Microsatellite markers and polymorphism in cheatgrass (Bromus tectorum L.)
Alisa P. Ramakrishnan; Craig E. Coleman; Susan E. Meyer; Daniel J. Fairbanks
2001-01-01
Cheatgrass (Bromus tectorum) individuals were genetically characterized using polymorphic microsatellite markers. Through analysis of alleles of five polymorphic loci, genotypes were constructed of individuals from four populations in Utah and Nevada. There were 15 different genotypes: Whiterocks, UT, had nine genotypes, Hobble Creek, UT, had seven genotypes,...
Zhao, Jie; Li, Tingting; Zhu, Chao; Jiang, Xiaoling; Zhao, Yan; Xu, Zhenzhen; Yang, Shuming; Chen, Ailiang
2018-06-01
Meat traceability based on molecular markers is exerting a great influence on food safety and will enhance its key role in the future. This study aimed to investigate and verify the polymorphism of 23 microsatellite markers and select the most suitable markers for individual identification and meat traceability of six swine breeds in the Chinese market. The mean polymorphism information content value of these 23 loci was 0.7851, and each locus exhibited high polymorphism in the pooled population. There were 10 loci showing good polymorphism in each breed, namely, Sw632, S0155, Sw2406, Sw830, Sw2525, Sw72, Sw2448, Sw911, Sw122 and CGA. When six highly polymorphic loci were combined, the match probability value for two random individual genotypes among the pig breeds (Beijing Black, Sanyuan and Taihu) was lower than 1.151 E-06. An increasing number of loci indicated a gradually decreasing match probability value and therefore enhanced traceability accuracy. The validation results of tracing 18 blood and corresponding meat samples based on five highly polymorphic loci (Sw2525, S0005, Sw0107, Sw911 and Sw857) were successful, with 100% conformation probability, which provided a foundation for establishing a traceability system for pork in the Chinese market.
DEVELOPMENT OF CODOMINANT MARKERS FOR IDENTIFYING SPECIES HYBRIDS
Herein we describe a simple method for developing species-diagnostic markers that would permit the rapid identification of hybrid individuals. Our method relies on amplified length polymorphism (AFLP) and single strand conformation polymorphism (SSCP) technologies, both of which...
Quteineh, Lina; Preisig, Martin; Rivera, Margarita; Milaneschi, Yuri; Castelao, Enrique; Gholam-Rezaee, Mehdi; Vandenberghe, Frederik; Saigi-Morgui, Nuria; Delacrétaz, Aurélie; Cardinaux, Jean-René; Willemsen, Gonneke; Boomsma, Dorret I; Penninx, Brenda W J H; Ching-López, Ana; Conus, Philippe; Eap, Chin B
2016-07-01
Psychiatric disorders have been hypothesized to share common etiological pathways with obesity, suggesting related neurobiological bases. We aimed to examine whether CRTC1 polymorphisms were associated with major depressive disorder (MDD) and to test the association of these polymorphisms with obesity markers in several large case-control samples with MDD. The association between CRTC1 polymorphisms and MDD was investigated in three case-control samples with MDD (PsyCoLaus n1=3,362, Radiant n2=3,148 and NESDA/NTR n3=4,663). The effect of CRTC1 polymorphisms on obesity markers was then explored. CRTC1 polymorphisms were not associated with MDD in the three samples. CRTC1 rs6510997C>T was significantly associated with fat mass in the PsyCoLaus study. In fact, a protective effect of this polymorphism was found in MDD cases (n=1,434, β=-1.32%, 95% CI -2.07 to -0.57, p<0.001), but not in controls. In the Radiant study, CRTC1 polymorphisms were associated with BMI, exclusively in individuals with MDD (n=2,138, β=-0.75kg/m(2), 95% CI -1.30 to -0.21, p=0.007), while no association with BMI was found in the NESDA/NTR study. Estimated fat mass using bioimpedance that capture more accurately adiposity was only present in the PsyCoLaus sample. CRTC1 polymorphisms seem to play a role with obesity markers in individuals with MDD rather than non-depressive individuals. Therefore, the weak association previously reported in the population-based samples was driven by cases diagnosed with lifetime MDD. However, CRTC1 seems not to be implicated directly in the development of psychiatric diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Haughey, Christy; Sage, George K.; Degange, Gabriel; Sonsthagen, Sarah A.; Talbot, Sandra L.
2016-01-01
The Northern Goshawk (Accipiter gentilis) is a large forest raptor with a Holarctic distribution and, in some portions of its range, a species of conservation concern. To augment previously reported genetic markers, 13 novel polymorphic microsatellite markers were developed to establish individual identification and familial relationships, to assess levels of genetic diversity, and to identify diagnostic markers. Of the 22 loci tested, 13 were polymorphic, seven were monomorphic, and two failed to amplify. This suite of microsatellite loci yielded a combined probability of parental exclusion of 98%; a single individual sampled from a North American population can be reliably identified using a combination of seven of the 13 polymorphic loci. Cross-species screening in Cooper's Hawks (A. cooperii) and Sharp-shinned Hawks (A. striatus) of the 20 loci that successfully amplified in Northern Goshawks identified 13 loci as polymorphic in each species. Six of these loci (Age1303, Age1308, Age1309, Age1312, and Age1314) appeared to be useful in distinguishing between Accipiter species. These markers will be useful to researchers investigating populations of North American accipiters.
NASA Astrophysics Data System (ADS)
Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli
2013-09-01
Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.
Hasan, Nabeeh A; Mummenhoff, Klaus; Quiros, Carlos F; Tay, C David; Bailey, C Donovan
2010-10-01
As a crop and medicinal plant, the octoploid Andean endemic Lepidium meyenii suffers from taxonomic uncertainty. Few molecular markers are available to genotype individuals or track gene flow in wild and cultivated material. • Using available sequence data, eight cpSSR primer pairs were developed for L. meyenii. Levels of polymorphism checked in 56 individual L. meyenii, including cultivated and wild material, revealed that the number of alleles per locus ranged from three to five, and intrapopulation allele frequencies ranged from 0.071 to 1.0. Polymerase-chain-reaction screens using our cpSSR primers in 27 other Lepidium species and three Coronopus species suggested a high degree of interspecific amplification. • These polymorphic cpSSR markers should prove useful in characterizing genetic variation among cultivated and wild L. meyenii. Additionally, interspecific amplifications suggest that these markers will be useful for the study of related taxa.
Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.
Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J
2005-08-01
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.
Microsatellite markers for the native Texas perennial grass, Panicum hallii (Poaceae).
Lowry, David B; Purmal, Colin T; Meyer, Eli; Juenger, Thomas E
2012-03-01
We developed microsatellites for Panicum hallii for studies of gene flow, population structure, breeding experiments, and genetic mapping. Next-generation (454) genomic sequence data were used to design markers. Eighteen robust markers were discovered, 15 of which were polymorphic across six accessions of P. hallii var. hallii. Fourteen of the markers cross-amplified in a P. capillare accession. For the 15 polymorphic markers, the total number of alleles per locus ranged from two to 26 (mean: 11.0) across six populations (11-19 individuals per population). Observed heterozygosity (mean: 0.031) was 13.7 times lower than the expected heterozygosity (mean: 0.426). The deficit of heterozygous individuals is consistent with P. hallii having a high rate of self-fertilization. These markers will be useful for studies in P. hallii and related species.
Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations
M. Troggio; Thomas L. Kubisiak; G. Bucci; P. Menozzi
2001-01-01
We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus...
Pramanik, Sreemanta; Li, Honghua
2002-01-01
Direct polymerase chain reaction (PCR) detection of insertion/deletion (indel) polymorphisms requires sample homozygosity. For the indel polymorphisms that have the deletion allele with a relatively low frequency in the autosomal regions, direct PCR detection becomes difficult or impossible. The present study is, to our knowledge, the first designed to directly detect indel polymorphisms in a human autosomal region (i.e., the immunoglobulin VH region), through use of single haploid sperm cells as subjects. Unique marker sequences (n=32), spaced at ∼5-kb intervals, were selected near the 3′ end of the VH region. A two-round multiplex PCR protocol was used to amplify these sequences from single sperm samples from nine unrelated healthy donors. The parental haplotypes of the donors were determined by examining the presence or absence of these markers. Seven clustered markers in 6 of the 18 haplotypes were missing and likely represented a 35–40-kb indel polymorphism. The genotypes of the donors, with respect to this polymorphism, perfectly matched the expectation under Hardy-Weinberg equilibrium. Three VH gene segments, of which two are functional, are affected by this polymorphism. According to these results, >10% of individuals in the human population may not have these gene segments in their genome, and ∼44% may have only one copy of these gene segments. The biological impact of this polymorphism would be very interesting to study. The approach used in the present study could be applied to understand the physical structure and diversity of all other autosomal regions. PMID:12442231
Guan, Bi-Cai; Gong, Xi; Zhou, Shi-Liang
2011-08-01
The development of compound microsatellite markers was conducted in Dysosma pleiantha to investigate genetic diversity and population genetic structure of this threatened medicinal plant. Using the compound microsatellite marker technique, 14 microsatellite markers that were successfully amplified showed polymorphism when tested on 38 individuals from three populations in eastern China. Overall, the number of alleles per locus ranged from 2 to 14, with an average of 7.71 alleles per locus. These results indicate that these microsatellite markers are adequate for detecting and characterizing population genetic structure and genetic diversity in Dysosma pleiantha.
Hasan, Nabeeh A.; Mummenhoff, Klaus; Quiros, Carlos F.; Tay, C. David; Bailey, C. Donovan
2013-01-01
Premise of the study As a crop and medicinal plant, the octoploid Andean endemic Lepidium meyenii suffers from taxonomic uncertainty. Few molecular markers are available to genotype individuals or track gene flow in wild and cultivated material. Methods and Results Using available sequence data, eight cpSSR primer pairs were developed for L. meyenii. Levels of polymorphism checked in 56 individual L. meyenii, including cultivated and wild material, revealed that the number of alleles per locus ranged from three to five, and intrapopulation allele frequencies ranged from 0.071 to 1.0. Polymerase-chain-reaction screens using our cpSSR primers in 27 other Lepidium species and three Coronopus species suggested a high degree of interspecific amplification. Conclusions These polymorphic cpSSR markers should prove useful in characterizing genetic variation among cultivated and wild L. meyenii. Additionally, interspecific amplifications suggest that these markers will be useful for the study of related taxa. PMID:21616787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, B.; Hedrick, A.; Andrew, S.
1992-02-01
The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which well further increase the accuracy and availability of predictive testing, specifically for familiesmore » with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study, the authors present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.« less
Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D
2012-09-01
Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.
Manen, Jean-François
2004-01-01
Background Intra-specific and intra-individual polymorphism is frequently observed in nuclear markers of Ilex (Aquifoliaceae) and discrepancy between plastid and nuclear phylogenies is the rule in this genus. These observations suggest that inter-specific plastid or/and nuclear introgression played an important role in the process of evolution of Ilex. With the aim of a precise understanding of the evolution of this genus, two distantly related sympatric species collected in Tenerife (Canary Islands), I. perado and I. canariensis, were studied in detail. Introgression between these two species was previously never reported. One plastid marker (the atpB-rbcL spacer) and two nuclear markers, the ribosomal internal transcribed spacer (ITS) and the nuclear encoded plastid glutamine synthetase (nepGS) were analyzed for 13 and 27 individuals of I. perado and I. canariensis, respectively. Results The plastid marker is intra-specifically constant and correlated with species identity. On the other hand, whereas the nuclear markers are conserved in I. perado, they are highly polymorphic in I. canariensis. The presence of pseudogenes and recombination in ITS sequences of I. canariensis explain this polymorphism. Ancestral sequence polymorphism with incomplete lineage sorting, or past or recent hybridization with an unknown species could explain this polymorphism, not resolved by concerted evolution. However, as already reported for many other plants, past or recent introgression of an alien genotype seem the most probable explanation for such a tremendous polymorphism. Conclusions Data do not allow the determination with certitude of the putative species introgressing I. canariensis, but I. perado is suspected. The introgression would be unilateral, with I. perado as the male donor, and the paternal sequences would be rapidly converted in highly divergent and consequently unidentifiable pseudogenes. At least, this study allows the establishment of precautionary measures when nuclear markers are used in phylogenetic studies of genera having experienced introgression such as the genus Ilex. PMID:15550175
Isolation and characterization of polymorphic microsatellite markers for blue fox (Alopex lagopus).
Li, Y M; Guo, P C; Lu, J Y; Bai, C Y; Zhao, Z H; Yan, S Q
2016-06-03
The blue fox, belonging to the family Canidae, is a coat color variant of the native arctic fox (Alopex lagopus). To date, microsatellite loci in blue fox are typically amplified using canine simple sequence repeat primers. In the present study, we constructed an (AC)n enrichment library, and isolated and identified 17 polymorphic microsatellite markers for blue fox. The number of alleles per locus is from two to seven based on 24 examined individuals. The expected and observed heterozygosities were in the range of 0.3112 to 0.8236 and 0.2917 to 0.8750, respectively. The polymorphic information content per locus ranged from 0.2583 to 0.8022. These polymorphic markers can be useful for future population genetic studies of both farmed blue foxes and wild arctic foxes.
Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S
2017-07-01
Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic microsatellite marker panel simplifies identification and selection of informative markers for linkage-based PGD of HEMA. Informative markers can also be easily co-amplified with mutation-containing F8 amplicons for combined mutation detection and linkage analysis. © 2017 International Society on Thrombosis and Haemostasis.
Guzmán-Ornelas, Milton-Omar; Petri, Marcelo Heron; Vázquez-Del Mercado, Mónica; Chavarría-Ávila, Efraín; Corona-Meraz, Fernanda-Isadora; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Sandoval-García, Flavio; Navarro-Hernández, Rosa-Elena
2016-01-01
Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A-/Ile-). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR.
Novy, Ari; Flory, S Luke; Honig, Joshua A; Bonos, Stacy; Hartman, Jean Marie
2012-02-01
Microsatellite markers were developed for the invasive plant Microstegium vimineum (Poaceae) to assess its population structure and to facilitate tracking of invasion expansion. Using 454 sequencing, 11 polymorphic and six monomorphic microsatellite primer sets were developed for M. vimineum. The primer sets were tested on individuals sampled from six populations in the United States and China. The polymorphic primers amplified di-, tri-, and tetranucleotide repeats with three to 10 alleles per locus. These markers will be useful for a variety of applications including tracking of invasion dynamics and population genetics studies.
Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species
Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.
2011-01-01
New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L.
1989-02-01
Polymorphic markers in genes encoding the {alpha} chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR {alpha} cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of themore » polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V{sub {alpha}} and C{sub {alpha}} markers were identified between patients and healthy individuals.« less
Development of novel polymorphic microsatellite markers for the silver fox (Vulpes vulpes).
Yan, S Q; Bai, C Y; Qi, S M; Li, Y M; Li, W J; Sun, J H
2015-06-01
The silver fox (Vulpes vulpes), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an (AC)n-enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero- zygosity and polymorphism information content per locus ranged from 0.2544 to 0.859, 0.2083 to 0.7917, and 0.2181 to 0.821, respectively. The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.
Vianna, Juliana A.; Noll, Daly; Mura-Jornet, Isidora; Valenzuela-Guerra, Paulina; González-Acuña, Daniel; Navarro, Cristell; Loyola, David E.; Dantas, Gisele P. M.
2017-01-01
Abstract Microsatellites are valuable molecular markers for evolutionary and ecological studies. Next generation sequencing is responsible for the increasing number of microsatellites for non-model species. Penguins of the Pygoscelis genus are comprised of three species: Adélie (P. adeliae), Chinstrap (P. antarcticus) and Gentoo penguin (P. papua), all distributed around Antarctica and the sub-Antarctic. The species have been affected differently by climate change, and the use of microsatellite markers will be crucial to monitor population dynamics. We characterized a large set of genome-wide microsatellites and evaluated polymorphisms in all three species. SOLiD reads were generated from the libraries of each species, identifying a large amount of microsatellite loci: 33,677, 35,265 and 42,057 for P. adeliae, P. antarcticus and P. papua, respectively. A large number of dinucleotide (66,139), trinucleotide (29,490) and tetranucleotide (11,849) microsatellites are described. Microsatellite abundance, diversity and orthology were characterized in penguin genomes. We evaluated polymorphisms in 170 tetranucleotide loci, obtaining 34 polymorphic loci in at least one species and 15 polymorphic loci in all three species, which allow to perform comparative studies. Polymorphic markers presented here enable a number of ecological, population, individual identification, parentage and evolutionary studies of Pygoscelis, with potential use in other penguin species. PMID:28898354
A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.
Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R
2001-12-01
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.
Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A
2016-12-19
Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.
Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter
2016-01-01
Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308
Kuhn, David N; Motamayor, Juan Carlos; Meerow, Alan W; Borrone, James W; Schnell, Raymond J
2008-10-01
For well-studied plant species with whole genome sequence or extensive EST data, SNP markers are the logical choice for both genotyping and whole genome association studies. However, SNP markers may not address the needs of researchers working on specialty crops with limited available genomic information. Microsatellite markers have been frequently employed due to their robustness, but marker development can be difficult and may result in few polymorphic markers. SSCP markers, such as microsatellites, are PCR-based and scored by electrophoretic mobility but, because they are based on SNPs rather than length differences, occur more frequently and are easier to develop than microsatellites. We have examined how well correlated the estimation of genetic diversity and genetic distance are in a population or germplasm collection when measured by 13 highly polymorphic microsatellite markers or 20 SSCP markers. We observed a significant correlation in pairwise genetic distances of 82 individuals in an international cacao germplasm collection (Mantel test Rxy=0.59, p<0.0001 for 10 000 permutations). Both sets of markers could distinguish each individual in the population. These data provide strong support for the use of SSCP markers in the genotyping of plant species where development of microsatellites would be difficult or expensive.
Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao
2016-01-01
Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Tada, T; Seki, Y; Kameyama, Y; Kikkawa, Y; Wada, K
2016-12-19
The Ezo red fox (Vulpes vulpes schrencki), a subspecies endemic to Hokkaido island, Japan, is a known host species for the tapeworm Echinococcus multilocularis. To develop tools for molecular ecological studies, we isolated 28 microsatellite regions from the genome of Ezo red fox, and developed 18 polymorphic microsatellite markers. These markers were characterized using 7 individuals and 22 fecal samples of the Ezo red fox. The number of alleles for these markers ranged from 1 to 7, and the observed heterozygosity, estimated on the basis of the genotypes of 7 individuals, ranged from 0.29 to 1.00. All markers, except DvNok5, were in Hardy-Weinberg equilibrium (P > 0.05), and no linkage disequilibrium was detected among these loci, except between DvNok14 and DvNok28 (P = 0.01). Moreover, six microsatellite loci were successfully genotyped using feces-derived DNA from the Ezo red fox. The markers developed in our study might serve as a useful tool for molecular ecological studies of the Ezo red fox.
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean
2012-01-01
Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675
Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.
2016-01-01
We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371
Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H
2013-04-02
Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.
Isolation and characterization of microsatellite markers from the great hornbill, Buceros bicornis.
Chamutpong, Siriphatr; Saito, Daichi S; Viseshakul, Nareerat; Nishiumi, Isao; Poonswad, Pilai; Ponglikitmongkol, Mathurose
2009-03-01
Thirteen polymorphic microsatellite markers were isolated and characterized from the great hornbill, Buceros bicornis. In analyses of 20 individuals, the numbers of alleles per locus varied from two to 11. The expected and observed heterozygosities ranged from 0.22 to 0.88 and from 0.20 to 1.00, respectively. The mean polymorphic information content was 0.62. Among these, three loci deviated from the Hardy-Weinberg equilibrium. However, no significant genotypic disequilibrium was detected between any pair of loci. These microsatellite markers are useful for the population genetic study of the great hornbill. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Molecular Definition of the 22q11 Deletions in Velo-Cardio-Facial Syndrome
Morrow, Bernice; Goldberg, Rosalie; Carlson, Christine; Gupta, Ruchira Das; Sirotkin, Howard; Collins, John; Dunham, Ian; O'Donnell, Hilary; Scambler, Peter; Shprintzen, Robert; Kucherlapati, Raju
1995-01-01
Velo-cardio-facial syndrome (VCFS) is a common genetic disorder among individuals with cleft palate and is associated with hemizygous deletions in human chromosome 22q11. Toward the molecular definition of the deletions, we constructed a physical map of 22q11 in the form of overlapping YACs. The physical map covers >9 cM of genetic distance, estimated to span 5 Mb of DNA, and contains a total of 64 markers. Eleven highly polymorphic short tandem-repeat polymorphic (STRP) markers were placed on the physical map, and 10 of these were unambiguously ordered. The 11 polymorphic markers were used to type the DNA from a total of 61 VCFS patients and 49 unaffected relatives. Comparison of levels of heterozygosity of these markers in VCFS patients and their unaffected relatives revealed that four of these markers are commonly hemizygous among VCFS patients. To confirm these results and to define further the breakpoints in VCFS patients, 15 VCFS individuals and their unaffected parents were genotyped for the 11 STRP markers. Haplotypes generated from this study revealed that 82% of the patients have deletions that can be defined by the STRP markers. The results revealed that all patients who have a deletion share a common proximal breakpoint, while there are two distinct distal breakpoints. Markers D22S941 and D22S944 appear to be consistently hemizygous in patients with deletions. Both of these markers are located on a single nonchimeric YAC that is 400 kb long. The results also show that the parental origin of the deleted chromosome does not have any effect on the phenotypic manifestation ImagesFigure 2Figure 3 PMID:7762562
Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, B.; Carlson, C.; Gupta, R.D.
Velo-cardio-facial syndrome (VCFS) is a common genetic disorder among individuals with cleft plate and is associated with hemizygous deletions in human chromosome 22q11. Toward the molecular definition of the deletions, we constructed a physical map of 22q11 in the form of overlapping YACs. The physical map covers >9 cM of genetic distance, estimated to span 5 Mb of DNA, and contains a total of 64 markers. Eleven highly polymorphic short tandem-repeat polymorphic (STRP) markers were placed on the physical map, and 10 of these were unambiguously ordered. The 11 polymorphic markers were used to type the DNA from a totalmore » of 61 VCFS patients and 49 unaffected relatives. Comparison of levels of heterozygosity of these markers in VCFS patients and their unaffected relatives revealed that four of these markers are commonly hemizygous among VCFS patients. To confirm these results and to define further the breakpoints in VCFS patients, 15 VCFS individuals and their unaffected parents were genotyped for the 11 STRP markers. Haplotypes generated from this study revealed that 82% of the patients have deletions that can be defined by the STRP markers. The results revealed that all patients who have a deletion share a common proximal breakpoint, while there are two distinct distal breakpoints. Markers D22S941 and D22S944 appear to be consistently hemizygous in patients with deletions. Both of these markers are located on a single nonchimeric YAC that is 400 kb long. The results show that the parental origin of the deleted chromosome does not have any effect on the phenotypic manifestation. 58 refs., 6 figs., 2 tabs.« less
Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees. PMID:25084460
Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Detecting a hierarchical genetic population structure via Multi-InDel markers on the X chromosome
Fan, Guang Yao; Ye, Yi; Hou, Yi Ping
2016-01-01
Detecting population structure and estimating individual biogeographical ancestry are very important in population genetics studies, biomedical research and forensics. Single-nucleotide polymorphism (SNP) has long been considered to be a primary ancestry-informative marker (AIM), but it is constrained by complex and time-consuming genotyping protocols. Following up on our previous study, we propose that a multi-insertion-deletion polymorphism (Multi-InDel) with multiple haplotypes can be useful in ancestry inference and hierarchical genetic population structures. A validation study for the X chromosome Multi-InDel marker (X-Multi-InDel) as a novel AIM was conducted. Genetic polymorphisms and genetic distances among three Chinese populations and 14 worldwide populations obtained from the 1000 Genomes database were analyzed. A Bayesian clustering method (STRUCTURE) was used to discern the continental origins of Europe, East Asia, and Africa. A minimal panel of ten X-Multi-InDels was verified to be sufficient to distinguish human ancestries from three major continental regions with nearly the same efficiency of the earlier panel with 21 insertion-deletion AIMs. Along with the development of more X-Multi-InDels, an approach using this novel marker has the potential for broad applicability as a cost-effective tool toward more accurate determinations of individual biogeographical ancestry and population stratification. PMID:27535707
Population structure and genotypic variation of Crataegus pontica inferred by molecular markers.
Rahmani, Mohammad-Shafie; Shabanian, Naghi; Khadivi-Khub, Abdollah; Woeste, Keith E; Badakhshan, Hedieh; Alikhani, Leila
2015-11-01
Information about the natural patterns of genetic variability and their evolutionary bases are of fundamental practical importance for sustainable forest management and conservation. In the present study, the genetic diversity of 164 individuals from fourteen natural populations of Crataegus pontica K.Koch was assessed for the first time using three genome-based molecular techniques; inter-retrotransposon amplified polymorphism (IRAP); inter-simple sequence repeats (ISSR) and start codon targeted (SCoT) polymorphism. IRAP, ISSR and SCoT analyses yielded 126, 254 and 199 scorable amplified bands, respectively, of which 90.48, 93.37 and 83.78% were polymorphic. ISSR revealed efficiency over IRAP and SCoT due to high effective multiplex ratio, marker index and resolving power. The dendrograms based on the markers used and combined data divided individuals into three major clusters. The correlation between the coefficient matrices for the IRAP, ISSR and SCoT data was significant. A higher level of genetic variation was observed within populations than among populations based on the markers used. The lower divergence levels depicted among the studied populations could be seen as evidence of gene flow. The promotion of gene exchange will be very beneficial to conserve and utilize the enormous genetic variability. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Jing; Hou, Fu-Yuan; Wan, Ding-Rong; Wang, Sha; Xu, Dong-Mei; Yang, Guang-Zhong
2015-11-05
Sedum sarmentosum is an important Chinese medicinal herb that exhibits anti-inflammatory, anti-angiogenic and anti-nociceptive properties. However, little is known about its genetic background. The first set of 14 microsatellite markers were isolated and characterized for S. sarmentosum using an SSR-enriched library. Fourteen polymorphic microsatellite markers were acquired with satisfactory amplifications and a polymorphic pattern in 48 S. sarmentosum individuals. The number of alleles ranged from 3 to 15. The observed and expected heterozygosities varied from 0.0833 to 0.8750 and 0.2168 to 0.9063, respectively. Two loci showed significant departure from the Hardy-Weinberg equilibrium. Cross-species amplification was carried out in other Sedum species. High rates of cross-species amplification were observed. The transferability value ranged from 85.7% in S. lineare to 64.3% in S. ellacombianum. These markers will be valuable for studying the genetic variation, population structure and germplasm characterization of S. sarmentosum and related Sedum species.
Jan, Catherine
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959
Jan, Catherine; Fumagalli, Luca
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.
Yamamoto, Takashi; Tsuda, Yoshiaki; Mori, Gustavo Maruyama; Cruz, Mariana Vargas; Shinmura, Yoshimi; Wee, Alison K S; Takayama, Koji; Asakawa, Takeshi; Yamakawa, Takeru; Suleiman, Monica; Núñez-Farfán, Juan; Webb, Edward L; Watano, Yasuyuki; Kajita, Tadashi
2016-09-01
Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant. Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively. The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants.
Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Moraes, Evandro M
2011-08-01
Microsatellite primers were developed in Pilosocereus machrisii, a columnar cactus with a patchy distribution in eastern tropical South America, to assess its genetic diversity and population structure. Eleven microsatellite markers were developed, of which one was monomorphic among 51 individuals from two populations. The number of alleles per polymorphic locus ranged from two to eight, and the total number of alleles was 57. From the 11 isolated loci, nine were successfully amplified in the other four Pilosocereus species. The results showed that these markers will be useful for studies of genetic diversity, patterns of gene flow, and population genetic structure in P. machrisii, as well as across other congeneric species.
Souza, Helena A V; Collevatti, Rosane G; Lemos-Filho, José P; Santos, Fabrício R; Lovato, Maria Bernadete
2012-03-01
Microsatellite markers were developed for Dimorphandra mollis (Leguminosae), a widespread tree in the Brazilian cerrado (a savanna-like vegetation). Microsatellite markers were developed from an enriched library. The analyses of polymorphism were based on 56 individuals from three populations. Nine microsatellite loci were polymorphic, with the number of alleles per locus ranging from three to 10 across populations. The observed and expected heterozygosities per locus and population ranged from 0.062 to 0.850 and from 0.062 to 0.832, respectively. These microsatellites provide an efficient tool for population genetics studies and will be used to assess the genetic diversity and spatial genetic structure of D. mollis.
Fourteen polymorphic microsatellite markers for the threatened Arnica montana (Asteraceae)1
Duwe, Virginia K.; Ismail, Sascha A.; Buser, Andres; Sossai, Esther; Borsch, Thomas; Muller, Ludo A. H.
2015-01-01
• Premise of the study: Microsatellite markers were developed to investigate population genetic structure in the threatened species Arnica montana. • Methods and Results: Fourteen microsatellite markers with di-, tetra-, and hexanucleotide repeat motifs were developed for A. montana using 454 pyrosequencing without and with library-enrichment methods, resulting in 56,545 sequence reads and 14,467 sequence reads, respectively. All loci showed a high level of polymorphism, with allele numbers ranging from four to 11 in five individuals from five populations (25 samples) and an expected heterozygosity ranging from 0.192 to 0.648 across the loci. • Conclusions: This set of microsatellite markers is the first one described for A. montana and will facilitate conservation genetic applications as well as the understanding of phylogeographic patterns in this species. PMID:25606354
Peñarrubia, Luis; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi
2015-01-01
The zebra mussel (Dreissena polymorpha, Pallas, 1771) is one of the most invasive species of freshwater bivalves, due to a combination of biological and anthropogenic factors. Once this species has been introduced to a new area, individuals form dense aggregations that are very difficult to remove, leading to many adverse socioeconomic and ecological consequences. In this study, we identified, tested, and validated a new set of polymorphic microsatellite loci (also known as SSRs, Single Sequence Repeats) using a Massive Parallel Sequencing (MPS) platform. After several pruning steps, 93 SSRs could potentially be amplified. Out of these SSRs, 14 were polymorphic, producing a polymorphic yield of 15.05%. These 14 polymorphic microsatellites were fully validated in a first approximation of the genetic population structure of D. polymorpha in the Iberian Peninsula. Based on this polymorphic yield, we propose a criterion for establishing the number of SSRs that require validation in similar species, depending on the final use of the markers. These results could be used to optimize MPS approaches in the development of microsatellites as genetic markers, which would reduce the cost of this process. PMID:25780924
Huang, Jie; Li, Yu-Zhi; Du, Lian-Ming; Yang, Bo; Shen, Fu-Jun; Zhang, He-Min; Zhang, Zhi-He; Zhang, Xiu-Yue; Yue, Bi-Song
2015-02-07
The giant panda (Ailuropoda melanoleuca) is a critically endangered species endemic to China. Microsatellites have been preferred as the most popular molecular markers and proven effective in estimating population size, paternity test, genetic diversity for the critically endangered species. The availability of the giant panda complete genome sequences provided the opportunity to carry out genome-wide scans for all types of microsatellites markers, which now opens the way for the analysis and development of microsatellites in giant panda. By screening the whole genome sequence of giant panda in silico mining, we identified microsatellites in the genome of giant panda and analyzed their frequency and distribution in different genomic regions. Based on our search criteria, a repertoire of 855,058 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. A total of 160 primer pairs were designed to screen for polymorphic microsatellites using the selected tetranucleotide microsatellite sequences. The 51 novel polymorphic tetranucleotide microsatellite loci were discovered based on genotyping blood DNA from 22 captive giant pandas in this study. Finally, a total of 15 markers, which showed good polymorphism, stability, and repetition in faecal samples, were used to establish the novel microsatellite marker system for giant panda. Meanwhile, a genotyping database for Chengdu captive giant pandas (n = 57) were set up using this standardized system. What's more, a universal individual identification method was established and the genetic diversity were analysed in this study as the applications of this marker system. The microsatellite abundance and diversity were characterized in giant panda genomes. A total of 154,677 tetranucleotide microsatellites were identified and 15 of them were discovered as the polymorphic and stable loci. The individual identification method and the genetic diversity analysis method in this study provided adequate material for the future study of giant panda.
Doorduin, Leonie; Gravendeel, Barbara; Lammers, Youri; Ariyurek, Yavuz; Chin-A-Woeng, Thomas; Vrieling, Klaas
2011-01-01
Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing. PMID:21444340
Quevedo, Edhit Guadalupe Cruz; Aguilar, Gabriela Monserrat Mimendi; Aguilar, Luis Anselmo Juárez; Rubio, Susan Andrea Gutierrez; Martínez, Silvia Esperanza Flores; Rodríguez, Ingrid Patricia Dávalos; Corona, José Sánchez; Morán, Martha Isabel Torres; Gómez, Roberto Carlos Rosales; Moguel, María Cristina Morán
2015-01-01
KiSS1 is a metastasis suppressor gene associated with inhibition of cellular chemotaxis and invasion attenuating the metastasis in melanoma and breast cancer cell lines. Along the KiSS-1 gene at least 294 SNPs have been described; however the association of these polymorphisms as genetic markers for metastasis in breast cancer studies has not been investigated. Here we describe two simple PCR-RFLPs protocols to identify the rs5780218 (9DelT) and the rs12998 (E20K) KiSS1 polymorphisms and the allelic, genotypic, and haplotypic frequencies in Mexican general population (GP) and patients with benign breast disease (BBD) or breast cancer (BC). The rs5780218 polymorphism was individually associated with breast cancer (P = 0.0332) and the rs12998 polymorphism shows statistically significant differences when GP versus case (BC and BBD) groups were compared (P < 0.0001). The H1 Haplotype (G/-) occurred more frequently in BC group (0.4256) whereas H2 haplotype (G/T) was the most prevalent in BBD group (0.4674). Our data indicated that the rs5780218 polymorphism individually confers susceptibility for development of breast cancer in Mexican population and a possible role as a genetic marker in breast cancer metastasis for H1 haplotype (Wt/variant) in KiSS1 gene must be analyzed in other populations.
Genetic Diversity of Hibiscus tiliaceus (Malvaceae) in China Assessed using AFLP Markers
TANG, TIAN; ZHONG, YANG; JIAN, SHUGUANG; SHI, SUHUA
2003-01-01
Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88·5 %) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84·8 %), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on ϕST was moderate (Nm = 1·395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species. PMID:12930729
Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A
2014-08-01
Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.
Polymorphisms in DENND1B gene are associated with asthma and atopy phenotypes in Brazilian children.
Fiuza, Bianca S D; Silva, Milca de J; Alcântara-Neves, Neuza M; Barreto, Maurício L; Costa, Ryan Dos S; Figueiredo, Camila A
2017-10-01
Asthma is a heterogeneous disease associated with a complex basis involving environmental factors and individual variabilities. The DENN Domain Containing 1B (DENND1B) gene has an important role on T cell receptor (TCR) down-regulation on Th2 cells and studies have shown that mutations or loss of this factor can be associated with increased Th2 responses and asthma. The aim of this work is to evaluate the association of polymorphisms in the DENND1B with asthma and allergy markers phenotypes in Brazilian children. Genotyping was performed using a commercial panel from Illumina (2.5 Human Omni bead chip) in 1309 participants of SCAALA (Social Change, Asthma, Allergy in Latin American) program. Logistic regressions for asthma and atopy markers were performed using PLINK software 1.9. The analyzes were adjusted for sex, age, helminth infections and ancestry markers. The DENND1B gene was associated with different phenotypes such as severe asthma and atopic markers (specific IgE production, skin prick test and IL-13 production). Among the 166 SNPs analyzed, 72 were associated with asthma and/or allergy markers. In conclusion, polymorphisms in the DENND1B are significantly associated with development of asthma and atopy and these polymorphisms can influence DENND1B expression and consequently, asthma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Haplotypes in SLC24A5 Gene as Ancestry Informative Markers in Different Populations
Giardina, Emiliano; Pietrangeli, Ilenia; Martínez-Labarga, Cristina; Martone, Claudia; de Angelis, Flavio; Spinella, Aldo; De Stefano, Gianfranco; Rickards, Olga; Novelli, Giuseppe
2008-01-01
Ancestry informative markers (AIMs) are human polymorphisms that exhibit substantially allele frequency differences among populations. These markers can be useful to provide information about ancestry of samples which may be useful in predicting a perpetrator’s ethnic origin to aid criminal investigations. Variations in human pigmentation are the most obvious phenotypes to distinguish individuals. It has been recently shown that the variation of a G in an A allele of the coding single-nucleotide polymorphism (SNP) rs1426654 within SLC24A5 gene varies in frequency among several population samples according to skin pigmentation. Because of these observations, the SLC24A5 locus has been evaluated as Ancestry Informative Region (AIR) by typing rs1426654 together with two additional intragenic markers (rs2555364 and rs16960620) in 471 unrelated individuals originating from three different continents (Africa, Asia and Europe). This study further supports the role of human SLC24A5 gene in skin pigmentation suggesting that variations in SLC24A5 haplotypes can correlate with human migration and ancestry. Furthermore, our data do reveal the utility of haplotype and combined unphased genotype analysis of SLC24A5 in predicting ancestry and provide a good example of usefulness of genetic characterization of larger regions, in addition to single polymorphisms, as candidates for population-specific sweeps in the ancestral population. PMID:19440451
Genetic variation and relationship among and within Withania species as revealed by AFLP markers.
Negi, M S; Singh, A; Lakshmikumaran, M
2000-12-01
Withania somnifera is an important medicinal plant, and its anticancerous properties have been attributed to various classes of withanolide compounds. The objective of the present study was to investigate the inter- and intraspecific genetic variation present in 35 individuals of W. somnifera and 5 individuals of W. coagulans using AFLP (amplified fragment length polymorphism) marker technique. The information about genetic variation determined from AFLP data for 40 individuals was employed to estimate similarity matrix value based on Jaccard's coefficient. The similarity values were further used to construct a phenetic dendrogram revealing the genetic relationships. The dendrogram generated by UPGMA (unweighted pair group method of arithmetic averages) distinguished W. somnifera from W. coagulans and formed two major clusters. These two main clusters shared a similarity coefficient of 0.3, correlating with the high level of polymorphism detected. The dendrogram further separated W. somnifera into three subclasses corresponding to Kashmiri and Nagori groups and an intermediate type. The AFLP profile of Kashmiri individuals was distinct from that of the Nagori group of plants. The intermediate genotype was distinct as it shared bands with both the Kashmiri and Nagori individuals, even though it was identified as a Kashmiri morphotype. Furthermore, the intermediate type shared a similarity coefficient of 0.8 with the Kashmiri individuals. The present work revealed low levels of variation within a population though high levels of polymorphism were detected between Nagori and Kashmiri populations. The ability of AFLP markers for efficient and rapid detection of genetic variations at the species as well as intraspecific level qualifies it as an efficient tool for estimating genetic similarity in plant species and effective management of genetic resources.
Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M
2015-01-01
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.
Bonatelli, Isabel A. S.; Carstens, Bryan C.; Moraes, Evandro M.
2015-01-01
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms. PMID:26561396
Ohtani, Masato; Tani, Naoki; Yoshimaru, Hiroshi
2008-11-01
Polymorphic microsatellite markers were developed for Hibiscus glaber, an endemic tree of the Bonin Islands. Eighty-seven of the 208 sequences from an enriched library were unique and containing microsatellites. Ten loci were proved to be highly polymorphic among 78 individuals from the Nishi-jima Island. Total exclusionary powers for the first and the second parents were 99.989% and 99.999%, respectively. Nine loci also amplified single fragment from genomic DNA of H. tiliaceus, a related and widespread congener. Our markers can be reliably used for the estimation of current gene flow within/among populations of the two woody Hibiscus species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Rosa, Sabrina F P; Monteyne, Daniel; Milinkovitch, Michel C
2009-01-01
The two species of Galápagos land iguanas (Conolophus subcristatus and C. pallidus) are listed as 'vulnerable' species by the International Union for the Conservation of Nature (IUCN Red List; http://www.iucnredlist.org). Here, we report on the isolation and characterization of 10 microsatellite markers using 562 individuals sampled on all Galápagos islands where Conolophus species occur today. We show that these 10 loci are highly polymorphic and display diagnostic alleles for five out of the six island populations. These markers will be useful for Conolophus population genetic analyses as well as for guiding ongoing captive breeding programmes. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Genome skimming identifies polymorphism in tern populations and species
2012-01-01
Background Terns (Charadriiformes: Sterninae) are a lineage of cosmopolitan shorebirds with a disputed evolutionary history that comprises several species of conservation concern. As a non-model system in genetics, previous study has left most of the nuclear genome unexplored, and population-level studies are limited to only 15% of the world's species of terns and noddies. Screening of polymorphic nuclear sequence markers is needed to enhance genetic resolution because of supposed low mitochondrial mutation rate, documentation of nuclear insertion of hypervariable mitochondrial regions, and limited success of microsatellite enrichment in terns. Here, we investigated the phylogenetic and population genetic utility for terns and relatives of a variety of nuclear markers previously developed for other birds and spanning the nuclear genome. Markers displaying a variety of mutation rates from both the nuclear and mitochondrial genome were tested and prioritized according to optimal cross-species amplification and extent of genetic polymorphism between (1) the main tern clades and (2) individual Royal Terns (Thalasseus maxima) breeding on the US East Coast. Results Results from this genome skimming effort yielded four new nuclear sequence-based markers for tern phylogenetics and 11 intra-specific polymorphic markers. Further, comparison between the two genomes indicated a phylogenetic conflict at the base of terns, involving the inclusion (mitochondrial) or exclusion (nuclear) of the Angel Tern (Gygis alba). Although limited mitochondrial variation was confirmed, both nuclear markers and a short tandem repeat in the mitochondrial control region indicated the presence of considerable genetic variation in Royal Terns at a regional scale. Conclusions These data document the value of intronic markers to the study of terns and allies. We expect that these and additional markers attained through next-generation sequencing methods will accurately map the genetic origin and species history of this group of birds. PMID:22333071
Shi, Yunfang; Li, Xiaozhou; Ju, Duan; Li, Yan; Zhang, Xiuling; Zhang, Ying
2015-08-01
Short tandem repeat (STR) markers, also known as microsatellites, are extensively used in mapping studies, forensics and disease diagnosis due to their small dimension and low mutation and high polymorphism rates. In recent years quantitative fluorescence polymerase chain reaction (QF-PCR) has been successfully used to amplify STR markers in the prenatal diagnosis of common chromosomal abnormalities. This method provides a diagnosis of common aneuploidies 24-48 h after sampling with low error rates and cost; however, the size of different alleles, frequency, heterozygosity and distribution of STR markers vary among different populations. In the present study three STR markers, D13S305, D13S631 and D13S634, on chromosome 13 were analyzed in 350 unrelated individuals (200 males and 150 females) from the Han population of Tianjin, China using QF-PCR. Eleven, seven and 11 alleles of each marker were observed, respectively. The frequencies of the genotypes were in good agreement with Hardy-Weinberg equilibrium (P>0.05). The results showed that these three STR markers were highly polymorphic in the Han population of Tianjin, China. The study has provided basic data for use in the prenatal diagnosis of Patau syndrome.
