hours (4.22 and 3.88 for LED; and 4.08 and 3.82 for QTH) were not significantly different from each other but were both significantly higher than changes after one week (0.96 and 0.78), one month (1.12 and 1.02), and three months (1.27 and 1.11) for LED and QTH, respectively (p<0.001). Color changes were observed for all the materials that were dependent on the type of composite but not on the polymerization unit. These color shifts took place primarily immediately after polymerization and after 24 hours and were additive in nature.

  3. Unique Directional Motility of Influenza C Virus Controlled by Its Filamentous Morphology and Short-Range Motions.

    PubMed

    Sakai, Tatsuya; Takagi, Hiroaki; Muraki, Yasushi; Saito, Mineki

    2018-01-15

    Influenza virus motility is based on cooperation between two viral spike proteins, hemagglutinin (HA) and neuraminidase (NA), and is a major determinant of virus infectivity. To translocate a virus particle on the cell surface, HA molecules exchange viral receptors and NA molecules accelerate the receptor exchange of HA. This type of virus motility was recently identified in influenza A virus (IAV). To determine if other influenza virus types have a similar receptor exchange mechanism-driven motility, we investigated influenza C virus (ICV) motility on a receptor-fixed glass surface. This system excludes receptor mobility, which makes it more desirable than a cell surface for demonstrating virus motility by receptor exchange. Like IAV, ICV was observed to move across the receptor-fixed surface. However, in contrast to the random movement of IAV, a filamentous ICV strain, Ann Arbor/1/50 (AA), moved in a straight line, in a directed manner, and at a constant rate, whereas a spherical ICV strain, Taylor/1233/47 (Taylor), moved randomly, similar to IAV. The AA and Taylor viruses each moved with a combination of gradual (crawling) and rapid (gliding) motions, but the distances of crawling and gliding for the AA virus were shorter than those of the Taylor virus. Our findings indicate that like IAV, ICV also has a motility that is driven by the receptor exchange mechanism. However, compared with IAV movement, filamentous ICV movement is highly regulated in both direction and speed. Control of ICV movement is based on its specific motility employing short crawling and gliding motions as well as its own filamentous morphology. IMPORTANCE Influenza virus enters into a host cell for infection via cellular endocytosis. Human influenza virus infects epithelial cells of the respiratory tract, the surfaces of which are hidden by abundant cilia that are inactive in endocytosis. An open question is the manner by which the virus migrates to endocytosis-active domains. In analyzing

  4. Novel genes associated with enhanced motility of Escherichia coli ST131

    PubMed Central

    Kakkanat, Asha; Phan, Minh-Duy; Lo, Alvin W.; Beatson, Scott A.

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced

  5. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  6. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  7. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Click-Radical" Concurrent Polymerization.

    PubMed

    Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong

    2017-03-01

    The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  9. Dual functions of imidazole-based polymeric ionic liquid (PIL) on the anticorrosive performance of graphene-based waterborne epoxy coatings

    NASA Astrophysics Data System (ADS)

    Liu, Chengbao; Du, Peng; Nan, Feng; Zhao, Haichao; Wang, Liping

    2018-06-01

    Dispersion of graphene nanosheets in a water and polymer matrix has been rarely achieved due to graphene’s hydrophobicity, which thus impedes its potential anticorrosive application. In this study, stable graphene aqueous dispersion was obtained by using imidazole-based polymeric ionic liquid (PIL) as the dispersant with ultrasonic vibration. Stacked graphene sheets were exfoliated to a few layers via cation-π interaction between PIL and graphene nanosheets. Electrochemical impedance measurements were taken to investigate the anticorrosion performance of epoxy coatings with or without polymeric ionic liquid–graphene (PIL–G) hybrids. Results indicated that the PIL–G hybrid significantly enhanced the long-term protective performance of epoxy coatings, which was attributed to the synergistic effects of the corrosion-inhibitive PIL and impermeable graphene nanosheets.