SHI, YUNFANG; LI, XIAOZHOU; JU, DUAN; LI, YAN; ZHANG, XIULING; ZHANG, YING
2015-01-01
Short tandem repeat (STR) markers, also known as microsatellites, are extensively used in mapping studies, forensics and disease diagnosis due to their small dimension and low mutation and high polymorphism rates. In recent years quantitative fluorescence polymerase chain reaction (QF-PCR) has been successfully used to amplify STR markers in the prenatal diagnosis of common chromosomal abnormalities. This method provides a diagnosis of common aneuploidies 24–48 h after sampling with low error rates and cost; however, the size of different alleles, frequency, heterozygosity and distribution of STR markers vary among different populations. In the present study three STR markers, D13S305, D13S631 and D13S634, on chromosome 13 were analyzed in 350 unrelated individuals (200 males and 150 females) from the Han population of Tianjin, China using QF-PCR. Eleven, seven and 11 alleles of each marker were observed, respectively. The frequencies of the genotypes were in good agreement with Hardy-Weinberg equilibrium (P>0.05). The results showed that these three STR markers were highly polymorphic in the Han population of Tianjin, China. The study has provided basic data for use in the prenatal diagnosis of Patau syndrome. PMID:26622392
Sonsthagen, Sarah A.; Sage, G. Kevin; Fowler, Megan C.; Hope, Andrew G.; Cook, J.A.; Talbot, Sandra L.
2013-01-01
We used next generation shotgun sequencing to develop 21 novel microsatellite markers for the barren-ground shrew (Sorex ugyunak), which were polymorphic among individuals from northern Alaska. The loci displayed moderate allelic diversity (averaging 6.81 alleles per locus) and heterozygosity (averaging 70 %). Two loci deviated from Hardy–Weinberg equilibrium (HWE) due to heterozygote deficiency. While the population did not deviate from HWE overall, it showed significant linkage disequilibrium suggesting this population is not in mutation-drift equilibrium. Nineteen of 21 loci were polymorphic in masked shrews (S. cinereus) from interior Alaska and exhibited linkage equilibrium and HWE overall. All loci yielded sufficient variability for use in population studies.
Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar
2014-10-01
The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.
Oshodi, Y; Ojewunmi, O; Oshodi, T A; Ijarogbe, G T; Ogun, O C; Aina, O F; Lesi, Fea
2017-09-01
The role of oxidative stress has been identified in the development of autism spectrum disorder (ASD), and polymorphisms of glutathione S-transferase have been associated with some diseases linked to oxidative stress. Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a clinical interview were included in the study. Twenty-three age-matched controls without any known genetic/developmental disorder were also recruited. Oxidative stress markers along with the genetic polymorphisms of glutathione S-transferase were determined. Reduced glutathione in ASD patients was significantly lower than the control (P = 0.008), whereas other oxidative stress markers measured were not significantly different in both the control and case populations. The frequencies of GSTT1 and GSTM1 null genotypes were lower among the controls compared with the cases, however, no association risk was observed. The observed risk of carrying Val/Val genotype among the cases was approximately six times that of the controls. Individuals with ASD showed a significant diminished level of reduced glutathione, however, the distribution of GSTT1, GSTM1, and GSTP1 polymorphisms was not found to be associated with autism in this study population.
Determination of genetic diversity among Saccharina germplasm using ISSR and RAPD markers.
Cui, Cuiju; Li, Yan; Liu, Yanling; Li, Xiaojie; Luo, Shiju; Zhang, Zhuangzhi; Wu, Ruina; Liang, Guangjin; Sun, Juan; Peng, Jie; Tian, Pingping
2017-02-01
Various species of genus Saccharina are economically important brown macroalgae cultivated in China. The genetic background of the conserved Saccharina germplasm was not clear. In this report, DNA-based molecular markers such as inter simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD) were used to assess the genetic diversity and phylogenetic relationships among 48 Saccharina germplasms. A total of 50 ISSR and 50 RAPD primers were tested, of which only 33 polymorphic primers (17 ISSR and 16 RAPD) had an amplified clear and reproducible profile, and could be used. Seventeen ISSR primers yielded a total of 262 bands, of which 256 were polymorphic, and 15.06 polymorphic bands per primer were amplified from 48 kelp gametophytes. Sixteen RAPD primers produced 355 bands, of which 352 were polymorphic, and 22 polymorphic bands per primer were observed across 48 individuals. The simple matching coefficient of ISSR, RAPD and pooled ISSR and RAPD dendrograms ranged from 0.568 to 0.885, 0.670 to 0.873, and 0.667 to 0.862, revealing high genetic diversity. Based on the unweighted pair group method with the arithmetic averaging algorithm (UPGMA) cluster analysis and the principal components analysis (PCA) of ISSR data, the 48 gametophytes were divided into three main groups. The Mantel test revealed a similar polymorphism distribution pattern between ISSR and RAPD markers, the correlation coefficient r was 0.62, and the results indicated that both ISSR and RAPD markers were effective to assess the selected gametophytes, while matrix correlation of the ISSR marker system (r=0.78) was better than that of the RAPD marker system (r=0.64). Genetic analysis data from this study were helpful in understanding the genetic relationships among the selected 17 kelp varieties (or lines) and provided guidance for molecular-assisted selection for parental gametophytes of hybrid kelp breeding. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A
2010-11-01
Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.
Zheng, Yanying; Liu, Li; Sun, Yi; Chen, Jie; Wang, Jianrong; Zhu, Changle; Lai, Rensheng; Xie, Ling
2016-07-30
BAT-26 is one of the representative markers for microsatellite instability evaluation and presents different polymorphisms in different ethnic populations. The current knowledge of its comparative polymorphism between healthy individuals and cancer patients in the Chinese population is insufficient. This study aims to analyze germline polymorphic variations of BAT-26 between healthy individuals and cancer patients in Chinese from Jiangsu province and the associated cancer risk implications. The various BAT-26 alleles and their percentages in cervical cells from 500 healthy women were assessed by direct sequencing. Twenty of these samples were also analyzed by fragment analysis. BAT-26 of blood DNA from 24 healthy individuals and 247 cancer patients was analyzed by fragment analysis. Compared with the sequencing results, 122.6-122.9 bp, 123.4-123.8 bp and 124.1-124.8 bp corresponded to the A25, A26 and A27 alleles, respectively. The 524 healthy individuals showed 4.58%, 92.18% and 3.24% of A25, A26 and A27, respectively. The variant alleles A18, A24, A28, A29 and A32 were only found in cancer patients, accounting for 0.81%, 0.40%, 0.40%, 0.40% and 0.40%, respectively; the A25, A26 and A27 alleles in cancer patients accounted for 6.48%, 77.33% and 13.77%. Healthy individuals had a stable BAT-26 profile within the quasimonomorphic variation range (QMVR), but cancer patients harbored variant alleles outside QMVR and showed a trend from quasimonomorph to polymonomorph, suggesting that variant alleles of BAT-26 in germline cells may be regarded as a potential marker of higher cancer risk in the Chinese population from Jiangsu province.
Mitchell M. Sewell; Bradley K. Sherman; David B. Neale
1998-01-01
A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation out bred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent...
Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo
2014-08-01
Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.
Williams, I.; Guzzetti, B.M.; Gust, Judy R.; Sage, G.K.; Gill, Robert E.; Tibbitts, T.L.; Sonsthagen, S.A.; Talbot, S.L.
2012-01-01
We developed microsatellite loci for demographic assessments of shorebirds, a group with limited markers. First, we isolated five dinucleotide repeat microsatellite loci from the Black Oystercatcher (Haematopodidae: Haematopus bachmani), and three from the Bristle-thighed Curlew (Scolopacidae: Numenius tahitiensis); both species are of conservation concern. All eight loci were polymorphic in their respective target species. Hbaμ loci were characterized by two to three alleles with observed heterozygosity ranging from 0.07 to 0.33, and two to nine alleles were detected for Nut loci with observed heterozygosity ranging from 0.08 to 0.72. No linkage disequilibrium or departures from Hardy–Weinberg equilibrium were observed. The eight loci were also tested for cross-species amplification in 12 other species within Charadriidae and Scolopacidae, and the results demonstrated transferability across several genera. We further tested all 14 species at 12 additional microsatellite markers developed for other shorebirds: Dunlin (Calidris alpina; four loci) and Ruff (Philomachus pugnax; eight loci). Two markers (Hbaμ4 and Ruff6) were polymorphic in 13 species, while two (Calp6 and Ruff9) were monomorphic. The remaining eight markers revealed polymorphism in one to nine species each. Our results provide further evidence that locus Ruff10 is sex-linked, contrary to the initial description. These markers can be used to enhance our understanding of shorebird biology by, for example, helping to determine migratory connectivity among breeding and wintering populations and detecting relatedness among individuals.
2012-01-01
Background There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. Findings We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. Conclusions The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders. PMID:22818284
An, Baoguang; Deng, Xiaolong; Shi, Huiyun; Ding, Meng; Lan, Jie; Yang, Jing; Li, Yangsheng
2014-02-01
Rice leaffolder, Cnaphalocrocis medinalis (Guenée), is a destructive and widespread pest on rice. In this study, 20 microsatellite markers were isolated and characterized from C. medinalis partial genomic libraries using the method of fast isolation by AFLP of sequence containing repeats. Of these markers, 18 markers displayed polymorphisms. Polymorphisms were evaluated in 48 individuals from two natural populations. The number of alleles per locus ranged from 2 to 15, and the expected and observed heterozygosities ranged from 0.324 to 0.934 and from 0.304 to 0.917, respectively. Cross-species amplification was also performed to test the transferability of the 20 microsatellite markers and a moderate level of cross amplication was observed across the three species of Pyralididae (26.67 %). These microsatellite loci would facilitate the future study on population genetics and molecular genetics of rice leaffolder and would also be useful for study in Chilo suppressalis, Scirpophaga incertulas and Pyrausta nubilalis.
Harpke, Doerte; Peterson, Angela
2008-05-01
The internal transcribed spacer (ITS) region (ITS1, 5.8S rDNA, ITS2) represents the most widely applied nuclear marker in eukaryotic phylogenetics. Although this region has been assumed to evolve in concert, the number of investigations revealing high degrees of intra-individual polymorphism connected with the presence of pseudogenes has risen. The 5.8S rDNA is the most important diagnostic marker for functionality of the ITS region. In Mammillaria, intra-individual 5.8S rDNA polymorphisms of up to 36% and up to nine different types have been found. Twenty-eight of 30 cloned genomic Mammillaria sequences were identified as putative pseudogenes. For the identification of pseudogenic ITS regions, in addition to formal tests based on substitution rates, we attempted to focus on functional features of the 5.8S rDNA (5.8S motif, secondary structure). The importance of functional data for the identification of pseudogenes is outlined and discussed. The identification of pseudogenes is essential, because they may cause erroneous phylogenies and taxonomic problems.
Li, Rong; Yang, Jie; Yang, Junbo; Dao, Zhiling
2012-01-01
Twenty-one microsatellite markers from the genome of Cardiocrinum giganteum var. yunnanense, an important economic plant in China, were developed with a fast isolation protocol by amplified fragment length polymorphism of sequences containing repeats (FIASCO). Polymorphism within each locus was assessed in 24 wild individuals from Gaoligong Mountains in western Yunnan Province, China. The number of alleles per locus ranged from 2 to 4 with a mean of 2.9. The expected and observed levels of heterozygosity ranged from 0.042 to 0.726 and from 0.000 to 1.000, with averages of 0.44 and 0.31, respectively. These polymorphic microsatellite markers should prove useful in population genetics studies and assessments of genetic variation to develop conservation and management strategies for this species. PMID:22408400
Novel microsatellite loci for Agave parryi and cross-amplification in Agave palmeri (Agavaceae).
Lindsay, Denise L; Edwards, Christine E; Jung, Michael G; Bailey, Pamela; Lance, Richard F
2012-07-01
To examine the foraging behavior of nectarivorous bats in southeastern Arizona, we developed microsatellite primers in Agave parryi. These markers were also tested for cross-amplification and applicability to assess patterns of genetic diversity and structure in A. palmeri. Utilizing DNA sequence data from 454 shotgun sequencing, we identified seven novel polymorphic microsatellite loci in A. parryi and screened them for cross-amplification in A. palmeri. These markers were characterized in two populations of 30 individuals each for each species. In A. parryi, all primers were polymorphic and amplified between three and 12 alleles per population. In A. palmeri, all primers amplified, six were polymorphic, and allelic diversity ranged from one to 16 alleles per population. Our results demonstrate the applicability of these microsatellite primers for population genetics studies in both A. parryi and A. palmeri.
Saxena, Raghvendra; Chandra, Amaresh
2011-11-01
Transferability of sequence-tagged-sites (STS) markers was assessed for genetic relationships study among accessions of marvel grass (Dichanthium annulatum Forsk.). In total, 17 STS primers of Stylosanthes origin were tested for their reactivity with thirty accessions of Dichanthium annulatum. Of these, 14 (82.4%) reacted and a total 106 (84 polymorphic) bands were scored. The number of bands generated by individual primer pairs ranged from 4 to 11 with an average of 7.57 bands, whereas polymorphic bands ranged from 4 to 9 with an average of 6.0 bands accounts to an average polymorphism of 80.1%. Polymorphic information content (PIC) ranged from 0.222 to 0.499 and marker index (MI) from 1.33 to 4.49. Utilizing Dice coefficient of genetic similarity dendrogram was generated through un-weighted pairgroup method with arithmetic mean (UPGMA) algorithm. Further, clustering through sequential agglomerative hierarchical and nested (SAHN) method resulted three main clusters constituted all accessions except IGBANG-D-2. Though there was intermixing of few accessions of one agro-climatic region to another, largely groupings of accessions were with their regions of collections. Bootstrap analysis at 1000 scale also showed large number of nodes (11 to 17) having strong clustering (> 50). Thus, results demonstrate the utility of STS markers of Stylosanthes in studying the genetic relationships among accessions of Dichanthium.
Herrera, C M; Bazaga, P
2011-04-01
Individual variation in ecologically important features of organisms is a crucial element in ecology and evolution, yet disentangling its underlying causes is difficult in natural populations. We applied a genomic scan approach using amplified fragment length polymorphism (AFLP) markers to quantify the genetic basis of long-term individual differences in herbivory by mammals at a wild population of the violet Viola cazorlensis monitored for two decades. In addition, methylation-sensitive amplified polymorphism (MSAP) analyses were used to investigate the association between browsing damage and epigenetic characteristics of individuals, an aspect that has been not previously explored for any wild plant. Structural equation modelling was used to identify likely causal structures linking genotypes, epigenotypes and herbivory. Individuals of V. cazorlensis differed widely in the incidence of browsing mammals over the 20-year study period. Six AFLP markers (1.6% of total) were significantly related to herbivory, accounting altogether for 44% of population-wide variance in herbivory levels. MSAP analyses revealed considerable epigenetic variation among individuals, and differential browsing damage was significantly related to variation in multilocus epigenotypes. In addition, variation across plants in epigenetic characteristics was related to variation in several herbivory-related AFLP markers. Statistical comparison of alternative causal models suggested that individual differences in herbivory are the outcome of a complex causal structure where genotypes and epigenotypes are interconnected and have direct and indirect effects on herbivory. Insofar as methylation states of MSAP markers influential on herbivory are transgenerationally heritable, herbivore-driven evolutionary changes at the study population will involve correlated changes in genotypic and epigenotypic distributions. © 2011 Blackwell Publishing Ltd.
Yang, Wanyun; Zheng, Junjun; Jia, Boyin; Wei, Haijun; Wang, Guiwu; Yang, Fuhe
2018-02-15
Every part of the sika deer (Cervus nippon) body is valuable traditional Chinese medicine. And sika deer is the most important semi-domestic medicinal animal that is widely bred in Jilin province northeast of China. But few studies had been conducted to characterize the microsatellite markers derived from sika deer. We firstly used IlluminaHiSeq™2500 sequencing technology obtained 125Mbp genomic data of sika deer. Using microsatellite identification tool (MISA), 22,479 microsatellites were identified. From these data, 100 potential primers were selected for further polymorphic validation, finally, 76 primer pairs were successfully amplified and 29 primer pairs were found to be obvious polymorphic in 8 different individuals. Using those polymorphic microsatellite markers, we analyzed the genetic diversity of Jilin sika deer population. The mean number of alleles of the 29 loci is 9.31 based on genotyping blood DNA from 96 Jilin sika deer; The mean expected heterozygosity and polymorphic information content (PIC) value of the 29 loci is 0.72 and 0.68 respectively, and among which 26 loci are highly polymorphic (PIC>0.50). According to the electrophoretic results and PIC value of these 29 loci, 10 loci with combined paternity exclusion probabilities>99.99% were selected to use in parentage verification for 16 sika deer. All the offspring of a family could be successfully assigned to their biological father. These microsatellite markers generated in this study could greatly facilitate future studies of molecular breeding in sika deer. Copyright © 2017 Elsevier B.V. All rights reserved.
Campbell, Daniel B; Datta, Dibyadeep; Jones, Shaine T; Batey Lee, Evon; Sutcliffe, James S; Hammock, Elizabeth A D; Levitt, Pat
2011-06-01
Autism spectrum disorder (ASD) is characterized by core deficits in social behavior, communication, and behavioral flexibility. Several lines of evidence indicate that oxytocin, signaling through its receptor (OXTR), is important in a wide range of social behaviors. In attempts to determine whether genetic variations in the oxytocin signaling system contribute to ASD susceptibility, seven recent reports indicated association of common genetic polymorphisms in the OXTR gene with ASD. Each involved relatively small sample sizes (57 to 436 families) and, where it was examined, failed to identify association of OXTR polymorphisms with measures of social behavior in individuals with ASD. We report genetic association analysis of 25 markers spanning the OXTR locus in 1,238 pedigrees including 2,333 individuals with ASD. Association of three markers previously implicated in ASD susceptibility, rs2268493 (P = 0.043), rs1042778 (P = 0.037), and rs7632287 (P = 0.016), was observed. Further, these genetic markers were associated with multiple core ASD phenotypes, including social domain dysfunction, measured by standardized instruments used to diagnose and describe ASD. The data suggest association of OXTR genetic polymorphisms with ASD, although the results should be interpreted with caution because none of the significant associations would survive appropriate correction for multiple comparisons. However, the current findings of association in a large independent cohort are consistent with previous results, and the biological plausibility of participation of the oxytocin signaling system in modulating social disruptions characteristic of ASD, suggest that functional polymorphisms of OXTR may contribute to ASD risk in a subset of families.
Assessing Date Palm Genetic Diversity Using Different Molecular Markers.
Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S
2017-01-01
Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.
Al-Khalifah, Nasser S; Shanavaskhan, A E
2017-01-01
Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.
Yuan, Y; Shangguan, J B; Li, Z B; Ning, Y F; Huang, Y S; Li, B B; Mao, X Q
2015-11-30
Until recently, Fenneropenaeus penicillatus was considered a commercial shrimp species. However, in 2005, it was included on the Red List as an endangered species by the Chinese government. In this study, 19 new microsatellite markers in F. penicillatus were developed and tested in samples of 32 wild individuals from Nanao, China. Twelve loci were polymorphic and 7 were monomorphic. Of the 12 polymorphic loci, the number of alleles per locus ranged from 3 to 6, with an average of 4.42 alleles per locus. The polymorphism information content ranged from 0.302 to 0.670, with a mean of 0.4817. The observed and expected heterozygosities ranged from 0.2250 to 0.8889 and from 0.1111 to 0.7750, respectively. Significant deviations from Hardy-Weinberg equilibrium (HWE, adjusted P < 0.0042) after a Bonferroni correction were observed in 3 loci (NA-9, NA-57, and NA-64), whereas the other 9 loci were in HWE. These new microsatellite markers will be useful in further research on the population genetic structure of F. penicillatus.
Microsatellite markers for Senna spectabilis var. excelsa (Caesalpinioideae, Fabaceae)1
López-Roberts, M. Cristina; Barbosa, Ariane R.; Paganucci de Queiroz, Luciano; van den Berg, Cássio
2016-01-01
Premise of the study: Senna spectabilis var. excelsa (Fabaceae) is a South and Central American tree of great ecological importance and one of the most common species in several sites of seasonally dry forests. Our goal was to develop microsatellite markers to assess the genetic diversity and structure of this species. Methods and Results: We designed and assessed 53 loci obtained from a microsatellite-enriched library and an intersimple sequence repeat library. Fourteen loci were polymorphic, and they presented a total of 39 alleles in a sample of 61 individuals from six populations. The mean values of observed and expected heterozygosities were 0.355 and 0.479, respectively. Polymorphism information content was 0.390 and the Shannon index was 0.778. Conclusions: Polymorphism information content and Shannon index indicate that at least nine of the 14 microsatellite loci developed are moderate to highly informative, and potentially useful for population genetic studies in this species. PMID:26819856
[Helgoland (Germany): hemogenetic study of an island population].
Schmidt, H D; Scheil, H G; Winkelbauer, S
2001-03-01
24 haemogenetic markers (5 erythrocyte antigenes, 6 polymorphisms of serum proteins, 12 polymorphisms of red cell enzymes) had been studied in up to 80 individuals from the island of Helgoland (Germany). The cluster analysis separates clearly the Helgoland sample from the neighbouring populations as well as from European standard data. This special position is interpreted partly by genetic peculiarities developed in the course of time, partly as a consequence of genetic drift.
Tascioglu, Tulin; Metin, Ozge Karakas; Aydin, Yildiz; Sakiroglu, Muhammet; Akan, Kadir; Uncuoglu, Ahu Altinkut
2016-08-01
Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.
Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, I.; Lai, P.S.; Ouah, T.C.
1994-09-01
The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1more » = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.« less
Tracing Asian Seabass Individuals to Single Fish Farms Using Microsatellites
Yue, Gen Hua; Xia, Jun Hong; Liu, Peng; Liu, Feng; Sun, Fei; Lin, Grace
2012-01-01
Traceability through physical labels is well established, but it is not highly reliable as physical labels can be easily changed or lost. Application of DNA markers to the traceability of food plays an increasingly important role for consumer protection and confidence building. In this study, we tested the efficiency of 16 polymorphic microsatellites and their combinations for tracing 368 fish to four populations where they originated. Using the maximum likelihood and Bayesian methods, three most efficient microsatellites were required to assign over 95% of fish to the correct populations. Selection of markers based on the assignment score estimated with the software WHICHLOCI was most effective in choosing markers for individual assignment, followed by the selection based on the allele number of individual markers. By combining rapid DNA extraction, and high-throughput genotyping of selected microsatellites, it is possible to conduct routine genetic traceability with high accuracy in Asian seabass. PMID:23285169
Microsatellite primers for vulnerable seagrass Halophila beccarii (Hydrocharitaceae).
Jiang, Kai; Shi, Yi-Su; Zhang, Jian; Xu, Na-Na
2011-06-01
Polymorphic microsatellite primers were developed in the vulnerable seagrass Halophila beccarii to investigate genetic variation and provide necessary markers for studying its population genetic structure. Six polymorphic and six monomorphic microsatellite loci were developed in H. beccarii. Most loci were successfully amplified across 40 H. beccarii individuals collected from three populations from coastal regions of southern China. Two to four alleles per locus were observed at the six polymorphic loci. The highest expected heterozygosity was 0.5737. The results demonstrate low levels of polymorphism in H. beccarii from coastal regions of southern China. They also illustrate that these primers may be useful for studying the mating system and population genetics of H. beccarii on a global scale.
Campbell, Nathan R.; LaPatra, Scott E.; Overturf, Ken; Towner, Richard; Narum, Shawn R.
2014-01-01
Recent advances in genotyping-by-sequencing have enabled genome-wide association studies in nonmodel species including those in aquaculture programs. As with other aquaculture species, rainbow trout and steelhead (Oncorhynchus mykiss) are susceptible to disease and outbreaks can lead to significant losses. Fish culturists have therefore been pursuing strategies to prevent losses to common pathogens such as Flavobacterium psychrophilum (the etiological agent for bacterial cold water disease [CWD]) and infectious hematopoietic necrosis virus (IHNV) by adjusting feed formulations, vaccine development, and selective breeding. However, discovery of genetic markers linked to disease resistance offers the potential to use marker-assisted selection to increase resistance and reduce outbreaks. For this study we sampled juvenile fish from 40 families from 2-yr classes that either survived or died after controlled exposure to either CWD or IHNV. Restriction site−associated DNA sequencing produced 4661 polymorphic single-nucleotide polymorphism loci after strict filtering. Genotypes from individual survivors and mortalities were then used to test for association between disease resistance and genotype at each locus using the program TASSEL. After we accounted for kinship and stratification of the samples, tests revealed 12 single-nucleotide polymorphism markers that were highly associated with resistance to CWD and 19 markers associated with resistance to IHNV. These markers are candidates for further investigation and are expected to be useful for marker assisted selection in future broodstock selection for various aquaculture programs. PMID:25354781
Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine
2013-08-01
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis.
Farhat, S B; de Souza, C M; Braosi, A P R; Kim, S H; Tramontina, V A; Papalexiou, V; Olandoski, M; Mira, M T; Luczyszyn, S M; Trevilatto, P C
2017-04-01
Interleukin-6 (IL-6) is a powerful stimulator of osteoclast differentiation and bone resorption. Production of IL-6 is modulated by polymorphisms, and higher levels of this cytokine are found locally in patients with chronic periodontitis. In this study we performed a modern approach - Complete physical mapping of the IL6 gene - to identify the polymorphisms associated with chronic periodontitis in a southern Brazilian population sample. One-hundred and nine individuals of both genders (mean age: 41.5 ± 8.5 years) were divided into a study group (56 participants with periodontitis) and a control group (53 individuals without periodontitis). After collection and purification of DNA, nine tag single nucleotide polymorphisms (SNPs; rs1524107, rs2069835, rs2069837, rs2069838, rs2069840, rs2069842, rs2069843, rs2069845 and rs2069849) covering the entire gene were selected according to the information available on the International HapMap Project website and evaluated using real-time PCR. Differences in the distribution of the following parameters were statistically significant between study and control groups: number of teeth (p = 0.030); probing depth (p < 0.001); clinical attachment level (p < 0.001); gingival index (p < 0.001); plaque index (p = 0.003); calculus index (p < 0.001); and dental mobility (p < 0.001). It was found that marker rs2069837 (located in intron 2 of IL6) under G dominant was associated with protection against chronic periodontitis in a Brazilian population in the presence of clinical variables, such as visible plaque, dentist visit frequency and dental floss use, and was suggested for the first time as a marker of susceptibility to chronic periodontitis. Complete physical mapping of IL6 (using tag SNPs) was carried out for the first time, unveiling allele G of polymorphism rs2069837 (located in the second intron of IL6) as a suggestive marker of protection against chronic periodontitis in a Brazilian population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.
Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less
Yang, G; Ding, J; Wu, L R; Duan, Y D; Li, A Y; Shan, J Y; Wu, Y X
2015-03-13
DNA fingerprinting is both a popular and important technique with several advantages in plant cultivar identification. However, this technique has not been used widely and efficiently in practical plant identification because the analysis and recording of data generated from fingerprinting and genotyping are tedious and difficult. We developed a novel approach known as a cultivar identification diagram (CID) strategy that uses DNA markers to separate plant individuals in a more efficient, practical, and referable manner. A CID was manually constructed and a polymorphic marker was generated from each polymerase chain reaction for sample separation. In this study, 67 important sea buckthorn cultivars cultivated in China were successfully separated with random amplified polymorphic DNA markers using the CID analysis strategy, with only seven 11-nucleotide primers employed. The utilization of the CID of these 67 sea buckthorn cultivars was verified by identifying 2 randomly chosen groups of cultivars among the 67 cultivars. The main advantages of this identification strategy include fewer primers used and separation of all cultivars using the corresponding primers. This sea buckthorn CID was able to separate any sea buckthorn cultivars among the 67 studied, which is useful for sea buckthorn cultivar identification, cultivar-right-protection, and for the sea buckthorn nursery industry in China.
Identification of apple cultivars on the basis of simple sequence repeat markers.
Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y
2014-09-12
DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.
Genetic variation at microsatellite loci in the tropical herb Aphelandra aurantiaca (Acanthaceae).
Suárez-Montes, Pilar; Tapia-López, Rosalinda; Núñez-Farfán, Juan
2015-11-01
To assess the effect of forest fragmentation on genetic variation and population structure of Aphelandra aurantiaca (Acanthaceae), a tropical and ornamental herbaceous perennial plant, we developed the first microsatellite primers for the species. Fourteen microsatellite markers were isolated and characterized from A. aurantiaca genomic libraries enriched for di-, tri-, and tetranucleotide repeat motifs. Polymorphism was evaluated in 107 individuals from four natural populations. Twelve out of 14 genetic markers were polymorphic. The number of alleles per locus ranged from two to 12, and the observed and expected heterozygosities ranged from 0.22 to 0.96 and from 0.20 to 0.87, respectively. Fixation indices ranged from -0.41 to 0.44. These newly developed microsatellite markers for A. aurantiaca will be useful for future population genetic studies, specifically to detect the possible loss of genetic diversity due to habitat fragmentation.
Chiang, Yu-Chung; Tsai, Chi-Chu; Hsu, Tsai-Wen; Chou, Chang-Hung
2012-11-01
Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.
Ferreira Palha, Teresinha de Jesus Brabo; Ribeiro Rodrigues, Elzemar Martins; Cavalcante, Giovanna Chaves; Marrero, Andrea; de Souza, Ilíada Rainha; Seki Uehara, Clineu Julien; Silveira da Motta, Carlos Henrique Ares; Koshikene, Daniela; da Silva, Dayse Aparecida; de Carvalho, Elizeu Fagundes; Chemale, Gustavo; Freitas, Jorge M; Alexandre, Lídia; Paranaiba, Renato T F; Soler, Mirella Perruccio; Santos, Sidney
2015-11-01
The aim of this study was to estimate the diversity of 30 insertion/deletion (INDEL) markers (Investigator(®) DIPplex kit) in a sample of 519 individuals from six Brazilian states and to evaluate their applicability in forensic genetics. All INDEL markers were found to be highly polymorphic in the Brazilian population and were in Hardy-Weinberg equilibrium. To determine their forensic suitability in the Brazilian population, the markers were evaluated for discrimination power, match probability and exclusion power. The combined discrimination power (CDP), combined match power (CMP) and combined power of exclusion (CPE) were higher than 0.999999, 3.4 × 10(-13) and 0.9973, respectively. Further comparison of 29 worldwide populations revealed significant genetic differences between continental populations and a closer relationship between the Brazilian and European populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Development and characterization of EST-SSR markers for Artocarpus hypargyreus (Moraceae)1
Liu, Haijun; Tan, Weizheng; Sun, Hongbin; Liu, Yu; Meng, Kaikai; Liao, Wenbo
2016-01-01
Premise of the study: Polymorphic microsatellite markers were developed for Artocarpus hypargyreus (Moraceae), a threatened species endemic to China, to investigate the genetic diversity and structure of the species. Methods and Results: Based on the transcriptome data of A. hypargyreus, 63 primer pairs were preliminarily designed and tested, of which 34 were successfully amplified and 10 displayed clear polymorphisms across the 67 individuals from four populations of A. hypargyreus. The results showed the number of alleles per locus ranged from three to 10, and the observed heterozygosity and expected heterozygosity per locus varied from 0.000 to 0.706 and from 0.328 to 0.807, respectively. Conclusions: These microsatellite markers will be useful in exploring genetic diversity and structure of A. hypargyreus. Furthermore, most loci were successfully cross-amplified in A. nitidus and A. heterophyllus, indicating that they will be of great value for genetic study across this genus. PMID:28101438
Development and characterization of EST-SSR markers for Artocarpus hypargyreus (Moraceae).
Liu, Haijun; Tan, Weizheng; Sun, Hongbin; Liu, Yu; Meng, Kaikai; Liao, Wenbo
2016-12-01
Polymorphic microsatellite markers were developed for Artocarpus hypargyreus (Moraceae), a threatened species endemic to China, to investigate the genetic diversity and structure of the species. Based on the transcriptome data of A. hypargyreus , 63 primer pairs were preliminarily designed and tested, of which 34 were successfully amplified and 10 displayed clear polymorphisms across the 67 individuals from four populations of A. hypargyreus . The results showed the number of alleles per locus ranged from three to 10, and the observed heterozygosity and expected heterozygosity per locus varied from 0.000 to 0.706 and from 0.328 to 0.807, respectively. These microsatellite markers will be useful in exploring genetic diversity and structure of A. hypargyreus . Furthermore, most loci were successfully cross-amplified in A. nitidus and A. heterophyllus , indicating that they will be of great value for genetic study across this genus.
[Paternity study in Chilean families using DNA fingerprints and erythrocyte blood markers].
Aguirre, R; Blanco, R; Cifuentes, L; Chiffelle, I; Armanet, L; Vargas, J; Jara, L
1992-10-01
In the last decade, the electromorphic phenotype corresponding to extremely polymorphic zones of DNA, that include variable number of tandem repeat loci (VNTR) of oligonucleotide sequences, have been added to classical markers to elucidate the problems of parenthood identification and ascription in human beings. Using VNTR of several loci, a band profile practically unique for each individual is obtained (DNA-fingerprints). Since the pattern of VNTR electrophoretic bands is inherited from parents in a proportion of 50% from each one, this system is extremely useful for paternity ascription or exclusion. Nine nuclear families were studied, randomly selected from a group of 170 families that were analyzed using 5 erythrocyte genetic markers and with VNTRs detected using the multi locus probe (CAC)5, aiming to explore the concordance of both methods. Results were similar for both methods; however for VNTR, there is no information available on population frequency of polymorphisms.
Use of DNA markers in forest tree improvement research
D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall
1992-01-01
DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...
Gravley, Megan C.; Sage, George K.; Talbot, Sandra L.; Carlson, Matthew L.
2018-01-01
Codominant marker systems are better suited to analyze population structure and assess the source of an individual in admixture analyses. Currently, there is no codominant marker system using microsatellites developed for the sea sandwort, Honckenya peploides (L.) Ehrh., an early colonizer in island systems. We developed and characterized novel microsatellite loci from H. peploides, using reads collected from whole genome shotgun sequencing on a 454 platform. The combined output from two shotgun runs yielded a total of 62,669 reads, from which 58 loci were screened. We identified 12 polymorphic loci that amplified reliably and exhibited disomic inheritance. Microsatellite data were collected and characterized for the 12 polymorphic loci in two Alaskan populations of H. peploides: Fossil Beach, Kodiak Island (n = 32) and Egg Bay, Atka Island (n = 29). The Atka population exhibited a slightly higher average number of alleles (3.9) and observed heterozygosity (0.483) than the Kodiak population (3.3 and 0.347, respectively). The overall probability of identity values for both populations was PID = 2.892e−6 and PIDsib = 3.361e−3. We also screened the 12 polymorphic loci in Wilhelmsia physodes (Fisch. ex Ser.) McNeill, the most closely related species to H. peploides, and only one locus was polymorphic. These microsatellite markers will allow future investigations into population genetic and colonization patterns of the beach dune ruderal H. peploides on new and recently disturbed islands.
Kalyana Babu, B; Sood, Salej; Kumar, Dinesh; Joshi, Anjeli; Pattanayak, A; Kant, Lakshmi; Upadhyaya, H D
2018-02-01
Barnyard millet ( Echinochloa spp.) is an important crop from nutritional point of view, nevertheless, the genetic information is very scarce. In the present investigation, rice and finger millet genomic SSRs were used for assessing cross transferability, identification of polymorphic markers, syntenic regions, genetic diversity and population structure analysis of barnyard millet genotypes. We observed 100% cross transferability for finger millet SSRs, of which 91% were polymorphic, while 71% of rice markers were cross transferable with 48% polymorphic out of them. Twenty-nine and sixteen highly polymorphic finger millet and rice SSRs yielded a mean of 4.3 and 3.38 alleles per locus in barnyard millet genotypes, respectively. The PIC values varied from 0.27 to 0.73 at an average of 0.54 for finger millet SSRs, whereas it was from 0.15 to 0.67 at an average of 0.44 for rice SSRs. High synteny was observed for markers related to panicle length, yield-related traits, spikelet fertility, plant height, root traits, leaf senescence, blast and brown plant hopper resistance. Although the rice SSRs located on chromosome 10 followed by chromosome 6 and 11 were found to be more transferable to barnyard millet, the finger millet SSRs were more polymorphic and transferable to barnyard millet genotypes. These SSR data of finger millet and rice individually as well as combined together grouped the 11 barnyard millet genotypes into 2 major clusters. The results of population structure analysis were similar to cluster analysis.
2010-01-01
Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. Conclusions The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species. PMID:20712870
Huang, Hui-Run; Shu, Wen-Sheng; Mao, Zhi-Bin; Ge, Xue-Jun
2008-09-01
Sedum alfredii is a Zn/Cd hyperaccumulator distributed in East Asia. A total of eight polymorphic microsatellite markers were developed. These loci were screened in 25 individuals from one heavy metal-tolerant population and one nontolerant population, respectively. The average allele number of these markers was 5.25 per locus, ranging from two to nine. Population-specific alleles were found at each locus. The observed and expected heterozygosities ranged from 0.000 to 0.640 and from 0.451 to 0.819. Significant deviation from Hardy-Weinberg equilibrium was detected at both the species and the population level. No significant linkage disequilibrium was detected at population level. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R
2013-07-01
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.
cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1
Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.
2014-01-01
• Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636
cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications.
Wani, Gowher A; Shah, Manzoor A; Reshi, Zafar A; Atangana, Alain R; Khasa, Damase P
2014-07-01
A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.
Spoon, Tracey R; Kesseli, Rick V
2008-09-01
We developed 16 microsatellite markers in Cordia bifurcata, a Central and South American shrub. The markers show low polymorphism in C. bifurcata, a species suspected of self-fertilization or apomixis. Of four polymorphic loci, three had only two alleles. However, current research indicates that these markers hold value for interpopulational comparisons of C. bifurcata and for analyses of congeners. In Cordia inermis, a dioecious or subdioecious shrub, seven of the markers produced interpretable amplification products of which five showed polymorphism. In Cordia pringlei, a distylous shrub, nine of the markers produced interpretable amplification products of which six showed polymorphism. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Alfimova, M V; Monakhov, M V; Abramova, L I; Golubev, S A; Golimbet, V E
2010-10-01
Associations between polymorphisms in the T102C and A-1438G loci of the 5-HTR2A and the P1763 and P1578 markers of the DTNBP1 gene with the overall productivity and individual subprocesses of shortterm verbal memory were studied in 4-5 patients with schizophrenia and 290 healthy subjects. Subjects were asked to reproduce immediately two lists of 10 words. The overall productivity of reproduction was assessed, along with the reproduction productivity of the first list (immediate memory or general attention), the effect of proactive interference, and the number of intrusions. Patients were significantly different from controls on all measures. Patients showed decreases in overall task performance productivity, in immediate memory productivity, and in the effect of proactive interference; fewer intrusions were seen. Both markers of the 5-HTR2A gene were associated with short-term memory productivity in the combined cohort: assessments were worse in T102C CC and A-1438G GG homozygotes. The P1763 marker of the DTNBP1 gene, conversely, had significant influences on the memory subprocesses reflected in the levels of interference and intrusions but had insignificant influence on overall productivity. Homozygotes for P1763G GG had the worst parameters. Overall, these data are consistent with the concept that these polymorphic genes are involved in different subprocesses of short-term memory both in normal subjects and in patients with schizophrenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amosenko, F.A.; Sazonova, M.A.; Kapranov, N.I.
1995-04-01
Allelic frequencies of three polymorphic markers in the CFTR gene were estimated on chromosomes derived from cystic fibrosis (CF) patients and healthy donors from Moscow and the Moscow region. These polymorphic markers are tetranucleotide tandem repeats GATT in intron 6B, M470V in exon 10, and T854T in exon 14 (fragment A). Frequencies at allele 1 of the M470V marker, along with allele 2 of GATT and T854T, are two times higher for CF patients without {Delta}F508 mutation than for healthy donors, and there is linkage disequilibrium of these alleles of the polymorphic markers analyzed with the CF gene. Allele 1more » of M470V and T854T markers, as well as allele 2 of the GATT marker (six repeats), are absolutely linked to mutation F508 of the CFTR gene. Using the polymorphic markers studied, family analysis of CF was carried out in two families. 10 refs., 1 fig., 1 tab.« less
Refined genetic mapping of X-linked Charcot-Marie-Tooth neuropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fain, P.R.; Barker, D.F.; Chance, P.F.
1994-02-01
Genetic linkage studies were conducted in four multigenerational families with X-linked Charcot-Marie-Tooth disease (CMTX), using 12 highly polymorphic short-tandem-repeat markers for the pericentromeric region of the X Chromosome. Pairwise linkage analysis with individual markers confirmed tight linkage of CMTX to the pericentromeric region in each family. Multipoint analyses strongly support the order DXS337-CMTX-DXS441-(DXS56, PGK1). 38 refs., 2 figs., 1 tab.
Soares, A N R; Vitória, M F; Nascimento, A L S; Ledo, A S; Rabbani, A R C; Silva, A V C
2016-08-19
Mangaba (Hancornia speciosa Gomes) is found in areas of coastal tablelands in the Brazilian Northeast and Cerrado regions. This species has been subjected to habitat fragmentation that is mainly due to human activity, and requires conservation strategies. The aim of this study was to analyze the structure and inter- and intrapopulation genetic diversity of natural populations of H. speciosa Gomes using inter-simple sequence repeat (ISSR) molecular markers. A total of 155 individuals were sampled in 10 natural populations (ITA, PAC, IND, EST, BC, PIR, JAP, BG, NEO, and SANT) in the State of Sergipe, Brazil. Fifteen primers were used to generate 162 fragments with 100% polymorphism. Genetic analysis showed that the variability between populations (77%) was higher than within populations (23%). It was possible to identify five different groups by the unweighted pair group method with arithmetic mean and principal coordinate analysis, and only one individual (E10) remained isolated. Using ISSR markers it was possible to obtain a molecular profile of the populations evaluated, showing that these markers were effective and exhibited sufficient polymorphism to estimate the genetic variability of natural populations of H. speciosa Gomes.
Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)
Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.
2007-01-01
Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.
Amplified fragment length polymorphism (AFLP) markers can be developed more quickly and at a lower cost than microsatellite and single nucleotide polymorphism markers, which makes them ideal markers for large-scale studies of understudied taxa — such as species at risk. However,...
Kang, Jung-Ha; Park, Jung-Youn; Jo, Hyun-Su
2012-01-01
The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1-10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy-Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni's correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species.