  10. Electroacupuncture at LI11 promotes jejunal motility via the parasympathetic pathway.

    PubMed

    Hu, Xuanming; Yuan, Mengqian; Yin, Yin; Wang, Yidan; Li, Yuqin; Zhang, Na; Sun, Xueyi; Yu, Zhi; Xu, Bin

    2017-06-21

    Gastrointestinal motility disorder has been demonstrated to be regulated by acupuncture treatment. The mechanisms underlying the effects of acupuncture stimulation of abdominal and lower limb acupoints on gastrointestinal motility have been thoroughly studied; however, the physiology underlying the effects of acupuncture on the forelimbs to mediate gastrointestinal motility requires further exploration. The aim of this study was to determine whether electroacupuncture (EA) at LI11 promotes jejunal motility, whether the parasympathetic pathway participates in this effect, and if so, which somatic afferent nerve fibres are involved. A manometric balloon was used to observe jejunal motility. The effects and mechanisms of EA at LI11 were explored in male Sprague-Dawley rats with or without drug administration (propranolol, clenbuterol, acetylcholine, and atropine) and with or without vagotomy. Three types of male mice (β 1 β 2 receptor-knockout [β 1 β 2 -/- ] mice, M 2 M 3 receptor-knockout [M 2 M 3 -/- ] mice and wild-type [WT] mice) were also studied by using different EA intensities (1, 2, 4, 6, and 8 mA). A total of 72 rats and 56 mice were included in the study. EA at LI11 increased the contractile amplitude of jejunal motility in the majority of both rats and mice. However, EA at LI11 did not enhance jejunal motility in rats administered atropine, rats that underwent vagotomy, and M 2 M 3 -‍‍/- mice (at all intensities). In WT mice, EA at LI11 significantly increased jejunal motility at all intensities except 1 mA, and a plateau was reached at intensities greater than 4 mA. Our results suggest that EA at LI11 promotes jejunal motility primarily by exciting the parasympathetic pathway, and that Aδ-fibres and C-fibres may play important roles in the process.

  11. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa.

    PubMed

    Cabrillana, María Eugenia; Monclus, María de Los Ángeles; Lancellotti, Tania Estefania Sáez; Boarelli, Paola Vanina; Vincenti, Amanda Edith; Fornés, Miguel Matias; Sanabria, Eduardo Alfredo; Fornés, Miguel Walter

    2017-07-01

    Male infertility is a disorder of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. The presence of low-motile or immotile spermatozoa is one of many causes of infertility; however, this observation provides little or no information regarding the pathogenesis of the malfunction. Good sperm motility depends on correct assembly of the sperm tail in the testis and efficient maturation during epididymal transit. Thiols of flagellar proteins, such as outer dense fibre protein 1 (ODF1), are oxidised to form disulfides during epididymal transit and the spermatozoa become motile. This study was designed to determine how oxidative changes in protein thiol status affect progressive motility in human spermatozoa. Monobromobimane (mBBr) was used as a specific thiol marker and disruptor of sperm progressive motility. When mBBr was blocked by dithiothreitol it did not promote motility changes. The analysis of mBBr-treated spermatozoa revealed a reduction of progressive motility and an increased number of spermatozoa with non-progressive motility without affecting ATP production. Laser confocal microscopy and western blot analysis showed that one of the mBBr-positive proteins reacted with an antibody to ODF1. Monobromobimane fluorescence intensity of the sperm tail was lower in normozoospermic than asthenozoospermic men, suggesting that thiol oxidation in spermatozoa of asthenozoospermic men is incomplete. Our findings indicate that mBBr affects the thiol status of ODF1 in human spermatozoa and interferes with progressive motility.

  12. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  13. The relationship between gastrointestinal motility and gastric dilatation-volvulus in dogs.

    PubMed

    Gazzola, Krista M; Nelson, Laura L

    2014-09-01

    Gastric dilatation-volvulus (GDV) is a devastating disease that most commonly affects large and giant-breed dogs. Though a number of risk factors have been associated with the development of GDV, the etiology of GDV remains unclear. Abnormal gastric motility patterns and delayed gastric emptying have been previously described in dogs following GDV. Work evaluating the effects of gastropexy procedures and changes to gastric motility after experimental GDV has not found the same changes as those found in dogs with naturally occurring GDV. Although the role of abnormal gastric motility in dogs with GDV will need to be clarified with additional research, such study is likely to be facilitated by improved access to and development of noninvasive measurement techniques for the evaluation of gastric emptying and other motility parameters. In particular, the availability of Food and Drug Administration-approved wireless motility devices for the evaluation of gastrointestinal motility is particularly promising in the study of GDV and other functional gastrointestinal diseases of large and giant-breed dogs. Published by Elsevier Inc.

  14. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  15. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  16. A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons.

    PubMed

    Annamalai, Thirunavukkarasu; Cheng, Bokun; Keswani, Neelam; Tse-Dinh, Yuk-Ching

    2018-01-01

    Bacterial Topoisomerase I is a potential target for the identification of novel topoisomerase poison inhibitors that could provide leads for a new class of antibacterial compounds. Here we describe in detail a fluorescence-based cleavage assay that is successfully used in HTS for the discovery of bacterial topoisomerase Ι poisons.

  17. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease

    PubMed Central

    Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Leigh, Margaret W.; Zariwala, Maimoona A.; Drummond, Iain A.; Parant, John M.; Hildebrandt, Friedhelm; Yoder, Bradley K.

    2016-01-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants

  18. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    PubMed

    Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C; Porath, Jonathan D; Birket, Susan E; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A; Challa, Anil K; Kesterson, Robert A; Rowe, Steven M; Drummond, Iain A; Parant, John M; Hildebrandt, Friedhelm; Porter, Mary E; Yoder, Bradley K; Berbari, Nicolas F

    2016-07-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in

  19. [Esophageal motility characteristics of refractory heartburn: a study based on high resolution manometry and 24 hour pH-impedance monitoring].

    PubMed

    Wang, Kun; Duan, Liping; Xia, Zhiwei; Xu, Zhijie; Ge, Ying

    2014-09-16

    To analyze the esophageal motility characteristics of refractory heartburn with different reflux patterns and preliminarily clarify the roles of esophageal disorder in refractory heartburn. A total of 176 refractory heartburn patients were enrolled from 2009 to 2013. After gastroscopy and 24 hour pH-impedance monitoring, they were divided into 4 groups of reflux esophagitis (RE, n = 29), non-erosive reflux disease with acid reflux (NERD-acid, n = 51), NERD with weakly acidic reflux (NERD-weakly acid, n = 51) and non-reflux associated heartburn (n = 45). All subjects undertake high resolution manometry test and their esophageal motility functions were analyzed by the Chicago classification criteria 2012. Among them, 60.23% (106/176) patients presented esophageal motility disorders. And 42.61% (75/176) fulfilled the criteria of weak peristalsis, 7.39% (13/176) distal esophageal spasm, 4.55% (8/176) rapid contraction, 3.98% (7/176) EGJ outflow obstruction, 1.14% (2/176) hiatus hernia and 1 Jackhammer esophagus. The detection rates of esophageal motility disorder were similar among 4 groups and weak peristalsis was the most common disorder in all groups (41.38% in RE, 37.25% in NERD-acid patients, 54.90% in NERD-weakly acid and 35.56% in non-reflux associated heartburn patients). However, hypertensive motility disorders in non-reflux associated heartburn group (31.11%, 14/45) were more than GERD subgroups (11.45%, 15/131) (P < 0.05) . The relax ratio of low esophagus sphincter (LES) in GERD subgroups were higher than that in non-reflux associated heartburn patients. And the relax ratio of NERD-weakly acid was significantly higher than that in non-reflux associated heartburn patients (65% (50%-80%) vs 58% (42%-67%) , P < 0.05). The integrated relaxation pressure in GERD subgroups were lower than that of non-reflux associated heartburn patients without significant differences (P > 0.05). Esophageal weak peristalsis is one of the most common motility disorders in