Kang, Jung-Ha; Park, Jung-Youn; Jo, Hyun-Su
2012-01-01
The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1–10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy–Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni’s correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species. PMID:22837688
Harmon, Monica; Lane, Thomas; Staton, Margaret; Coggeshall, Mark V; Best, Teodora; Chen, Chien-Chih; Liang, Haiying; Zembower, Nicole; Drautz-Moses, Daniela I; Hwee, Yap Zhei; Schuster, Stephan C; Schlarbaum, Scott E; Carlson, John E; Gailing, Oliver
2017-08-08
Sugar maple (Acer saccharum Marsh.) is a hardwood tree species native to northeastern North America and economically valued for its wood and sap. Yet, few molecular genetic resources have been developed for this species to date. Microsatellite markers have been a useful tool in population genetics, e.g., to monitor genetic variation and to analyze gene flow patterns. The objective of this study is to develop a reference transcriptome and microsatellite markers in sugar maple. A set of 117,861 putative unique transcripts were assembled using 29.2 Gb of RNA sequencing data derived from different tissues and stress treatments. From this set of sequences a total of 1068 microsatellite motifs were identified. Out of 58 genic microsatellite markers tested on a population of 47 sugar maple trees in upper Michigan, 22 amplified well, of which 16 were polymorphic and 6 were monomorphic. Values for expected heterozygosity varied from 0.224 to 0.726 for individual loci. Of the 16 polymorphic markers, 15 exhibited transferability to other Acer L. species. Genic microsatellite markers can be applied to analyze genetic variation in potentially adaptive genes relative to genomic reference markers as a basis for the management of sugar maple genetic resources in the face of climate change.
Chaves, F G; Vecchi, M B; Webster, M S; Alves, M A S
2015-07-17
Molecular markers are important tools in determining parentage, gene flow, and the genetic structure of species. In the case of rare, endemic, and/or threatened species, these markers can be used to understand key ecological questions and support conservation actions. We developed seven microsatellite markers for the only bird endemic to the Restinga ecosystem. Microsatellite loci were isolated from a library that was based on 10 individuals (six males and four females). Primers were tested in 107 individuals of the same population. The number of alleles per locus ranged from 4 to 19, and the observed and expected heterozygosity varied from 0.15 to 0.84 and from 0.60 to 0.89, respectively. We expect that the polymorphic microsatellite loci we describe will be useful for other studies, particularly in the Tropics.
Chielle, E O; Trott, A; da Silva Rosa, B; Casarin, J N; Fortuna, P C; da Cruz, I B M; Moretto, M B; Moresco, R N
2017-05-01
The aim of the study was to investigate the association between Glutathione S-transferase P1 (GSTP1) gene polymorphism with obesity and markers of cardiometabolic risk. A cross-sectional study was carried out in individuals aged≥18 and ≤30 years. The study included 54 normal weight, 27 overweight and 68 obese volunteers. Anthropometric measurements and biochemical parameters were evaluated, the DNA was extracted from blood samples and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to measure GSTP1 Ile 105 Val gene polymorphism of the study participants. Also, biochemical analysis and hormone assays were carried out. A positive association between GSTP1 polymorphism and obesity was observed on subjects carrying at least one G allele (AG and GG). GG genotype was found only in the obese group. The G allele carriers presented 2.4 times higher chance of obesity when compared to those with the AA genotype. These results were independent of sex and age. We suggest that despite a study in population regional (south of Brazil), the GSTP1 gene polymorphism may play a significant role in the increase of susceptibility of obesity and contribute to identify the cardiovascular risk in young adults. © Georg Thieme Verlag KG Stuttgart · New York.
Esteban-Martínez, Rosa Lilia; Pérez-Razo, Juan Carlos; Vargas-Alarcón, Gilberto; Martínez-Rodríguez, Nancy; Cano-Martínez, Luis Javier; López-Hernández, Luz Berenice; Rojano-Mejía, David; Canto, Patricia; Coral-Vazquez, Ramón Mauricio
2016-08-01
The aim of this study was to evaluate if polymorphisms of APLN and APLNR genes may play a role as susceptibility markers for hypertension in a group of Mexican-Mestizo patients. A case-control study was carried out including normotensive and hypertensive individuals. For these, two polymorphisms of APLN (rs3761581 and rs56204867) and two of APLNR () genes were genotyped by 5' exonuclease TaqMan assay in 400 normotensive individuals and 383 patients. The results showed that, under an additive model adjusted by BMI, HDL, triglycerides, glucose and family history of essential hypertension, the rs7119375 and rs10501367 polymorphisms of APLNR gene were associated significantly with a decreased risk of essential hypertension (P=0.039 and P=0.029, respectively). Besides, the haplotypes analysis of these polymorphisms showed that H1 haplotype was associated with an increased risk of essential hypertension (P=0.026), while the H2 haplotype was associated with a decreased risk (P=0.032). Contrary, the rs3761581 and rs56204867 polymorphisms of APLN gene were not associated with essential hypertension (P=0.1707 and P=0.0769, respectively). The data suggest that APLNR rs7119375 and rs10501367 are associated with a decreased risk of essential hypertension in our Mexican-Mestizo studied group, but further studies are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides
Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...
2016-09-06
Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less
Discovery of Genome-Wide Microsatellite Markers in Scombridae: A Pilot Study on Albacore Tuna
Nikolic, Natacha; Duthoy, Stéphanie; Destombes, Antoine; Bodin, Nathalie; West, Wendy; Puech, Alexis; Bourjea, Jérôme
2015-01-01
Recent developments in sequencing technologies and bioinformatics analysis provide a greater amount of DNA sequencing reads at a low cost. Microsatellites are the markers of choice for a variety of population genetic studies, and high quality markers can be discovered in non-model organisms, such as tuna, with these recent developments. Here, we use a high-throughput method to isolate microsatellite markers in albacore tuna, Thunnus alalunga, based on coupling multiplex enrichment and next-generation sequencing on 454 GS-FLX Titanium pyrosequencing. The crucial minimum number of polymorphic markers to infer evolutionary and ecological processes for this species has been described for the first time. We provide 1670 microsatellite design primer pairs, and technical and molecular genetics selection resulting in 43 polymorphic microsatellite markers. On this panel, we characterized 34 random and selectively neutral markers («neutral») and 9 «non-neutral» markers. The variability of «neutral» markers was screened with 136 individuals of albacore tuna from southwest Indian Ocean (42), northwest Indian Ocean (31), South Africa (31), and southeast Atlantic Ocean (32). Power analysis demonstrated that the panel of genetic markers can be applied in diversity and population genetics studies. Global genetic diversity for albacore was high with a mean number of alleles at 16.94; observed heterozygosity 66% and expected heterozygosity 77%. The number of individuals was insufficient to provide accurate results on differentiation. Of the 9 «non-neutral» markers, 3 were linked to a sequence of known function. The one is located to a sequence having an immunity function (ThuAla-Tcell-01) and the other to a sequence having energy allocation function (ThuAla-Hki-01). These two markers were genotyped on the 136 individuals and presented different diversity levels. ThuAla-Tcell-01 has a high number of alleles (20), heterozygosity (87–90%), and assignment index. ThuAla-Hki-01 has a lower number of alleles (9), low heterozygosity (24–27%), low assignment index and significant inbreeding. Finally, the 34 «neutral» and 3 «non-neutral» microsatellites markers were tested on four economically important Scombridae species—Thunnus albacares, Thunnus thynnus, Thunnus obesus, and Acanthocybium solandri. PMID:26544051
Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart
2016-01-01
Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810
Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon
2012-01-01
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.
Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A
2016-01-01
Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.
Unger, Shem D; Abernethy, Erin F; Lance, Stacey L; Beasley, Rochelle R; Kimball, Bruce A; McAuliffe, Thomas W; Jones, Kenneth L; Rhodes, Olin E
2015-11-07
Boiga irregularis is a widespread invasive species on Guam and has led to extirpation of most of the island's native avifauna. There are presently no microsatellite markers for this invasive species, hence we developed highly polymorphic microsatellite markers to allow for robust population genetic studies on Guam. We isolated and characterized 33 microsatellite loci for the brown tree snake, B. irregularis. The loci were screened across 32 individuals from Guam. The number of alleles per locus ranged from three to ten, with an average of 4.62. The expected (He) and observed heterozygosity (Ho) ranged from 0.294 to 0.856 and from 0.031 to 0.813, with an average of 0.648 and 0.524, respectively. Significant deviations from Hardy-Weinberg equilibrium were detected at seven loci after Bonferoni correction. Probability of identity values ranged from 0.043 to 0.539. These genetic markers are useful for understanding a suite of post-invasion population genetic parameters, sources of invasions, and effectiveness of management strategies for this invasive species.
Glennon, Kelsey L; Cron, Glynis V
2016-05-01
Microsatellites were developed for the widespread Helichrysum odoratissimum (Asteraceae) to estimate gene flow across diploid populations and to test if gene flow occurs among other closely related lineages within this genus. Ten primer pairs were developed and tested using populations across South Africa; however, only seven primer pairs were polymorphic for the target species. The seven polymorphic primers amplified di- and trinucleotide repeats with up to 16 alleles per locus among 125 diploid individuals used for analyses. These markers can be used to estimate gene flow among populations of known ploidy level of H. odoratissimum to test evolutionary hypotheses. Furthermore, these markers amplify successfully in other Helichrysum species, including the other three taxonomic Group 4 species, and therefore can be used to inform taxonomic work on these species.
Borrone, James W; Kuhn, David N; Schnell, Raymond J
2004-08-01
There is currently an international effort in improving disease resistance and crop yield in Theobroma cacao L., an economically important crop of the tropics, using marker-assisted selection for breeding. We are developing molecular genetic markers focusing upon gene families involved with disease resistance. One such family is the WRKY proteins, which are plant-specific transcriptional factors associated with regulating defense responses to both abiotic and biotic stresses. Degenerate PCR primers were designed to the highly conserved DNA-binding domain and other conserved motifs of group I and group II, subgroups a-c, WRKY genes. Sixteen individual WRKY fragments were isolated from a mixture of T. cacao DNA using one pair of primers. Of the 16 WRKY loci investigated, seven contained single nucleotide polymorphisms within the intron as detected by sequence comparison of the PCR products. Four of these were successfully converted into molecular markers and mapped in an F2 population by capillary electrophoresis-single strand conformation polymorphism analysis. This is the first report of a pair of degenerate primers amplifying WRKY loci directly from genomic DNA and demonstrates a simple method for developing useful genetic markers from members of a large gene family. Copyright 2004 Springer-Verlag
Dial, Cody R.; Talbot, Sandra L.; Sage, George K.; Seidensticker, M.T.; Holt, D.W.
2012-01-01
Using DNA from blood and feathers, we screened twenty-four microsatellite primer pairs initially developed for six strigid owls, and four primer pairs shown to be polymorphic across avian taxa, for their utility in Great Horned Owl (Bubo virginianus), Short-eared Owl (Asio flammeus), and Snowy Owl (Bubo scandiacus). Eight of these primers reliably amplified polymorphic fragments in Great Horned Owl, eleven in Short-eared owl, and ten in Snowy Owl. Analyses of results from presumably unrelated owls demonstrate the utility of these loci for individual identification, parentage assignment, and population genetics studies.
Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines
Chouvarine, Philippe; Cooksey, Amanda M.; McCarthy, Fiona M.; ...
2012-01-10
Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthusmore » (Miscanthus6giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations."« less
You, Jianling; Liu, Wensheng; Zhao, Yao; Zhu, Yongqing; Zhang, Wenju; Wang, Yuguo; Lu, Fan; Song, Zhiping
2013-03-01
Microsatellite loci are described for Rhodiola, a medicinal herb genus widely used in traditional Chinese medicine. • A total of 17 polymorphic microsatellite primer pairs were developed using the combined biotin capture method. The number of alleles per locus ranged from one to 12 across 192 individuals from R. bupleuroides, R. crenulata, R. fastigiata, and R. sacra, and the mean observed and expected heterozygosities ranged from 0.177 to 0.412 and from 0.363 to 0.578, respectively. • The results demonstrate the potential use of this new set of microsatellite markers for genotyping individuals and estimating genetic diversity in Rhodiola.
Arroyo, Juan M.; Munguia-Vega, Adrian; Rodríguez-Estrella, Ricardo; Bascompte, Jordi
2013-01-01
• Premise of the study: Microsatellite primers were developed for the parasitic mistletoe Phoradendron californicum to investigate to what extent population genetic structure depends on host tree distribution within a highly fragmented landscape. • Methods and Results: Fourteen unlinked polymorphic and four monomorphic nuclear microsatellite markers were developed using a genomic shotgun pyrosequencing method. A total of 187 alleles plus four monomorphic loci alleles were found in 98 individuals sampled in three populations from the Sonoran Desert in the Baja California peninsula (Mexico). Loci averaged 13.3 alleles per locus (range 4–28), and observed and expected heterozygosities within populations varied from 0.167–0.879 and 0.364–0.932, respectively. • Conclusions: Levels of polymorphism of the reported markers are adequate for studies of diversity and fragmentation in natural populations of this parasitic plant. Cross-species amplifications in P. juniperinum and P. diguetianum only showed four markers that could be useful in P. diguetianum. PMID:25202503
Thomé, M T C; Alexandrino, J; Lopes, S; Haddad, C F B; Sequeira, F
2014-03-12
We used pyrosequencing to develop microsatellite markers for the Brazilian four-eyed frog Pleurodema diplolister and tested the microsatellite markers for cross-amplification in its sister Pleurodema alium, which are both endemic species of the Caatinga biome in northeastern Brazil. We used multiplex sets to amplify and genotype 30 individuals of P. diplolister from three different populations and 10 individuals of P. alium from a single population. We successfully amplified 24 loci for P. diplolister, 13 of which we were able to amplify in P. alium. All loci were polymorphic. Significant deviations from the Hardy-Weinberg equilibrium and the presence of null alleles were only consistently detected at one locus (Pleu9). These markers will enable the study of geographic genetic diversity and evolutionary processes in these two Caatinga endemics, and the inclusion of genetic data for conservation planning of the Caatinga biome.
Katz, B Z; Niederman, J C; Olson, B A; Miller, G
1988-02-01
DNA restriction fragment length polymorphisms of Epstein-Barr virus (EBV) DNA were used as a molecular epidemiological tool to study multiple isolates of virus from the same and different individuals. We studied 35 EBV isolates: 19 from seven immunocompromised children and 16 from seven college students with mononucleosis. Analysis of the fragment length polymorphisms in this collection of isolates permitted several conclusions. Sites of polymorphism were most often encountered in regions with repetitive DNA. Epidemiologically unrelated patients harbored viruses that could be readily distinguished; by contrast, two infants and their mothers harbored similar viruses. Isolates from different sites in the same patient were similar. Variations between different clinical isolates of EBV mimic those found between different laboratory strains of the virus. Fragment length polymorphisms thus provide a useful marker for studying transmission and pathogenesis of EBV infections.
Santovito, Alfredo; Cervella, Piero; Delpero, Massimiliano
2016-05-01
The increased exposure to environmental pollutants has led to the awareness of the necessity for constant monitoring of human populations, especially those living in urban areas. This study evaluated the background levels of genomic damage in a sample of healthy subjects living in the urban area of Turin (Italy). The association between DNA damage with age, sex and GSTs polymorphisms was assessed. One hundred and one individuals were randomly sampled. Sister Chromatid Exchanges (SCEs) and Chromosomal Aberrations (CAs) assays, as well as genotyping of GSTT1 and GSTM1 genes, were performed. Mean values of SCEs and CAs were 5.137 ± 0.166 and 0.018 ± 0.002, respectively. Results showed age and gender associated with higher frequencies of these two cytogenetic markers. The eldest subjects (51-65 years) showed significantly higher levels of genomic damage than younger individuals. GSTs polymorphisms did not appear to significantly influence the frequencies of either markers. The CAs background frequency observed in this study is one of the highest reported among European populations. Turin is one of the most polluted cities in Europe in terms of air fine PM10 and ozone and the clastogenic potential of these pollutants may explain the high frequencies of chromosomal rearrangements reported here.
Klein, Akos; Horsburgh, Gavin J; Küpper, Clemens; Major, Agnes; Lee, Patricia L M; Hoffmann, Gyula; Mátics, Róbert; Dawson, Deborah A
2009-11-01
We have identified 15 polymorphic microsatellite loci for the barn owl (Tyto alba), five from testing published owl loci and 10 from testing non-owl loci, including loci known to be of high utility in passerines and shorebirds. All 15 loci were sequenced in barn owl, and new primer sets were designed for eight loci. The 15 polymorphic loci displayed two to 26 alleles in 56-58 barn owls. When tested in 10 other owl species (n = 1-6 individuals), between four and nine loci were polymorphic per species. These loci are suitable for studies of population structure and parentage in owls. © 2009 Blackwell Publishing Ltd.
Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach.
Arnholdt-Schmitt, Birgit; Patil, Vinod Kumar
2017-01-01
AOX1 and AOX2 genes are thought to play different physiological roles. Whereas AOX1 is typically expected to associate to stress and growth responses, AOX2 was more often found to be linked to development and housekeeping functions. However, this view is questioned by several adverse observations. For example, co-regulated expression for DcAOX1 and DcAOX2a genes was recently reported during growth induction in carrot (Daucus carota L.). Early expression peaks for both genes during the lag phase of growth coincided with a critical time point for biomass prediction, a result achieved by applying calorespirometry. The effect of both AOX family member genes cannot easily be separated. However, separate functional analysis is required in order to identify important gene-specific polymorphisms or patterns of polymorphisms for functional marker development and its use in breeding. Specifically, a methodology is missing that enables studying functional effects of individual genes or polymorphisms/polymorphic patterns on early growth regulation.This protocol aims to provide the means for identifying plant alternative oxidase (AOX) gene variants as functional markers for early growth regulation. Prerequisite for applying this protocol is available Schizosaccharomyces pombe strains that were transformed with individual AOX genes following published protocols from Anthony Moore's group (Albury et al., J Biol Chem 271:17062-17066, 1996; Affourtit et al., J Biol Chem 274:6212-6218, 1999). The novelty of the present protocol comes by modifying yeast cell densities in a way that allows studying critical qualitative and quantitative effects of AOX gene variants (isoenzymes or polymorphic genes) during the early phase of growth. Calorimetry is used as a novel tool to confirm differences obtained by optical density measurements in early growth regulation by metabolic phenotyping (released heat rates). This protocol enables discriminating between AOX genes that inhibit growth and AOX genes that enhance growth under comparable conditions. It also allows studying dependency of AOX gene effects on gene copy number. The protocol can also be combined with laser microdissection of individual cells from target tissues for specified breeding traits.
Mogilenkova, L A; Rembovskiy V R
2016-01-01
There are given modern views on the role of genetic polymorphism on the detoxification of chemical substances and individual sensitivity in workers to the development of diseases associated with xenobiotics metabolism disorders. In the search for genetic markers of occupationally caused diseases it is promising to study allelomorphs of genes responsible for the polyfunctional response of the human body, including genes involved in xenobiotic biotransformation. There is substantiated the expediency of compilation and introduction of genetic passports for stuff occupied at hazardous chemical enterprises.
QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.
Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H
2016-03-18
The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.
Bryan, Glenn J.; McLean, Karen; Waugh, Robbie; Spooner, David M.
2017-01-01
DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study, we quantify levels of amplified fragment length polymorphism (AFLP) in representative accessions of wild and cultivated potato species of differing geographic origin, ploidy, and breeding system. We generated 449 polymorphic AFLP fragments in 619 plants, representing multiple plants (16–23) from 17 accessions of 14 potato taxa as well as single plants sampled from available accessions (from 3 to 56) of the same 14 taxa. Intra-accession diversities were compared to those of a synthetic ‘taxon-wide’ population comprising a single individual from a variable number of available accessions of each sampled taxon. Results confirm the expected considerably lower levels of polymorphism within accessions of self-compatible as compared to self-incompatible taxa. We observed broadly similar levels of ‘taxon-wide’ polymorphism among self-compatible and self-incompatible species, with self-compatible taxa showing only slightly lower rates of polymorphism. The most diverse accessions were the two cultivated potato accessions examined, the least diverse being the Mexican allohexaploids Solanum demissum and S. iopetalum. Generally allopolyploid self-compatible accessions exhibited lower levels of diversity. Some purported self-incompatible accessions showed relatively low levels of marker diversity, similar to the more diverse self-compatible material surveyed. Our data indicate that for self-compatible species a single plant is highly representative of a genebank accession. The situation for self-incompatible taxa is less clear, and sampling strategies used will depend on the type of investigation. These results have important implications for those seeking novel trait variation (e.g., disease resistance) in gene banks as well as for the selection of individuals for genomics studies. We also show that AFLPs, despite having been largely replaced by other marker types, is highly suitable for the evaluation of within and between accession diversity in genebanks. PMID:28983315
C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population.
Romero-Sánchez, Consuelo; Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio
2015-01-01
Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics(®)). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies.
McAulay, Karen A.; Higgins, Craig D.; Macsween, Karen F.; Lake, Annette; Jarrett, Ruth F.; Robertson, Faye L.; Williams, Hilary; Crawford, Dorothy H.
2007-01-01
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence. PMID:17909631
McAulay, Karen A; Higgins, Craig D; Macsween, Karen F; Lake, Annette; Jarrett, Ruth F; Robertson, Faye L; Williams, Hilary; Crawford, Dorothy H
2007-10-01
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence.
Yu, Jeong-Nam; Won, Changman; Jun, Jumin; Lim, YoungWoon; Kwak, Myounghai
2011-01-01
Background Microsatellites, a special class of repetitive DNA sequence, have become one of the most popular genetic markers for population/conservation genetic studies. However, its application to endangered species has been impeded by high development costs, a lack of available sequences, and technical difficulties. The water deer Hydropotes inermis is the sole existing endangered species of the subfamily Capreolinae. Although population genetics studies are urgently required for conservation management, no species-specific microsatellite marker has been reported. Methods We adopted next-generation sequencing (NGS) to elucidate the microsatellite markers of Korean water deer and overcome these impediments on marker developments. We performed genotyping to determine the efficiency of this method as applied to population genetics. Results We obtained 98 Mbp of nucleotide information from 260,467 sequence reads. A total of 20,101 di-/tri-nucleotide repeat motifs were identified; di-repeats were 5.9-fold more common than tri-repeats. [CA]n and [AAC]n/[AAT]n repeats were the most frequent di- and tri-repeats, respectively. Of the 17,206 di-repeats, 12,471 microsatellite primer pairs were derived. PCR amplification of 400 primer pairs yielded 106 amplicons and 79 polymorphic markers from 20 individual Korean water deer. Polymorphic rates of the 79 new microsatellites varied from 2 to 11 alleles per locus (He: 0.050–0.880; Ho: 0.000–1.000), while those of known microsatellite markers transferred from cattle to Chinese water deer ranged from 4 to 6 alleles per locus (He: 0.279–0.714; Ho: 0.300–0.400). Conclusions Polymorphic microsatellite markers from Korean water deer were successfully identified using NGS without any prior sequence information and deposited into the public database. Thus, the methods described herein represent a rapid and low-cost way to investigate the population genetics of endangered/non-model species. PMID:22069476
Buonaccorsi, V P; McDowell, J R; Graves, J E
2001-05-01
Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.
Wu, Junqing; Ren, Jingchao; Li, Yuyan; Wu, Yinjie; Gao, Ersheng
2013-01-01
The aim of the study was to explore the mechanisms underlying the association of birth weight with later body mass index (BMI) from the biochemical markers related to metabolism and the Apa I polymorphism in IGF-II gene. A total of 300 children were selected randomly from the Macrosomia Birth Cohort in Wuxi, China. The height and weight were measured and blood samples were collected. Plasma concentrations of 8 biochemical markers were detected. Apa I polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Biochemical markers were detected for 296 subjects and 271 subjects were genotyped for the Apa I polymorphism. No association was found between birth weight and 8 biochemical markers. In boys, the BMIs of AA, AG and GG genotypes were 16.10 ± 2.24 kg/m(2), 17.40 ± 3.20 kg/m(2), 17.65 ± 2.66 kg/m(2). And there was statistical difference among the three genotypes. But in girls, there was no statistical difference. The birth weights of AA, AG and GG genotypes were 3751.13 ± 492.43 g, 3734.00 ± 456.88 g, 3782.00 ± 461.78 g. And there was no statistical difference among the three genotypes. Biochemical markers are not associated with birth weight. Apa I polymorphism may be related to childhood BMI, but it may be not associated with birth weight. Therefore, biochemical markers and Apa I polymorphism might not play a role in the association of birth weight and BMI.
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2010-01-01
Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p > 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p = 0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis. PMID:21045266
Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja
2010-01-01
Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p< 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p=0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis.
B. Gocmen; Z. Zaya; K.D. Jermstad; D.B. Neale
1996-01-01
Variation in cold-hardiness traits, and their extent of genetic control and interrelationships, were investigated among individuals (clones) within a single large full-sib family of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) from Oregon. Cold injury to needle, stem, and bud tissues was evaluated...
Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine
1996-01-01
Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...
Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena
2015-09-01
To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of all female genotypes and another group comprising of all male genotypes. During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba. Such genetically diverse genotypes would thus be of great significance for breeding, management and conservation of elite (high yielding) Jojoba germplasm.
RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam
NASA Astrophysics Data System (ADS)
Wang, Tiegu; Huang, Qunce; Feng, Weisen
2007-10-01
Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.
Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies
Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity. PMID:27454301
Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M
2016-01-01
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity.
Cao, Li-Jun; Li, Ze-Min; Wang, Ze-Hua; Zhu, Liang; Gong, Ya-Jun; Chen, Min; Wei, Shu-Jun
2016-01-01
Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy–Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies. PMID:27197749
Cao, Li-Jun; Li, Ze-Min; Wang, Ze-Hua; Zhu, Liang; Gong, Ya-Jun; Chen, Min; Wei, Shu-Jun
2016-05-20
Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy-Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies.
J. E. Davis; Thomas L. Kubisiak; M. G. Milgroom
2005-01-01
Studies on the population biology of the chestnut blight fungus, Cryphonectria parasitica, have previously been carried out with dominant restriction fragment length polymorphism (RFLP) fingerprinting markers. In this study, we described the development of 11 condominant markers from randomly amplified polymorphic DNAs (RAPDs). RAPD fragments were...
Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu
2016-01-01
Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496
Wade, Elizabeth J; Simon, Chris
2015-01-01
The New Zealand cicada genus Kikihia Dugdale 1971 exhibits more than 20 contact zones between species pairs that vary widely in their divergence times (between 20,000 and 2 million years) in which some level of hybridization is evident. Mitochondrial phylogenies suggest some movement of genes across species boundaries. Biparentally inherited and quickly evolving molecular markers like microsatellites are useful for assessing gene flow levels. Here, we present six polymorphic microsatellite loci that amplify DNA from seven species across the genus Kikihia; Kikihia "northwestlandica," Kikihia "southwestlandica," Kikihia muta, Kikihia angusta, Kikihia "tuta," Kikihia "nelsonensis," and Kikihia "murihikua." The markers were developed using whole-genome shotgun sequencing on the 454 pyrosequencing platform. Moderate to high levels of polymorphisms were observed with 14-47 alleles for 213 individuals from 15 populations. Observed and expected heterozygosity range from 0 to 1 and 0.129 to 0.945, respectively. These new markers will be instrumental for the assessment of gene flow across multiple contact zones in Kikihia. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Construction of an integrated genetic map for Capsicum baccatum L.
Moulin, M M; Rodrigues, R; Ramos, H C C; Bento, C S; Sudré, C P; Gonçalves, L S A; Viana, A P
2015-06-18
Capsicum baccatum L. is one of the five Capsicum domesticated species and has multiple uses in the food, pharmaceutical and cosmetic industries. This species is also a valuable source of genes for chili pepper breeding, especially genes for disease resistance and fruit quality. However, knowledge of the genetic structure of C. baccatum is limited. A reference map for C. baccatum (2n = 2x = 24) based on 42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplified polymorphic DNA markers was constructed using an F2 population consisting of 203 individuals. The map was generated using the JoinMap software (version 4.0) and the linkage groups were formed and ordered using a LOD score of 3.0 and maximum of 40% recombination. The genetic map consisted of 12 major and four minor linkage groups covering a total genome distance of 2547.5 cM with an average distance of 14.25 cM between markers. Of the 152 pairs of microsatellite markers available for Capsicum annuum, 62 were successfully transferred to C. baccatum, generating polymorphism. Forty-two of these markers were mapped, allowing the introduction of C. baccatum in synteny studies with other species of the genus Capsicum.
Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior
Hunt, G. J.; Page-Jr., R. E.; Fondrk, M. K.; Dullum, C. J.
1995-01-01
We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads. PMID:8601492
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).
Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A
2011-05-01
Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.
Gerreth, Karolina; Zaorska, Katarzyna; Zabel, Maciej; Borysewicz-Lewicka, Maria; Nowicki, Michał
2017-09-01
It is increasingly emphasized that the influence of a host's factors in the etiology of dental caries are of most interest, particularly those concerned with genetic aspect. The aim of the study was to analyze the genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in AMELX, AMBN, TUFT1, TFIP11, MMP20 and KLK4 genes and to prove their association with dental caries occurrence in a population of Polish children. The study was performed in 96 children (48 individuals with caries - "cases" and 48 free of this disease - "controls"), aged 20-42 months, chosen out of 262 individuals who had dental examination performed and attended 4 day nurseries located in Poznań (Poland). From both groups oral swab was collected for molecular evaluation. Eleven selected SNPs markers were genotyped by Sanger sequencing. Genotype and allele frequencies were calculated and a standard χ2 analysis was used to test for deviation from Hardy-Weinberg equilibrium. The association of genetic variations with caries susceptibility or resistance was assessed by the Fisher's exact test and p ≤ 0.05 was considered statistically significant. Five markers were significantly associated with caries incidence in children in the study: rs17878486 in AMELX (p < 0.0001), rs34538475 in AMBN (p < 0.0001), rs2337360 in TUFT1 (p < 0.0001), and rs2235091 (p = 0.0085) and rs198969 (p = 0.0069) in KLK4. Genotype and allele frequencies indicated both risk and protective variants for these markers. Single nucleotide polymorphisms in AMELX, AMBN, TUFT1, KLK4 genes may be considered as a risk factor for dental caries occurrence in Polish children.
Yüzbaşioğlu, Ertuğrul; Dadandi, Mehmet Yaşar; Ozcan, Sebahattin
2008-05-01
Randomly Amplified Polymorphic DNA markers (RAPD) were used to assess the hybrid identity of individuals sampled as Phlomis x termessi Davis. Out of 95 primers screened, 11 primers produced reproducible amplification patterns used for discrimination of P. x termessi and their parents. Eleven primers produced 81 bands. Forty two percent of the RAPD bands existed in parents. Of the 54 bands found in P. lycia, 19 were found only in this species and 7 of these were monomorphic. Similarly, of 57 RAPD bands observed in P. bourgaei, 18 were found only in P. bourgaei and 6 of these were monomorphic. Among hybrid individuals, 35 of the 73 markers were monomorphic. Fifteen of these existed in individual parents showing that parents were homozygous for these markers. Of the 35 monomorphic bands observed among hybrid individuals, 5 were present in the samples of one of the parents and completely absent from the samples of the other; therefore, additive inheritance is indicated. Of the 5 additive bands, 1 was inherited from P. bourgaei and 4 were inherited from P. lycia. Among 38 polymorhic markers observed in hybrid individuals, 9 were new and hybrid-specific. Pollen fertility was also investigated. Mean pollen fertility for P. lycia and P. bourgaei was 93% and 97% respectively. However, mean pollen fertility for hybrids was 65% (+/-10.5).
Bordallo, P N; Monteiro, A M R; Sousa, J A; Aragão, F A S
2017-02-23
Morinda citrifolia L., commonly known as noni, has been used for the treatment of various diseases for over two centuries. It was introduced and widely disseminated in Brazil because of its high market value and ease of adaptation to the soil and climatic conditions of the country. The aim of this study was to estimate the genetic variability of noni accessions from the collection of Embrapa Agroindústria Tropical in Brazil. We evaluated 36 plants of the 13 accessions of noni from the germplasm collection of M. citrifolia. Several methods of DNA extraction were tested. After definition of the method, the DNA of each sample was subjected to polymerase chain reactions using 20 random amplified polymorphic DNA primers. The band patterns on agarose gel were converted into a binary data matrix, which was used to estimate the genetic distances between the plants and to perform the cluster analyses. Of the total number of markers used in this study, 125 (81.1%) were polymorphic. The genetic distances between the genotypes ranged from 0.04 to 0.49. Regardless of the high number of polymorphic bands, the genetic variability of the noni plants evaluated was low since most of the genotypes belonged to the same cluster as shown by the dendrogram and Tocher's cluster analysis. The low genetic diversity among the studied noni individuals indicates that additional variability should be introduced in the germplasm collection of noni by gathering new individuals and/or by hybridizing contrasting individuals.
Sellathamby, S; Balasubramanian, P; Sivalingam, S; Shaji, R V; Mathews, V; George, B; Viswabandya, A; Srivastava, A; Chandy, M
2006-04-01
Analysis of chimerism by polymerase chain reaction amplification of STR or VNTR has become a routine procedure for the evaluation of engraftment after allogeneic stem cell transplantation. Knowledge of the frequency of different STR or VNTR alleles in unrelated individuals in a population is useful for forensic work. In the context of HLA identical sibling bone marrow transplantation the informativeness of these markers needs to be evaluated. We evaluated five STRs (THO1, VWA, FES, ACTBP2, and F13A1) and 1 VNTR (APOB) for informativeness in stem cell transplants from HLA identical sibling donors. All four markers used individually allowed us to discriminate 20-56% of the patient donor pairs. Using a combination of all these markers along with a polymorphic marker in the beta-globin gene and the sex chromosome specific amelogenin marker, we were able to discriminate 99% of the patient donor pairs. We have established an algorithm for evaluating chimerism following HLA identical sibling donor transplants in the Indian population using molecular markers in 310 patients. Analysis of heterozygote frequencies in different populations is similar suggesting that this algorithm can be used universally for transplant centers to evaluate chimerism following allogeneic bone marrow transplantation.
The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle.
Pang, Yonghong; Wang, Juqiang; Zhang, Chunlei; Lei, Chuzhao; Lan, Xianyong; Yue, Wangping; Gu, Chuanwen; Chen, Danxia; Chen, Hong
2011-02-01
PCR-SSCP and DNA sequencing methods were employed to screen the genetic variation of VEGF gene in 671 individuals belonging to three Chinese indigenous cattle breeds including Nanyang, Jiaxian Red and Qinchuan. Three haplotypes (A, B and C), four observed genotypes (AA, AB, BB and AC) and three new SNPs (6765T>C ss130456744, 6860A>G ss130456745, 6893T>C ss130456746) were detected. The analysis suggested that one SNP (ss130456744) in the bovine VEGF gene had significant effects on birth weight, body weight and heart girth at 6 months old in the Nanyang breed (P < 0.05). The results showed that the SNP (ss130456744) in intron 2 of the VEGF gene is associated with early development and growth of Chinese cattle. These findings raise hope that this polymorphism can be a molecular breeding marker in breeding strategies through marker assisted selection (MAS) in Chinese domestic cattle.
Byers, James E.; Greig, Thomas W.; Strand, Allan E.; Weinberger, Florian
2015-01-01
Microsatellite loci are popular molecular markers due to their resolution in distinguishing individual genotypes. However, they have rarely been used to explore the population dynamics in species with biphasic life cycles in which both haploid and diploid stages develop into independent, functional organisms. We developed microsatellite loci for the haploid–diploid red seaweed Gracilaria vermiculophylla, a widespread non-native species in coastal estuaries of the Northern hemisphere. Forty-two loci were screened for amplification and polymorphism. Nine of these loci were polymorphic across four populations of the extant range with two to eleven alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to 0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study of the invasive history of this seaweed and further studies on the population dynamics of this important haploid–diploid primary producer. PMID:26339541
Bozzi, Jorge A.; Liepelt, Sascha; Ohneiser, Sebastian; Gallo, Leonardo A.; Marchelli, Paula; Leyer, Ilona; Ziegenhagen, Birgit; Mengel, Christina
2015-01-01
Premise of the study: We present a set of 23 polymorphic nuclear microsatellite loci, 18 of which are identified for the first time within the riparian species Salix humboldtiana (Salicaceae) using next-generation sequencing. Methods and Results To characterize the 23 loci, up to 60 individuals were sampled and genotyped at each locus. The number of alleles ranged from two to eight, with an average of 4.43 alleles per locus. The effective number of alleles ranged from 1.15 to 3.09 per locus, and allelic richness ranged from 2.00 to 7.73 alleles per locus. Conclusions The new marker set will be used for future studies of genetic diversity and differentiation as well as for unraveling spatial genetic structures in S. humboldtiana populations in northern Patagonia, Argentina. PMID:25909042
Glennon, Kelsey L.; Cron, Glynis V.
2016-01-01
Premise of the study: Microsatellites were developed for the widespread Helichrysum odoratissimum (Asteraceae) to estimate gene flow across diploid populations and to test if gene flow occurs among other closely related lineages within this genus. Methods and Results: Ten primer pairs were developed and tested using populations across South Africa; however, only seven primer pairs were polymorphic for the target species. The seven polymorphic primers amplified di- and trinucleotide repeats with up to 16 alleles per locus among 125 diploid individuals used for analyses. Conclusions: These markers can be used to estimate gene flow among populations of known ploidy level of H. odoratissimum to test evolutionary hypotheses. Furthermore, these markers amplify successfully in other Helichrysum species, including the other three taxonomic Group 4 species, and therefore can be used to inform taxonomic work on these species. PMID:27213125
Lewers, Kim S; Saski, Chris A; Cuthbertson, Brandon J; Henry, David C; Staton, Meg E; Main, Dorrie S; Dhanaraj, Anik L; Rowland, Lisa J; Tomkins, Jeff P
2008-01-01
Background The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. Results A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. Conclusion This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry. PMID:18570660
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-01-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10-17. This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications. PMID:21597912
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-07-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10(-17). This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications.
NASA Astrophysics Data System (ADS)
He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping
2010-12-01
Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.
RNA-Seq identifies SNP markers for growth traits in rainbow trout.
Salem, Mohamed; Vallejo, Roger L; Leeds, Timothy D; Palti, Yniv; Liu, Sixin; Sabbagh, Annas; Rexroad, Caird E; Yao, Jianbo
2012-01-01
Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete and well-annotated genome reference sequences.
Breed traceability of buffalo meat using microsatellite genotyping technique.
Kannur, Bheemashankar H; Fairoze, Md Nadeem; Girish, P S; Karabasanavar, Nagappa; Rudresh, B H
2017-02-01
Although buffalo has emerged as a major meat producing animal in Asia, major research on breed traceability has so far been focused on cattle (beef). This research gap on buffalo breed traceability has impelled development and validation of buffalo breed traceability using a set of eight microsatellite (STR) markers in seven Indian buffalo breeds (Bhadawari, Jaffaarabadi, Murrah, Mehsana, Nagpuri, Pandharpuri and Surti). Probability of sharing same profile by two individuals at a specific locus was computed considering different STR numbers, allele pooling in breed and population. Match probabilities per breed were considered and six most polymorphic loci were genotyped. Out of eight microsatellite markers studied, markers CSSMO47, DRB3 and CSSM060 were found most polymorphic. Developed technique was validated with known and unknown, blood and meat samples; wherein, samples were genetically traced in 24 out of 25 samples tested. Results of this study showed potential applications of the methodology and encourage other researchers to address the problem of buffalo traceability so as to create a world-wide archive of breed specific genotypes. This work is the first report of breed traceability of buffalo meat utilizing microsatellite genotyping technique.
C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population
Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio
2015-01-01
Introduction: Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. Objective: To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Methods: Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics®). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Results: Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Conclusions: Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies. PMID:26309343
Fehren-Schmitz, Lars; Warnberg, Ole; Reindel, Markus; Seidenberg, Verena; Tomasto-Cagigao, Elsa; Isla-Cuadrado, Johny; Hummel, Susanne; Herrmann, Bernd
2011-03-01
This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.
Kang, Tae Hwa; Han, Sang Hoon; Park, Sun Jae
2015-01-01
We developed microsatellite markers for genetic structural analyses of Dorcus hopei, a stag beetle species, using next generation sequencing and polymerase chain reaction (PCR)-based genotyping for regional populations. A total of 407,070,351 base pairs of genomic DNA containing >4000 microsatellite loci except AT repeats were sequenced. From 76 loci selected for primer design, 27 were polymorphic. Of these 27 markers, 10 were tested on three regional populations: two Chinese (Shichuan and Guangxi) and one Korean (Wanju). Three markers were excluded due to inconsistent amplification, genotyping errors, and Hardy-Weinberg equilibrium (HWE). By multi-locus genotyping, the allele number, observed heterozygosity and polymorphism information content of seven microsatellite loci were ranged 2‒10, 0.1333‒1.0000, and 0.1228‒0.8509, respectively. In an analysis on the genetic differentiation among regional populations including one Japanese population and one cross-breeding population, the individual colored bar-plots showed that both Chinese populations were closer to each other than to the Far East Asian populations. In Far East Asian populations, Wanju and Nirasaki populations could not be distinguished from each other because the frequency of genetic contents was very similar in some individuals of two populations. Moreover, the cross-breeding population contained all patterns of genetic contents shown in Chinese, Korean, and Japanese populations, compared with the genetic content frequency of each regional population. As a result, we examined whether the cross-breeding population might be a hybrid population, and might contain a possibility of interbreeding with Chinese populations in parental generations. Therefore, these markers will be useful for analyses of genetic diversity in populations, genetic relationships between regional populations, genetic structure analyses, and origin tests. PMID:26370965
Bonifaz-Peña, Vania; Contreras, Alejandra V.; Struchiner, Claudio Jose; Roela, Rosimeire A.; Furuya-Mazzotti, Tatiane K.; Chammas, Roger; Rangel-Escareño, Claudia; Uribe-Figueroa, Laura; Gómez-Vázquez, María José; McLeod, Howard L.; Hidalgo-Miranda, Alfredo
2014-01-01
Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level. PMID:25419701
Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena
2015-01-01
To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of all female genotypes and another group comprising of all male genotypes. During the present investigation, CBDP markers proved more informative in studying genetic diversity among Jojoba. Such genetically diverse genotypes would thus be of great significance for breeding, management and conservation of elite (high yielding) Jojoba germplasm. PMID:26110116
Raji, J. A.; Atkinson, Carter T.
2016-01-01
The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.
Feres, Juliana Massimino; Monteiro, Mariza; Zucchi, Maria I; Pinheiro, José B; Mestriner, Moacyr A; Alzate-Marin, Ana Lilia
2012-04-01
We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirão Preto in São Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Population genetic structure of rare and endangered plants using molecular markers
Raji, Jennifer; Atkinson, Carter T.
2013-01-01
This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings, approaches that can assist conservation efforts of these species are proposed.
Goel, Namni; Banks, Siobhan; Lin, Ling; Mignot, Emmanuel; Dinges, David F.
2011-01-01
Background The COMT Val158Met polymorphism modulates cortical dopaminergic catabolism, and predicts individual differences in prefrontal executive functioning in healthy adults and schizophrenic patients, and associates with EEG differences during sleep loss. We assessed whether the COMT Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD), a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. Methodology/Principal Findings 20 Met/Met, 64 Val/Met, and 45 Val/Val subjects participated in a protocol of two baseline 10h time in bed (TIB) nights followed by five consecutive 4 h TIB nights. Met/Met subjects showed differentially steeper declines in non-REM EEG slow-wave energy (SWE)—the putative homeostatic marker of sleep drive—during PSD, despite comparable baseline SWE declines. Val/Val subjects showed differentially smaller increases in slow-wave sleep and smaller reductions in stage 2 sleep during PSD, and had more stage 1 sleep across nights and a shorter baseline REM sleep latency. The genotypes, however, did not differ in performance across various executive function and cognitive tasks and showed comparable increases in subjective and physiological sleepiness in response to chronic sleep loss. Met/Met genotypic and Met allelic frequencies were higher in whites than African Americans. Conclusions/Significance The COMT Val158Met polymorphism may be a genetic biomarker for predicting individual differences in sleep physiology—but not in cognitive and executive functioning—resulting from sleep loss in a healthy, racially-diverse adult population of men and women. Beyond healthy sleepers, our results may also provide insight for predicting sleep loss responses in patients with schizophrenia and other psychiatric disorders, since these groups repeatedly experience chronically-curtailed sleep and demonstrate COMT-related treatment responses and risk factors for symptom exacerbation. PMID:22216231
Robarts, Daniel W H; Wolfe, Andrea D
2014-07-01
In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.
Robarts, Daniel W. H.; Wolfe, Andrea D.
2014-01-01
In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637
Potential forensic use of a 33 X-InDel panel in the Argentinean population.
Caputo, Mariela; Amador, M A; Santos, S; Corach, D
2017-01-01
Polymorphic genetic markers located on the X chromosome might become a complement in particular forensic identification when the biological kinship are deficient. We analyzed forensic statistical parameters of 33 X-chromosome InDel polymorphisms in a sample of 320 individuals from Argentina. The X-chromosome InDel polymorphism (X-InDel) panel was amplified in a single multiplex PCR reaction. Hardy-Weinberg Equilibrium was determined in the female cohort, whereas the male cohort was used to calculate linkage disequilibrium (LD) tested by an extension of Fisher's exact test, D', and Chi-square values. Regarding LD, 15 markers were organized and grouped into six blocks containing two or three linked loci each, namely block I (MID356-MID357), block II (MID448804-MID3703-MID218), block III (MID3705-MID3706-MID304737), block IV (MID197147-MID3754), block V (MID3664-MID284601-MID103547), and block VI (MID3763-MID3728). The haplotype diversity was higher than 0.99 in all cases. Blocks III and VI showed the highest match probability in the studied population, whereas block II showed the lowest. The accumulated power of discrimination was 99.9999991 % in women and 99.9992925 % in men. The mean exclusion chance in trios and duos were 99.9891736 and 99.6099391 %, respectively. Since 15 markers are associated as haplotypic blocks, for a conservative treatment of the data, statistical evaluation should consider their haplotypic frequencies and the remaining 18 markers can be evaluated as independent loci.
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
Genetic analyses of captive Alala (Corvus hawaiiensis) using AFLP analyses
Jarvi, Susan I.; Bianchi, Kiara R.
2006-01-01
Population level studies of genetic diversity can provide information about population structure, individual genetic distinctiveness and former population size. They are especially important for rare and threatened species like the Alala, where they can be used to assess extinction risks and evolutionary potential. In an ideal situation multiple methods should be used to detect variation, and these methods should be comparable across studies. In this report, we discuss AFLP (Amplified Fragment Length Polymorphism) as a genetic approach for detecting variation in the Alala , describe our findings, and discuss these in relation to mtDNA and microsatellite data reported elsewhere in this same population. AFLP is a technique for DNA fingerprinting that has wide applications. Because little or no prior knowledge of the particular species is required to carry out this method of analysis, AFLP can be used universally across varied taxonomic groups. Within individuals, estimates of diversity or heterozygosity across genomes may be complex because levels of diversity differ between and among genes. One of the more traditional methods of estimating diversity employs the use of codominant markers such as microsatellites. Codominant markers detect each allele at a locus independently. Hence, one can readily distinguish heterozygotes from homozygotes, directly assess allele frequencies and calculate other population level statistics. Dominant markers (for example, AFLP) are scored as either present or absent (null) so heterozygotes cannot be directly distinguished from homozygotes. However, the presence or absence data can be converted to expected heterozygosity estimates which are comparable to those determined by codominant markers. High allelic diversity and heterozygosity inherent in microsatellites make them excellent tools for studies of wild populations and they have been used extensively. One limitation to the use of microsatellites is that heterozygosity estimates are affected by the mutation rate at microsatellite loci, thus introducing a bias. Also, the number of loci that can be studied is frequently limited to fewer than 10. This theoretically represents a maximum of one marker for each of 10 chromosomes. Dominant markers like AFLP allow a larger fraction of the genome to be screened. Large numbers of loci can be screened by AFLP to resolve very small individual differences that can be used for identification of individuals, estimates of pairwise relatedness and, in some cases, for parentage analyses. Since AFLP is a dominant marker (can not distinguish between +/+ homozygote versus +/- heterozygote), it has limitations for parentage analyses. Only when both parents are homozygous for the absence of alleles (-/-) and offspring show a presence (+/+ or +/-) can the parents be excluded. In this case, microsatellites become preferable as they have the potential to exclude individual parents when the other parent is unknown. Another limitation of AFLP is that the loci are generally less polymorphic (only two alleles/locus) than microsatellite loci (often >10 alleles/locus). While generally fewer than 10 highly polymorphic microsatellite loci are enough to exclude and assign parentage, it might require up to 100 or more AFLP loci. While there are pros and cons to different methodologies, the total number of loci evaluated by AFLP generally offsets the limitations imposed due to the dominant nature of this approach and end results between methods are generally comparable. Overall objectives of this study were to evaluate the level of genetic diversity in the captive population of Alala, to compare genetic data with currently available pedigree information, and to determine the extent of relatedness of mating pairs and among founding individuals.
Jo, Ick-Hyun; Sung, Jwakyung; Hong, Chi-Eun; Raveendar, Sebastin; Bang, Kyong-Hwan; Chung, Jong-Wook
2018-05-01
Licorice ( Glycyrrhiza glabra ) is an important medicinal crop often used as health foods or medicine worldwide. The molecular genetics of licorice is under scarce owing to lack of molecular markers. Here, we have developed cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers based on single nucleotide polymorphisms (SNP) by comparing the chloroplast genomes of two Glycyrrhiza species ( G. glabra and G. lepidota ). The CAPS and HRM markers were tested for diversity analysis with 24 Glycyrrhiza accessions. The restriction profiles generated with CAPS markers classified the accessions (2-4 genotypes) and melting curves (2-3) were obtained from the HRM markers. The number of alleles and major allele frequency were 2-6 and 0.31-0.92, respectively. The genetic distance and polymorphism information content values were 0.16-0.76 and 0.15-0.72, respectively. The phylogenetic relationships among the 24 accessions were estimated using a dendrogram, which classified them into four clades. Except clade III, the remaining three clades included the same species, confirming interspecies genetic correlation. These 18 CAPS and HRM markers might be helpful for genetic diversity assessment and rapid identification of licorice species.
Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo
2011-01-01
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. PMID:21768136
Bek, S; Nielsen, J V; Bojesen, A B; Franke, A; Bank, S; Vogel, U; Andersen, V
2016-09-01
Personalised medicine, including biomarkers for treatment selection, may provide new algorithms for more effective treatment of patients. Genetic variation may impact drug response and genetic markers could help selecting the best treatment strategy for the individual patient. To identify polymorphisms and candidate genes from the literature that are associated with anti-tumour necrosis factor (TNF) treatment response in patients with inflammatory bowel diseases (IBD), Crohn's disease (CD) and ulcerative colitis. We performed a PubMed literature search and retrieved studies reporting original data on association between polymorphisms and anti-TNF treatment response and conducted a meta-analysis. A functional polymorphism in FCGR3A was significantly associated with anti-TNF treatment response among CD patients using biological response criterion (decrease in C-reactive protein, levels). Meta-analyses showed that polymorphisms in TLR2 (rs3804099, OR (95% CI) = 2.17 (1.35-3.47)], rs11938228 [OR = 0.64 (0.43-0.96)], TLR4 (rs5030728) [OR = 3.18 (1.63-6.21)], TLR9 (rs352139) [OR = 0.43 (0.21-0.88)], TNFRSF1A (rs4149570) [OR = 2.06 (1.02-4.17)], IFNG (rs2430561) [OR = 1.66 (1.05-2.63)], IL6 (rs10499563) [OR = 1.65 (1.04-2.63)] and IL1B (rs4848306) [OR = 1.88 (1.05-3.35)] were significantly associated with response among IBD patients using clinical response criteria. A positive predictive value of 0.96 was achieved by combining five genetic markers in an explorative analysis. There are no genetic markers currently available which are adequately predictive of anti-TNF response for use in the clinic. Genetic markers bear the advantage that they do not change over time. Therefore, hypothesis-free approaches, testing a large number of polymorphisms in large, well-characterised cohorts, are required in order to identify genetic profiles with larger effect sizes, which could be employed as biomarkers for treatment selection in clinical settings. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.
Schlautman, Brandon; Fajardo, Diego; Bougie, Tierney; Wiesman, Eric; Polashock, James; Vorsa, Nicholi; Steffan, Shawn; Zalapa, Juan
2015-01-27
The American cranberry, Vaccinium macrocarpon Ait., is an economically important North American fruit crop that is consumed because of its unique flavor and potential health benefits. However, a lack of abundant, genome-wide molecular markers has limited the adoption of modern molecular assisted selection approaches in cranberry breeding programs. To increase the number of available markers in the species, this study identified, tested, and validated microsatellite markers from existing nuclear and transcriptome sequencing data. In total, new primers were designed, synthesized, and tested for 979 SSR loci; 697 of the markers amplified allele patterns consistent with single locus segregation in a diploid organism and were considered polymorphic. Of the 697 polymorphic loci, 507 were selected for additional genetic diversity and segregation analyses in 29 cranberry genotypes. More than 95% of the 507 loci did not display segregation distortion at the p < 0.05 level, and contained moderate to high levels of polymorphism with a polymorphic information content >0.25. This comprehensive collection of developed and validated microsatellite loci represents a substantial addition to the molecular tools available for geneticists, genomicists, and breeders in cranberry and Vaccinium.
Atay, Ahmet Engin; Esen, Bennur; Akbas, Halit; Gokmen, Emel Saglam; Pilten, Saadet; Guler, Hale; Yavuz, Dilek Gogas
A growing body of evidence suggest that obese individuals are under risk of renal parenchymal disorders when compared to nonobese counterparts. Microalbuminuria is the early marker of renal involvement. Although most of obese patients carries multiple risk factors for microalbuminuria, some obese individuals without risk factor may progress to microalbuminuria. The present study was performed to examine the role of ICAM-1 gene 1462A>G (K469E) polymorphism on microalbuminuria in obese subjects without diabetes mellitus, hypertension, hiperlipidemia and older age. Ninety eight obese and 96 nonobese individuals without a comorbidity enrolled into the study. Serum ICAM-1 level was measured by enzyme linked immunoabsorbent assay (ELISA) method. ICAM-1 gene 1462A>G (K469E) polymorphism was examined by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). Nepholometric method was used to examine urinary albumin loss, and microalbuminuria was measured by albumin to creatinine ratio. Obese individuals had significantly higher microalbuminuria and proteinuria level compared to nonobese subjects (p: 0.043 and p: 0.011; respectively). GG genotype of ICAM-1 carriers have significantly higher microalbuminuria compared to individuals with AA or AG genotype carriers (p: 0.042). Serum ICAM-1 level was significantly correlated with creatinine and microalbuminuria (p: 0.002 and p: 0.03; respectively). Logistic regression analysis indicated a 7.39 fold increased risk of microalbuminuria in individuals with GG genotype of ICAM-1 gene 1462A>G (K469E) polymorphism. GG genotype of ICAM-1 gene K469E polymorphism is associated with increased microalbuminuria in obese individuals without another metabolic risk factor. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Zarzoso-Lacoste, Diane; Jan, Pierre-Loup; Lehnen, Lisa; Girard, Thomas; Besnard, Anne-Laure; Puechmaille, Sebastien J; Petit, Eric J
2018-03-01
Monitoring wild populations is crucial for their effective management. Noninvasive genetic methods provide robust data from individual free-ranging animals, which can be used in capture-mark-recapture (CMR) models to estimate demographic parameters without capturing or disturbing them. However, sex- and status-specific behaviour, which may lead to differences in detection probabilities, is rarely considered in monitoring. Here, we investigated population size, sex ratio, sex- and status-related behaviour in 19 Rhinolophus hipposideros maternity colonies (Northern France) with a noninvasive genetic CMR approach (using faeces) combined with parentage assignments. The use of the DDX3X/Y-Mam sexual marker designed in this study, which shows inter- and intrachromosomal length polymorphism across placental mammals, together with eight polymorphic microsatellite markers, produced high-quality genetic data with limited genotyping errors and allowed us to reliably distinguish different categories of individuals (males, reproductive and nonreproductive females) and to estimate population sizes. We showed that visual counts represent well-adult female numbers and that population composition in maternity colonies changes dynamically during the summer. Before parturition, colonies mainly harbour pregnant and nonpregnant females with a few visiting males, whereas after parturition, colonies are mainly composed of mothers and their offspring with a few visiting nonmothers and males. Our approach gives deeper insight into sex- and status-specific behaviour, a prerequisite for understanding population dynamics and developing effective monitoring and management strategies. Provided sufficient samples can be obtained, this approach can be readily applied to a wide range of species. © 2017 John Wiley & Sons Ltd.
Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan
2017-10-01
The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.
Herrera, Carlos M
2012-01-01
Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.
García-Alzate, Roberto; Lozano-Arias, Daisy; Reyes-Lugo, Rafael Matías; Morocoima, Antonio; Herrera, Leidi; Mendoza-León, Alexis
2014-01-01
Triatoma maculata is a wild vector of Trypanosoma cruzi, the causative agent of Chagas disease; its incursion in the domestic habitat is scant. In order to establish the possible domestic habitat of T. maculata, we evaluated wing variability and polymorphism of genotypic markers in subpopulations of T. maculata that live in different habitats in Venezuela. As markers, we used the mtCyt b gene, previously apply to evaluate population genetic structure in triatomine species, and the β-tubulin gene region, a marker employed to study genetic variability in Leishmania subgenera. Adults of T. maculata were captured in the period 2012–2013 at domestic, peridomestic (PD), and wild areas of towns in the Venezuelan states of Anzoátegui, Bolívar, Portuguesa, Monagas, Nueva Esparta, and Sucre. The phenotypic analysis was conducted through the determination of the isometric size and conformation of the left wing of each insect (492 individuals), using the MorphoJ program. Results reveal that insects of the domestic habitat showed significant reductions in wing size and variations in anatomical characteristics associated with flying, in relation to the PD and wild habitats. The largest variability was found in Anzoátegui and Monagas. The genotypic variability was assessed by in silico sequence comparison of the molecular markers and PCR-RFLP assays, demonstrating a marked polymorphism for the markers in insects of the domestic habitat in comparison with the other habitats. The highest polymorphism was found for the β-tubulin marker with enzymes BamHI and KpnI. Additionally, the infection rate by T. cruzi was higher in Monagas and Sucre (26.8 and 37.0%, respectively), while in domestic habitats the infestation rate was highest in Anzoátegui (22.3%). Results suggest domestic habitat colonization by T. maculata that in epidemiological terms, coupled with the presence in this habitat of nymphs of the vector, represents a high risk of transmission of Chagas disease. PMID:25325053
Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers.
Corley-Smith, Graham E; Wennerberg, Liv; Schembri, Joy A; Lim, Chinten J; Cooper, Karen L; Brandhorst, Bruce P
2005-01-01
Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.
Guzman-Ornelas, Milton-Omar; Chavarria-Avila, Efrain; Munoz-Valle, Jose-Francisco; Armas-Ramos, Laura-Elizabeth; Castro-Albarran, Jorge; Aldrete, Maria Elena Aguilar; Oregon-Romero, Edith; Mercado, Monica Vazquez-Del; Navarro-Hernandez, Rosa-Elena
2012-01-01
Purpose Obesity is a disease with genetic susceptibility characterized by an increase in storage and irregular distribution of body fat. In obese patients, the decrease in the Adiponectin gene (ADIPOQ) expression has been associated with a systemic low-grade inflammatory state. Our aim was to investigate the relationship between ADIPOQ +45T>G gene simple nucleotide polymorphism (SNP rs2241766) with serum adiponectin (sAdiponectin), distribution of body fat storage, and inflammation markers. Subjects and methods In this cross-sectional study, 242 individuals from Western Mexico characterized as Mexican-Mestizo and classified by body mass index (BMI), were included. Anthropometrics, body composition, body fat distribution, and inflammation markers were measured by routine methods. Genotypes were characterized using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and sAdiponectin by the ELISA method. A P-value <0.05 was considered the statistically significant threshold. Results sAdiponectin is associated with BMI (P < 0.001) and the genotypes (P < 0.001 to 0.0046) GG (8169 ± 1162 ng/mL), TG (5189 ± 501 ng/mL), and TT (3741 ± 323 ng/mL), but the SNP ADIPOQ +45T>G is not associated with BMI. However, the detailed analysis showed association of this SNP with a pattern of fat distribution and correlations (P < 0.05) with inflammation markers and distribution of body fat storage (Pearson’s r = −0.169 to −0.465) were found. Conclusion In this study, we have suggested that the ADIPOQ +45G allele could be associated with distribution of body fat storage in obesity. On the other hand, as no association was observed between ADIPOQ +45T>G gene polymorphism and obesity, it cannot be concluded that the ADIPOQ +45G allele is responsible for the increase of adiponectin levels. PMID:23118546
Guzman-Ornelas, Milton-Omar; Chavarria-Avila, Efrain; Munoz-Valle, Jose-Francisco; Armas-Ramos, Laura-Elizabeth; Castro-Albarran, Jorge; Aguilar Aldrete, Maria Elena; Oregon-Romero, Edith; Vazquez-Del Mercado, Monica; Navarro-Hernandez, Rosa-Elena
2012-01-01
Obesity is a disease with genetic susceptibility characterized by an increase in storage and irregular distribution of body fat. In obese patients, the decrease in the Adiponectin gene (ADIPOQ) expression has been associated with a systemic low-grade inflammatory state. Our aim was to investigate the relationship between ADIPOQ +45T>G gene simple nucleotide polymorphism (SNP rs2241766) with serum adiponectin (sAdiponectin), distribution of body fat storage, and inflammation markers. In this cross-sectional study, 242 individuals from Western Mexico characterized as Mexican-Mestizo and classified by body mass index (BMI), were included. Anthropometrics, body composition, body fat distribution, and inflammation markers were measured by routine methods. Genotypes were characterized using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and sAdiponectin by the ELISA method. A P-value <0.05 was considered the statistically significant threshold. sAdiponectin is associated with BMI (P < 0.001) and the genotypes (P < 0.001 to 0.0046) GG (8169 ± 1162 ng/mL), TG (5189 ± 501 ng/mL), and TT (3741 ± 323 ng/mL), but the SNP ADIPOQ +45T>G is not associated with BMI. However, the detailed analysis showed association of this SNP with a pattern of fat distribution and correlations (P < 0.05) with inflammation markers and distribution of body fat storage (Pearson's r = -0.169 to -0.465) were found. In this study, we have suggested that the ADIPOQ +45G allele could be associated with distribution of body fat storage in obesity. On the other hand, as no association was observed between ADIPOQ +45T>G gene polymorphism and obesity, it cannot be concluded that the ADIPOQ +45G allele is responsible for the increase of adiponectin levels.
Manaffar, R; Zare, S; Agh, N; Abdolahzadeh, N; Soltanian, S; Sorgeloos, P; Bossier, P; Van Stappen, G
2011-01-01
In order to find a marker for differentiating between a bisexual and a parthenogenetic Artemia strain, Exon-7 of the Na/K ATPase α(1) subunit gene was screened by RFLP technique. The results revealed a constant synonymous SNP (single nucleotide polymorphism) in digestion by the Tru1I enzyme that was consistent with these two types of Artemia. This SNP was identified as an accurate molecular marker for discrimination between bisexual and parthenogenetic Artemia. According to the Nei's genetic distance (1973), the lowest genetic distance was found between individuals from Artemia urmiana Günther 1890 and parthenogenetic populations, making the described marker the first marker to easily distinguish between these two cooccurring species. © 2010 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
To date, nearly 10,000 SSR-based markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% were mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. I...
Applications of Redwood Genotyping by Using Microsatellite Markers
Chris Brinegar; Dan Bruno; Ryan Kirkbride; Steven Glavas; Ingrid Udranszky
2007-01-01
A panel of polymorphic microsatellite markers have been developed in coast redwood (Sequoia sempervirens). Two loci in particular (Seq18D7-3 and Seq21E5) demonstrate the potential of microsatellite genotyping in the assessment of genetic diversity and inheritance in redwoods. The highly polymorphic Seq18D7-3 marker provided evidence for the planting...
New polymorphic markers in the vicinity of the pearl locus on mouse chromosome 13.
Xu, H P; Yanak, B L; Wigler, M H; Gorin, M B
1996-01-01
We have used a Mus domesticus/-Mus spretus congenic animal that was selected for retention of Mus spretus DNA around the pearl locus to create a highly polymorphic region suitable for screening new markers. Representation difference analysis (RDA) was performed with either DNA from the congenic animal or C57BL/6J as the driver for subtraction. Four clones were identified, characterized, and converted to PCR-based polymorphic markers. Three of the four markers equally subdivide a 10-cM interval containing the pearl locus, with the fourth located centromeric to it. These markers have been placed on the mouse genetic map by use of an interspecific backcross panel between Mus domesticus (C57BL/6J) and Mus spretus generated by The Jackson Laboratory.
Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S
2015-12-15
Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.
Gupta, Shefali; Kumar, Tapan; Verma, Subodh; Bharadwaj, Chellapilla; Bhatia, Sabhyata
2015-11-01
Seed weight and plant height are important agronomic traits and contribute to seed yield. The objective of this study was to identify QTLs underlying these traits using an intra-specific mapping population of chickpea. A F11 population of 177 recombinant inbred lines derived from a cross between SBD377 (100-seed weight--48 g and plant height--53 cm) and BGD112 (100-seed weight--15 g and plant height--65 cm) was used. A total of 367 novel EST-derived functional markers were developed which included 187 EST-SSRs, 130 potential intron polymorphisms (PIPs) and 50 expressed sequence tag polymorphisms (ESTPs). Along with these, 590 previously published markers including 385 EST-based markers and 205 genomic SSRs were utilized. Of the 957 markers tested for analysis of parental polymorphism between the two parents of the mapping population, 135 (14.64%) were found to be polymorphic. Of these, 131 polymorphic markers could be mapped to the 8 linkage groups. The linkage map had a total length of 1140.54 cM with an average marker density of 8.7 cM. The map was further used for QTL identification using composite interval mapping method (CIM). Two QTLs each for seed weight, qSW-1 and qSW-2 (explaining 11.54 and 19.24% of phenotypic variance, respectively) and plant height, qPH-1 and qPH-2 (explaining 13.98 and 12.17% of phenotypic variance, respectively) were detected. The novel set of genic markers, the intra-specific linkage map and the QTLs identified in the present study will serve as valuable genomic resources in improving the chickpea seed yield using marker-assisted selection (MAS) strategies.
Glatt, SJ; Faraone, SV; Lasky-Su, JA; Kanazawa, T; Hwu, H-G; Tsuang, MT
2009-01-01
The gene that codes for dopamine receptor D2 (DRD2 on chromosome 11q23) has long been a prime functional and positional candidate risk gene for schizophrenia. Collectively, prior case–control studies found a reliable effect of the Ser311Cys DRD2 polymorphism (rs1801028) on risk for schizophrenia, but few other polymorphisms in the gene had ever been evaluated and no adequately powered family-based association study has been performed to date. Our objective was to test 21 haplotype-tagging and all three known nonsynonymous single-nucleotide polymorphisms (SNPs) in DRD2 for association with schizophrenia in a family-based study of 2408 Han Chinese, including 1214 affected individuals from 616 families. We did not find a significant effect of rs1801028, but we did find significant evidence for association of schizophrenia with two multi-marker haplotypes spanning blocks of strong linkage disequilibrium (LD) and nine individual SNPs (Ps < 0.05). Importantly, two SNPs (rs1079727 and rs2283265) and both multi-marker haplotypes spanning entire LD blocks (including one that contained rs1801028) remained significant after correcting for multiple testing. These results further add to the body of data implicating DRD2 as a schizophrenia risk gene; however, a causal variant(s) in DRD2 remains to be elucidated by further fine mapping of the gene, with particular attention given to the area surrounding the third through fifth exons. PMID:18332877
Prediction of exercise-mediated changes in metabolic markers by gene polymorphism.
Kahara, Toshio; Takamura, Toshinari; Hayakawa, Tetsuo; Nagai, Yukihiro; Yamaguchi, Hiromi; Katsuki, Tatsuo; Katsuki, Ken-ichi; Katsuki, Michio; Kobayashi, Ken-ichi
2002-08-01
The effects of regular physical exercise on obesity-associated metabolic abnormalities vary for each individual. In this study, we investigated whether genotypes of genes associated with obesity can predict the effects of exercise on changes in metabolic markers in healthy men. Healthy Japanese men (n=106) performed the exercise program at 50% of their maximal heart rate for 20-60 min a day, 2-3 days each week for 3 months. The levels of fasting plasma glucose (FPG) and serum leptin significantly decreased after the exercise program. Polymorphisms of the beta3-adrenergic receptor (beta3AR) and uncoupling protein-1 (UCP-1) genes were analyzed with RFLP methods. In the Trp/Trp genotype of the beta3AR gene, the levels of serum leptin, FPG and fructosamine (FrAm) decreased significantly after the exercise program, but not in the Arg/Arg genotype. In the AG heterozygote and the GG homozygote of the UCP-1 gene, FPG and FrAm levels were significantly reduced, respectively. In conclusion, gene polymorphism of the beta3AR and UCP-1 was found to be associated with the exercise-mediated improvement in glucose tolerance and leptin resistance in healthy Japanese men.
Hewett, Duncan; Samuelsson, Lena; Polding, Joanne; Enlund, Fredrik; Smart, Devi; Cantone, Kathryn; See, Chee Gee; Chadha, Sapna; Inerot, Annica; Enerback, Charlotta; Montgomery, Doug; Christodolou, Chris; Robinson, Phil; Matthews, Paul; Plumpton, Mary; Wahlstrom, Jan; Swanbeck, Gunnar; Martinsson, Tommy; Roses, Allen; Riley, John; Purvis, Ian
2002-03-01
Psoriasis is a chronic inflammatory disease of the skin with both genetic and environmental risk factors. Here we describe the creation of a single-nucleotide polymorphism (SNP) map spanning 900-1200 kb of chromosome 3q21, which had been previously recognized as containing a psoriasis susceptibility locus, PSORS5. We genotyped 644 individuals, from 195 Swedish psoriatic families, for 19 polymorphisms. Linkage disequilibrium (LD) between marker and disease was assessed using the transmission/disequilibrium test (TDT). In the TDT analysis, alleles of three of these SNPs showed significant association with disease (P<0.05). A 160-kb interval encompassing these three SNPs was sequenced, and a coding sequence consisting of 13 exons was identified. The predicted protein shares 30-40% homology with the family of cation/chloride cotransporters. A five-marker haplotype spanning the 3' half of this gene is associated with psoriasis to a P value of 3.8<10(-5). We have called this gene SLC12A8, coding for a member of the solute carrier family 12 proteins. It belongs to a class of genes that were previously unrecognized as playing a role in psoriasis pathogenesis.
Human neutral genetic variation and forensic STR data.
Silva, Nuno M; Pereira, Luísa; Poloni, Estella S; Currat, Mathias
2012-01-01
The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.
Development and validation of the first SSR markers for Mimosa scabrella Benth.
Saiki, F A; Bernardi, A P; Reis, M S; Faoro, H; Souza, E M; Pedrosa, F O; Mantovani, A; Guidolin, A F
2017-02-16
Mimosa scabrella Benth., popularly known as ''bracatinga'', is a pioneer and endemic species of Brazil, occurring in Mixed Ombrophilous Forest associated with Brazilian Atlantic Rainforest biomes. It is a fast-growing tree of the Fabaceae family that facilitates the dynamics of ecological succession. SSR development, when there is no genome sequence, is time and labor intensive and there are no molecular markers for M. scabrella. We developed and validated the first microsatellite markers for this tetraploid species, evaluating mother trees and progenies. Using Illumina sequencing, we identified 290 SSR loci and 211 primer pairs. After 31 SSR loci PCR/agarose electrophoresis selection, a subset of 11 primer pairs was synthetized with fluorescence in the forward primer for PCR and capillary electrophoresis validation with leaf DNA of 33 adult and 411 progeny individuals. Polymorphic locus percentage was 36, 4 in 11 loci, 3 chloroplast SSRs, and 1 nuclear SSR. Allele number of polymorphic loci ranged from 2 to 11 alleles considering all sampling. All 11 primer pairs were also tested for cross-species amplification for five Fabaceae-Mimosoideae species, ranging from 2 loci transferred to Calliandra tweedii Benth. and all 11 loci transferred to Mimosa taimbensis Burkart. The assessed and validated SSR markers for M. scabrella are suitable and useful for analysis and population genetic studies.
Young, W.P.; Ostberg, C.O.; Keim, P.; Thorgaard, G.H.
2001-01-01
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.
Saxena, Rachit K.; Varma Penmetsa, R.; Upadhyaya, Hari D.; Kumar, Ashish; Carrasquilla-Garcia, Noelia; Schlueter, Jessica A.; Farmer, Andrew; Whaley, Adam M.; Sarma, Birinchi K.; May, Gregory D.; Cook, Douglas R.; Varshney, Rajeev K.
2012-01-01
Single-nucleotide polymorphisms (SNPs, >2000) were discovered by using RNA-seq and allele-specific sequencing approaches in pigeonpea (Cajanus cajan). For making the SNP genotyping cost-effective, successful competitive allele-specific polymerase chain reaction (KASPar) assays were developed for 1616 SNPs and referred to as PKAMs (pigeonpea KASPar assay markers). Screening of PKAMs on 24 genotypes [23 from cultivated species and 1 wild species (Cajanus scarabaeoides)] defined a set of 1154 polymorphic markers (77.4%) with a polymorphism information content (PIC) value from 0.04 to 0.38. One thousand and ninety-four PKAMs showed polymorphisms between parental lines of the reference mapping population (C. cajan ICP 28 × C. scarabaeoides ICPW 94). By using high-quality marker genotyping data on 167 F2 lines from the population, a comprehensive genetic map comprising 875 PKAMs with an average inter-marker distance of 1.11 cM was developed. Previously mapped 35 simple sequence repeat markers were integrated into the PKAM map and an integrated genetic map of 996.21 cM was constructed. Mapped PKAMs showed a higher degree of synteny with the genome of Glycine max followed by Medicago truncatula and Lotus japonicus and least with Vigna unguiculata. These PKAMs will be useful for genetics research and breeding applications in pigeonpea and for utilizing genome information from other legume species. PMID:23103470
Jiménez-Ramírez, Francisco J; Castro, Liza M; Ortiz, Clarymar; Concepción, Jennifer; Renta, Jessicca Y; Morales-Borges, Raúl H; Miranda-Massari, Jorge R; Duconge, Jorge
2017-03-01
The study was conducted to investigate potential association between MTHFR genotypes and diabetic peripheral neuropathy (DPN) in Puerto Ricans with type-2 diabetes mellitus (T2DM) treated with metformin. The prevalence of major MTHFR polymorphisms in this cohort was also ascertained. DNAs from 89 metformin-treated patients with T2DM and DPN were genotyped using the PCR-based RFLP assay for MTHFR677C>T and 1298A>C polymorphisms. Frequency distributions of these variants in the study cohort were compared to those reported for three reference populations (HapMap project) and controls (400 newborn specimens). Chi-square (or Fischer's exact) tests and odds ratios (OR) were used to assess association with DPN susceptibility risk (patients vs. controls) and biochemical markers (wild types vs. carriers). Sixty-seven percent (67%) of participants carry at least one of these MTHFR polymorphisms. No deviations from Hardy-Weinberg equilibrium were detected. The genotype and allele frequencies showed statistically significant differences between participants and controls (p<0.0001 and p=0.03, respectively). Results suggest that 1298A>C but not 677C>T is associated with DPN susceptibility in this cohort (p=0.018). Different patterns of allelic dissimilarities are observed when comparing our cohort vs. the three parental ancestries. After sorting individuals by their carrier status, no significant associations were observed between these genetic variants (independently or combined) and any of the biochemical markers (HbA1c, folate, vitamin B12, homocysteine). Prevalence of major MTHFR variants in Puerto Rican patients with T2DM is first time ever reported. The study provides further evidence on the use of this genetic marker as an independent risk factor for DPN.
Genomic profiling of plastid DNA variation in the Mediterranean olive tree
2011-01-01
Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271
Wojnar, Marcin; Brower, Kirk J; Strobbe, Stephen; Ilgen, Mark; Matsumoto, Halina; Nowosad, Izabela; Sliwerska, Elzbieta; Burmeister, Margit
2009-04-01
The purpose of this study was to examine relationships between genetic markers of central serotonin (5-HT) and dopamine function, and risk for post-treatment relapse, in a sample of alcohol-dependent patients. The study included 154 patients from addiction treatment programs in Poland, who met DSM-IV criteria for alcohol dependence. After assessing demographics, severity of alcohol use, suicidality, impulsivity, depression, hopelessness, and severity of alcohol use at baseline, patients were followed for approximately 1 year to evaluate treatment outcomes. Genetic polymorphisms in several genes (TPH2, SLC6A4, HTR1A, HTR2A, COMT, and BDNF) were tested as predictors of relapse (defined as any drinking during follow-up) while controlling for baseline measures. Of 154 eligible patients, 123 (80%) completed follow-up and 48% (n = 59) of these individuals relapsed. Patients with the Val allele in the Val66Met BDNF polymorphism and the Met allele in the Val158Met COMT polymorphism were more likely to relapse. Only the BDNF Val/Val genotype predicted post-treatment relapse [odds ratio (OR) = 2.62; p = 0.019], and time to relapse (OR = 2.57; p = 0.002), after adjusting for baseline measures and other significant genetic markers. When the analysis was restricted to patients with a family history of alcohol dependence (n = 73), the associations between the BDNF Val/Val genotype and relapse (OR = 5.76, p = 0.0045) and time to relapse (hazard ratio = 4.93, p = 0.001) were even stronger. The Val66Met BDNF gene polymorphism was associated with a higher risk and earlier occurrence of relapse among patients treated for alcohol dependence. The study suggests a relationship between genetic markers and treatment outcomes in alcohol dependence. Because a large number of statistical tests were conducted for this study and the literature on genetics and relapse is so novel, the results should be considered as hypothesis generating and need to be replicated in independent studies.
Wojnar, Marcin; Brower, Kirk J.; Strobbe, Stephen; Ilgen, Mark; Matsumoto, Halina; Nowosad, Izabela; Sliwerska, Elzbieta; Burmeister, Margit
2009-01-01
Background The purpose of this study was to examine relationships between genetic markers of central serotonin and dopamine function, and risk for post-treatment relapse, in a sample of alcohol-dependent patients. Methods The study included 154 patients from addiction treatment programs in Poland, who met DSM-IV criteria for alcohol dependence. After assessing demographics, severity of alcohol use, suicidality, impulsivity, depression, hopelessness, and severity of alcohol use at baseline, patients were followed for approximately one year to evaluate treatment outcomes. Genetic polymorphisms in several genes (TPH2, SLC6A4, HTR1A, HTR2A, COMT, BDNF) were tested as predictors of relapse (defined as any drinking during follow-up) while controlling for baseline measures. Results Of 154 eligible patients, 123 (80%) completed follow-up and 48% (n = 59) of these individuals relapsed. Patients with the Val allele in the Val66Met BDNF polymorphism and the Met allele in the Val158Met COMT polymorphism were more likely to relapse. Only the BDNF Val/Val genotype predicted post-treatment relapse (OR = 2.62; p = 0.019), and time to relapse (OR = 2.57; p = 0.002), after adjusting for baseline measures and other significant genetic markers. When the analysis was restricted to patients with a family history of alcohol dependence (n = 73), the associations between the BDNF Val/Val genotype and relapse (OR = 5.76, p = 0.0045) and time to relapse (HR = 4.93, p = 0.001) were even stronger. Conclusions The Val66Met BDNF gene polymorphism was associated with a higher risk and earlier occurrence of relapse among patients treated for alcohol dependence. The study suggests a relationship between genetic markers and treatment outcomes in alcohol dependence. Because a large number of statistical tests were conducted for this study and the literature on genetics and relapse is so novel, the results should be considered as hypothesis generating and need to be replicated in independent studies. PMID:19170664
de Jong, Frank Jan; Peeters, Robin P; den Heijer, Tom; van der Deure, Wendy M; Hofman, Albert; Uitterlinden, André G; Visser, Theo J; Breteler, Monique M B
2007-02-01
Thyroid function has been related to Alzheimer disease (AD) and neuroimaging markers thereof. Whether thyroid dysfunction contributes to or results from developing AD remains unclear. Variations in the deiodinase type 1 (DIO1) and type 2 (DIO2) genes that potentially alter thyroid hormone bioactivity may help in elucidating the role of thyroid function in AD. We investigated the association of recently identified polymorphisms in the DIO1 (D1a-C/T, D1b-A/G) and DIO2 (D2-ORFa-Gly3Asp, D2-Thr92Ala) genes with circulating thyroid parameters and early neuroimaging markers of AD. The Rotterdam Scan Study is a population-based cohort study among 1,077 elderly individuals aged 60-90 yr. DIO1 and DIO2 polymorphisms and serum TSH, free T4, T3, and reverse T3 (rT3) levels were determined in 995 nondemented elderly, including 473 persons with assessments of hippocampal and amygdalar volume on brain magnetic resonance imaging. Carriers of the D1a-T allele had higher serum free T4 and rT3, lower T3, and lower T3/rT3. The D1b-G allele was associated with higher serum T3 and T3/rT3. The DIO2 variants were not associated with serum thyroid parameters. No associations were found with hippocampal or amygdalar volume. This is the first study to report an association of D1a-C/T and D1b-A/G polymorphisms with iodothyronine levels in the elderly. Polymorphisms in the DIO1 and DIO2 genes are not associated with early magnetic resonance imaging markers of AD. This suggests that the previously reported association between iodothyronine levels and brain atrophy reflects comorbidity or nonthyroidal illness rather than thyroid hormones being involved in developing AD.
[The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].
Bai, Peng; Tian, Li; Zhou, Xue-ping
2005-05-01
DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.
Isolation and characterization of microsatellite loci in the whale shark (Rhincodon typus)
Ramirez-Macias, D.; Shaw, K.; Ward, R.; Galvan-Magana, F.; Vazquez-Juarez, R.
2009-01-01
In preparation for a study on population structure of the whale shark (Rhincodon typus), nine species-specific polymorphic microsatellite DNA markers were developed. An initial screening of 50 individuals from Holbox Island, Mexico found all nine loci to be polymorphic, with two to 17 alleles observed per locus. Observed and expected heterozygosity per locus ranged from 0.200 to 0.826 and from 0.213 to 0.857, respectively. Neither statistically significant deviations from Hardy–Weinberg expectations nor statistically significant linkage disequilibrium between loci were observed. These microsatellite loci appear suitable for examining population structure, kinship assessment and other applications.
Papura, D; Giresse, X; Chauvin, B; Caron, H; Delmotte, F; VAN Helden, M
2009-05-01
Eight dinucleotide microsatellite loci were isolated and characterized within the green leafhopper Empoasca vitis (Goethe) using an enrichment cloning procedure. Primers were tested on 171 individuals collected in the southwest of France from the vine plants. The identified loci were polymorphic, with allelic diversity ranging from two to 18 alleles per locus. Observed heterozygosities were from 0.021 to 0.760. These microsatellite markers should prove to be a useful tool for estimating the population genetic structure, host-plant specialization and migration capacity of this insect. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Wu, Mian; Wu, Wen-Ping; Liu, Cheng-Chen; Liu, Ying-Na; Wu, Xiao-Yi; Ma, Fang-Fang; Zhu, An-Qi; Yang, Jia-Yin; Wang, Bin; Chen, Jian-Qun
2018-06-16
In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F 2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F 2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F 2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.
Coutinho, João Paulo; Carvalho, Ana; Martín, Antonio; Lima-Brito, José
2018-04-01
Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.
Garziera, Marica; Virdone, Saverio; De Mattia, Elena; Scarabel, Lucia; Cecchin, Erika; Polesel, Jerry; D’Andrea, Mario; Pella, Nicoletta; Buonadonna, Angela; Favaretto, Adolfo; Toffoli, Giuseppe
2017-01-01
Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC) that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4). Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4) toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR) polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity) with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015) and neurotoxicity (OR = 8.78, p = 0.016); rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027). HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017) and neurotoxicity (OR = 11.29, p = 0.009). A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC. PMID:28653974
Hackler, J.C.; Van Den Bussche, Ronald A.; Leslie, David M.
2007-01-01
Two trinucleotide and seven tetranucleotide microsatellite loci were isolated from an alligator snapping turtle Macrochelys temminckii. To assess the degree of variability in these nine microsatellite loci, we genotyped 174 individuals collected from eight river drainage basins in the southeastern USA. These markers revealed a moderate degree of allelic diversity (six to 16 alleles per locus) and observed heterozygosity (0.166-0.686). These polymorphic microsatellite loci provide powerful tools for population genetic studies for a species that is afforded some level of conservation protection in every state in which it occurs. ?? 2006 The Authors.
Data of 10 SSR markers for genomes of homo sapiens and monkeys.
Reddy, K K V V V S; Raju, S Viswanadha; Someswara Rao, Chinta
2017-06-01
In this data, we present 10 Simple Sequence Repeat(SSR) markers TAGA, TCAT, GAAT, AGAT, AGAA, GATA, TATC, CTTT, TCTG and TCTA which are extracted from the genomes of homo sapiens and monkeys using string matching mechanism [1]. All loci showed 4 Base Pair(bp) in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that maybe useful for the detection of similarity among the genotypes. Collectively, these data show that the SSR extraction is a valuable method to illustrate genetic variation of genomes.
Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer
2015-01-01
Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.
Augustinos, A A; Asimakopoulou, A K; Papadopoulos, N T; Bourtzis, K
2011-02-01
The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a major pest of cherries in Europe and parts of Asia. Despite its big economic significance, there is a lack of studies on the genetic structure of its natural populations. Knowledge about an insect pest on molecular, genetic and population levels facilitates the development of environmentally friendly control methods. In this study, we present the development of 13 microsatellite markers for R. cerasi, through cross-species amplification. These markers have been used for the genotyping of 130 individuals from five different sampling sites in Greece. Our results indicate that (i) cross-species amplification is a versatile and rapid tool for developing microsatellite markers in Rhagoletis spp., (ii) the microsatellite markers presented here constitute an important tool for population studies on this pest, and (iii) there is clear structuring of natural European cherry fly populations.
Sharma, Vishakha; Nandineni, Madhusudan R
2014-04-01
Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0.905 were observed for REMAP, IRAP and SSR, respectively. The widespread presence and distinct DNA profiles for copia-like and gypsy-like RTNs in the examined genotypes indicate that these elements are active in the genome and may have even contributed to the potato genome organization. Although the three marker systems were capable of distinguishing all the 47 varieties; high reproducibility, low cost and ease of DNA profiling data collection make IRAP and REMAP markers highly efficient whole-genome scanning molecular probes for population genetic studies. Information obtained from the present study regarding the genetic association and distinctiveness provides an useful guide for selection of germplasm for plant breeding and conservation efforts. Copyright © 2014. Published by Elsevier Inc.
Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian
2018-01-01
"Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Posadas-Sánchez, Rosalinda; López-Uribe, Ángel René; Posadas-Romero, Carlos; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Ocampo-Arcos, Wendy Angélica; Fragoso, José Manuel; Cardoso-Saldaña, Guillermo; Vargas-Alarcón, Gilberto
2017-10-01
The aim of this study was to evaluate the potential use of the I148M/PNPLA3 (rs738409) gene polymorphism as a susceptibility marker for premature coronary artery disease (pCAD) and/or cardiovascular risk factors in Mexican type 2 diabetes mellitus patients (T2DM). The polymorphism was genotyped by 5' exonuclease TaqMan assays in a group of 2572 subjects (1103 with pCAD and 1469 healthy controls) belonging to the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Anthropometric and biochemical measurements were performed in all individuals. The association between the I148M/PNPLA3 (rs738409) gene polymorphism with pCAD and other metabolic and cardiovascular risk factors was evaluated using logistic regression analysis under different statistical approaches including dominant, recessive, heterozygous, additive, and co-dominant models. The polymorphism was not associated with pCAD in the whole group of participants, however, when patients and controls were divided into those with and without T2DM, under additive model, the polymorphism was associated with the presence of pCAD only in patients with T2DM (OR=1.20, 95% CI: 1.01-1.42, P add =0.042). On the other hand, under several models adjusted for age, gender, body mass index and T2DM, the polymorphism was associated with increased risk of fatty liver and elevated levels of alanine transaminase (ALT) in the whole group of pCAD patients and controls. In the control group, the polymorphism was associated with insulin resistance and coronary artery calcification (CAC) score≥10 under several models. The results suggest that the I148M/PNPLA3 (rs738409) polymorphism is associated with the presence of pCAD in T2DM patients and with some cardiometabolic parameters. The association detected with CAC in the control group indicates that this polymorphism could be a marker for subclinical atherosclerosis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ley, Alexandra C; Hardy, Olivier J
2016-03-01
Microsatellite markers were developed for the species Haumania danckelmaniana (Marantaceae) from central tropical Africa. Microsatellite isolation was performed simultaneously on three different species of Marantaceae through a procedure that combines multiplex microsatellite enrichment and next-generation sequencing. From 80 primers selected for initial screening, 20 markers positively amplified in H. danckelmaniana, of which 10 presented unambiguous amplification products within the expected size range and eight were polymorphic with four to nine alleles per locus. Positive transferability with the related species H. liebrechtsiana was observed for the same 10 markers. The polymorphic microsatellite markers are suitable for studies in genetic diversity and structure, mating system, and gene flow in H. danckelmaniana and the closely related species H. liebrechtsiana.
Isolation and characterization of microsatellite markers of sea cucumber Stichopus horrens.
Li, Z B; Dai, G; Shangguan, J B; Ning, Y F; Li, Y Y; Chen, R B; Yuan, Y; Huang, Y S
2015-07-28
Curry fish (Stichopus horrens) is a tropical holothurian species and is widely distributed in the India-West Pacific. In the present study, 9 polymorphic microsatellite loci were isolated and characterized for S. horrens. These loci were tested in 30 individuals from Hainan Island in China. The number of alleles ranged from 2 to 5. The polymorphism information content ranged from 0.348-0.584. The levels of observed and expected heterozygosities varied from 0.1500-0.8000 and from 0.2014-0.5000, respectively. Most loci were in Hardy-Weinberg equilibrium, except HCS1-27 and HCS2-7, after sequential Bonferroni's correction, and no significant linkage disequilibrium was detected for any pairwise combination of loci. These polymorphic microsatellite loci will be useful for studying population structure and conservation strategy design for S. horrens.
Kurushima, J. D.; Lipinski, M. J.; Gandolfi, B.; Froenicke, L.; Grahn, J. C.; Grahn, R. A.; Lyons, L. A.
2012-01-01
Summary Both cat breeders and the lay public have interests in the origins of their pets, not only in the genetic identity of the purebred individuals, but also the historical origins of common household cats. The cat fancy is a relatively new institution with over 85% of its 40–50 breeds arising only in the past 75 years, primarily through selection on single-gene aesthetic traits. The short, yet intense cat breed history poses a significant challenge to the development of a genetic marker-based breed identification strategy. Using different breed assignment strategies and methods, 477 cats representing 29 fancy breeds were analysed with 38 short tandem repeats, 148 intergenic and five phenotypic single nucleotide polymorphisms. Results suggest the frequentist method of Paetkau (accuracy single nucleotide polymorphisms = 0.78, short tandem repeats = 0.88) surpasses the Bayesian method of Rannala and Mountain (single nucleotide polymorphisms = 0.56, short tandem repeats = 0.83) for accurate assignment of individuals to the correct breed. Additionally, a post-assignment verification step with the five phenotypic single nucleotide polymorphisms accurately identified between 0.31 and 0.58 of the mis-assigned individuals raising the sensitivity of assignment with the frequentist method to 0.89 and 0.92 single nucleotide polymorphisms and short tandem repeats respectively. This study provides a novel multi-step assignment strategy and suggests that, despite their short breed history and breed family groupings, a majority of cats can be assigned to their proper breed or population of origin, i.e. race. PMID:23171373
A novel DSPP mutation causes dentinogenesis imperfecta type II in a large Mongolian family
2010-01-01
Background Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II) may be caused by mutations in dentin sialophosphoprotein (DSPP). However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China. Methods We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected. Linkage analysis of five polymorphic markers flanking DSPP gene was used to genotype the families and to construct the haplotypes of these families. All five DSPP exons including the intron-exon boundaries were PCR-amplified and sequenced in 48 members of this large family. Results All affected individuals showed discoloration and severe attrition of their teeth, with obliterated pulp chambers and without progressive high frequency hearing loss or skeletal abnormalities. No recombination was found at five polymorphic markers flanking DSPP in the family. Direct DNA sequencing identified a novel A→G transition mutation adjacent to the donor splicing site within intron 3 in all affected individuals but not in the unaffected family members and 50 unrelated Mongolian individuals. Conclusion This study identified a novel mutation (IVS3+3A→G) in DSPP, which caused DGI-II in a large Mongolian family. This expands the spectrum of mutations leading to DGI-II. PMID:20146806
Sugai, Kyoko; Setsuko, Suzuki; Uchiyama, Kentaro; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi
2012-02-01
Expressed sequence tag (EST)-derived microsatellite markers were developed for Elaeocarpus photiniifolia, an endemic taxon of the Bonin Islands. Initially, a complementary DNA (cDNA) library was constructed by de novo pyrosequencing of total RNA extracted from a seedling. A total of 267 primer pairs were designed from the library. Of the 48 tested loci, 25 loci were polymorphic among 41 individuals representing the entire geographical range of the species, with the number of alleles per locus and expected heterozygosity ranging from two to 14 and 0.09 to 0.86, respectively. Most loci were transferable to a related species, E. sylvestris. The developed markers will be useful for evaluating the genetic structure of E. photiniifolia.
Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui
2017-09-20
Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.
David E. Schreiber; Karen J. Garner; James M. Slavicek
1997-01-01
Gypsy moths originating in Asia have recently been introduced into North America, making it necessary to develop markers for distinguishing the Asian strain from the established North American population. We have identified 3 randomly amplified polymorphic DNA-polymerase chain reaction generated (RAPD-PCR) markers which are specific for either Asian or North American...
Evaluation of genetic diversity in Piper spp using RAPD and SRAP markers.
Jiang, Y; Liu, J-P
2011-11-29
Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) analysis were applied to 74 individual plants of Piper spp in Hainan Island. The results showed that the SRAP technique may be more informative and more efficient and effective for studying genetic diversity of Piper spp than the RAPD technique. The overall level of genetic diversity among Piper spp in Hainan was relatively high, with the mean Shannon diversity index being 0.2822 and 0.2909, and the mean Nei's genetic diversity being 0.1880 and 0.1947, calculated with RAPD and SRAP data, respectively. The ranges of the genetic similarity coefficient were 0.486-0.991 and 0.520-1.000 for 74 individual plants of Piper spp (the mean genetic distance was 0.505 and 0.480) and the within-species genetic distance ranged from 0.063 to 0.291 and from 0.096 to 0.234, estimated with RAPD and SRAP data, respectively. These genetic indices indicated that these species are closely related genetically. The dendrogram generated with the RAPD markers was topologically different from the dendrogram based on SRAP markers, but the SRAP technique clearly distinguished all Piper spp from each other. Evaluation of genetic variation levels of six populations showed that the effective number of alleles, Nei's gene diversity and the Shannon information index within Jianfengling and Diaoluoshan populations are higher than those elsewhere; consequently conservation of wild resources of Piper in these two regions should have priority.
2014-01-01
Background Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. Result A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1’ by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei’s genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. Conclusions A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species. PMID:24472631
Zhang, Shuo; Tang, Chanjuan; Zhao, Qiang; Li, Jing; Yang, Lifang; Qie, Lufeng; Fan, Xingke; Li, Lin; Zhang, Ning; Zhao, Meicheng; Liu, Xiaotong; Chai, Yang; Zhang, Xue; Wang, Hailong; Li, Yingtao; Li, Wen; Zhi, Hui; Jia, Guanqing; Diao, Xianmin
2014-01-28
Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1' by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei's genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species.
Development and characterization of microsatellite markers for Berberis thunbergii (Berberidaceae).
Allen, Jenica M; Obae, Samuel G; Brand, Mark H; Silander, John A; Jones, Kenneth L; Nunziata, Schyler O; Lance, Stacey L
2012-05-01
Microsatellite markers were isolated and characterized in Berberis thunbergii, an invasive and ornamental shrub in the eastern United States, to assess genetic diversity among populations and potentially identify horticultural cultivars. A total of 12 loci were identified for the species. Eight of the loci were polymorphic and were screened in 24 individuals from two native (Tochigi and Ibaraki prefectures, Japan) and one invasive (Connecticut, USA) population and 21 horticultural cultivars. The number of alleles per locus ranged from three to seven, and observed heterozygosity ranged from 0.048 to 0.636. These new markers will provide tools for examining genetic relatedness of B. thunbergii plants in the native and invasive range, including phylogeographic studies and assessment of rapid evolution in the invasive range. These markers may also provide tools for examining hybridization with other related species in the invasive range.
Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing
2017-05-08
Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.
NASA Astrophysics Data System (ADS)
Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng
2011-06-01
The sea cucumber Apostichopus japonicus is a commercially and ecologically important species in China. A total of 3056 potential unigenes were generated after assembling 7597 A. japonicus expressed sequence tags (ESTs) downloaded from Gen-Bank. Two hundred and fifty microsatellite-containing ESTs (8.18%) and 299 simple sequence repeats (SSRs) were detected. The average density of SSRs was 1 per 7.403 kb of EST after redundancy elimination. Di-nucleotide repeat motifs appeared to be the most abundant type with a percentage of 69.90%. Of the 126 primer pairs designed, 90 amplified the expected products and 43 showed polymorphism in 30 individuals tested. The number of alleles per locus ranged from 2 to 26 with an average of 7.0 alleles, and the observed and expected heterozygosities varied from 0.067 to 1.000 and from 0.066 to 0.959, respectively. These new EST-derived microsatellite markers would provide sufficient polymorphism for population genetic studies and genome mapping of this sea cucumber species.
Suyama, Yoshihisa; Matsuki, Yu
2015-01-01
Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239
Wang, Hui; Chen, Nai-Fu; Zheng, Ji-Yang; Wang, Wen-Cai; Pei, Yun-Yun; Zhu, Guo-Ping
2012-01-01
Dendrobium huoshanense (Orchidaceae) is a perennial herb and a widely used medicinal plant in Traditional Chinese medicine (TCM) endemic to Huoshan County town in Anhui province in Southeast China. A microsatellite-enriched genomic DNA library of D. huoshanense was developed and screened to identify marker loci. Eleven polymorphic loci were isolated and analyzed by screening 25 individuals collected from a natural population. The number of alleles per locus ranged from 2 to 5. The observed and expected heterozygosities ranged from 0.227 to 0.818 and from 0.317 to 0.757, respectively. Two loci showed significant deviations from Hardy-Weinberg equilibrium and four of the pairwise comparisons of loci revealed linkage disequilibrium (p < 0.05). These microsatellite loci were cross-amplified for five congeneric species and seven loci can be amplified in all species. These simple sequence repeats (SSR) markers are useful in genetic studies of D. huoshanense and other related species and in conservation decision-making. PMID:23222682
Zhang, Le; Sun, Weibang; Wang, Zhonglang; Guan, Kaiyun; Yang, Junbo
2011-01-01
Hibiscus aridicola (Malvaceae) is an endangered ornamental shrub endemic to the dry-hot valleys of Jinsha River in southwest China. Only four natural populations of H. aridicola exist in the wild according to our field investigation. It can be inferred that H. aridicola is facing a very high risk of extinction in the wild and an urgent conservation strategy is required. By using a modified biotin-streptavidin capture method, a total of 40 microsatellite markers were developed and characterized in H. aridicola for the first time. Polymorphisms were evaluated in 39 individuals from four natural populations. Fifteen of the markers showed polymorphisms with two to six alleles per locus; the observed heterozygosity ranged from 0.19 to 0.72. These microsatellite loci would be useful tools for population genetics studies on H. aridicola and other con-generic species which are important to the conservation and development of endangered species. PMID:22016620
Genetic diversity and structure of Capparis spinosa L. in Iran as revealed by ISSR markers.
Ahmadi, Maryam; Saeidi, Hojjatollah
2018-05-01
Capparis spinosa L. (caper bush) is an economically and ecologically important perennial shrub that grows across different regions of Iran. In this study, the genetic diversity and population structure of Iranian genepool of C. spinosa is evaluated using Inter Simple Sequence Repeat (ISSR) markers. Using 10 ISSR primers, 387 DNA fragments (bands) were amplified from the genomic DNA of 92 individuals belonging to twenty-one populations of C . spinosa , of which 378 (97.7%) were polymorphic. High level of genetic diversity (percentage of polymorphic loci = 98.2%, h = 0.1382, I = 0.243), high genetic differentiation (G st = 0.5234) and low gene flow (Nm = 0.4553) among populations were observed. Caper bush populations were divided into 4 groups in the dendrogram, PCoA plot and Bayesian clustering results, mostly corresponded to their geographic regions. The results showed that there are value in sampling Iranian caper bush populations to look for valuable alleles for use in plant breeding programs.
Markers and mapping revisited: finding your gene.
Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda
2009-01-01
This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.
Y-STR INRA189 polymorphisms in Chinese yak breeds.
Ma, Z J; Chen, S M; Sun, Y G; Xi, Y L; Li, R Z; Xu, J T; Lei, C Z
2015-12-29
To further explore Y-STR INRA189 polymorphisms in the yak, and to determine the genetic differences among yak breeds, genotyping analysis of INRA189 in 102 male yak individuals from three yak breeds in Qinghai Province of China was performed. Genotyping revealed the presence of four alleles, with sizes of 149, 155, 157, and 159 bp, respectively. Of these, the 157-bp allele, which was found with the highest frequency in the three yak breeds, was the dominant allele. Interestingly, the 149-bp allele was only detected in the Gaoyuan breed, and the 159-bp allele was only found in the Huanhu and Datong breeds. Only the 157- and 155-bp alleles were found in all three yak breeds. Taking the three yak breeds as a single population, the frequency of these four alleles was 0.0294, 0.0686, 0.8628, and 0.0392, respectively. The average polymorphism information content in the three yak breeds was 0.2379, indicating that the INRA189 was a low polymorphic Y-STR marker in yak.
Bruce, M C; Galinski, M R; Barnwell, J W; Snounou, G; Day, K P
1999-10-01
Allelic diversity at the Plasmodium vivax merozoite surface protein-3alpha (PvMsp-3alpha) locus was investigated using a combined polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) protocol. Symptomatic patient isolates from global geographic origins showed a high level of polymorphism at the nucleotide level. These samples were used to validate the sensitivity, specificity, and reproducibility of the PCR/RFLP method. It was then used to investigate PvMsp3alpha diversity in field samples from children living in a single village in a malaria-endemic region of Papua New Guinea, with the aim of assessing the usefulness of this locus as an epidemiologic marker of P. vivax infections. Eleven PvMsp-3alpha alleles were distinguishable in 16 samples with single infections, revealing extensive parasite polymorphism within this restricted area. Multiple infections were easily detected and accounted for 5 (23%) of 22 positive samples. Pairs of samples from individual children provided preliminary evidence for high turnover of P. vivax populations.
Gravley, Megan C.; Sage, George K.; Schmutz, Joel A.; Talbot, Sandra L.
2017-01-01
The Alaskan population of Emperor Geese (Chen canagica) nests on the Yukon–Kuskokwim Delta in western Alaska. Numbers of Emperor Geese in Alaska declined from the 1960s to the mid-1980s and since then, their numbers have slowly increased. Low statistical power of microsatellite loci developed in other waterfowl species and used in previous studies of Emperor Geese are unable to confidently assign individual identity. Microsatellite loci for Emperor Goose were therefore developed using shotgun amplification and next-generation sequencing technology. Forty-one microsatellite loci were screened and 14 were found to be polymorphic in Emperor Geese. Only six markers – a combination of four novel loci and two loci developed in other waterfowl species – are needed to identify an individual from among the Alaskan Emperor Goose population. Genetic markers for identifying sex in Emperor Geese were also developed. The 14 novel variable loci and 15 monomorphic loci were screened for polymorphism in four other Arctic-nesting goose species, Black Brant (Branta bernicla nigricans), Greater White-fronted (Anser albifrons), Canada (B. canadensis) and Cackling (B. hutchinsii) Goose. Emperor Goose exhibited the smallest average number of alleles (3.3) and the lowest expected heterozygosity (0.467). Greater White-fronted Geese exhibited the highest average number of alleles (4.7) and Cackling Geese the highest expected heterozygosity (0.599). Six of the monomorphic loci were variable and able to be characterised in the other goose species assayed, a predicted outcome of reverse ascertainment bias. These findings fail to support the hypothesis of ascertainment bias due to selection of microsatellite markers.
USDA-ARS?s Scientific Manuscript database
Eleven polymorphic microsatellite markers were developed for the Uredinales fungus Phragmidium violaceum, which causes leaf rust on European blackberry (Rubus fruticosus L. aggregate). Allele frequency ranged between two and seventeen alleles per locus with no evidence of linkage disequilibrium amon...
Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN
Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger
2016-01-01
Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831
Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P
2009-07-01
Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).
Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota
2014-01-01
Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.
Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter
2014-09-28
New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Molecular performance of commercial MTG variety oil palm based on RAPD markers
NASA Astrophysics Data System (ADS)
Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.
2018-02-01
The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.
Králová-Hromadová, Ivica; Minárik, Gabriel; Bazsalovicsová, Eva; Mikulíček, Peter; Oravcová, Alexandra; Pálková, Lenka; Hanzelová, Vladimíra
2015-02-01
Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.
Bhattacharyya, Paromik; Kumaria, Suman; Kumar, Shrawan; Tandon, Pramod
2013-10-15
Genetic variability in the wild genotypes of Dendrobium nobile Lindl. collected from different parts of Northeast India, was analyzed using a Start Codon Targeted (SCoT) marker system. A total of sixty individuals comprising of six natural populations were investigated for the existing natural genetic diversity. One hundred and thirty two (132) amplicons were produced by SCoT marker generating 96.21% polymorphism. The PIC value of the SCoT marker system was 0.78 and the Rp values of the primers ranged between 4.43 and 7.50. The percentage of polymorphic loci (Pp) ranging from 25% to 56.82%, Nei's gene diversity (h) from 0.08 to 0.15 with mean Nei's gene diversity of 0.28, and Shannon's information index (I) values ranging from 0.13 to 0.24 with an average value of 0.43 were recorded. The gene flow value (0.37) and the diversity among populations (0.57) demonstrated higher genetic variation among the populations. Analysis of molecular variance (AMOVA) showed 43.37% of variation within the populations, whereas 56.63% variation was recorded among the populations. Cluster analysis also reveals high genetic variation among the genotypes. Present investigation suggests the effectiveness of SCoT marker system to estimate the genetic diversity of D. nobile and that it can be seen as a preliminary point for future research on the population and evolutionary genetics of this endangered orchid species of medicinal importance. © 2013.
Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.
Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D
2013-12-01
FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.
Oliveira, Romulo V M; Albuquerque, Felipe N; Duque, Gustavo S; Freitas, Rossana G A; Carvalho, Elizeu F; Brandão, Andrea A; Silva, Dayse A; Mourilhe-Rocha, Ricardo; Albuquerque, Denilson C
2018-02-28
The G894T polymorphism in endothelial nitric oxide synthase enzyme gene plays an important role in heart failure (HF) and its frequency varies among populations. We investigated this association in highly admixed samples in terms of ancestry. The cohort included 210 HF patients and 106 healthy individuals. Self-reported race and NYHA class were analyzed for HF patients. G894T polymorphism was analyzed by polymerase chain reaction (PCR) and by restriction fragment length polymorphism technique. Ancestry was estimated using a PCR reaction containing 46 autosomal ancestry informative markers and an analysis by capillary electrophoresis. The GG homozygous genotype had a higher frequency in HF patients (63.8%) than in healthy individuals (48.1%), showing an increased chance (odds ratio 1.90, 95% confidence interval 1.18-3.05). The ancestry profiles in patients and controls were similar, with a major European contribution (57.1% and 63.2%), followed by African (30.2% and 24.0%) and Native American (12.7% and 12.8%), without a significant difference between both samples (p = 0.28). The GG genotype is associated to HF prognosis, and this association remains present in highly admixed sample groups. Copyright © 2017 Elsevier Inc. All rights reserved.
Ley, Alexandra C.; Hardy, Olivier J.
2016-01-01
Premise of the study: Microsatellite markers were developed for the species Haumania danckelmaniana (Marantaceae) from central tropical Africa. Methods and Results: Microsatellite isolation was performed simultaneously on three different species of Marantaceae through a procedure that combines multiplex microsatellite enrichment and next-generation sequencing. From 80 primers selected for initial screening, 20 markers positively amplified in H. danckelmaniana, of which 10 presented unambiguous amplification products within the expected size range and eight were polymorphic with four to nine alleles per locus. Positive transferability with the related species H. liebrechtsiana was observed for the same 10 markers. Conclusions: The polymorphic microsatellite markers are suitable for studies in genetic diversity and structure, mating system, and gene flow in H. danckelmaniana and the closely related species H. liebrechtsiana. PMID:27011899
Dutton, D.J.; Roberts, J.H.; Angermeier, P.L.; Hallerman, E.M.
2008-01-01
The Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P. rex. Markers were also screened in seven other darter species of the genus Percina. Most markers exhibited successful amplification and polymorphism in several species. These markers may therefore prove useful for population genetic studies in other darters, a diverse but highly imperiled group. ?? 2008 The Authors.
Queiroz, C B; Miranda, E C; Hanada, R E; Sousa, N R; Gasparotto, L; Soares, M A; Silva, G F
2013-02-08
The fungus Mycosphaerella fijiensis is the causative agent of black sigatoka, which is one of the most destructive diseases of banana plants. Infection with this pathogen results in underdeveloped fruit, with no commercial value. We analyzed the distribution of the M. fijiensis mating-type system and its genetic variability using M13 phage DNA markers. We found a 1:1 distribution of mating-type alleles, indicating MAT1-1 and MAT1-2 idiomorphs. A polymorphism analysis using three different primers for M13 markers showed that only the M13 minisatellite primers generated polymorphic products. We then utilized this polymorphism to characterize 40 isolates from various Brazilian states. The largest genetic distances were found between isolates from the same location and between isolates from different parts of the country. Therefore, there was no correlation between the genetic similarity and the geographic origin of the isolates. The M13 marker was used to generate genetic fingerprints for five isolates; these fingerprints were compared with the band profiles obtained from inter-simple sequence repeat (UBC861) and inter-retrotransposon amplified polymorphism analyses. We found that the M13 marker was more effective than the other two markers for differentiating these isolates.
Informative genomic microsatellite markers for efficient genotyping applications in sugarcane.
Parida, Swarup K; Kalia, Sanjay K; Kaul, Sunita; Dalal, Vivek; Hemaprabha, G; Selvi, Athiappan; Pandit, Awadhesh; Singh, Archana; Gaikwad, Kishor; Sharma, Tilak R; Srivastava, Prem Shankar; Singh, Nagendra K; Mohapatra, Trilochan
2009-01-01
Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16 Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16-0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane.
Isozyme, ISSR and RAPD profiling of genotypes in marvel grass (Dichanthium annulatum).
Saxena, Raghvendra; Chandra, Amaresh
2010-11-01
Genetic analysis of 30 accessions of marvel grass (Dichanthium annulatum Forsk.), a tropical range grass collected from grasslands and open fields of drier regions, was carried out with the objectives of identifying unique materials that could be used in developing the core germplasm for such regions as well as to explore gene (s) for drought tolerance. Five inter-simple sequence repeat (ISSR) primers [(CA)4, (AGAC), (GACA) 4; 27 random amplified polymorphic DNA (RAPD) and four enzyme systems were employed in the present study. In total, ISSR yielded 61 (52 polymorphic), RAPD 269 (253 polymorphic) and enzyme 55 isozymes (44 polymorphic) bands. The average polymorphic information content (PIC) and marker index (MI) across all polymorphic bands of 3 markers systems ranged from 0.419 to 0.480 and 4.34 to 5.25 respectively Dendrogram analysis revealed three main clusters with all three markers. Four enzymes namely esterase (EST), polyphenoloxidase (PPO), peroxidase (PRX) and superoxide dismutase (SOD) revealed 55 alleles from a total of 16 enzyme-coding loci. Of these, 14 loci and 44 alleles were polymorphic. The mean number of alleles per locus was 3.43. Mean heterozygosity observed among the polymorphic loci ranged from 0.406 (SOD) to 0.836 (EST) and accession wise from 0.679 (1G3108) to 0.743 (IGKMD-10). Though there was intermixing of few accessions of one agro-climatic region to another largely groupings of accessions were with their regions of collections. Bootstrap analysis at 1000 iterations also showed large numbers of nodes (11 to 17) having strong clustering (> 50 bootstrap values) in all three marker systems. The accessions of the arid and drier regions forming one cluster are assigned as distinct core collection of Dichanthium and can be targeted for isolation of gene (s) for drought tolerance. Variations in isozyme allele numbers and high PIC (0.48) and MI (4.98) as observed with ISSR markers indicated their usefulness for germplasm characterization.
Yu, J; Wang, Y; Ru, M; Peng, L; Liang, Z S
2015-07-03
Eucommia ulmoides Oliver, the only extant species of Eucommiaceae, is a second-category state-protected endangered plant in China. Evaluation of genetic diversity among some intraspecific hybrid populations of E. ulmoides Oliver is vital for breeding programs and further conservation of this rare species. We studied the genetic diversity of 130 accessions from 13 E. ulmoides intraspecific hybrid populations using inter-simple sequence related (ISSR) and sequence-related amplified polymorphism (SRAP) markers. Of the 100 ISSR primers and 100 SRAP primer combinations screened, eight ISSRs and eight SRAPs were used to evaluate the level of polymorphism and discriminating capacity. A total number of 65 bands were amplified using eight ISSR primers, in which 50 bands (76.9%) were polymorphic, with an average of 8.1 polymorphic fragments per primer. Alternatively, another 244 bands were observed using eight SRAP primer combinations, and 163 (66.8%) of them were polymorphic, with an average of 30.5 polymorphic fragments per primer. The unweighted pair-group method (UPGMA) analysis showed that these 13 populations could be classified into three groups by the ISSR marker and two groups by the SRAP marker. Principal coordinate analysis using SRAP was completely identical to the UPGMA-based clustering, although this was partly confirmed by the results of UPGMA cluster analysis using the ISSR marker. This study provides insights into the genetic background of E. ulmoides intraspecific hybrids. The progenies of the variations "Huazhong-3", "big fruit", "Yanci", and "smooth bark" present high genetic diversity and offer great potential for E. ulmoides breeding and conservation.
Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong
2016-01-01
Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455
Haider, Nadia
2017-01-01
Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.
Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P
2016-05-06
Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers.
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh
2013-01-01
Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirst, Matias
2015-04-15
Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an importantmore » short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirst, Matias
2014-04-14
Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an importantmore » short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.« less
Scorrano, Gabriele; Lelli, Roberta; Martínez-Labarga, Cristina; Scano, Giuseppina; Contini, Irene; Hafez, Hani S; Rudan, Pavao; Rickards, Olga
2016-01-01
The most abundant of the collagen protein family, type I collagen is encoded by the COL1A2 gene. The COL1A2 restriction fragment length polymorphisms (RFLPs) EcoRI, RsaI and MspI in samples from several different central-eastern Mediterranean populations were analysed and found to be potentially informative anthropogenetic markers. The objective was to define the genetic variability of COL1A2 in the central-eastern Mediterranean and to shed light on its genetic distribution in human groups over a wide geographic area. PCR-RFLP analysis of EcoRI, RsaI and MspI polymorphisms of the COL1A2 gene was performed on oral swab and blood samples from 308 individuals from the central-eastern Mediterranean Basin. The genetic similarities among these groups and other populations described in the literature were investigated through correspondence analysis. Single-marker data and haplotype frequencies seemed to suggest a genetic homogeneity within the European populations, whereas a certain degree of differentiation was noted for the Egyptians and the Turks. The genetic variability in the central-eastern Mediterranean area is probably a result of the geographical barrier of the Mediterranean Sea, which separated European and African populations over time.
Diversity Arrays Technology (DArT) for whole-genome profiling of barley
Wenzl, Peter; Carling, Jason; Kudrna, David; Jaccoud, Damian; Huttner, Eric; Kleinhofs, Andris; Kilian, Andrzej
2004-01-01
Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised ≈385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics. PMID:15192146
Moraes, Evandro M; Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Machado, Marlon C
2012-09-01
The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5-11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.
Spotila, L D; Sereda, L; Prockop, D J
1992-12-01
Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, we describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7.
Isolation and characterization of 30 microsatellite loci for Cunninghamia lanceolata (Taxodiaceae)1
Wang, Si-Si; Zhang, Yang; Liu, De-Chen; Sun, Xiao-Wei; Wang, Rong; Li, Yuan-Yuan
2017-01-01
Premise of the study: To quantify the population-level genetic characteristics of Cunninghamia lanceolata (Taxodiaceae), an important timber conifer, we developed 30 pairs of microsatellite primers based on the nuclear genome. Methods and Results: Using the streptavidin-biotin capture system, we developed 14 polymorphic and 16 monomorphic microsatellites. Polymorphisms were detected in 14 loci using 94 individual trees that were collected from three C. lanceolata populations in Hubei and Zhejiang provinces and in Chongqing Municipality, China. There were three to 30 alleles per locus, and the observed and expected heterozygosities ranged from 0.0313–0.8333 and from 0.0313–0.9246, respectively. Cross-species amplification showed that two to seven polymorphic loci were functional in three of the five related species that were collected. Conclusions: Our newly developed microsatellite primers provide neutral molecular markers that are beneficial to future studies of population genetics and germplasm conservation of C. lanceolata. PMID:28989826
Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J.; Ho, Julie; Reisen, Peter; Samac, Deborah A.
2014-01-01
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs. PMID:25536106
Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J; Ho, Julie; Reisen, Peter; Samac, Deborah A
2014-01-01
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.
Ossa, Carmen G; Larridon, Isabel; Peralta, Gioconda; Asselman, Pieter; Pérez, Fernanda
2016-12-01
The aim of this study was to develop microsatellite markers as a tool to study population structure, genetic diversity and effective population size of Echinopsis chiloensis, an endemic cactus from arid and semiarid regions of Central Chile. We developed 12 polymorphic microsatellite markers for E. chiloensis using next-generation sequencing and tested them in 60 individuals from six sites, covering all the latitudinal range of this species. The number of alleles per locus ranged from 3 to 8, while the observed (Ho) and expected (He) heterozygosity ranged from 0.0 to 0.80 and from 0.10 to 0.76, respectively. We also detected significant differences between sites, with F ST values ranging from 0.05 to 0.29. Microsatellite markers will enable us to estimate genetic diversity and population structure of E. chiloensis in future ecological and phylogeographic studies.
New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae)1
Bessega, Cecilia F.; Pometti, Carolina L.; Miller, Joe T.; Watts, Richard; Saidman, Beatriz O.; Vilardi, Juan C.
2013-01-01
• Premise of the study: As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR) markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. • Methods and Results: Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. • Conclusions: These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection. PMID:25202541
Toward a framework linkage map of the canine genome.
Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A
1999-01-01
Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.
Identification of DLG5 and SLC22A5 gene polymorphisms in Malaysian patients with Crohn's disease.
Chua, Kek Heng; Lian, Lay Hoong; Kee, Boon Pin; Thum, Chooi Mei; Lee, Way Seah; Hilmi, Ida; Goh, Khean Lee
2011-12-01
The aim of this study was to investigate the association of DLG5 and SLC22A5 gene polymorphisms with the onset of Crohn's disease (CD) in a Malaysian cohort. Genomic DNA of 80 CD patients and 100 healthy unrelated control individuals was extracted and analyzed via polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) on DLG5 (4136 C/A), DLG5_e26 and SLC22A5 (-207 G/C) genetic polymorphisms. Data obtained from the study were then subjected to statistical analysis to test for risk association. Significant associations of both DLG5 polymorphisms with the development of CD in the Malaysian patients were observed in this study. The homozygous C genotype of the DLG5 polymorphism was significantly related to CD patients (P = 0.0023, OR = 2.5320), while the homozygous A was significant in control individuals (P = 0.0224, OR = 0.4480). In DLG5_e26 polymorphisms, we found a significant distribution of the homozygous insA genotype in CD patients (P = 0.0006, OR = 2.8916), whereas the heterozygous insA/delA genotype was significant in controls (P = 0.0007, OR = 0.3487). We hypothesized that there might be a complex interaction of both alleles, which confered a protective effect against the onset of CD. However, we did not observe any significant correlation of SLC22A5 polymorphisms with this disease. In our study, both polymorphisms in the DLG5 gene were found to be associated with CD patients in Malaysia. Therefore, these loci can be potentially used as susceptibility markers in the Malaysian population. © 2011 The Authors. Journal of Digestive Diseases © 2011 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.
Vargas-Alarcon, Gilberto; Martinez-Rodriguez, Nancy; Velazquez-Cruz, Rafael; Perez-Mendez, Oscar; Posadas-Sanchez, Rosalinda; Posadas-Romero, Carlos; Peña-Duque, Marco Antonio; Martinez-Rios, Marco Antonio; Ramirez-Fuentes, Silvestre; Fragoso, Jose Manuel
2017-10-01
Hypertension is a major public health problem affecting about 30% of the adult population and is associated with an increased risk of developing metabolic and cardiovascular disease. Recent reports have shown that the T-cadherin receptor characteristically expressed on endothelial and vascular smooth muscle cells is involved in hypertension. The aim of the present study was to evaluate the role of cadherin-13 (CDH13) gene polymorphisms as susceptibility markers for hypertension in Mexican population. Six CDH13 polymorphisms (rs11646213, rs11646411, rs6563943, rs3096277, rs3784990 and rs254340) were genotyped by 5' exonuclease TaqMan assays in a group of 644 hypertensive and 765 non-hypertensive individuals. Under co-dominant, recessive, and additive models, the CDH13 T>A (rs11646213) polymorphism was associated with decreased risk of developing hypertension when compared to non-hypertensive individuals (OR=0.61, 95% CI: 0.42-0.89, P co-dom =0.019; OR=0.63, 95% CI: 0.46-0.87, P res =0.005; OR=0.80, 95% CI: 0.66-0.96, P add =0.016, respectively). All models were adjusted by gender, age, body index mass, type II diabetes mellitus, alcohol consumption, dyslipidemia and smoking habit. Linkage disequilibrium analysis showed one haplotype (TCACGG) with decreased frequency in hypertensive when compared to non-hypertensive individuals (OR=0.52, 95% CI: 0.33-0.82, P=0.0053). In summary, our data suggests that the CDH13 T>A (rs11646213) polymorphism is associated with decreased risk of developing hypertension in the Mexican population. In addition, it was possible to distinguish one haplotype associated with decreased risk and two for increased risk of develop hypertension. Copyright © 2016 Elsevier GmbH. All rights reserved.
Viatte, Sebastien; Massey, Jonathan; Bowes, John; Duffus, Kate; Eyre, Stephen; Barton, Anne; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew W.; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Tim D.; Valdes, Ana M.; Wallis, Gillian A.; Wilkinson, J. Mark; Zeggini, Eleftheria
2016-01-01
Objective Genetic polymorphisms within the HLA region explain only a modest proportion of anti–cyclic citrullinated peptide (anti‐CCP)–negative rheumatoid arthritis (RA) heritability. However, few non‐HLA markers have been identified so far. This study was undertaken to replicate the associations of anti‐CCP–negative RA with non‐HLA genetic polymorphisms demonstrated in a previous study. Methods The Rheumatoid Arthritis Consortium International densely genotyped 186 autoimmune‐related regions in 3,339 anti‐CCP–negative RA patients and 15,870 controls across 6 different populations using the Illumina ImmunoChip array. We performed a case–control replication study of the anti‐CCP–negative markers with the strongest associations in that discovery study, in an independent cohort of anti‐CCP–negative UK RA patients. Individuals from the arcOGEN Consortium and Wellcome Trust Case Control Consortium were used as controls. Genotyping in cases was performed using Sequenom MassArray technology. Genome‐wide data from controls were imputed using the 1000 Genomes Phase I integrated variant call set release version 3 as a reference panel. Results After genotyping and imputation quality control procedures, data were available for 15 non‐HLA single‐nucleotide polymorphisms in 1,024 cases and 6,348 controls. We confirmed the known markers ANKRD55 (meta‐analysis odds ratio [OR] 0.80; P = 2.8 × 10−13) and BLK (OR 1.13; P = 7.0 × 10−6) and identified new and specific markers of anti‐CCP–negative RA (prolactin [PRL] [OR 1.13; P = 2.1 × 10−6] and NFIA [OR 0.85; P = 2.5 × 10−6]). Neither of these loci is associated with other common, complex autoimmune diseases. Conclusion Anti‐CCP–negative RA and anti‐CCP–positive RA are genetically different disease subsets that only partially share susceptibility factors. Genetic polymorphisms located near the PRL and NFIA genes represent examples of genetic susceptibility factors specific for anti‐CCP–negative RA. PMID:26895230
Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.
Maneesha; Upadhyaya, Kailash C
2017-09-01
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Dutton, Daniel J; Roberts, James H; Angermeier, Paul L; Hallerman, Eric M
2008-07-01
The Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P. rex. Markers were also screened in seven other darter species of the genus Percina. Most markers exhibited successful amplification and polymorphism in several species. These markers may therefore prove useful for population genetic studies in other darters, a diverse but highly imperiled group. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E
2017-07-21
The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in the sour passion fruit genome. Markers were submitted to evaluation using accessions of cultivated and wild Passiflora species. The new microsatellite markers detected high levels of DNA polymorphism in sour passion fruit and can potentially be used in genetic analysis of P. edulis and other Passiflora species.
Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.).
Sun, Lidan; Zhang, Qixiang; Xu, Zongda; Yang, Weiru; Guo, Yu; Lu, Jiuxing; Pan, Huitang; Cheng, Tangren; Cai, Ming
2013-10-06
Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume 'Fenban' and Prunus mume 'Kouzi Yudie' to identify high-quality polymorphic markers between the two cultivars on a large scale. A total of 1464.1 Mb and 1422.1 Mb of 'Fenban' and 'Kouzi Yudie' sequencing data were uniquely mapped to the mei reference genome with about 6-fold coverage, respectively. We detected a large number of putative polymorphic markers from the 196.9 Mb of sequencing data shared by the two cultivars, which together contained 200,627 SNPs, 4,900 InDels, and 7,063 SSRs. Among these markers, 38,773 SNPs, 174 InDels, and 418 SSRs were distributed in the 22.4 Mb CDS region, and 63.0% of these marker-containing CDS sequences were assigned to GO terms. Subsequently, 670 selected SNPs were validated using an Agilent's SureSelect solution phase hybridization assay. A subset of 599 SNPs was used to assess the genetic similarity of a panel of mei germplasm samples and a plum (P. salicina) cultivar, producing a set of informative diversity data. We also analyzed the frequency and distribution of detected InDels and SSRs in mei genome and validated their usefulness as DNA markers. These markers were successfully amplified in the cultivars and in their segregating progeny. A large set of high-quality polymorphic SNPs, InDels, and SSRs were identified in parallel between 'Fenban' and 'Kouzi Yudie' using low-depth whole-genome sequencing. The study presents extensive data on these polymorphic markers, which can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.
Roy, Neha Samir; Park, Kyong-Cheul; Lee, Sung-Il; Im, Min-Ji; Ramekar, Rahul Vasudeo; Kim, Nam-Soo
2018-02-01
Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.
USDA-ARS?s Scientific Manuscript database
Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...
Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden
2016-12-01
Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.
Origin of the polymorphism of the involucrin gene in Asians.