  20. Epithelial IL-15 Is a Critical Regulator of γδ Intraepithelial Lymphocyte Motility within the Intestinal Mucosa.

    PubMed

    Hu, Madeleine D; Ethridge, Alexander D; Lipstein, Rebecca; Kumar, Sushil; Wang, Yitang; Jabri, Bana; Turner, Jerrold R; Edelblum, Karen L

    2018-06-08

    Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rβ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rβ signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Motility contrast imaging of live porcine cumulus-oocyte complexes

    NASA Astrophysics Data System (ADS)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  2. Effect of levofloxacin treatment on semen hyperviscosity in chronic bacterial prostatitis patients.

    PubMed

    Vicari, L O; Castiglione, R; Salemi, M; Vicari, B O; Mazzarino, M C; Vicari, E

    2016-05-01

    Changes in seminal fluid viscosity (SFV), reactive oxygen species (ROS) production, cytokines and seminal leucocyte concentration related to microbiological outcome in patients with chronic bacterial prostatitis (CBP) were studied. One hundred and ten infertile patients with CBP (positive sperm culture ≥10(5) colony-forming units [CFU] ml(-1), pathogens or Chlamydia in expressed prostatic secretions) were treated with levofloxacin 500 mg daily for 14 consecutive days per month for 3 months. In case of bacterial prostatitis, two conditions were examined: responders, eradication of 0 to <10(3) CFU ml(-1) (n = 78) and poor responders, >10(3) to <10(5) CFU ml(-1) (n = 32). Compared with poor responders, responders showed a significant increase of sperm progressive motility and a significant decrease in seminal leucocyte count, SFV, liquefaction time, ROS production (in all fractions and conditions), seminal tumour necrosis factor-α and interleukin 6. None of these variables showed significant differences compared with a control group of 37 fertile men. On the other hand, the poor responders showed significant changes in these variables compared with matched pretreatment values. In patients with CBP, antibiotic therapy alone leads to eradication in ≈71%, with improvement of sperm progressive motility, SFV and the framework of prooxidative factors. However, in the remaining ≈29% with poor antibiotic responsiveness, a deterioration of all variables is observed. © 2015 Blackwell Verlag GmbH.

  3. Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish.

    PubMed

    Park, Daniel S; Egnatchik, Robert A; Bordelon, Hali; Tiersch, Terrence R; Monroe, W Todd

    2012-07-15

    Sperm viability in aquatic species is increasingly being evaluated by motility analysis via computer-assisted sperm analysis (CASA) following activation of sperm with manual dilution and mixing by hand. User variation can limit the speed and control over the activation process, preventing consistent motility analysis. This is further complicated by the short interval (i.e., less than 15 s) of burst motility in these species. The objectives of this study were to develop a staggered herringbone microfluidic mixer to: 1) activate small volumes of Danio pearl zebrafish (Danio albolineatus) sperm by rapid mixing with diluent, and 2) position sperm in a viewing chamber for motility evaluation using a standard CASA system. A herringbone micromixer was fabricated in polydimethylsiloxane (PDMS) to yield high quality smooth surfaces. Based on fluorescence microscopy, mixing efficiency exceeding 90% was achieved within 5 s for a range of flow rates (from 50 to 250 μL/h), with a correlation of mixing distances and mixing efficiency. For example, at the nominal flow rate of 100 μL/h, there was a significant difference in mixing efficiency between 3.5 mm (75±4%; mean±SD) and 7 mm (92±2%; P=0.002). The PDMS micromixer, integrated with standard volumetric slides, demonstrated activation of fresh zebrafish sperm with reduced user variation, greater control, and without morphologic damage to sperm. Analysis of zebrafish sperm viability by CASA revealed a statistically higher motility rate for activation by micromixing (56±4%) than manual activation (45±7%; n=5, P=0.011). This micromixer represented a first step in streamlining methods for consistent, rapid assessment of sperm quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the PDMS micromixer described herein will improve studies of germplasm physiology and cryopreservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  5. EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling.

    PubMed

    Huber, Robert; O'Day, Danton H

    2011-04-01

    Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA(-), carC(-), gpaB(-), gpbA(-)), the endogenous calcium (Ca(2+)) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca(2+) signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1±10.7% and 25.9±2.1% respectively and demonstrate a link between Ca(2+)/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA(-)/carC(-) cells by 844±136% compared to only 106±6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Heavy tailed bacterial motor switching statistics define macroscopic transport properties during upstream contamination by E. coli

    NASA Astrophysics Data System (ADS)

    Figueroa-Morales, N.; Rivera, A.; Altshuler, E.; Darnige, T.; Douarche, C.; Soto, R.; Lindner, A.; Clément, E.

    The motility of E. Coli bacteria is described as a run and tumble process. Changes of direction correspond to a switch in the flagellar motor rotation. The run time distribution is described as an exponential decay of characteristic time close to 1s. Remarkably, it has been demonstrated that the generic response for the distribution of run times is not exponential, but a heavy tailed power law decay, which is at odds with the motility findings. We investigate the consequences of the motor statistics in the macroscopic bacterial transport. During upstream contamination processes in very confined channels, we have identified very long contamination tongues. Using a stochastic model considering bacterial dwelling times on the surfaces related to the run times, we are able to reproduce qualitatively and quantitatively the evolution of the contamination profiles when considering the power law run time distribution. However, the model fails to reproduce the qualitative dynamics when the classical exponential run and tumble distribution is considered. Moreover, we have corroborated the existence of a power law run time distribution by means of 3D Lagrangian tracking. We then argue that the macroscopic transport of bacteria is essentially determined by the motor rotation statistics.

  7. X-linked Inhibitor of Apoptosis Protein (XIAP) Mediates Cancer Cell Motility via Rho GDP Dissociation Inhibitor (RhoGDI)-dependent Regulation of the Cytoskeleton*

    PubMed Central

    Liu, Jinyi; Zhang, Dongyun; Luo, Wenjing; Yu, Yonghui; Yu, Jianxiu; Li, Jingxia; Zhang, Xinhai; Zhang, Baolin; Chen, Jingyuan; Wu, Xue-Ru; Rosas-Acosta, Germán; Huang, Chuanshu

    2011-01-01

    X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in β-actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wild-type cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties. PMID:21402697

  8. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  9. Low Reynolds Number Bacterial Robots

    NASA Astrophysics Data System (ADS)

    Giesbrecht, Grant; Ni, Katha; Vock, Isaac; Rodenborn, Bruce

    The dynamics of prokaryotic motility in a fluid is important in a wide range of fields. Our experiment models the locomotion of bacteria with a robotic swimmer made using a computer controlled DC motor that drives a helical flagellum formed from welding wire. Because of its small size, a bacterium swimming in water is like our robot swimming in corn syrup. We compensate for the size difference by placing the robot in highly viscous silicone oil. Previous research measured helical propulsion of a swimmer far from a boundary. However proximity to a boundary strongly affects bacterial swimming. We have designed a system to precisely control the distance from the flagellum to the tank wall, and have made some of the first macroscopic measurements of boundary effects on helical propulsion.

  10. [Motility disorders of the esophagus].