Djian, P; Delhomme, B; Green, H
1995-01-01
The involucrin gene, encoding a protein of the terminally differentiated keratinocyte, is polymorphic in the human. There is polymorphism of marker nucleotides a two positions in the coding region, and there are over eight polymorphic forms based on the number and kind of 10-codon tandem repeats in that part of the coding region most recently added in the human lineage. The involucrin alleles of Caucasians and Africans differ in both nucleotides and repeat patterns. We show that the involucrin alleles of East Asians (Chinese and Japanese) can be divided into two populations according to whether they possess the two marker nucleotides typical of Africans or Caucasians. The Asian population bearing Caucasian-type marker nucleotides has repeat patterns similar to those of Caucasians, whereas Asians bearing African-type marker nucleotides have repeat patterns that resemble those of Africans more than those of Caucasians. The existence of two populations of East Asian involucrin alleles gives support for the existence of a Eurasian stem lineage from which Caucasians and a part of the Asian population originated. PMID:7762559
Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.
Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul
2013-11-01
Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.
Dissociable Genetic Contributions to Error Processing: A Multimodal Neuroimaging Study
Agam, Yigal; Vangel, Mark; Roffman, Joshua L.; Gallagher, Patience J.; Chaponis, Jonathan; Haddad, Stephen; Goff, Donald C.; Greenberg, Jennifer L.; Wilhelm, Sabine; Smoller, Jordan W.; Manoach, Dara S.
2014-01-01
Background Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN), an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC). While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation. Methods We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4) C-521T (rs1800955), which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133), which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response. Results We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant. Conclusions DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that these error markers have different neural and genetic mediation. PMID:25010186
Roke, Kaitlin; Mutch, David M
2014-06-16
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids (FAs) known to influence cardiometabolic markers of health. Evidence suggests that single nucleotide polymorphisms (SNPs) in the fatty acid desaturase 1 and 2 (FADS1/2) gene cluster may influence an individual's response to n-3 FAs. This study examined the impact of a moderate daily dose of EPA and DHA fish oil supplements on cardiometabolic markers, FA levels in serum and red blood cells (RBC), and whether these endpoints were influenced by SNPs in FADS1/2. Young adults consumed fish oil supplements (1.8 g total EPA/DHA per day) for 12 weeks followed by an 8-week washout period. Serum and RBC FA profiles were analyzed every two weeks by gas chromatography. Two SNPs were genotyped: rs174537 in FADS1 and rs174576 in FADS2. Participants had significantly reduced levels of blood triglycerides (-13%) and glucose (-11%) by week 12; however, these benefits were lost during the washout period. EPA and DHA levels increased significantly in serum (+250% and +51%, respectively) and RBCs (+132% and +18%, respectively) within the first two weeks of supplementation and remained elevated throughout the 12-week period. EPA and DHA levels in RBCs only (not serum) remained significantly elevated (+37% and +24%, respectively) after the washout period. Minor allele carriers for both SNPs experienced greater increases in RBC EPA levels during supplementation; suggesting that genetic variation at this locus can influence an individual's response to fish oil supplements.
Li, Y. H.; Chu, H. P.; Jiang, Y. N.; Lin, C. Y.; Li, S. H.; Li, K. T.; Weng, G. J.; Cheng, C. C.; Lu, D. J.; Ju, Y. T.
2014-01-01
The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index (FST) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu’s inbred populations. Inbreeding values (FIS) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity (HE) or FST, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, FST and D-scores were used. Only 6 to 8 markers ranking HE, FST or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, FST and allelic number of close lineage populations. PMID:25049996
Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S
2016-06-01
Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. © 2016 The Royal Entomological Society.
Olivatti, A M; Boni, T A; Silva-Júnior, N J; Resende, L V; Gouveia, F O; Telles, M P C
2011-01-01
Leporinus friderici, native to the Amazon Basin and popularly known as "piau-três-pintas", has great ecological and economic importance; it is widely fished and consumed throughout much of tropical South America. Knowledge of the genetic diversity of this native species is important to support management and conservation programs. We evaluated microsatellite loci amplification, using heterologous primers, in 31 individuals of L. friderici. These samples were collected from natural populations of the Araguaia River basin, in central Brazil, and the DNA was extracted from samples of muscle tissue. Eight loci were successfully analyzed. Six of them were polymorphic, and the number of alleles ranged from three to 10. Values of expected heterozygosities for these polymorphic loci ranged from 0.488 to 0.795. Exclusion probability (0.983), the identity probability (0.000073), and the mean genetic diversity values were high, showing that these microsatellite markers are suitable for assessing the genetic variability of L. friderici populations. There is a growing interest in studies that evaluate the genetic variability of natural populations for various purposes, such as conservation. Here, we showed that a viable alternative to the costly development of specific primers for fish populations is simply testing for heterologous amplification of microsatellite markers available from research on other species.
Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.
Bonneau, Julien; Hayden, Matthew
2014-01-01
Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).
Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers
Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A
2015-01-01
In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624
Komínková, Eva; Dreiseitl, Antonín; Malečková, Eva; Doležel, Jaroslav
2016-01-01
Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions. PMID:27875588
Lee, Hwa-Yong; Moon, Suyun; Shim, Donghwan; Hong, Chang Pyo; Lee, Yi; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin
2017-01-01
The shiitake mushroom (Lentinula edodes) is one of the most popular edible mushrooms in the world and has attracted attention for its value in medicinal and pharmacological uses. With recent advanced research and techniques, the agricultural cultivation of the shiitake mushroom has been greatly increased, especially in East Asia. Additionally, demand for the development of new cultivars with good agricultural traits has been greatly enhanced, but the development processes are complicated and more challenging than for other edible mushrooms. In this study, we developed 44 novel polymorphic simple sequence repeat (SSR) markers for the determination of shiitake mushroom cultivars based on a whole genome sequencing database of L. edodes. These markers were found to be polymorphic and reliable when screened in 23 shiitake mushroom cultivars. For the 44 SSR markers developed in this study, the major allele frequency ranged from 0.13 to 0.94; the number of genotypes and number of alleles were each 2–11; the observed and expected heterozygosity were 0.00–1.00 and 0.10–0.90, respectively; and the polymorphic information content value ranged from 0.10 to 0.89. These new markers can be used for molecular breeding, the determination of cultivars, and other applications. PMID:28338645
Jiménez-Ramírez, Francisco J.; Castro, Liza M.; Ortiz, Clarymar; Concepción, Jennifer; Renta, Jessicca Y.; Morales-Borges, Raúl H.; Miranda-Massari, Jorge R.; Duconge, Jorge
2017-01-01
Background The study was conducted to investigate potential association between MTHFR genotypes and diabetic peripheral neuropathy (DPN) in Puerto Ricans with type-2 diabetes mellitus (T2DM) treated with metformin. The prevalence of major MTHFR polymorphisms in this cohort was also ascertained. Methods DNAs from 89 metformin-treated patients with T2DM and DPN were genotyped using the PCR-based RFLP assay for MTHFR677C > T and 1298A > C polymorphisms. Frequency distributions of these variants in the study cohort were compared to those reported for three reference populations (HapMap project) and controls (400 newborn specimens). Chi-square (or Fischer’s exact) tests and odds ratios (OR) were used to assess association with DPN susceptibility risk (patients vs. controls) and biochemical markers (wild types vs. carriers). Results Sixty-seven percent (67%) of participants carry at least one of these MTHFR polymorphisms. No deviations from Hardy-Weinberg equilibrium were detected. The genotype and allele frequencies showed statistically significant differences between participants and controls (p < 0.0001 and p = 0.03, respectively). Results suggest that 1298A > C but not 677C > T is associated with DPN susceptibility in this cohort (p = 0.018). Different patterns of allelic dissimilarities are observed when comparing our cohort vs. the three parental ancestries. After sorting individuals by their carrier status, no significant associations were observed between these genetic variants (independently or combined) and any of the biochemical markers (HbA1c, folate, vitamin B12, homocysteine). Conclusions Prevalence of major MTHFR variants in Puerto Rican patients with T2DM is first time ever reported. The study provides further evidence on the use of this genetic marker as an independent risk factor for DPN. PMID:28231061
[Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].
Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V
2011-01-01
Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.
Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein
The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Salminen, Lauren E; Schofield, Peter R; Pierce, Kerrie D; Bruce, Steven E; Griffin, Michael G; Tate, David F; Cabeen, Ryan P; Laidlaw, David H; Conturo, Thomas E; Bolzenius, Jacob D; Paul, Robert H
2017-06-30
Oxidative stress is a key mechanism of the aging process that can cause damage to brain white matter and cognitive functions. Polymorphisms in the superoxide dismutase 2 (SOD2) and catalase (CAT) genes have been associated with abnormalities in antioxidant enzyme activity in the aging brain, suggesting a risk for enhanced oxidative damage to white matter and cognition among older individuals with these genetic variants. The present study compared differences in white matter microstructure and cognition among 96 older adults with and without genetic risk factors of SOD2 (rs4880) and CAT (rs1001179). Results revealed higher radial diffusivity in the anterior thalamic radiation among SOD2 CC genotypes compared to CT/TT genotypes. Further, the CC genotype moderated the relationship between the hippocampal cingulum and processing speed, though this did not survive multiple test correction. The CAT polymorphism was not associated with brain outcomes in this cohort. These results suggest that the CC genotype of SOD2 is an important genetic marker of suboptimal brain aging in healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Association between iris constitution and apolipoprotein e gene polymorphism in hypertensives.
Um, Jae-Young; Hwang, Chung-Yeon; Hwang, Woo-Jun; Kang, Sung-Do; Do, Keum-Rok; Cho, Ju-Jang; Cho, Jae-Woon; Kim, Sung-Hoon; Shin, Tae-Yong; Kim, Yun-Kyung; Kim, Hyung-Min; Hong, Seung-Heon
2004-12-01
Iridology is a complementary and alternative medicine (CAM) that involves the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris. Iris constitution has a strong familial aggregation and heredity is implicated. Apolipoprotein E (apoE) gene polymorphism is one of the most well-studied genetic markers for vascular diseases, including hypertension. In this study, we investigated the relationship between iris constitution and apoE polymorphism in hypertensives. We classified 87 hypertensives and 79 controls according to iris constitution and determined the apoE genotype of each individual. A significantly higher percentage of individuals with neurogenic constitutions was found in the hypertensive group when compared with the control group (chi(2) = 40.244, p < 0.001). In addition, a neurogenic constitution increased the relative risk for hypertension for subjects with an apo epsilon2 or an epsilon4 allele (chi(2) = 4.086, p = 0.049, odds ratio = 2.633, confidence interval = 1.004-6.905). Our results imply that a neurogenic iris constitution enhances the relative risk for hypertension in subjects with the apo epsilon2 or epsilon4 allele. Furthermore, we attempted to evaluate the efficacy of iris constitutional medicine and to find an association with hypertension.
Polymorphism of 11 Y Chromosome Short Tandem Repeat Markers among Malaysian Aborigines.
Mohd Yussup, Sofia Sakina; Marzukhi, Marlia; Md-Zain, Badrul Munir; Mamat, Kamaruddin; Mohd Yusof, Farida Zuraina
2017-01-01
The conventional technique such as patrilocality suggests some substantial effects on population diversity. With that, this particular study investigated the paternal line, specifically Scientific Working Group on DNA Analysis Methods (SWGDAM)-recommended Y-STR markers, namely, DYS19, DYS385, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439. These markers were tested to compare 184 Orang Asli individuals from 3 tribes found in Peninsular Malaysia. As a result, the haplotype diversity and the discrimination capacity obtained were 0.9987 and 0.9076, respectively. Besides, the most diverse marker was DYS385b, whereas the least was DYS391. Furthermore, the Senoi and Proto-Malay tribes were found to be the most distant, whereas the Senoi and Negrito clans were almost similar to each other. In addition, the analysis of molecular variance analysis revealed 82% of variance within the population, but only 18% of difference between the tribes. Finally, the phylogenetic trees constructed using Neighbour Joining and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) displayed several clusters that were tribe specific. With that, future studies are projected to analyse individuals based on more specific sub-tribes.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...
A. Vercauteren; M. Larsen; E. Goss; N. Grunwald; M. Maes; K. Heungens
2011-01-01
Phytophthora ramorum is a recently introduced pathogen in Europe and North America consisting of three clonal lineages. Due to the limited intralineage genetic variation, only a few polymorphic markers are available for use in studies involving the epidemiology and evolution of P. ramorum. A total of 159 primer pairs for...
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae).
Klabunde, Gustavo H F; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I; Nodari, Rubens O
2014-06-01
Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)-enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana.
Cuc, Luu M; Mace, Emma S; Crouch, Jonathan H; Quang, Vu D; Long, Tran D; Varshney, Rajeev K
2008-01-01
Background Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species. PMID:18482440
Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K
2011-01-20
Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.
2011-01-01
Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263
2009-01-01
Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes. PMID:20030833
Letelier, Luis; Harvey, Nick; Valderrama, Aly; Stoll, Alexandra; González-Rodríguez, Antonio
2015-01-01
Premise of the study: Microsatellite primers were developed for the endemic Chilean tree Quillaja saponaria (Quillajaceae), a common member of the sclerophyllous Mediterranean forest, to investigate intraspecific patterns of genetic diversity and structure. Methods and Results: Using an enriched library, 12 polymorphic microsatellite loci were developed in Q. saponaria. All loci consisted of dinucleotide repeats. The average number of alleles per locus was 5.3 (2–13), with a total of 64 alleles recorded in 39 individuals from three populations. Conclusions: The microsatellite markers described here are the first characterized for Q. saponaria. The polymorphic loci will be useful in studies of genetic diversity and genetic population differentiation in natural populations of this species. PMID:25995980
Voyiaziakis, E; Evgrafov, O; Li, D; Yoon, H-J; Tabares, P; Samuels, J; Wang, Y; Riddle, M A; Grados, M A; Bienvenu, O J; Shugart, Y Y; Liang, K-Y; Greenberg, B D; Rasmussen, S A; Murphy, D L; Wendland, J R; McCracken, J T; Piacentini, J; Rauch, S L; Pauls, D L; Nestadt, G; Fyer, A J; Knowles, J A
2011-01-01
Genetic association studies of SLC6A4 (SERT) and obsessive-compulsive disorder (OCD) have been equivocal. We genotyped 1241 individuals in 278 pedigrees from the OCD Collaborative Genetics Study for 13 single-nucleotide polymorphisms, for the linked polymorphic region (LPR) indel with molecular haplotypes at rs25531, for VNTR polymorphisms in introns 2 and 7 and for a 381-bp deletion 3' to the LPR. We analyzed using the Family-Based Association Test (FBAT) under additive, dominant, recessive and genotypic models, using both OCD and sex-stratified OCD as phenotypes. Two-point FBAT analysis detected association between Int2 (P = 0.0089) and Int7 (P = 0.0187) (genotypic model). Sex-stratified two-point analysis showed strong association in females with Int2 (P<0.0002), significant after correction for linkage disequilibrium, and multiple marker and model testing (P(Adj) = 0.0069). The SLC6A4 gene is composed of two haplotype blocks (our data and the HapMap); FBAT whole-marker analysis conducted using this structure was not significant. Several noteworthy nonsignificant results have emerged. Unlike Hu et al., we found no evidence for overtransmission of the LPR L(A) allele (genotype relative risk = 1.11, 95% confidence interval: 0.77-1.60); however, rare individual haplotypes containing L(A) with P<0.05 were observed. Similarly, three individuals (two with OCD/OCPD) carried the rare I425V SLC6A4 variant, but none of them passed it on to their six OCD-affected offspring, suggesting that it is unlikely to be solely responsible for the 'OCD plus syndrome', as reported by Ozaki et al. In conclusion, we found evidence of genetic association at the SLC6A4 locus with OCD. A noteworthy lack of association at the LPR, LPR-rs25531 and rare 425V variants suggests that hypotheses about OCD risk need revision to accommodate these new findings, including a possible gender effect.
DNA typing of Pakistani cattle breeds Tharparkar and Red Sindhi by microsatellite markers.
Azam, Amber; Babar, Masroor Ellahi; Firyal, Sehrish; Anjum, Aftab Ahmad; Akhtar, Nabeela; Asif, Muhammad; Hussain, Tanveer
2012-02-01
Microsatellite markers are used for any individual identity and breed characterization in animals that is an efficient and successful way of investigation. They are used for multiple purposes as genetic detectors including, rapid mutation rate, high level of polymorphism, and range of variety of microsatellite markers available. A panel of 19 microsatellite markers was developed for breed characterization in Tharparkar and Red Sindhi breeds of cattle in Pakistan. Forty four blood samples of cattle (each breed) were collected from Department of Livestock Management, Sindh Agriculture University, Tandojam, Tando Qaiser, Tharparkar Cattle Farm Nabi sar Road, Umer Kot, Sindh, and Govt. Red Sindhi Cattle Breeding Farm, Tando Muhammad Khan Pakistan. Breed characterization was 100% successful. Average PIC, He and Power of Exclusion values were found to be 0.91, 0.62 and 13.28, respectively. Pattern of allelic frequencies of most of the microsatellite markers were clearly distinct between two breeds. As a result of present study a reliable, efficient and very informative panel of microsatellite markers was successfully developed which was capable to interpret individual identity, forensic cases and breed characterization in cattle. This facility is ready to be provided to local cattle breeder at commercial level for DNA testing of cattle. This study will also be highly helpful for breed conservation of cattle. In addition this study can also become a basis to open up new disciplines of animal forensics in Pakistan.
Szewczuk, Małgorzata
2015-08-01
In addition to the main components of the somatotrophic axis (GH/GHR/IGF-I/IGF-IR), great importance in the control of growth and development is also attached to the Janus kinase 2 (JAK2) pathway. Induced by the GH/GHR complex, JAK2 activates signal transducer and activator of transcription 5 (STAT5), and in consequence, may be involved in the regulation of expression of insulin-like growth factor I (IGF-I) in the mammary gland. Silent mutation (rs110298451) has been identified within exon 20 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 904 individuals of four dairy or dual-purpose breeds (Polish Holstein-Friesian, Montbeliarde, Simmental and Jersey) were genotyped. A genotypic imbalance in the populations was observed. In the case of dual-purpose breeds (Montbeliarde and Simmental), the frequencies of both alleles were almost equal. In contrary, the JAK2G allele was predominant in the Polish Holstein-Friesian breed while JAK2A allele in Jersey. A pronounced relationship between JAK2/RsaI polymorphism and milk production traits was found where, irrespective of breed and lactation order, the GG genotype was significantly associated with higher milk, protein and fat yields, as compared to the AA genotype. Heterozygous individuals were generally characterised by intermediate values of the analysed milk traits. It can be argued that the JAK2 gene polymorphism is a potential marker for milk production traits. However, due to the fact that rs110298451 SNP does not directly affect amino acid sequence, other association studies involving missense mutation should also be performed.
Hsu, Te-Hua; Gwo, Jin-Chywan
2017-01-01
Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free dispersal of small abalone is discussed. PMID:28662122
Hsu, Te-Hua; Gwo, Jin-Chywan
2017-01-01
Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free dispersal of small abalone is discussed.
Salim, D C; Akimoto, A A; Carvalho, C B; Oliveira, S F; Grisolia, C K; Moreira, J R; Klautau-Guimarães, M N
2007-06-20
The maned wolf (Chrysocyon brachyurus) is the largest South American canid. Habitat loss and fragmentation, due to agricultural expansion and predatory hunting, are the main threats to this species. It is included in the official list of threatened wildlife species in Brazil, and is also protected by IUCN and CITES. Highly variable genetic markers such as microsatellites have the potential to resolve genetic relationships at all levels of the population structure (among individuals, demes or metapopulations) and also to identify the evolutionary unit for strategies for the conservation of the species. Tests were carried out to verify whether a class of highly polymorphic tetranucleotide repeats described for the domestic dog effectively amplifies DNA in the maned wolf. All five loci studied were amplified; however, one of these, was shown to be monomorphic in 69 maned wolf samples. The average allele number and estimated heterozygosity per polymorphic locus were 4.3 and 67%, respectively. The genetic variability found for this species, which is considered threatened with extinction, showed similar results when compared to studies of other canids.
Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J
2015-09-25
In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.
Edwards, Melissa; Cha, David; Krithika, S; Johnson, Monique; Cook, Gillian; Parra, Esteban J
2016-03-01
In this study, we present a new quantitative method to measure iris colour based on high-resolution photographs. We applied this method to analyse iris colour variation in a sample of individuals of East Asian, European and South Asian ancestry. We show that measuring iris colour using the coordinates of the CIELAB colour space uncovers a significant amount of variation that is not captured using conventional categorical classifications, such as 'brown', 'blue' or 'green'. We tested the association of a selected panel of polymorphisms with iris colour in each population group. Six markers showed significant associations with iris colour in the European sample, three in the South Asian sample and two in the East Asian sample. We also observed that the marker HERC2 rs12913832, which is the main determinant of 'blue' versus 'brown' iris colour in European populations, is also significantly associated with central heterochromia in the European sample. © 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.
Zargar, Sajad Majeed; Farhat, Sufia; Mahajan, Reetika; Bhakhri, Ayushi; Sharma, Arjun
2016-01-01
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.
Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu
2014-01-01
Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.
Purayil, Fayas T; Robert, Gabriel A; Gothandam, Kodiveri M; Kurup, Shyam S; Subramaniam, Sreeramanan; Cheruth, Abdul Jaleel
2018-02-01
Nine (9) different date palm ( Phoenix dactylifera L.) cultivars from UAE, which differ in their flower timings were selected to determine the polymorphism and genetic relationship between these cultivars. Hereditary differences and interrelationships were assessed utilizing inter-simple sequence repeat (ISSR) and directed amplification of minisatellite DNA region (DAMD) primers. Analysis on eight DAMD and five ISSR markers produced total of 113 amplicon including 99 polymorphic and 14 monomorphic alleles with a polymorphic percentage of 85.45. The average polymorphic information content for the two-marker system was almost similar (DAMD, 0.445 and ISSR, 0.459). UPGMA based clustering of DAMD and ISSR revealed that mid-season cultivars, Mkh (Khlas) and MB (Barhee) grouped together to form a subcluster in both the marker systems. The genetic similarity analysis followed by clustering of the cumulative data from the DAMD and ISSR resulted in two major clusters with two early-season cultivars (ENg and Ekn), two mid-season cultivars (MKh and MB) and one late-season cultivar (Lkhs) in cluster 1, cluster 2 includes two late-season cultivars, one early-season cultivar and one mid-season cultivar. The cluster analysis of both DAMD and ISSR marker revealed that, the patterns of variation between some of the tested cultivars were similar in both DNA marker systems. Hence, the present study signifies the applicability of DAMD and ISSR marker system in detecting genetic diversity of date palm cultivars flowering at different seasons. This may facilitate the conservation and improvement of date palm cultivars in the future.
Beaulieu, Jean; Doerksen, Trevor; Boyle, Brian; Clément, Sébastien; Deslauriers, Marie; Beauseigle, Stéphanie; Blais, Sylvie; Poulin, Pier-Luc; Lenz, Patrick; Caron, Sébastien; Rigault, Philippe; Bicho, Paul; Bousquet, Jean; MacKay, John
2011-01-01
Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549 candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including a weak but nonsignificant population structure, was implemented for each marker–trait combination. Relatedness among individuals was controlled using a kinship matrix estimated either from the known half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8 and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P ≤ 0.01) with each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q ≤ 0.10), 13 SNPs were still significant across as many genes belonging to different families, each accounting for between 3 and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for genes containing SNPs associated with these traits. Significantly different transcript levels (P ≤ 0.05) were found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a β-tonoplast intrinsic protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development of efficient marker-assisted selection in an economically important tree species. PMID:21385726
Shan, X H; Li, Y D; Liu, X M; Wu, Y; Zhang, M Z; Guo, W L; Liu, B; Yuan, Y P
2012-08-17
We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.
Otienoburu, Sabina Dahlström; Maïga-Ascofaré, Oumou; Schramm, Birgit; Jullien, Vincent; Jones, Joel J; Zolia, Yah M; Houzé, Pascal; Ashley, Elizabeth A; Kiechel, Jean-René; Guérin, Philippe J; Le Bras, Jacques; Houzé, Sandrine
2016-09-05
Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance. The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing. High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine. Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments. The protocols for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008.
Jaligot, E; Beulé, T; Baurens, F-C; Billotte, N; Rival, A
2004-02-01
The methylation-sensitive amplification polymorphism (MSAP) technique has been employed on somatic embryo-derived oil palms (Elaeis guineensis Jacq.) to identify methylation polymorphisms correlated with the "mantled" somaclonal variation. The variant phenotype displays an unstable feminization of male organs in both male and female flowers. Using MSAP, the methylation status of CCGG sites was compared in three normal versus three mantled regenerants sampled in clonal populations obtained through somatic embryogenesis from four genotypically distinct mother palms. Overall, 64 selective primer combinations were used and they have amplified 23 markers exhibiting a differential methylation pattern between the two phenotypes. Our results indicate that CCGG sites are poorly affected by the considerable decrease in global DNA methylation that has been previously associated with the mantled phenotype. Each of the 23 markers isolated in the present study could discriminate between the two phenotypes only when they were from the same genetic origin. This result hampers at the moment the direct use of MSAP markers for the early detection of variants, even though valuable information on putative target sequences will be obtained from a further characterization of these polymorphic markers.
Alim, M A; Dong, T; Xie, Y; Wu, X P; Zhang, Yi; Zhang, Shengli; Sun, D X
2014-11-01
This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.
Association of vWA and TPOX Polymorphisms with Venous Thrombosis in Mexican Mestizos
Meraz-Ríos, Marco Antonio; Majluf-Cruz, Abraham; Santana, Carla; Noris, Gino; Camacho-Mejorado, Rafael; Acosta-Saavedra, Leonor C.; Calderón-Aranda, Emma S.; Hernández-Juárez, Jesús; Magaña, Jonathan J.; Gómez, Rocío
2014-01-01
Objective. Venous thromboembolism (VTE) is a multifactorial disorder and, worldwide, the most important cause of morbidity and mortality. Genetic factors play a critical role in its aetiology. Microsatellites are the most important source of human genetic variation having more phenotypic effect than many single nucleotide polymorphisms. Hence, we evaluate a possible relationship between VTE and the genetic variants in von Willebrand factor, human alpha fibrinogen, and human thyroid peroxidase microsatellites to identify possible diagnostic markers. Methods. Genotypes were obtained from 177 patients with VTE and 531 nonrelated individuals using validated genotyping methods. The allelic frequencies were compared; Bayesian methods were used to correct population stratification to avoid spurious associations. Results. The vWA-18, TPOX-9, and TPOX-12 alleles were significantly associated with VTE. Moreover, subjects bearing the combination vWA-18/TPOX-12 loci exhibited doubled risk for VTE (95% CI = 1.02–3.64), whereas the combination vWA-18/TPOX-9 showed an OR = 10 (95% CI = 4.93–21.49). Conclusions. The vWA and TPOX microsatellites are good candidate biomarkers in venous thromboembolism diseases and could help to elucidate their origins. Additionally, these polymorphisms could become useful markers for genetic studies of VTE in the Mexican population; however, further studies should be done owing that this data only show preliminary evidence. PMID:25250329
The Genetic Basis of Inbreeding Avoidance in House Mice
Sherborne, Amy L.; Thom, Michael D.; Paterson, Steve; Jury, Francine; Ollier, William E.R.; Stockley, Paula; Beynon, Robert J.; Hurst, Jane L.
2007-01-01
Summary Animals might be able to use highly polymorphic genetic markers to recognize very close relatives and avoid inbreeding [1, 2]. The major histocompatibility complex (MHC) is thought to provide such a marker [1, 3–6] because it influences individual scent in a broad range of vertebrates [6–10]. However, direct evidence is very limited [1, 6, 10, 11]. In house mice (Mus musculus domesticus), the major urinary protein (MUP) gene cluster provides another highly polymorphic scent signal of genetic identity [8, 12–15] that could underlie kin recognition. We demonstrate that wild mice breeding freely in seminatural enclosures show no avoidance of mates with the same MHC genotype when genome-wide similarity is controlled. Instead, inbreeding avoidance is fully explained by a strong deficit in successful matings between mice sharing both MUP haplotypes. Single haplotype sharing is not a good guide to the identification of full sibs, and there was no evidence of behavioral imprinting on maternal MHC or MUP haplotypes. This study, the first to examine wild animals with normal variation in MHC, MUP, and genetic background, demonstrates that mice use self-referent matching of a species-specific [16, 17] polymorphic signal to avoid inbreeding. Recognition of close kin as unsuitable mates might be more variable across species than a generic vertebrate-wide ability to avoid inbreeding based on MHC. PMID:17997307
Hayden, M R; Hewitt, J; Wasmuth, J J; Kastelein, J J; Langlois, S; Conneally, M; Haines, J; Smith, B; Hilbert, C; Allard, D
1988-01-01
A polymorphic marker (D4S62) that is genetically closely linked to D4S10 and is in the region of the gene for Huntington disease is described. A four-allele polymorphism is detected when HincII-digested DNA is hybridized with D4S62. D4S62 maps, by Southern blot analysis using somatic-cell hybrids, to 4p16.1 closer to the centromere than does D4S10. The use of the polymorphisms detected by D4S62 increases the informativeness of markers close to the gene for Huntington disease and will be useful for preclinical diagnosis. D4S62 detects transcripts of approximately 6,000 nucleotides in rat, mouse, and monkey liver and brain. This represents the first demonstration of conserved expressed sequences close to the gene for Huntington disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:2892395
Spotila, L D; Sereda, L; Prockop, D J
1992-01-01
Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, we describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:1463018
Alía, P; Mañá, J; Capdevila, O; Alvarez, A; Navarro, M A
2005-01-01
Serum angiotensin converting enzyme (SACE) concentration is considered a marker of sarcoidosis activity. This concentration is influenced by an insertion/deletion (I/D) polymorphism of the ACE gene, such that SACE levels follow the pattern DD>ID>II. The aim of our work was to study the relationship between I/D polymorphism and susceptibility to sarcoidosis, as well as the relation between this polymorphism and the clinical presentation and evolution of the disease in 177 sarcoidosis patients. A group of 104 individuals without sarcoidosis was included as control. Genotyping was done by a polymerase chain reaction (PCR) method, and SACE concentration at diagnosis was determined by a kinetic method. No differences were observed in genotype or allele distributions between patients and controls, nor between patients considering the type of presentation (Löfgren versus non-Löfgren) and evolution of the disease (acute versus chronic). As reported for healthy populations, SACE concentrations followed the pattern DD>ID>II in sarcoidosis patients, but significant differences between genotypes existed only in the Löfgren group (p = 0.003) and in acute patients (p = 0.02). SACE concentrations at diagnosis were lower in acute patients (p = 0.05) and in Löfgren's syndrome (p = 0.04), but this seemed to occur only in ID individuals (p = 0.02 and p = 0.01, respectively). No relation was thus found between I/D polymorphism and susceptibility to sarcoidosis, but ACE I/D genotyping may improve the assessment of disease activity, both at diagnosis and during the follow-up of treated and untreated patients.
Zarza, Eugenia; Pereyra, Ricardo T; Reynoso, Victor H; Emerson, Brent C
2009-01-01
We isolated and characterized 10 polymorphic microsatellite loci from the Mexican black iguana (Ctenosaura pectinata) and assessed levels of polymorphism in sampling sites located in the northern areas of the species' distribution range. Two to 19 alleles per locus and observed heterozygosity ranging from 0.15 to 0.96 were detected. These markers will be useful to describe population genetic structure, the extent of gene flow in contact zones, to study the mating system of the species and to address conservation genetics issues. Additionally, we evaluated the potential utility of these markers for studies of other species within the genus Ctenosaura (i.e. C. hemilopha, C. similis and C. oaxacana). © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae)1
Klabunde, Gustavo H. F.; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I.; Nodari, Rubens O.
2014-01-01
• Premise of the study: Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • Methods and Results: A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)–enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • Conclusions: These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana. PMID:25202632
Carvalho, M E; Eler, J P; Bonin, M N; Rezende, F M; Biase, F H; Meirelles, F V; Regitano, L C A; Coutinho, L L; Balieiro, J C C; Ferraz, J B S
2017-02-16
The objectives of this study were to characterize the allelic and genotypic frequencies of polymorphisms in the µ-calpain and calpastatin genes, and to assess their association with meat tenderness and animal growth in Nellore cattle. We evaluated 605 Nellore animals at 24 months of age, on average, at slaughter. The polymorphisms were determined for the molecular markers CAPN316, CAPN530, CAPN4751, CAPN4753, and UOGACAST1. Analyses of meat tenderness at 7, 14, and 21 days of maturation were performed in samples of longissimus thoracis obtained between the 12th and 13th rib and sheared using a Warner Bratzler Shear Force. Significant effects were observed for meat tenderness at days 7, 14, and 21 of maturation for the marker CAPN4751, at day 21 for the marker CAPN4753, and at days 14 and 21 for the marker UOGCAST1. For genotypic combinations of markers, the results were significant for the combination CAPN4751/UOGCAST1 in the three maturation periods and CAPN4753/UOGCAST1 at days 14 and 21 of maturation.
Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire
2012-01-01
Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604
Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.
Salimath, S S; de Oliveira, A C; Godwin, I D; Bennetzen, J L
1995-08-01
Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Three DNA marker techniques, restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat amplification (ISSR), were employed to analyze 22 accessions belonging to 5 species of Eleusine. An 8 probe--3 enzyme RFLP combination, 18 RAPD primers, and 6 ISSR primers, respectively, revealed 14, 10, and 26% polymorphism in 17 accessions of E. coracana from Africa and Asia. These results indicated a very low level of DNA sequence variability in the finger millets but did allow each line to be distinguished. The different Eleusine species could be easily identified by DNA marker technology and the 16% intraspecific polymorphism exhibited by the two analyzed accessions of E. floccifolia suggested a much higher level of diversity in this species than in E. coracana. Between species, E. coracana and E. indica shared the most markers, while E. indica and E. tristachya shared a considerable number of markers, indicating that these three species form a close genetic assemblage within the Eleusine. Eleusine floccifolia and E. compressa were found to be the most divergent among the species examined. Comparison of RFLP, RAPD, and ISSR technologies, in terms of the quantity and quality of data output, indicated that ISSRs are particularly promising for the analysis of plant genome diversity.
Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao
2015-01-01
Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522
Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman
2015-01-01
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs. PMID:25884393
Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman
2015-01-01
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs.
Dill, Alisa; Letra, Ariadne; Chaves de Souza, Letícia; Yadlapati, Mamatha; Biguetti, Claudia Cristina; Garlet, Gustavo Pompermaier; Vieira, Alexandre R; Silva, Renato Menezes
2015-02-01
It has been proposed that individual genetic predisposition may contribute to persistent apical periodontitis. Cytokines are associated with levels of inflammation and are involved in caries, pulpal, and periapical tissue destruction. We hypothesized that polymorphisms in cytokine genes may contribute to an individual's increased susceptibility to apical tissue destruction in response to deep carious lesions. Subjects with deep carious lesions with or without periapical lesions (≥3 mm) were recruited at the University of Pittsburgh, Pittsburgh, PA, and the University of Texas at Houston, Houston, TX. Genomic DNA samples of 316 patients were sorted into 2 groups: 136 cases with deep carious lesions and periapical lesions (cases) and 180 cases with deep carious lesions but no periapical lesions (controls). Nine single-nucleotide polymorphisms in IL1B, IL6, TNF, RANK, RANKL, and OPG genes were selected for genotyping. Genotypes were generated by end point analysis using TaqMan chemistry (Invitrogen, Carlsbad, CA) in a real-time polymerase chain reaction instrument. Allele and genotype frequencies were compared among cases and controls using the PLINK program (http://pngu.mgh.harvard.edu/purcell/plink/). Ninety-three human periapical granulomas and 24 healthy periodontal ligament tissues collected postoperatively were used for messenger RNA expression analyses of IL1B. A single-nucleotide polymorphism in IL1B (rs1143643) showed allelic (P = .02) and genotypic (P = .004) association with cases of deep caries and periapical lesions. We also observed altered transmission of IL1B marker haplotypes (P = .02) in these individuals. IL1B was highly expressed in granulomas (P < .001). Variations in IL1B may be associated with periapical lesion formation in individuals with untreated deep carious lesions. Future studies could help predict host susceptibility to developing periapical lesions. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Consolo, Verónica F; Ortega, Leonel M; Salerno, Graciela; Astoreca, Andrea L; Alconada, Teresa M
2015-01-01
Fusarium Head Blight is an important wheat disease in the Argentine Pampas region, being Fusarium graminearum the predominant pathogen. DNA polymorphism of the isolates was analyzed by IGS-RFLP and ISSR. IGS-RFLP and ISSR profiling were carried out using six endonucleases and eight primers, respectively. IGS-RFLP yielded 41 bands, 30 of which were polymorphic while ISSR produced 87 bands with 47 polymorphic bands. Both markers showed genetic variability among the analyzed isolates; however, IGS-RFLP was more efficient than ISSR, showing a higher polymorphic average (59.91%) than the latter (44.11%). The averages of polymorphic information content (PIC) were 0.211 and 0.129, respectively. Twenty haplotypes were identified by IGS-RFLP and 15 haplotypes by ISSR. Genotype clustering within dendrograms was different for both types of markers. The genetic groups obtained by IGS-RFLP showed a partial association to geographic origin. This is the first report on genetic variability of F. graminearum isolates from wheat in Argentina using IGS-RFLP and ISSR markers. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong
2015-08-10
Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.
High-density genetic map construction and comparative genome analysis in asparagus bean.
Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu
2018-03-19
Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.
Kim, K S; Moon, S J; Han, S H; Kim, K Y; Bang, I C
2016-09-02
The slender shiner Pseudopungtungia tenuicorpa (Cypriniformes; Cyprinidae; Gobioninae) is an endangered freshwater fish species endemic to Korea. The current strategies for its conservation involve the study of population genetic characters and identification of management units. These strategies require suitable molecular markers to study genetic diversity and genetic structure. Here, we developed nine polymorphic microsatellite markers for P. tenuicorpa for the first time by applying an enrichment method from a size-selected genomic library. The developed microsatellite markers produced a total of 101 alleles (average 11.2). The observed and expected heterozygosities averaged 0.805 and 0.835, respectively. Among the nine identified markers, five markers showed successful amplification across five related Korean Gobioninae species. Thus, the microsatellite markers developed in this study will be useful to establish conservation strategies for both P. tenuicorpa and other related species.
Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins
2016-01-01
Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...
Kuesap, Jiraporn; Chaijaroenkul, Wanna; Ketprathum, Kanchanok; Tattiyapong, Puntanat; Na-Bangchang, Kesara
2014-02-01
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing
2014-12-01
Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Magyari, Lili; Kovesdi, Erzsebet; Sarlos, Patricia; Javorhazy, Andras; Sumegi, Katalin; Melegh, Bela
2014-03-28
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), represents a group of chronic inflammatory disorders caused by dysregulated immune responses in genetically predisposed individuals. Genetic markers are associated with disease phenotype and long-term evolution, but their value in everyday clinical practice is limited at the moment. IBD has a clear immunological background and interleukins play key role in the process. Almost 130 original papers were revised including meta-analysis. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but text often do not available for the doctors use these in the clinical practice nowadays. We conducted a systematic review of the current literature on interleukin and interleukin receptor gene polymorphisms associated with IBD, performing an electronic search of PubMed Database from publications of the last 10 years, and used the following medical subject heading terms and/or text words: IBD, CD, UC, interleukins and polymorphisms.
Magyari, Lili; Kovesdi, Erzsebet; Sarlos, Patricia; Javorhazy, Andras; Sumegi, Katalin; Melegh, Bela
2014-01-01
Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), represents a group of chronic inflammatory disorders caused by dysregulated immune responses in genetically predisposed individuals. Genetic markers are associated with disease phenotype and long-term evolution, but their value in everyday clinical practice is limited at the moment. IBD has a clear immunological background and interleukins play key role in the process. Almost 130 original papers were revised including meta-analysis. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but text often do not available for the doctors use these in the clinical practice nowadays. We conducted a systematic review of the current literature on interleukin and interleukin receptor gene polymorphisms associated with IBD, performing an electronic search of PubMed Database from publications of the last 10 years, and used the following medical subject heading terms and/or text words: IBD, CD, UC, interleukins and polymorphisms. PMID:24695754
Trends in plant research using molecular markers.
Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco
2018-03-01
A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.
A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract
Yang, Juhua; Zhu, Yihua; Gu, Feng; He, Xiang; Cao, Zongfu; Li, Xuexi; Tong, Yi
2008-01-01
Purpose To identify the molecular defect underlying an autosomal dominant congenital nuclear cataract in a Chinese family. Methods Twenty-two members of a three-generation pedigree were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. All members were genotyped with polymorphic microsatellite markers adjacent to each of the known cataract-related genes. Linkage analysis was performed after genotyping. Candidate genes were screened for mutation using direct sequencing. Individuals were screened for presence of a mutation by restriction fragment length polymorphism (RFLP) analysis. Results Linkage analysis identified a maximum LOD score of 3.31 (recombination fraction [θ]=0.0) with marker D22S1167 on chromosome 22, which flanks the β-crystallin gene cluster (CRYBB3, CRYBB2, CRYBB1, and CRYBA4). Sequencing the coding regions and the flanking intronic sequences of these four candidate genes identified a novel, heterozygous C→T transition in exon 6 of CRYBB1 in the affected individuals of the family. This single nucleotide change introduced a novel BfaI site and was predicted to result in a nonsense mutation at codon 223 that changed a phylogenetically conserved amino acid to a stop codon (p.Q223X). RFLP analysis confirmed that this mutation co-segregated with the disease phenotype in all available family members and was not found in 100 normal unrelated individuals from the same ethnic background. Conclusions This study has identified a novel nonsense mutation in CRYBB1 (p.Q223X) associated with autosomal dominant congenital nuclear cataract. PMID:18432316
Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J
1991-01-01
We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878
Kumar, L S; Sawant, A S; Gupta, V S; Ranjekar, P K
2001-10-01
Genetic variation between 28 Indian populations of the rice pest, Scirpophaga incertulas was evaluated using inter-simple sequence repeats (ISSR)-PCR assay. Nine SSR primers gave rise to 79 amplification products of which 67 were polymorphic. A dendrogram constructed from this data indicates that there is no geographical bias to the clustering and that gene flow between populations appears to be relatively unrestricted, substantiating our earlier conclusion based on the RAPD (random amplified polymorphic DNA) data. The dendrograms obtained using each of these marker systems were poorly correlated with each other as determined by Mantel's test for matrix correlation. Estimates of expected heterozygosity and marker index for each of these marker systems suggests that both these marker systems are equally efficient in determining polymorphisms. Matrix correlation analyses suggest that reliable estimates of genetic variation among the S. incertulas pest populations can be obtained by using RAPDs alone or in combination with ISSRs, but ISSRs alone cannot be used for this purpose.
Fischer, Martin C; Foll, Matthieu; Heckel, Gerald; Excoffier, Laurent
2014-01-01
Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average F ST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.