    PubMed

    Bruder, E; Rougemont, A-L; Furlano, R I; Schneider, J F; Mayr, J; Haecker, F-M; Beier, K; Schneider, J; Weber, P; Berberich, T; Cathomas, G; Meier-Ruge, W A

    2013-03-01

    Motility disorders of the esophagus comprise a heterogeneous spectrum of diseases. Primary malformations of the esophagus are now amenable to improved surgical and gastroenterological therapies; however, they often lead to persistent long-term esophageal dysmotility. Achalasia originates from impaired relaxation of the gastroesophageal sphincter apparatus. Systemic diseases may give rise to secondary disorders of esophageal motility. A number of visceral neuromuscular disorders show an esophageal manifestation but aganglionosis rarely extends into the esophagus. The growing group of myopathies includes metabolic and mitochondrial disorders with increasing levels of genetic characterization and incipient emergence of therapeutic strategies. Esophagitis with an infectious etiology causes severe dysmotility particularly in immunocompromised patients. Immunologically mediated inflammatory processes involving the esophagus are increasingly better understood. Finally, rare tumors and tumor-like lesions may impair esophageal motor function.

  11. Mycoplasma pneumoniae, an Underutilized Model for Bacterial Cell Biology

    PubMed Central

    2014-01-01

    In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems. PMID:25157081

  12. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  13. Living supramolecular polymerization realized through a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Ogi, Soichiro; Sugiyasu, Kazunori; Manna, Swarup; Samitsu, Sadaki; Takeuchi, Masayuki

    2014-03-01

    Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium—ubiquitously observed in nature—must take place. Prion infection is one example that can be observed in biological systems. Here, we present an ‘artificial infection’ process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a ‘pathogen’. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.

  14. Sperm motility in fishes. I. Effects of temperature and pH: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2005-02-01

    Sperm motility is a key factor in allowing us to determine semen quality and fertilizing capacity. Motility in semen is mainly controlled by K+ in salmonids, and probably also in sturgeons, and by osmotic pressure in other freshwater and seawater fish species, but other factors, such as concentration of surrounding metabolites and ions (Ca2+, Mg2+, etc.), pH and temperature also influence motility characteristics. In the present study, we have mainly reviewed and summarized the effects of temperature and pH on the motility of spermatozoa in three fish species: salmonids, cyprinids and sturgeons. Data in the literature show that motility, fertilizing ability and velocity of spermatozoa, as well as the duration of the motility period, depend on the temperature of the assay medium and also of that of the brood fish holding tank. In contrast, the pH of the swimming medium, and thus the intracellular pH of spermatozoa, has less influence on sperm motility parameters in cyprinids, salmonids and sturgeons.

  15. Red light improves spermatozoa motility and does not induce oxidative DNA damage

    NASA Astrophysics Data System (ADS)

    Preece, Daryl; Chow, Kay W.; Gomez-Godinez, Veronica; Gustafson, Kyle; Esener, Selin; Ravida, Nicole; Durrant, Barbara; Berns, Michael W.

    2017-04-01

    The ability to successfully fertilize ova relies upon the swimming ability of spermatozoa. Both in humans and in animals, sperm motility has been used as a metric for the viability of semen samples. Recently, several studies have examined the efficacy of low dosage red light exposure for cellular repair and increasing sperm motility. Of prime importance to the practical application of this technique is the absence of DNA damage caused by radiation exposure. In this study, we examine the effect of 633 nm coherent, red laser light on sperm motility using a novel wavelet-based algorithm that allows for direct measurement of curvilinear velocity under red light illumination. This new algorithm gives results comparable to the standard computer-assisted sperm analysis (CASA) system. We then assess the safety of red light treatment of sperm by analyzing, (1) the levels of double-strand breaks in the DNA, and (2) oxidative damage in the sperm DNA. The results demonstrate that for the parameters used there are insignificant differences in oxidative DNA damage as a result of irradiation.

  16. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  17. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  18. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

    PubMed

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-09

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  19. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer.

    PubMed

    Koodaryan, Roodabeh; Hafezeqoran, Ali

    2016-12-01

    Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). The bond strength values of A and S were significantly higher than those of N ( P <.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG ( P <.001). The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.

  20. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture.

    PubMed

    Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S

    2017-12-11

    Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other