An Autosomal Genetic Linkage Map of the Sheep Genome
Crawford, A. M.; Dodds, K. G.; Ede, A. J.; Pierson, C. A.; Montgomery, G. W.; Garmonsway, H. G.; Beattie, A. E.; Davies, K.; Maddox, J. F.; Kappes, S. W.; Stone, R. T.; Nguyen, T. C.; Penty, J. M.; Lord, E. A.; Broom, J. E.; Buitkamp, J.; Schwaiger, W.; Epplen, J. T.; Matthew, P.; Matthews, M. E.; Hulme, D. J.; Beh, K. J.; McGraw, R. A.; Beattie, C. W.
1995-01-01
We report the first extensive ovine genetic linkage map covering 2070 cM of the sheep genome. The map was generated from the linkage analysis of 246 polymorphic markers, in nine three-generation fullsib pedigrees, which make up the AgResearch International Mapping Flock. We have exploited many markers from cattle so that valuable comparisons between these two ruminant linkage maps can be made. The markers, used in the segregation analyses, comprised 86 anonymous microsatellite markers derived from the sheep genome, 126 anonymous microsatellites from cattle, one from deer, and 33 polymorphic markers of various types associated with known genes. The maximum number of informative meioses within the mapping flock was 222. The average number of informative meioses per marker was 140 (range 18-209). Linkage groups have been assigned to all 26 sheep autosomes. PMID:7498748
Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis
Matsumura, Hideo; Miyagi, Norimichi; Taniai, Naoki; Fukushima, Mai; Tarora, Kazuhiko; Shudo, Ayano; Urasaki, Naoya
2014-01-01
Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding. PMID:24498029
Association of Oxytocin Receptor Gene (OXTR) rs53576 Polymorphism with Sociality: A Meta-Analysis.
Li, Jingguang; Zhao, Yajun; Li, Rena; Broster, Lucas S; Zhou, Chenglin; Yang, Suyong
2015-01-01
A common variant in the oxytocin receptor gene (OXTR), rs53576, has been broadly linked to socially related personality traits and behaviors. However, the pattern of published results is inconsistent. Here, we performed a meta-analysis to comprehensively evaluate the association. The literature was searched for relevant studies and effect sizes between individuals homozygous for the G allele (GG) and individuals with A allele carriers (AA/AG). Specifically, two indices of sociality were evaluated independently: i) general sociality (24 samples, n = 4955), i.e., how an individual responds to other people in general; and ii) close relationships (15 samples, n = 5262), i.e., how an individual responds to individuals with closed connections (parent-child or romantic relationship). We found positive association between the rs53576 polymorphism and general sociality (Cohen's d = 0.11, p = .02); G allele homozygotes had higher general sociality than the A allele carriers. However, the meta-analyses did not detect significant genetic association between rs53576 and close relationships (Cohen's d = 0.01, p = .64). In conclusion, genetic variation in the rs53576 influences general sociality, which further implies that it is worthy to systematically examine whether the rs53576 is a valid genetic marker for socially related psychiatric disorders.
Velásquez Pereira, Leydi Carolina; Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo
2016-12-30
To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used.
Trapnell, Dorset W.; Beasley, Rochelle R.; Lance, Stacey L.; Field, Ashley R.; Jones, Kenneth L.
2015-01-01
Premise of the study: Microsatellite loci were developed for the epiphytic pencil orchid Dendrobium calamiforme for population genetic and phylogeographic investigation of this Australian taxon. Methods and Results: Nineteen microsatellite loci were identified from an Illumina paired-end shotgun library of D. calamiforme. Polymorphism and genetic diversity were assessed in 24 individuals from five populations separated by a maximum distance of ∼80 km. All loci were polymorphic with two to 14 alleles per locus, expected heterozygosity ranging from 0.486 to 0.902, and probability of identity values ranging from 0.018 to 0.380. Conclusions: These novel markers will serve as valuable tools for investigation of levels of genetic diversity as well as patterns of gene flow, genetic structure, and phylogeographic history. PMID:26082878
Trapnell, Dorset W.; Beasley, Rochelle R.; Lance, Stacey L.; ...
2015-06-05
Our premise describes how microsatellite loci were developed for the epiphytic pencil orchid Dendrobium calamiforme for population genetic and phylogeographic investigation of this Australian taxon. Nineteen microsatellite loci were identified from an Illumina paired-end shotgun library of D. calamiforme. Polymorphism and genetic diversity were assessed in 24 individuals from five populations separated by a maximum distance of ~80 km. All loci were polymorphic with two to 14 alleles per locus, expected heterozygosity ranging from 0.486 to 0.902, and probability of identity values ranging from 0.018 to 0.380. In conclusion, these novel markers will serve as valuable tools for investigation ofmore » levels of genetic diversity as well as patterns of gene flow, genetic structure, and phylogeographic history.« less
Lamoureux, Fabien; Duflot, Thomas
2017-04-01
The use of genomic markers to predict drug response and effectiveness has the potential to improve healthcare by increasing drug efficacy and minimizing adverse effects. Polymorphisms associated with inter-individual variability in drug metabolism, transport, or pharmacodynamics of major cardiovascular drugs have been identified. These include single nucleotide polymorphisms (SNP) affecting clinical outcomes in patients receiving antiplatelet agents, oral anticoagulants and statins. Based on clinical evidence supporting genetic testing in the management of cardiovascular diseases using these drug classes, this short review presents clinical guidance regarding current pharmacogenetics implementation in routine medical practice. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.
Topete-González, Luz Rosalba; Ramirez-Garcia, Sergio Alberto; Charles-Niño, Claudia; Villa-Ruano, Nemesio; Mosso-González, Clemente; Dávalos-Rodríguez, Nory Omayra
2014-01-01
ELMO1 is a gene located at locus 7p14.2-14.1 that codifies a regulatory protein involved in fibrogenesis, cell migration, phagocytosis and apoptosis. This gene presents a single nucleotide polymorphism, which appears to be linked with the development of diabetic nephropathy. Currently, there are no studies in regard to the presence of such polymorphism in the Mexican population. Therefore, the aim of this work was to estimate the frequency rate of alleles and genotypes of polymorphism rs1345365 from ELMO1 in Mexican mestizos who inhabit the west and the southeast regions of Mexico in order to generate reliable data for further association studies. There were 322 individuals who were screened for the identification of polymorphism rs1345365 using genomic DNA from leucocytes as a template for PCR-PASA reactions. Amplicons were separated in 7% PAGE and visualized after staining with silver nitrate. The reference allele (A) was the most frequent in both western and southeastern populations of Mexico. In addition, a different genotype distribution was found with respect to other populations. The results of this study indicate that both populations are in Hardy-Weinberg equilibrium. This study also reveals a low frequency rate of the ancestral genotype for the polymorphism rs1345365 in mestizos from the western and southeastern regions of Mexico.
Hu, Zhuang; Zhang, Tian; Gao, Xiao-Xiao; Wang, Yang; Zhang, Qiang; Zhou, Hui-Juan; Zhao, Gui-Fang; Wang, Ma-Li; Woeste, Keith E; Zhao, Peng
2016-04-01
Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome information from RNA-Seq to understand development in J. mandshurica and develop polymorphic simple sequence repeats (SSRs, microsatellites) to understand the species' population genetics. In this study, more than 47.7 million clean reads were generated using Illumina sequencing technology. De novo assembly yielded 99,869 unigenes with an average length of 747 bp. Based on sequence similarity search with known proteins, a total of 39,708 (42.32 %) genes were identified. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) identified 15,903 (16.9 %) unigenes. Further, we identified and characterized 63 new transcriptome-derived microsatellite markers. By testing the markers on 4 to 14 individuals from four populations, we found that 20 were polymorphic and easily amplified. The number of alleles per locus ranged from 2 to 8. The observed and expected heterozygosity per locus ranged from 0.209 to 0.813 and 0.335 to 0.842, respectively. These twenty microsatellite markers will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species. Moreover, the information uncovered in this research will also serve as a useful genetic resource for understanding the transcriptome and development of J. mandshurica and other Juglans species.
Lin, Juan; Gunter, Lee E; Harding, Scott A; Kopp, Richard F; McCord, Rachel P; Tsai, Chung-Jui; Tuskan, Gerald A; Smart, Lawrence B
2007-11-01
Salix matsudana Koidz. cultivar 'Tortuosa' (corkscrew willow) is characterized by extensive stem bending and curling of leaves. To investigate the genetic basis of this trait, controlled crosses were made between a corkscrew female (S. matsudana 'Tortuosa') and a straight-stemmed, wild-type male (Salix alba L. Clone 99010). Seventy-seven seedlings from this family (ID 99270) were grown in the field for phenotypic observation. Among the progeny, 39 had straight stems and leaves and 38 had bent stems and curled leaves, suggesting that a dominant allele at a single locus controls this phenotype. As a first step in characterizing the locus, we searched for amplified fragment length polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) markers linked to the tortuosa allele using bulked segregant analysis. Samples of DNA from 10 corkscrew individuals were combined to produce a corkscrew pool, and DNA from 10 straight progeny was combined to make a wild-type pool. Sixty-four AFLP primer combinations and 640 RAPD primers were screened to identify marker bands amplified from the corkscrew parent and progeny pool, but not from the wild-type parent or progeny pool. An AFLP marker and a RAPD marker linked to and flanking the tortuosa locus were placed on a preliminary linkage map constructed based on segregation among the 77 progeny. Sectioning and analysis of shoot tips revealed that the corkscrew phenotype is associated with vascular cell collapse, smaller cell size in regions near the cambium and less developed phloem fibers than in wild-type progeny. Identification of a gene associated with this trait could lead to greater understanding of the control of normal stem development in woody plants.
Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J
2015-06-30
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.
[Analysis on genetic polymorphism of 5 STR loci selected from X chromosome].
Liu, Qi-ji; Gong, Yao-qin; Zhang, Xi-yu; Gao, Gui-min; Li, Jiang-xia; Guo, Yi-shou
2005-02-01
To select short tandem repeats(STR) from X chromosome. STR is a universal genetic marker that has changeable polymorphism and stable heredity in human genome. It is a specific DNA segment composed of 2-6 base pairs as its core sequence. It is an ideal DNA marker used in linkage analysis and gene mapping. In this study, 8 short tandem repeats were selected from two genomic clones on X chromosome by using BCM Search Launcher. Primers amplifying the STR loci were designed by using Primer 3.0 according to the unique sequence flanking the STRs. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five of these STRs were polymorphic. Chi-square test indicated that the distribution of genotypes agreed with Hardy-Weinberg equilibrium (P>0.05). Five polymorphic short tandem repeats have been identified on chromosome X and will be useful for linkage analysis and gene mapping.
Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun
2017-01-01
Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454
Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism
Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata
2017-01-01
Background: Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D3 has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Methods: Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. Results: We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D3 concentration in serum of ASD children. Conclusion: Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D3 metabolism, while vitamin D3 levels were not significantly different between ASD and non-ASD children. PMID:28891930
Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism.
Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata; Savelkoul, Huub F J
2017-09-09
Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D₃ has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D₃ concentration in serum of ASD children. Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D₃ metabolism, while vitamin D₃ levels were not significantly different between ASD and non-ASD children.
Kavakiotis, Ioannis; Samaras, Patroklos; Triantafyllidis, Alexandros; Vlahavas, Ioannis
2017-11-01
Single Nucleotide Polymorphism (SNPs) are, nowadays, becoming the marker of choice for biological analyses involving a wide range of applications with great medical, biological, economic and environmental interest. Classification tasks i.e. the assignment of individuals to groups of origin based on their (multi-locus) genotypes, are performed in many fields such as forensic investigations, discrimination between wild and/or farmed populations and others. Τhese tasks, should be performed with a small number of loci, for computational as well as biological reasons. Thus, feature selection should precede classification tasks, especially for Single Nucleotide Polymorphism (SNP) datasets, where the number of features can amount to hundreds of thousands or millions. In this paper, we present a novel data mining approach, called FIFS - Frequent Item Feature Selection, based on the use of frequent items for selection of the most informative markers from population genomic data. It is a modular method, consisting of two main components. The first one identifies the most frequent and unique genotypes for each sampled population. The second one selects the most appropriate among them, in order to create the informative SNP subsets to be returned. The proposed method (FIFS) was tested on a real dataset, which comprised of a comprehensive coverage of pig breed types present in Britain. This dataset consisted of 446 individuals divided in 14 sub-populations, genotyped at 59,436 SNPs. Our method outperforms the state-of-the-art and baseline methods in every case. More specifically, our method surpassed the assignment accuracy threshold of 95% needing only half the number of SNPs selected by other methods (FIFS: 28 SNPs, Delta: 70 SNPs Pairwise FST: 70 SNPs, In: 100 SNPs.) CONCLUSION: Our approach successfully deals with the problem of informative marker selection in high dimensional genomic datasets. It offers better results compared to existing approaches and can aid biologists in selecting the most informative markers with maximum discrimination power for optimization of cost-effective panels with applications related to e.g. species identification, wildlife management, and forensics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nikitin, Aleksey G; Potapov, Viktor Y; Brovkina, Olga I; Koksharova, Ekaterina O; Khodyrev, Dmitry S; Philippov, Yury I; Michurova, Marina S; Shamkhalova, Minara S; Vikulova, Olga K; Smetanina, Svetlana A; Suplotova, Lyudmila A; Kononenko, Irina V; Kalashnikov, Viktor Y; Smirnova, Olga M; Mayorov, Alexander Y; Nosikov, Valery V; Averyanov, Alexander V; Shestakova, Marina V
2017-01-01
The association of type 2 diabetes mellitus (T2DM) with the KCNJ11, CDKAL1, SLC30A8, CDKN2B, and FTO genes in the Russian population has not been well studied. In this study, we analysed the population frequencies of polymorphic markers of these genes. The study included 862 patients with T2DM and 443 control subjects of Russian origin. All subjects were genotyped for 10 single nucleotide polymorphisms (SNPs) of the genes using real-time PCR (TaqMan assays). HOMA-IR and HOMA- β were used to measure insulin resistance and β -cell secretory function, respectively. The analysis of the frequency distribution of polymorphic markers for genes KCNJ11, CDKAL1, SLC30A8 and CDKN2B showed statistically significant associations with T2DM in the Russian population. The association between the FTO gene and T2DM was not statistically significant. The polymorphic markers rs5219 of the KCNJ11 gene, rs13266634 of the SLC30A8 gene, rs10811661 of the CDKN2B gene and rs9465871 , rs7756992 and rs10946398 of the CDKAL1 gene showed a significant association with impaired glucose metabolism or impaired β -cell function. In the Russian population, genes, which affect insulin synthesis and secretion in the β -cells of the pancreas, play a central role in the development of T2DM.
Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J
2011-12-01
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Simonic, I; Gericke, G S; Ott, J; Weber, J L
1998-01-01
Because gene-mapping efforts, using large kindreds and parametric methods of analysis, for the neurologic disorder Tourette syndrome have failed, efforts are being redirected toward association studies in young, genetically isolated populations. The availability of dense marker maps makes it feasible to search for association throughout the entire genome. We report the results of such a genome scan using DNA samples from Tourette patients and unaffected control subjects from the South African Afrikaner population. To optimize mapping efficiency, we chose a two-step strategy. First, we screened pools of DNA samples from both affected and control individuals, using a dense collection of 1,167 short tandem-repeat polymorphisms distributed throughout the genome. Second, we typed those markers displaying evidence of allele frequency-distribution shifts, along with additional tightly linked markers, using DNA from each affected and unaffected individual. To reduce false positives, we tested two independent groups of case and control subjects. Strongest evidence for association (P values 10-2 to 10-5) were obtained for markers within chromosomal regions encompassing D2S1790 near the chromosome 2 centromere, D6S477 on distal 6p, D8S257 on 8q, D11S933 on 11q, D14S1003 on proximal 14q, D20S1085 on distal 20q, and D21S1252 on 21q. PMID:9718333
Simonic, I; Gericke, G S; Ott, J; Weber, J L
1998-09-01
Because gene-mapping efforts, using large kindreds and parametric methods of analysis, for the neurologic disorder Tourette syndrome have failed, efforts are being redirected toward association studies in young, genetically isolated populations. The availability of dense marker maps makes it feasible to search for association throughout the entire genome. We report the results of such a genome scan using DNA samples from Tourette patients and unaffected control subjects from the South African Afrikaner population. To optimize mapping efficiency, we chose a two-step strategy. First, we screened pools of DNA samples from both affected and control individuals, using a dense collection of 1,167 short tandem-repeat polymorphisms distributed throughout the genome. Second, we typed those markers displaying evidence of allele frequency-distribution shifts, along with additional tightly linked markers, using DNA from each affected and unaffected individual. To reduce false positives, we tested two independent groups of case and control subjects. Strongest evidence for association (P values 10-2 to 10-5) were obtained for markers within chromosomal regions encompassing D2S1790 near the chromosome 2 centromere, D6S477 on distal 6p, D8S257 on 8q, D11S933 on 11q, D14S1003 on proximal 14q, D20S1085 on distal 20q, and D21S1252 on 21q.
WATANABE, Masashi; TANAKA, Kazuaki; TAKIZAWA, Tatsuya; SEGAWA, Kazuhito; NEO, Sakurako; TSUCHIYA, Ryo; MURATA, Michiko; MURAKAMI, Masaru; HISASUE, Masaharu
2013-01-01
ABSTRACT A polymorphic tetranucleotide (GAAT)n microsatellite in the first intron of the canine tumor necrosis factor alpha (TNFA) gene was characterized in this study; 139 dogs were analyzed: 22 Beagles, 26 Chihuahuas, 20 Miniature Dachshunds, 24 Miniature Poodles, 22 Pembroke Welsh Corgis and 25 Shiba Inus. We detected the presence of the 4 alleles (GAAT)5, (GAAT)6, (GAAT)7 and (GAAT)8, including 9 of the 10 expected genotypes. The expected heterozygosity (He) and the polymorphic information content (PIC) value of this microsatellite locus varied from 0.389 to 0.749 and from 0.333 to 0.682, respectively, among the 6 breeds. The allelic frequency differed greatly among breeds, but this microsatellite marker was highly polymorphic and could be a useful marker for the canine TNFA gene. PMID:24042337
Watanabe, Masashi; Tanaka, Kazuaki; Takizawa, Tatsuya; Segawa, Kazuhito; Neo, Sakurako; Tsuchiya, Ryo; Murata, Michiko; Murakami, Masaru; Hisasue, Masaharu
2014-01-01
A polymorphic tetranucleotide (GAAT)n microsatellite in the first intron of the canine tumor necrosis factor alpha (TNFA) gene was characterized in this study; 139 dogs were analyzed: 22 Beagles, 26 Chihuahuas, 20 Miniature Dachshunds, 24 Miniature Poodles, 22 Pembroke Welsh Corgis and 25 Shiba Inus. We detected the presence of the 4 alleles (GAAT)5, (GAAT)6, (GAAT)7 and (GAAT)8, including 9 of the 10 expected genotypes. The expected heterozygosity (He) and the polymorphic information content (PIC) value of this microsatellite locus varied from 0.389 to 0.749 and from 0.333 to 0.682, respectively, among the 6 breeds. The allelic frequency differed greatly among breeds, but this microsatellite marker was highly polymorphic and could be a useful marker for the canine TNFA gene.
Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.
Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong
2014-04-01
Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.
Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).
Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh
2011-08-01
Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.
Development and characterization of EST-SSR markers for Begonia luzhaiensis (Begoniaceae)1
Tseng, Yu-Hsin; Huang, Han-Yau; Xu, Wei-Bin; Yang, Hsun-An; Liu, Yan; Peng, Ching-I; Chung, Kuo-Fang
2017-01-01
Premise of the study: Microsatellite primers were developed for Begonia luzhaiensis (Begoniaceae) to assess genetic diversity and population genetic structure. Methods and Results: Based on the transcriptome data of B. luzhaiensis, 60 primer pairs were selected for initial validation, of which 16 yielded polymorphic microsatellite loci in 57 individuals. The number of alleles observed for these 16 loci ranged from one to nine. The observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.000 to 0.804 with averages of 0.370 and 0.404, respectively. Five loci could be successfully amplified in B. leprosa. Conclusions: The expressed sequence tag–simple sequence repeat markers are the first specifically developed for B. luzhaiensis and the first developed in Begonia sect. Coelocentrum. These markers will be useful for future studies of the genetic structure and phylogeography of B. luzhaiensis. PMID:28529834
Lie, B A; Dupuy, B M; Spurkland, A; Fernández-Viña, M A; Hagelberg, E; Thorsby, E
2007-01-01
Most archaeological and linguistic evidence suggest a Polynesian origin of the population of Easter Island (Rapanui), and this view has been supported by the identification of Polynesian mitochondrial DNA (mtDNA) polymorphisms in prehistoric skeletal remains. However, some evidence of an early South American contact also exists (the sweet potato, bottle gourd etc.), but genetic studies have so far failed to show an early Amerindian contribution to the gene pool on Easter Island. To address this issue, we analyzed mtDNA and Y chromosome markers and performed high-resolution human leukocyte antigen (HLA) genotyping of DNA harvested from previously collected sera of 48 reputedly nonadmixed native Easter Islanders. All individuals carried mtDNA types and HLA alleles previously found in Polynesia, and most men carried Y chromosome markers of Polynesian origin, providing further evidence of a Polynesian origin of the population of Easter Island. A few individuals carried HLA alleles and/or Y chromosome markers of European origin. More interestingly, some individuals carried the HLA alleles A*0212 and B*3905, which are of typical Amerindian origin. The genealogy of some of the individuals carrying these non-Polynesian HLA alleles and their haplotypic backgrounds suggest an introduction into Easter Island in the early 1800s, or earlier. Thus, there may have been an early European and Amerindian contribution to the Polynesian gene pool of Easter Island.
Effect of ageing and μ-calpain markers on meat quality from Brangus steers finished on pasture.
Mazzucco, Juliana Papaleo; Melucci, Lilia M; Villarreal, Edgardo L; Mezzadra, Carlos A; Soria, Liliana; Corva, Pablo; Motter, Mariana M; Schor, Alejandro; Miquel, María C
2010-11-01
Brangus steers (n=247) finished on pasture were used to evaluate the effects of post-mortem ageing and polymorphism CAPN1 316 and CAPN1 4751 markers on meat tenderness and objective colour measurements (CIEL*a*b*) of m. Longissimus dorsi. Ageing meat for 7 days decreased shear force (SF) by 13.7% and improved a* (8.4%) and b* (10%) compared to ageing for 1 day. No difference between 7 and 14 days of ageing was found for SF, a* and b*. However, L* increased markedly with ageing. Fitting both markers simultaneously, CAPN1 316 showed association with SF and L* and CAPN1 4751 with a* and b*. Fitting the markers individually, CAPN1 4751 affected all traits and CAPN1 316 showed association with SF and L*. Post-mortem ageing and the use of markers represent two independent and alternative tools that could be used for improving quality of meat from Brangus cattle. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Tzeng, Jung-Ying; Zhang, Daowen; Pongpanich, Monnat; Smith, Chris; McCarthy, Mark I.; Sale, Michèle M.; Worrall, Bradford B.; Hsu, Fang-Chi; Thomas, Duncan C.; Sullivan, Patrick F.
2011-01-01
Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis. PMID:21835306
Martins, E M; Martinelli, G; Arbetman, M P; Lamont, R W; Simões-Araújo, J L; Powell, D; Ciampi-Guillardi, M; Baldauf, C; Quinet, A; Galisa, P; Shapcott, A
2014-07-07
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India.
Mohanty, Sujata; Panda, Manoj Kumar; Acharya, Laxmikanta; Nayak, Sanghamitra
2014-08-01
In the present study, genetic fingerprints of ten species of Zingiberaceae from eastern India were developed using PCR-based markers. 19 RAPD (Rapid Amplified polymorphic DNA), 8 ISSR (Inter Simple Sequence Repeats) and 8 SSR (Simple Sequence Repeats) primers were used to elucidate genetic diversity important for utilization, management and conservation. These primers produced 789 loci, out of which 773 loci were polymorphic (including 220 unique loci) and 16 monomorphic loci. Highest number of bands amplified (263) in Curcuma caesia whereas lowest (209) in Zingiber cassumunar. Though all the markers discriminated the species effectively, analysis of combined data of all markers resulted in better distinction of individual species. Highest number of loci was amplified with SSR primers with resolving power in a range of 17.4-39. Dendrogram based on three molecular data using unweighted pair group method with arithmetic mean classified all the species into two clusters. Mantle matrix correspondence test revealed high matrix correlation in all the cases. Correlation values for RAPD, ISSR and SSR were 0.797, 0.84 and 0.8, respectively, with combined data. In both the genera wild and cultivated species were completely separated from each other at genomic level. It also revealed distinct genetic identity between species of Curcuma and Zingiber. High genetic diversity documented in the present study provides a baseline data for optimization of conservation and breeding programme of the studied zingiberacious species.
Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue
2012-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (HO) and expected (HE) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy–Weinberg equilibrium (HWE). Pairwise FST analysis showed a low but significant differentiation (0.026 < FST < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies. PMID:22489130
Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Zhu, Wen-Chao; Hong, Xiao-Yue
2012-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (H(O)) and expected (H(E)) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy-Weinberg equilibrium (HWE). Pairwise F(ST) analysis showed a low but significant differentiation (0.026 < F(ST) < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies.
Byrne, Margaret; Hankinson, Margaret; Sampson, Jane F; Stankowski, Sean
2008-11-01
Atriplex nummularia is a polyploid Australian saltbush which has been identified as a suitable species for use in the rehabilitation of agricultural land affected by salinity. We isolated 12 polymorphic loci for a preliminary assessment of genetic variability and structure within the species as a basis for a breeding programme. Preliminary screening of loci in 40 individuals from two populations revealed multibanded genotypes consisting of up to seven alleles in a single individual, with up to 29 alleles observed at a single locus. The multibanded patterns are consistent with the polyploid status of this species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.).
Hoban, Sean; Anderson, Robert; McCleary, Tim; Schlarbaum, Scott; Romero-Severson, Jeanne
2008-05-01
Butternut (Juglans cinerea L.) is an eastern North American forest tree severely threatened by an exotic fungal pathogen, Sirococcus clavigignenti-juglandacearum. We report here 13 nuclear microsatellites for genetic evaluation of the remaining natural populations. Summary statistics are reported for individuals from a population of butternuts in central Kentucky (N = 63). All markers were polymorphic, with an average of 13.7 alleles per locus observed. Four loci exhibited significantly fewer heterozygotes than expected under Hardy-Weinberg equilibrium (P < 0.05). © 2007 The Authors.
Construction of a microsatellites-based linkage map for the white grouper (Epinephelus aeneus).
Dor, Lior; Shirak, Andrey; Gorshkov, Sergei; Band, Mark R; Korol, Abraham; Ronin, Yefim; Curzon, Arie; Hulata, Gideon; Seroussi, Eyal; Ron, Micha
2014-06-05
The white grouper (Epinephelus aeneus) is a promising candidate for domestication and aquaculture due to its fast growth, excellent taste, and high market price. A linkage map is an essential framework for mapping quantitative trait loci for economic traits and the study of genome evolution. DNA of a single individual was deep-sequenced, and microsatellite markers were identified in 177 of the largest scaffolds of the sequence assembly. The success rate of developing polymorphic homologous markers was 94.9% compared with 63.1% of heterologous markers from other grouper species. Of the 12 adult mature fish present in the broodstock tank, two males and two females were identified as parents of the assigned offspring by parenthood analysis using 34 heterologous markers. A single full-sib family of 48 individuals was established for the construction of first-generation linkage maps based on genotyping data of 222 microsatellites. The markers were assigned to 24 linkage groups in accordance to the 24 chromosomal pairs. The female and male maps consisting of 203 and 202 markers spanned 1053 and 886 cM, with an average intermarker distance of 5.8 and 5.0 cM, respectively. Mapping of markers to linkage groups ends was enriched by using markers originating from scaffolds harboring telomeric repeat-containing RNA. Comparative mapping showed high synteny relationships among the white grouper, kelp grouper (E. bruneus), orange-spotted grouper (E. coioides), and Nile tilapia (Oreochromis niloticus). Thus, it would be useful to integrate the markers that were developed for different groupers, depending on sharing of sequence data, into a comprehensive consensus map. Copyright © 2014 Dor et al.
SNPs and Haplotypes in Native American Populations
Kidd, Judith R.; Friedlaender, Françoise; Pakstis, Andrew J.; Furtado, Manohar; Fang, Rixun; Wang, Xudong; Nievergelt, Caroline M.; Kidd, Kenneth K.
2013-01-01
Autosomal DNA polymorphisms can provide new information and understanding of both the origins of and relationships among modern Native American populations. At the same time that autosomal markers can be highly informative, they are also susceptible to ascertainment biases in the selection of the markers to use. Identifying markers that can be used for ancestry inference among Native American populations can be considered separate from identifying markers to further the quest for history. In the current study we are using data on nine Native American populations to compare the results based on a large haplotype-based dataset with relatively small independent sets of SNPs. We are interested in what types of limited datasets an individual laboratory might be able to collect are best for addressing two different questions of interest. First, how well can we differentiate the Native American populations and/or infer ancestry by assigning an individual to her population(s) of origin? Second, how well can we infer the historical/evolutionary relationships among Native American populations and their Eurasian origins. We conclude that only a large comprehensive dataset involving multiple autosomal markers on multiple populations will be able to answer both questions; different small sets of markers are able to answer only one or the other of these questions. Using our largest dataset we see a general increasing distance from Old World populations from North to South in the New World except for an unexplained close relationship between our Maya and Quechua samples. PMID:21913176
A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica.
Di Stilio, V S; Kesseli, R V; Mulcahy, D L
1998-01-01
The segregation pattern of an 810-bp random amplified polymorphic DNA (RAPD) band in the F1 and backcross generations of a Silene dioica (L.) Clairv. family provides evidence that this molecular marker is located in the pseudoautosomal region (PAR) of the X and Y chromosomes. The marker was found through a combination of bulked segregant analysis (BSA) and RAPD techniques. Recombination rates between this pseudoautosomal marker and the differentiating portion of the Y chromosome are 15% in both generations. Alternative explanations involving nondisjunction or autosomal inheritance are presented and discussed. Chromosome counts provide evidence against the nondisjunction hypothesis, and probability calculations argue against the possibility of autosomal inheritance. This constitutes the first report of a pseudoautosomal DNA marker for plant sex chromosomes. PMID:9691057
Gajurel, Jyoti Prasad; Cornejo, Carolina; Werth, Silke; Shrestha, Krishna Kumar; Scheidegger, Christoph
2013-03-01
Microsatellite primers were developed in the endangered tree species Taxus wallichiana from Nepal to investigate regional genetic differentiation, local genetic diversity, and gene flow for the conservation of this species under climate- and land-use change scenarios in mountain regions of Nepal. • We developed 10 highly polymorphic microsatellite markers from 454 DNA sequencing. Characterization of the new microsatellite loci was done in 99 individuals collected from three valleys with different climatic regimes. The number of alleles per locus varied from four to 12. Observed heterozygosity of populations, averaged across loci, ranged from 0.30 to 0.59. • The new markers provided by this study will substantially increase the resolution for detailed studies in phylogeography, population genetics, and parentage analysis.
Miro-Herrans, Aida T; Velez-Zuazo, Ximena; Acevedo, Jenny P; McMillan, W Owen
2008-09-01
We isolated and characterized 12 microsatellite loci from the hawksbill sea turtle (Eretmochelys imbricata). The loci exhibited a variable number of alleles that ranged from three to 14 with an average observed heterozygosity of 0.70 (SD 0.18) across 40 hawksbill turtles from the Caribbean. The polymorphism exhibited individually and in combination makes them suitable for fine-scale genetic studies. In particular, the low probability of identity and high paternity exclusion of these markers makes them highly useful for parentage and relatedness studies. These new markers greatly increase the power of genetic studies directed towards the conservation of this endangered species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Lather, Manila; Sharma, Divya; Dang, Amita S; Adak, Tridibes; Singh, Om P
2015-05-01
Anopheles fluviatilis James is an important malaria vector in India, Pakistan, Nepal, and Iran. It has now been recognized as a complex of at least four sibling species-S, T, U, and V, among which species T is the most widely distributed species throughout India. The taxonomic status of these species is confusing owing to controversies prevailing in the literature. In addition, chromosomal inversion genotypes, which were considered species-diagnostic for An. fluviatilis species T, are unreliable due to the existence of polymorphism in some populations. To study the genetic diversity at population level, we isolated and characterized 20 microsatellite markers from microsatellite-enriched genomic DNA library of An. fluviatilis T, of which 18 were polymorphic while two were monomorphic. The number of alleles per locus among polymorphic markers ranged from 4 to 19, and values for observed and expected heterozygosities varied from 0.352 to 0.857 and from 0.575 to 0.933, respectively. Thirteen markers had cross-cryptic species transferability to species S and U of the Fluviatilis Complex. This study provides a promising genetic tool for the population genetic analyses of An. fluviatilis. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Salgado-Salazar, Catalina; Rivera, Yazmín; Veltri, Daniel; ...
2015-11-10
Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2-6 alleles observed. Observed and expected heterozygosity ranged from 0.000-0.892 and 0.023-0.746, respectively. Just 17 markers were sufficientmore » to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease.« less
SE33 locus as a reliable genetic marker for forensic DNA analysis systems
Bhinder, Munir Ahmad; Zahoor, Muhammad Yasir; Sadia, Haleema; Qasim, Muhammad; Perveen, Rukhsana; Anjum, Ghulam Murtaza; Iqbal, Muhammad; Ullah, Najeeb; Shehzad, Wasim; Tariq, Muhammad; Waryah, Ali Muhammad
2018-06-14
Background/aim: Genetic variation, an authentic tool of individual discrimination, is being used for forensic investigations worldwide. A missing result for even one out of 13-17 markers leads to an inconclusive report. Additional reliable markers are required to compensate such deficiencies. The SE33 locus has high genetic variability in different populations and is being used in forensic investigation systems in some countries. The purpose of the study was to assess the viability of use of the SE33 locus as a supportive marker for forensic DNA profiling. Materials and methods: Amplification of the SE33 locus was performed using the PowerPlex ES Monoplex System SE33 (Promega). After genotyping 204 Pakistani individuals, different genetic and forensic parameters for the SE33 locus were studied. Results: Genotyping of the SE33 locus revealed a total of 43 alleles including 3 novel alleles. Significant values of different forensic and genetic parameters including power of discrimination, power of exclusion, and polymorphism information content were observed. Conclusions: Addition of the SE33 locus in forensic DNA profiling may help to produce conclusive reports where results are inconclusive due to degraded evidence samples. The SE33 locus can confidently be used for Pakistani and neighboring populations having common ancestors from Iran to Central Asia, the Middle East, India and Turkey.
Fumière, Olivier; Dubois, Marc; Grégoire, Dimitrie; Théwis, André; Berben, Gilbert
2003-02-26
The European chicken meat market is characterized by numerous quality marks: "Label de Qualité Wallon" in Belgium, "Label Rouge" in France, denominations of geographical origin, organic agriculture, etc. Most of those certified productions have specifications requiring the use of slow-growing chicken strains. The amplified fragment length polymorphism (AFLP) technique has been used to search molecular markers able to discriminate slow-growing chicken strains from fast-growing ones and to authenticate certified products. Two pairs of restriction enzymes (EcoRI/MseI and EcoRI/TaqI) and 121 selective primer combinations were tested on individual DNA samples from chicken products essentially in carcass form that were ascribed as belonging to either slow- or fast-growing strains. Within the resulting fingerprints, two fragments were identified as type-strains specific markers. One primer combination gives a band (333 bp) that is specific for slow-growing chickens, and another primer pair generates a band (372 bp) that was found to be characteristic of fast-growing chickens. The two markers were isolated, cloned, and sequenced. The effectiveness and the specificity of the two interesting determinants were assessed on individuals of two well-known strains (ISA 657 and Cobb 500) and on commercialized products coming from various origins.
Development of SCoT-Based SCAR Marker for Rapid Authentication of Taxus Media.
Hao, Juan; Jiao, Kaili; Yu, Chenliang; Guo, Hong; Zhu, Yujia; Yang, Xiao; Zhang, Siyang; Zhang, Lei; Feng, Shangguo; Song, Yaobin; Dong, Ming; Wang, Huizhong; Shen, Chenjia
2018-06-01
Taxus media is an important species in the family Taxaceae with high medicinal and commercial value. Overexploitation and illegal trade have led T. media to a severe threat of extinction. In addition, T. media and other Taxus species have similar morphological traits and are easily misidentified, particularly during the seedling stage. The purpose of this study is to develop a species-specific marker for T. media. Through a screening of 36 start codon targeted (SCoT) polymorphism primers, among 15 individuals of 4 Taxus species (T. media, T. chinensis, T. cuspidate and T. fuana), a clear species-specific DNA fragment (amplified by primer SCoT3) for T. media was identified. After isolation and sequencing, a DNA sequence with 530 bp was obtained. Based on this DNA fragment, a primer pair for the sequence-characterized amplified region marker was designed and named MHSF/MHSR. PCR analysis with primer pair MHSF/MHSR revealed a clear amplified band for all individuals of T. media but not for T. chinensis, T. cuspidate and T. fuana. Therefore, this marker can be used as a quick, efficient and reliable tool to identify T. media among other related Taxus species. The results of this study will lay an important foundation for the protection and management of T. media as a natural resource.
Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings.
Hedayati, Vahideh; Mousavi, Amir; Razavi, Khadijeh; Cultrera, Nicolò; Alagna, Fiammetta; Mariotti, Roberto; Hosseini-Mazinani, Mehdi; Baldoni, Luciana
2015-07-01
Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.
Bulatova, I A; Tretyakova, Yu I; Shchekotov, V V; Shchekotova, A P; Ulitina, P V; Krivtsov, A V; Nenasheva, O Yu
2015-01-01
To study the rs1001179 polymorphism of the catalase (CAT) gene and to estimate the serum levels of the enzymes catalase and glutathione peroxidase (GP) in patients with chronic hepatitis C (CHC) and in those with ulcerative colitis (UC) in the Perm Territory. Ninety patients with reactivation-phase CHC and 50 patients with exacerbation-phase UC were examined. The serum levels of catalase and GP were determined and the polymorphic variants of the marker of CAT gene rs1001179 in the DNA isolated from whole blood were found in all the patients. In the CHC and UC groups, the levels of catalase and GP were found to be lower than that in apparently healthy individuals. Furthermore, both groups showed a direct correlation between the activities of the enzymes. In the patients with CHC and in those with UC, the spread of genotypes and alleles generally failed to virtually differ from that in the control group. The G/G genotype was prevalent in all the groups. In the patients with CHC, the minor A allele demonstrated a significant inverse correlation with the enzyme catalase (r = -0.16; p = 0.02) and GP (r = -0.13; p = 0.047). The lower serum levels of catalase and GP are indicative of oxidative stress in the patients with CHC or UC. In the patients with CHC, the significant correlation of the pathological rs1701179 A allele marker with the processes of synthesis of antioxidant enzymes may suggest that CAT gene polymorphism in the A/A homozygotes might affect the regulation mechanism involved in the antioxidant system in the liver.
Correa-Rodríguez, María; Schmidt-RioValle, Jacqueline; Rueda-Medina, Blanca
2017-11-01
The aim of the present study was to investigate the possible influence of low-density lipoprotein receptor-related protein 5 (LRP5) and sclerostin (SOST) genes as genetic factors contributing to calcaneal quantitative ultrasound (QUS) and body composition variables in a population of young Caucasian adults. The study population comprised a total of 575 individuals (mean age 20.41years; SD 2.36) whose bone mass was assessed through QUS to determine broadband ultrasound attenuation (BUA, dB/MHz). Body composition measurements were performed using a body composition analyser. Seven single-nucleotide polymorphisms (SNPs) of LRP5 (rs2306862, rs599083, rs556442 and rs3736228) and SOST (rs4792909, rs851054 and rs2023794) were selected as genetic markers and genotyped using TaqMan OpenArray ® technology. Linear regression analysis was used to test the possible association of the tested SNPs with QUS and body composition parameters. Linear regression analysis revealed that the rs3736228 SNP of LPR5 was significantly associated with BUA after adjustment for age, sex, weight, height, physical activity and calcium intake (P = 0.028, β (95% CI) = 0.089 (0.099-1.691). For the remaining SNPs, no significant association with the QUS measurement was observed. Regarding body composition, no significant association was found between LRP5 and SOST polymorphisms and body mass index, total fat mass and total lean mass after adjustment for age and sex as covariates. We concluded that the rs3736228 LRP5 genetic polymorphism influences calcaneal QUS parameter in a population of young Caucasian adults. This finding suggests that LRP5 might be an important genetic marker contributing to bone mass accrual early in life.
He, Yanxia; Yuan, Wangjun; Dong, Meifang; Han, Yuanji; Shang, Fude
2017-01-01
Osmanthus fragrans is an ornamental plant of substantial commercial value, and no genetic linkage maps of this species have previously been reported. Specific-locus amplified fragment sequencing (SLAF-seq) is a recently developed technology that allows massive single nucleotide polymorphisms (SNPs) to be identified and high-resolution genotyping. In our current research, we generated the first genetic map of O. fragrans using SLAF-seq, which is composed with 206.92 M paired-end reads and 173,537 SLAF markers. Among total 90,715 polymorphic SLAF markers, 15,317 polymorphic SLAFs could be used for genetic map construction. The integrated map contained 14,189 high quality SLAFs that were grouped in 23 genetic linkage groups, with a total length of 2962.46 cM and an average distance of 0.21 cM between two adjacent markers. In addition, 23,664 SNPs were identified from the mapped markers. As far as we know, this is the first of the genetic map of O. fragrans. Our results are further demonstrate that SLAF-seq is a very effective method for developing markers and constructing high-density linkage maps. The SNP markers and the genetic map reported in this study should be valuable resource in future research. PMID:29018460
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-06-04
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.
Moraes, E M; Cidade, F W; Silva, G A R; Machado, M C
2014-12-04
The cactus genus Uebelmannia includes 3 narrow endemic species associated with rocky savanna habitats in eastern South America. Because of their rarity and illegal over-collection, all of these species are endangered. Taxonomic uncertainties resulting from dramatic local variation in morphology within Uebelmannia species preclude effective conservation efforts, such as the reintroduction or translocation of plants, to restore declining populations. In this study, we developed and characterized 18 perfect, dinucleotide simple-sequence repeat markers for U. pectinifera, the most widely distributed species in the genus, and tested the cross-amplification of these markers in the remaining congeneric species and subspecies. All markers were polymorphic in a sample from 2 U. pectinifera populations. The effective number of alleles ranged from 1.6 to 8.7, with an average per population of 3.3 (SE ± 0.30) and 4.5 (SE ± 0.50). Expected heterozygosity ranged from 0.375 to 0.847 and 8-10 loci showed departures from Hardy- Weinberg equilibrium in the analyzed populations. Based on the observed polymorphism level of each marker, as well as the analysis of null allele presence and evidence of amplification of duplicate loci, a subset of 12 loci can be used as reliable markers to investigate the genetic structure, diversity, and species limits of the Uebelmannia genus.
Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B
2015-01-01
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816
Belarmino, K S; Rêgo, M M; Bruno, R L A; Medeiros, G D A; Andrade, A P; Rêgo, E R
2017-08-31
Poincianella pyramidalis (Tul.) L.P. Queiroz is an endemic Caatinga (Brazilian savannah biome) species that has been exploited for different purposes, although information is necessary about still existing natural populations. The objective of this study was to evaluate the genetic diversity among 20 P. pyramidalis individuals occurring in a population localized in the Caatinga biome of Paraíba State, aiming at seed collection, using RAPD markers. For the DNA extraction, young shoots of the individuals were used, and amplification was carried out using 20 primers. The obtained markers were converted to a binary matrix, from which a genetic dissimilarity matrix was built using the arithmetic complement of Jaccard's coefficient, and the dendrogram was built by the UPGMA analysis. No amplified fragment was monomorphic, resulting in 100% polymorphism of the analyzed population. The mean genetic diversity among the matrices was 63.28%, ranging from 30.9 to 97.7%. Individuals 09 and 17 showed relevant genetic proximity, and thus planting their seedlings at close sites would not be indicated. The population evaluated in this study showed high genetic diversity, originating twelve groups from the UPGMA hierarchical cluster analysis. Based on the results, individuals 09 and 17 can provide plant material for the evaluation of the physiological performance of P. pyramidalis seeds, and the set of individuals of this population has a high genetic diversity that characterizes them as adequate matrices for projects of restoration and conservation of the seed species.
Li, Y M; Bai, C Y; Niu, W P; Yu, H; Yang, R J; Yan, S Q; Zhang, J Y; Zhang, M J; Zhao, Z H
2015-09-28
Microsatellite markers are widely and evenly distributed, and are highly polymorphic. Rapid and convenient detection through automated analysis means that microsatellite markers are widely used in the construction of plant and animal genetic maps, in quantitative trait loci localization, marker-assisted selection, identification of genetic relationships, and genetic diversity and phylogenetic tree construction. However, few microsatellite markers remain to be isolated. We used streptavidin magnetic beads to affinity-capture and construct a (CA)n microsatellite DNA-enriched library from sika deer. We selected sequences containing more than six repeats to design primers. Clear bands were selected, which were amplified using non-specific primers following PCR amplification to screen polymorphisms in a group of 65 unrelated sika deer. The positive clone rate reached 82.9% by constructing the enriched library, and we then selected positive clones for sequencing. There were 395 sequences with CA repeats, and the CA repeat number was 4-105. We selected sequences containing more than six repeats to design primers, of which 297 pairs were designed. We next selected clear bands and used non-specific primers to amplify following PCR amplification. In total, 245 pairs of primers were screened. We then selected 50 pairs of primers to randomly screen for polymorphisms. We detected 47 polymorphic and 3 monomorphic loci in 65 unrelated sika deer. These newly isolated and characterized microsatellite loci can be used to construct genetic maps and for lineage testing in deer. In addition, they can be used for comparative genomics between Cervidae species.
Dettogni, Raquel Spinassé; Sá, Ricardo Tristão; Tovar, Thaís Tristão; Louro, Iúri Drumond
2013-08-01
Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP genotype frequencies were in Hardy-Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.
NASA Astrophysics Data System (ADS)
Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhiyong
2017-03-01
The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.
Screening and Characterization of RAPD Markers in Viscerotropic Leishmania Parasites
Mkada–Driss, Imen; Talbi, Chiraz; Guerbouj, Souheila; Driss, Mehdi; Elamine, Elwaleed M.; Cupolillo, Elisa; Mukhtar, Moawia M.; Guizani, Ikram
2014-01-01
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents. PMID:25313833
A 48 SNP set for grapevine cultivar identification
2011-01-01
Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012
A review on SNP and other types of molecular markers and their use in animal genetics
Vignal, Alain; Milan, Denis; SanCristobal, Magali; Eggen, André
2002-01-01
During the last ten years, the use of molecular markers, revealing polymorphism at the DNA level, has been playing an increasing part in animal genetics studies. Amongst others, the microsatellite DNA marker has been the most widely used, due to its easy use by simple PCR, followed by a denaturing gel electrophoresis for allele size determination, and to the high degree of information provided by its large number of alleles per locus. Despite this, a new marker type, named SNP, for Single Nucleotide Polymorphism, is now on the scene and has gained high popularity, even though it is only a bi-allelic type of marker. In this review, we will discuss the reasons for this apparent step backwards, and the pertinence of the use of SNPs in animal genetics, in comparison with other marker types. PMID:12081799
Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin
2017-06-01
Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.
Phylogenetic relationships of chrysanthemums in Korea based on novel SSR markers.
Khaing, A A; Moe, K T; Hong, W J; Park, C S; Yeon, K H; Park, H S; Kim, D C; Choi, B J; Jung, J Y; Chae, S C; Lee, K M; Park, Y J
2013-11-07
Chrysanthemums are well known for their esthetic and medicinal values. Characterization of chrysanthemums is vital for their conservation and management as well as for understanding their genetic relationships. We found 12 simple sequence repeat markers (SSRs) of 100 designed primers to be polymorphic. These novel SSR markers were used to evaluate 95 accessions of chrysanthemums (3 indigenous and 92 cultivated accessions). Two hundred alleles were identified, with an average of 16.7 alleles per locus. KNUCRY-77 gave the highest polymorphic information content value (0.879), while KNUCRY-10 gave the lowest (0.218). Similar patterns of grouping were observed with a distance-based dendrogram developed using PowerMarker and model-based clustering with Structure. Three clusters with some admixtures were identified by model-based clustering. These newly developed SSR markers will be useful for further studies of chrysanthemums, such as taxonomy and marker-assisted selection breeding.
An autosomal genetic linkage map of the sheep genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, A.M.; Ede, A.J.; Pierson, C.A.
1995-06-01
We report the first extensive ovine genetic linkage map covering 2070 cM of the sheep genome. The map was generated from the linkage analysis of 246 polymorphic markers, in nine three-generation full-sib pedigrees, which make up the AgResearch International Mapping Flock. We have exploited many markers from cattle so that valuable comparisons between these two ruminant linkage maps can be made. The markers, used in the segregation analyses, comprised 86 anonymous microsatellite markers derived from the sheep genome, 126 anonymous microsatellites from cattle, one from deer, and 33 polymorphic markers of various types associated with known genes. The maximum numbermore » of informative meioses within the mapping flock was 22. The average number of informative meioses per marker was 140 (range 18-209). Linkage groups have been assigned to all 26 sheep autosomes. 102 refs., 8 figs., 5 tabs.« less
A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome
2010-01-01
Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These distorted loci tended to cluster on LG1, LG3, LG4 and LG5. There were only 15 EST-SSR markers mapped due to low polymorphism. By comparison, there were potential synteny, collinear order of some markers and conservation of collinear linkage groups among the maps and with the AA genome but not fully conservative. Conclusion A composite linkage map was constructed from three individual mapping populations with 175 SSR markers in 22 composite linkage groups. This composite genetic linkage map is among the first "true" tetraploid peanut maps produced. This map also consists of 47 SSRs that have been used in the published AA genome maps, and could be used in comparative mapping studies. The primers described in this study are PCR-based markers, which are easy to share for genetic mapping in peanuts. All 1044 primer pairs are provided as additional files and the three RIL populations will be made available to public upon request for quantitative trait loci (QTL) analysis and linkage map improvement. PMID:20105299
Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.
2016-01-01
Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16–74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7–8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse cultivar groups) and integrated genomic strategy can efficiently scan functionally relevant potential molecular tags (markers, candidate genes and alleles) regulating complex agronomic traits (grain weight) and expedite marker-assisted genetic enhancement in rice. PMID:27833617
Munguia-Vega, A.; Rodriguez-Estrella, R.; Nachman, M.; Culver, M.
2009-01-01
Fifteen polymorphic microsatellite loci were isolated from an enriched genomic library of the sand pocket mouse Chaetodipus arenarius. The mean number of alleles per locus was 11.53 (range five to 19) and the average observed heterozygosity was 0.764 (range 0.121 to 1.0). The markers will be used for detecting the impact of human-induced habitat fragmentation on patterns of gene flow, genetic structure, and extinction risk. In addition, these markers will be useful across the genus because most of the loci cross-amplified and were polymorphic in three other species of Chaetodipus. ?? 2008 The Authors.
Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.
2011-01-01
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885
Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W
2001-06-01
Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.
Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W
2001-01-01
Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome. PMID:11404342
[Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data].
Kashin, A S; Kritskaya, T A; Schanzer, I A
2016-10-01
Using the method of ISSR analysis, the genetic diversity of 18 natural populations of Tulipa gesneriana L. from the north of the Lower Volga region was examined. The ten ISSR primers used in the study provided identification of 102 PCR fragments, of which 50 were polymorphic (49.0%). According to the proportion of polymorphic markers, two population groups were distinguished: (1) the populations in which the proportion of polymorphic markers ranged from 0.35 to 0.41; (2) the populations in which the proportion of polymorphic markers ranged from 0.64 to 0.85. UPGMA clustering analysis provided subdivision of the sample into two large clusters. The unrooted tree constructed using the Neighbor Joining algorithm had similar topology. The first cluster included slightly variable populations and the second cluster included highly variable populations. The AMOVA analysis showed statistically significant differences (F CT = 0.430; p = 0.000) between the two groups. Local populations are considerably genetically differentiated from each other (F ST = 0.632) and have almost no links via modern gene flow, as evidenced by the results of the Mantel test (r =–0.118; p = 0.819). It is suggested that the degree of genetic similarities and differences between the populations depends on the time and the species dispersal patterns on these territories.
Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A
1999-04-01
Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.
Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines.
Leal, A A; Mangolin, C A; do Amaral, A T; Gonçalves, L S A; Scapim, C A; Mott, A S; Eloi, I B O; Cordovés, V; da Silva, M F P
2010-01-05
Using only one type of marker to quantify genetic diversity generates results that have been questioned in terms of reliability, when compared to the combined use of different markers. To compare the efficiency of the use of single versus multiple markers, we quantified genetic diversity among 10 S(7) inbred popcorn lines using both RAPD and SSR markers, and we evaluated how well these two types of markers discriminated the popcorn genotypes. These popcorn genotypes: "Yellow Pearl Popcorn" (P1-1 and P1-5), "Zélia" (P1-2 and P1-4), "Curagua" (P1-3), "IAC 112" (P9-1 and P9-2), "Avati Pichinga" (P9-3 and P9-5), and "Pisankalla" (P9-4) have different soil and climate adaptations. Using RAPD marker analysis, each primer yielded bands of variable intensities that were easily detected, as well as non-specific bands, which were discarded from the analysis. The nine primers used yielded 126 bands, of which 104 were classified as polymorphic, giving an average of 11.6 polymorphisms per primer. Using SSR procedures, the number of alleles per locus ranged from two to five, giving a total of 47 alleles for the 14 SSR loci. When comparing the groups formed using SSR and RAPD markers, there were similarities in the combinations of genotypes from the same genealogy. Correlation between genetic distances obtained through RAPD and SSR markers was relatively high (0.5453), indicating that both techniques are efficient for evaluating genetic diversity in the genotypes of popcorn that we evaluated, though RAPDs yielded more polymorphisms.
Lima, S G; Albuquerque, M F P M; Oliveira, J R M; Ayres, C F J; Cunha, J E G; Oliveira, D F; Lemos, R R; Souza, M B R; Barbosa e Silva, O
2013-04-01
Exaggerated blood pressure response (EBPR) during the exercise treadmill test (ETT) has been considered to be a risk factor for hypertension. The relationship of polymorphisms of the renin-angiotensin system gene with hypertension has not been established. Our objective was to evaluate whether EBPR during exercise is a clinical marker for hypertension. The study concerned a historical cohort of normotensive individuals. The exposed individuals were those who presented EBPR. At the end of the observation period (41.7 months = 3.5 years), the development of hypertension was analyzed within the two groups. Genetic polymorphisms and blood pressure behavior were assessed as independent variables, together with the classical risk factors for hypertension. The I/D gene polymorphism of the angiotensin-converting enzyme and M235T of angiotensinogen were ruled out as risk factors for hypertension. EBPR during ETT is not an independent influence on the chances of developing hypertension. No differences were observed between the hypertensive and normotensive individuals regarding gender (P = 0.655), skin color (P = 0.636), family history of hypertension (P = 0.225), diabetes mellitus (P = 0.285), or hypertriglyceridemia (P = 0.734). The risk of developing hypertension increased with increasing body mass index (BMI) and advancing age. The risk factors, which independently influenced the development of hypertension, were age and BMI. EBPR did not constitute an independent risk factor for hypertension and is probably a preclinical phase in the spectrum of normotension and hypertension.
Fu, Katherine Yih-Jia; Zamudio, Roxana; Henderson-Frost, Jo; Almuedo, Alex; Steinberg, Hannah; Clipman, Steven Joseph; Duran, Gustavo; Marcus, Rachel; Crawford, Thomas; Alyesh, Daniel; Colanzi, Rony; Flores, Jorge; Gilman, Robert Hugh; Bern, Caryn
2017-01-01
Trypanosoma cruzi (Tc) infection is usually acquired in childhood in endemic areas, leading to Chagas disease, which progresses to Chagas cardiomyopathy in 20-30% of infected individuals over decades. The pathogenesis of Chagas cardiomyopathy involves the host inflammatory response to T. cruzi, in which upstream caspase-1 activation prompts the cascade of inflammatory chemokines/cytokines, cardiac remodeling, and myocardial dysfunction. The aim of the present study was to examine the association of two caspase-1 single nucleotide polymorphisms (SNPs) with cardiomyopathy. We recruited infected (Tc+, n = 149) and uninfected (Tc-, n = 87) participants in a hospital in Santa Cruz, Bolivia. Cardiac status was classified (I, II, III, IV) based on Chagas cardiomyopathy-associated electrocardiogram findings and ejection fractions on echocardiogram. Genotypes were determined using Taqman probes via reverse transcription-polymerase chain reaction of peripheral blood DNA. Genotype frequencies were analyzed according to three inheritance patterns (dominant, recessive, additive) using logistic regression adjusted for age and sex. The AA allele for the caspase-1 SNP rs501192 was more frequent in Tc+ cardiomyopathy (classes II, III, IV) patients compared to those with a normal cardiac status (class I) [odds ratio (OR) = -2.18, p = 0.117]. This trend approached statistical significant considering only Tc+ patients in class I and II (OR = -2.64, p = 0.064). Caspase-1 polymorphisms may play a role in Chagas cardiomyopathy development and could serve as markers to identify individuals at higher risk for priority treatment.
Investigation of paternity establishing without the putative father using hypervariable DNA probes.
Yokoi, T; Odaira, T; Nata, M; Sagisaka, K
1990-09-01
Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.
NASA Astrophysics Data System (ADS)
Sun, Yanhong; Li, Qing; Wang, Guiying; Zhu, Dongmei; Chen, Jian; Li, Pei; Tong, Jingou
2017-05-01
Myostatin ( MSTN) is a member of the transforming growth factor-β gene superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of Myostatin-1 ( MSTN-1) in two commercial hatchery populations of Ancherythroculter nigrocauda, an economically important freshwater fish, were screened for single nucleotide polymorphisms (SNPs) and then genotyped by direct sequencing of PCR products. Five SNPs were identified in intron 1 and exon 2, including a non-synonymous mutation causing an amino acid change (Val to Ile) at position 180. Association analyses based on 300 individuals revealed that the g.1129T>C SNP locus was significantly associated with total length (TL), body length (BL), body height (BH) and body weight (BW) in 6- and 18-month-old populations, while the g.1289G>A locus was significantly associated with BH and BW in the 6-month-old population. Haplotype analyses revealed that fish with the genotype combinations TC/TC or TC/GA showed better growth performance. Our results suggest that g.1129T>C and g.1289G>A have positive effects on growth traits and may be candidate gene markers for marker-assisted selection in A. nigrocauda.
Haplotype diversity in 11 candidate genes across four populations.
Beaty, T H; Fallin, M D; Hetmanski, J B; McIntosh, I; Chong, S S; Ingersoll, R; Sheng, X; Chakraborty, R; Scott, A F
2005-09-01
Analysis of haplotypes based on multiple single-nucleotide polymorphisms (SNP) is becoming common for both candidate gene and fine-mapping studies. Before embarking on studies of haplotypes from genetically distinct populations, however, it is important to consider variation both in linkage disequilibrium (LD) and in haplotype frequencies within and across populations, as both vary. Such diversity will influence the choice of "tagging" SNPs for candidate gene or whole-genome association studies because some markers will not be polymorphic in all samples and some haplotypes will be poorly represented or completely absent. Here we analyze 11 genes, originally chosen as candidate genes for oral clefts, where multiple markers were genotyped on individuals from four populations. Estimated haplotype frequencies, measures of pairwise LD, and genetic diversity were computed for 135 European-Americans, 57 Chinese-Singaporeans, 45 Malay-Singaporeans, and 46 Indian-Singaporeans. Patterns of pairwise LD were compared across these four populations and haplotype frequencies were used to assess genetic variation. Although these populations are fairly similar in allele frequencies and overall patterns of LD, both haplotype frequencies and genetic diversity varied significantly across populations. Such haplotype diversity has implications for designing studies of association involving samples from genetically distinct populations.
Genetic and phenotypic variability of iris color in Buenos Aires population
Hohl, Diana María; Bezus, Brenda; Ratowiecki, Julia; Catanesi, Cecilia Inés
2018-01-01
Abstract The aim of this work was to describe the phenotypic and genotypic variability related to iris color for the population of Buenos Aires province (Argentina), and to assess the usefulness of current methods of analysis for this country. We studied five Single Nucleotide Polymorphisms (SNPs) included in the IrisPlex kit, in 118 individuals, and we quantified eye color with Digital Iris Analysis Tool. The markers fit Hardy-Weinberg equilibrium for the whole sample, but not for rs12913832 within the group of brown eyes (LR=8.429; p=0.004). We found a remarkable association of HERC2 rs12913832 GG with blue color (p < 0.01) but the other markers did not show any association with iris color. The results for the Buenos Aires population differ from those of other populations of the world for these polymorphisms (p < 0,01). The differences we found might respond to the admixed ethnic composition of Argentina; therefore, methods of analysis used in European populations should be carefully applied when studying the population of Argentina. These findings reaffirm the importance of this investigation in the Argentinian population for people identification based on iris color. PMID:29658972
Mao, H G; Dong, X Y; Cao, H Y; Xu, N Y; Yin, Z Z
2018-04-01
1. Diacylglycerol acyltransferase (DGAT) plays an important role in the synthesis of triacylglycerol, but its effects on meat quality and carcass composition in pigeons are unclear. In this study, single-nucleotide polymorphisms (SNPs) in the exons of the DGAT2 gene were identified and analysed by using DNA sequencing methods in 200 domestic pigeons (Columba livia). The associations between DGAT2 polymorphisms and carcass and meat quality traits were also analysed. 2. Sequencing results showed that 5 nucleotide mutations were detected in exons 3, 4, 5 and 6 of the DGAT2 gene. The analysis revealed three genotypes (AA, AB and BB) in G18398T and G22484C, in which the AA genotype and A allele had the highest frequency. 3. In the SNP of G18398T located in exon 5, individuals with genotype BB had significantly higher meat quality and lower abdominal fat content than those with AA or AB genotype. In the SNP of G22484C located in exon 6, the genotype AA showed highest carcass trait values, while the genotype BB represented better meat quality, compared to AA and AB genotypes. 4. The results imply that DGAT2 gene has a close relationship with carcass and meat quality traits in pigeons, and the SNPs of G18398T and G22484C can be used as genetic markers for marker-assisted breeding in pigeon.
Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis
Alcina, Antonio; Ramagopalan, Sreeram V; Fernández, Óscar; Catalá-Rabasa, Antonio; Fedetz, María; Ndagire, Dorothy; Leyva, Laura; Arnal, Carmen; Delgado, Concepción; Lucas, Miguel; Izquierdo, Guillermo; Ebers, George C; Matesanz, Fuencisla
2010-01-01
A recent genome-wide association study (GWAS) performed by the The Wellcome Trust Case–Control Consortium based on 12 374 nonsynonymous single-nucleotide polymorphisms (SNPs) provided evidence for several genes involved in multiple sclerosis (MS) susceptibility. In this study, we aimed at verifying the association of 19 SNPs with MS, with P-values ≤0.005, in an independent cohort of 732 patients and 974 controls, all Caucasian from the South of Spain. We observed an association of the rs17368528 polymorphism with MS (P=0.04, odds ratio (OR)=0.801, 95% confidence interval (CI)=0.648–0.990). The association of this polymorphism with MS was further validated in an independent set of 1318 patients from the Canadian Collaborative Project (P=0.04, OR=0.838, 95% CI=0.716–0.964). This marker is located on chromosome 1p36.22, which is 1 Mb away from the MS-associated kinesin motor protein KIF1B, although linkage disequilibrium was not observed between these two markers. The rs17368528 SNP results in an amino-acid substitution (proline to leucine) in the fifth exon of the hexose-6-phosphate dehydrogenase (H6PD) gene, in which some variants have been reported to attenuate or abolish H6PD activity, in individuals with cortisone reductase deficiency. This study corroborates the association of one locus determined by GWAS and points to H6PD as a new candidate gene for MS. PMID:19935835
Guo, Hongfang; Raza, Sayed Haidar Abbas; Schreurs, Nicola M; Khan, Rajwali; Wei, Dawei; Wang, Li; Zhang, Song; Zhang, Le; Wu, Sen; Ullah, Irfan; Hosseini, Seyed Mahdi; Zan, Linsen
2018-06-08
Krüppel-like factor 3 (KLF3), a member of the Krüppel-like factor (KLF) family, plays an important role in adipogenesis and lipid metabolism. The aim of this study was to investigate whether KLF3 could be used as a candidate gene in the breeding of cattle. The expression pattern of bovine KLF3 gene revealed that it was highly expressed in abdominal fat and perirenal fat. Using DNA sequencing, three single nucleotide polymorphisms (SNPs) within the promoter regions of KLF3 gene were identified in 448 Qinchuan cattle, which are located in the recognition sequences of 11 transcription factors and the four haplotypes representing four potential different compositions of polymorphic potential cis-acting elements. Association analysis results indicated that individuals with the Hap7/7 diplotype showed higher (P < 0.05) intramuscular fat content (IFC) than those with H7/8. In addition, the H7 haplotype had much higher (P < 0.05) transcriptional activity than the H8 haplotype, consistent with the association analysis. We speculated that polymorphisms in transcription factor binding sites of the KLF3 promoter region affected transcriptional activity of KLF3, which subsequently influence intramuscular fat content in Qinchuan cattle and KLF3 gene could be used as molecular markers for fat deposition traits using early marker-assisted selection (MAS) of Qinchuan cattle breeding in the future. Copyright © 2017. Published by Elsevier B.V.
Ben Romdhane, Mériam; Riahi, Leila; Jardak, Rahma; Ghorbel, Abdelwahed; Zoghlami, Nejia
2018-01-01
Hybridity and the genuineness of hybrids are prominent characteristics for quality control of seeds and thereby for varietal improvement. In the current study, the cross between two local barley genotypes (Ardhaoui: female; Testour: male) previously identified as susceptible/tolerant to salt stress in Tunisia was achieved. The hybrid genetic purity of the generated F 1 putative hybrids and the fingerprinting of the parents along with their offspring were assessed using a set of 17 nuclear SSR markers. Among the analyzed loci, 11 nSSR were shown polymorphic among the parents and their offspring. Based on the applied 11 polymorphic SSR loci, a total of 28 alleles were detected with an average of 2.54 alleles per locus. The locus HVM33 presented the highest number of alleles. The highest polymorphism information content value was detected for the locus HVM33 (0.6713) whereas the lowest PIC value (0.368) was revealed by the loci BMAC0156 , EBMAC0970 and BMAG0013 with a mean value of 0.4619. The probabilities of identical genotypes PI for the 11 microsatellite markers were 8.63 × 10 -7 . Banding patterns among parents and hybrids showed polymorphic fragments. The 11 SSR loci had produced unique fingerprints for each analyzed genotype and segregate between the two parental lines and their four hybrids. Parentage analysis confirms the hybrid purity of the four analyzed genotypes. Six Tunisian barley accessions were used as an outgroup in the multivariate analysis to confirm the efficiency of the employed 11 nSSR markers in genetic differentiation among various barley germplasms. Thus, neighbor joining and factorial analysis revealed clearly the discrimination among the parental lines, the four hybrids and the outgroup accessions. Out of the detected polymorphic 11 nuclear SSR markers, a set of five markers ( HVM33 , WMC1E8 , BMAC0154 , BMAC0040 and BMAG0007 ) were shown to be sufficient and informative enough to discriminate among the six genotypes representing the two parental lines and the four hybrids from each others. These five nSSR markers presented the highest number of alleles per locus ( A n ), expected heterozygosity ( H e ), PIC values and the lowest probabilities of identity (PI). These nSSR loci may be used as referral SSR markers for unambiguous discrimination and genetic purity assessment in barley breeding programs.
Development and validation of new SSR markers from expressed regions in the garlic genome
USDA-ARS?s Scientific Manuscript database
Limited number of simple sequence repeat (SSR) markers is available for the genome of garlic (Allium sativum L.) although SSR markers have become one of the most preferred marker systems because they are typically co-dominant, reproducible, cross species transferable and highly polymorphic. In this ...
Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi
2017-01-01
Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.
Teixeira, Helena M P; Alcantara-Neves, Neuza M; Barreto, Maurício; Figueiredo, Camila A; Costa, Ryan S
2017-02-01
Asthma is a chronic inflammatory disease of the respiratory tract. This heterogeneous disease is caused by the interaction of interindividual genetic variability and environmental factors. The gene adenylyl cyclase type 9 (ADCY9) encodes a protein called adenylyl cyclase (AC), responsible for producing the second messenger cyclic AMP (cAMP). cAMP is produced by T regulatory cells and is involved in the down-regulation of T effector cells. Failures in cAMP production may be related to an imbalance in the regulatory immune response, leading to immune-mediated diseases, such as allergic disorders. The aim of this study was to investigate how polymorphisms in the ADCY9 are associated with asthma and allergic markers. The study comprised 1309 subjects from the SCAALA (Social Changes Asthma and Allergy in Latin America) program. Genotyping was accomplished using the Illumina 2.5 Human Omni bead chip. Logistic regression was used to assess the association between allergy markers and ADCY9 variation in PLINK 1.07 software with adjustments for sex, age, helminth infection and ancestry markers. The ADCY9 candidate gene was associated with different phenotypes, such as asthma, specific IgE, skin prick test, and cytokine production. Among 133 markers analyzed, 29 SNPs where associated with asthma and allergic markers in silico analysis revealed the functional impact of the 6 SNPs on ADCY9 expression. It can be concluded that polymorphisms in the ADCY9 gene are significantly associated with asthma and/or allergy markers. We believe that such polymorphisms may lead to increased expression of adenylyl cyclase with a consequent increase in immunoregulatory activity. Therefore, these SNPs may offer an impact on the occurrence of these conditions in admixture population from countries such as Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrander, E.A.; Sprague, G.F. Jr.; Rine, J.
1993-04-01
A large block of simple sequence repeat (SSR) polymorphisms for the dog genome has been isolated and characterized. Screening of primary libraries by conventional hybridization methods as well as by screening of enriched marker-selected libraries led to the isolation of a large number of genomic clones that contained (CA)[sub n] repeats. The sequences of 101 clones showed that the size and complexity of (CA)[sub n] repeats in the dog genome were similar to those reported for these markers in the human genome. Detailed analysis of a representative subset of these markers revealed that most markers were moderately to highly polymorphic,more » with PIC values exceeding 0.70 for 33% of the markers tested. An association between higher PIC values and markers containing longer (CA)[sub n] repeats was observed in these studies, as previously noted for similar markers in the human genome. A list of primer sequences that tag each characterized marker is provided, and a comprehensive system of nomenclature for the dog genome is suggested. 28 refs., 4 figs., 2 tabs.« less
Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P
2015-05-22
Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.
Predicting risk in space: Genetic markers for differential vulnerability to sleep restriction
NASA Astrophysics Data System (ADS)
Goel, Namni; Dinges, David F.
2012-08-01
Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss—with intraclass correlation coefficients accounting for 58-92% of the variance in neurobehavioral measures—point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants—each independently—in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction—as determined from candidate gene studies—will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.
Morgan, A R; Turic, D; Jehu, L; Hamilton, G; Hollingworth, P; Moskvina, V; Jones, L; Lovestone, S; Brayne, C; Rubinsztein, D C; Lawlor, B; Gill, M; O'Donovan, M C; Owen, M J; Williams, J
2007-09-05
Late-onset Alzheimer's disease (LOAD) is a common neurodegenerative disorder, with a complex etiology. APOE is the only confirmed susceptibility gene for LOAD. Others remain yet to be found. Evidence from linkage studies suggests that a gene (or genes) conferring susceptibility for LOAD resides on chromosome 10. We studied 23 positional/functional candidate genes from our linkage region on chromosome 10 (APBB1IP, ALOX5, AD037, SLC18A3, DKK1, ZWINT, ANK3, UBE2D1, CDC2, SIRT1, JDP1, NET7, SUPV3L1, NEN3, SAR1, SGPL1, SEC24C, CAMK2G, PP3CB, SNCG, CH25H, PLCE1, ANXV111) in the MRC genetic resource for LOAD. These candidates were screened for sequence polymorphisms in a sample of 14 LOAD subjects and detected polymorphisms tested for association with LOAD in a three-stage design involving two stages of genotyping pooled DNA samples followed by a third stage in which markers showing evidence for association in the first stages were subjected to individual genotyping. One hundred and twenty polymorphisms were identified and tested in stage 1 (4 case + 4 control pools totaling 366 case and 366 control individuals). Single nucleotide polymorphisms (SNPs) showing evidence of association with LOAD were then studied in stage 2 (8 case + 4 control pools totaling 1,001 case and 1,001 control individuals). Five SNPs, in four genes, showed evidence for association (P < 0.1) at stage 2 and were individually genotyped in the complete dataset, comprising 1,160 LOAD cases and 1,389 normal controls. Two SNPs in SGPL1 demonstrated marginal evidence of association, with uncorrected P values of 0.042 and 0.056, suggesting that variation in SGPL1 may confer susceptibility to LOAD. Copyright 2007 Wiley-Liss, Inc.
Nudin, Nur Fatihah Hasan; Ali, Abdul Manaf; Ngah, Norhayati; Mazlan, Nor Zuhailah; Mat, Nashriyah; Ghani, Mohd Noor Abd; Alias, Nadiawati; Zakaria, Abd Jamil; Jahan, Md Sarwar
2017-08-01
Plant breeding is a way of selection of a particular individual for the production of the progeny by separating or combining desired characteristics. The objective of this study was to justify different characteristics of Dioscorea hispida (Ubi gadong) varieties using molecular techniques to select the best variety for sustainable production at the farmer's level. A total of 160 germplasms of Ubi gadong were collected from different locations at the Terengganu and Kelantan states of Malaysia. Forty eight (48) out of 160 germplasms were selected as "primary" selection based on yield and other qualitative characters. Selected collections were then grown and maintained for ISSR marker-assisted genetic diversity analysis. Overall plant growth and yield of tubers were also determined. A total of 12 ISSR markers were tested to justify the characteristics of Ubi gadong varieties among which three markers showed polymorphic bands and on average 57.3% polymorphism were observed representing the highest variation among germplasms. The ISSR marker based on UPGMA cluster analysis grouped all 48 D. hispida into 10 vital groups that proved a vast genetic variation among germplasm collections. Therefore, hybridization should be made between two distant populations. The D. hispida is already proved as the highest starch content tuber crops and very rich in vitamins with both micro and macro minerals. Considering all these criteria and results from marker-assisted diversity analysis, accessions that are far apart based on their genetic coefficient (like DH27 and DH71; DH30 and DH70; DH43 and DH62; DH45 and DH61; DH77 and DH61; DH78 and DH57) could be selected as parents for further breeding programs. This will bring about greater diversity, which will lead to high productive index in terms of increase in yield and overall quality and for the ultimate target of sustainable Ubi gadong production. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The myostatin F94L polymorphism influences carcass traits in steers; however, the influence of this polymorphism on female reproductive performance should be characterized as part of using it for marker assisted selection. Results from USMARC indicate that heifers that are homozygous for the L allel...
Ayesh, Basim M
2017-01-01
Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.
Rafizadeh, Azam; Koohi-Dehkordi, Mehrana; Sorkheh, Karim
2018-06-07
Milk thistle (Silybum marianum) is among the world's popular medicinal plants. Start Codon Targeted (SCoT) marker system was utilized to investigate the genetic variability of 80 S. marianum genotypes from eight populations in Iran. SCoT marker produced 255 amplicons and 84.03% polymorphism was generated. The SCoT marker system's polymorphism information content value was 0.43. The primers' resolving power values were between 4.18 and 7.84. The percentage of polymorphic bands was between 33.3 and 100%. The Nei's gene diversity (h) was 0.19-1.30 with an average 0.72. The Shannon's index (I) ranged from 0.29 to 1.38 with an average value of 0.83. The average gene flow (0.37) demonstrated a high genetic variation among the studied populations. The variation of 42% was displayed by the molecular variance analysis among the populations while a recorded variation of 58% was made within the populations. Current investigation suggested that SCoT marker system could effectively evaluate milk thistle genotypes genetic diversity.
Zhang, J; Zhang, L G
2014-02-14
Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.
Tringali, Michael D; Seyoum, Seifu; Carney, Susan L; Davis, Michelle C; Rodriguez-Lopez, Marta A; Reynolds Iii, John E; Haubold, Elsa
2008-03-01
Here we describe 18 polymorphic microsatellite loci for Trichechus manatus latirostris (Florida manatee), isolated using a polymerase chain reaction-based technique. The number of alleles at each locus ranged from two to four (mean = 2.5) in specimens from southwest (n = 58) and northeast (n = 58) Florida. Expected and observed heterozygosities ranged from 0.11 to 0.67 (mean = 0.35) and from 0.02 to 0.78 (mean = 0.34), respectively. Departures from Hardy-Weinberg equilibrium occurred at two loci. There was no evidence of genotypic disequilibrium for any pair of loci. For individual identification, mean random-mating and θ-corrected match probabilities were 9.36 × 10(-7) and 1.95 × 10(-6) , respectively. © 2007 The Authors.
Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz
2014-06-01
Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.
NASA Astrophysics Data System (ADS)
Shangguan, Jingbo; Li, Zhongbao
2017-06-01
Thirty-five new microsatellite loci from the sea cucumbers Holothurian scabra (Jaeger, 1833) and Apostichopus japonicas (Selenka, 1867) were screened and characterized using the method of magnetic bead enrichment. Of the twenty-four polymorphic loci tested, eighteen were consistent with Hardy-Weinberg equilibrium after a modified false discovery rate (B-Y FDR) correction, whereas six showed statistically significant deviations (CHS2 and CHS11: P <0.014790; FCS1, FCS6, FCS8 and FCS14: P <0.015377). Furthermore, four species of plesiomorphous and related sea cucumbers (Holothurian scabra, Holothuria leucospilota, Stichopus horrens and Apostichopus japonicas) were tested for mutual cross-amplification using a total of ninety microsatellite loci. Although transferability and universality of all loci were generally low, the results of the cross-species study showed that the markers can be applied to identify individuals to species according to the presence or absence of specific microsatellite alleles. The microsatellite markers reported here will contribute to the study of genetic diversity, assisted breeding, and population conservation in sea cucumbers, as well as allow for the identification of individuals to closely related species.
NASA Astrophysics Data System (ADS)
Shangguan, Jingbo; Li, Zhongbao
2018-03-01
Thirty-five new microsatellite loci from the sea cucumbers Holothurian scabra (Jaeger, 1833) and Apostichopus japonicas (Selenka, 1867) were screened and characterized using the method of magnetic bead enrichment. Of the twenty-four polymorphic loci tested, eighteen were consistent with Hardy-Weinberg equilibrium after a modified false discovery rate (B-Y FDR) correction, whereas six showed statistically significant deviations (CHS2 and CHS11: P<0.014 790; FCS1, FCS6, FCS8 and FCS14: P<0.015 377). Furthermore, four species of plesiomorphous and related sea cucumbers ( Holothurian scabra, Holothuria leucospilota, Stichopus horrens and Apostichopus japonicas) were tested for mutual cross-amplification using a total of ninety microsatellite loci. Although transferability and universality of all loci were generally low, the results of the cross-species study showed that the markers can be applied to identify individuals to species according to the presence or absence of specific microsatellite alleles. The microsatellite markers reported here will contribute to the study of genetic diversity, assisted breeding, and population conservation in sea cucumbers, as well as allow for the identification of individuals to closely related species.
Dhakshanamoorthy, Dharman; Selvaraj, Radhakrishnan; Chidambaram, Alagappan
2015-02-01
The presence of important chemical and physical properties in Jatropha curcas makes it a valuable raw material for numerous industrial applications, including the production of biofuel. Hence, the researcher's interest is diversified to develop more and better varieties with outstanding agronomic characteristics using conventional breeding. Among these, mutation breeding is one of the best approaches to bring genetic changes in plant species. The aim of this study is to evaluate the diversity and genetic relationship among J. curcas mutants, which were obtained from different doses of gamma rays (control, 5 Kr, 10 Kr, 15 Kr, 20 Kr and 25 Kr) and EMS (1%, 2%, 3% and 4%), using RAPD marker. Among the 21 random primers, 20 produced polymorphic bands. The primers, OPM-14 and OPAW-13, produced a minimum number of bands (3) each across the ten mutants, while the primer OPF-13 produced the maximum number of bands (10), followed by the primers OPU-13, OPAM-06, OPAW-09 and OPD-05, which produced 9 bands each. The number of amplicons varied from 3 to 10, with an average of 7 bands, out of which 4.57 were polymorphic. The percentage of polymorphism ranged from 0.00 to 100 with an average of 57%. In the present study, RAPD markers were found most polymorphic, with an average polymorphism information content (PIC) value of 0.347, effective multiplex ratio (EMR) of 35.14, marker index (MI) of 14.19, resolution power (Rp) of 11.19, effective marker index (EMI) of 8.21 and genotype index (GI) of 0.36, indicating that random primers are useful in studies of genetic characterization in J. curcas mutant plants. In a dendrogram constructed based on Jaccard's similarity coefficients, the mutants were grouped into three main clusters viz., (a) control, 10 Kr, 15 Kr, 20 Kr, 2% EMS, and 3% EMS, (b) 5 Kr and 1% EMS, and (c) 25 Kr and 4% EMS mutants. Based on the attributes of the random primers and polymorphism studied, it is concluded that RAPD analysis offers a useful molecular marker for the identification of the mutants in gamma rays and EMS treated plants. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Towards identification of an epilepsy gene in a large family with idiopathic generalized epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussear, M.; Lopes-Cendes, I.; Berkovic, S.F.
1994-09-01
To identify the disease gene in a large, multiplex family segregating an autosomal dominant form of idiopathic generalized epilepsy (IGE). The IGEs have been recognized for several decades as being genetically determined. However, large pedigrees with a clear Mendelian inheritance are not commonly available. This, and the presence of locus heterogeneity have been obstacles to the identification of linkage in several IGE syndromes. We have identified a large IGE kindred with fifty-eight living individuals, including 26 affecteds, showing a clear autosomal dominant inheritance with incomplete penetrance. Forty-fur informative individuals, including 23 affecteds, were selected for the linkage studies. We havemore » chosen 200 polymorphic microsatellite markers, about 20 cM apart, throughout the human autosomes as a genome-search linkage strategy. To date, 47 markers, representing 30% of the human genome, have been excluded for linkage in the Australian kindred. As our study progresses, we will report up-to-date results.« less
Polygenic risk of Alzheimer disease is associated with early- and late-life processes.
Mormino, Elizabeth C; Sperling, Reisa A; Holmes, Avram J; Buckner, Randy L; De Jager, Philip L; Smoller, Jordan W; Sabuncu, Mert R
2016-08-02
To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies. We computed polygenic risk scores (PGRS) using summary statistics from the International Genomics of Alzheimer's Project genome-wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGRS and hippocampus volume were additionally examined within healthy younger participants (age 18-35 years). Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of β-amyloid burden as measured with florbetapir PET (p = 0.03) but did not reach statistical significance for CSF β-amyloid (p = 0.11). Within the younger group, higher PGRS was associated with smaller hippocampus volume (p = 0.05). This pattern was evident when examining a PGRS that included many loci below the genome-wide association study (GWAS)-level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms). Effects related to common genetic risk loci distributed throughout the genome are detectable among individuals without dementia. The influence of this genetic risk may begin in early life and make an individual more susceptible to cognitive impairment in late life. Future refinement of polygenic risk scores may help identify individuals at risk for AD dementia. © 2016 American Academy of Neurology.
Polygenic risk of Alzheimer disease is associated with early- and late-life processes
Sperling, Reisa A.; Holmes, Avram J.; Buckner, Randy L.; De Jager, Philip L.; Smoller, Jordan W.; Sabuncu, Mert R.
2016-01-01
Objective: To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies. Methods: We computed polygenic risk scores (PGRS) using summary statistics from the International Genomics of Alzheimer's Project genome-wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGRS and hippocampus volume were additionally examined within healthy younger participants (age 18–35 years). Results: Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of β-amyloid burden as measured with florbetapir PET (p = 0.03) but did not reach statistical significance for CSF β-amyloid (p = 0.11). Within the younger group, higher PGRS was associated with smaller hippocampus volume (p = 0.05). This pattern was evident when examining a PGRS that included many loci below the genome-wide association study (GWAS)–level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms). Conclusions: Effects related to common genetic risk loci distributed throughout the genome are detectable among individuals without dementia. The influence of this genetic risk may begin in early life and make an individual more susceptible to cognitive impairment in late life. Future refinement of polygenic risk scores may help identify individuals at risk for AD dementia. PMID:27385740
Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej
2016-01-01
Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.
The significance and occurrence of TNF receptor polymorphisms in the Saudi population.
Alenzi, Faris Q
2016-11-01
Background and objective: On the basis that the inflammatory effects of TNF (tumour necrosis factor) are predominantly mediated through interaction with the TNF receptor-1 (TNFRSF1A), the current study was designed to establish the prevalence of the mutations, R92Q and P46L TNFRSF1A polymorphisms both in the general healthy Saudi population, and in Saudi patients carrying inflammatory diseases such as atherosclerosis or rheumatoid arthritis. We felt it important to report the frequency of the mutations, R92Q and P46L TNFRSF1A polymorphisms in healthy Saudi individuals, and those with inflammatory conditions, as well as to describe the pattern of immunological factors in individuals expressing R92Q or P46L TNFRSF1A. Patients and methods: We collected in PAX gene blood RNA tubes (for RT-PCR and sequencing) 500 blood samples from normal healthy individuals from the West and Center of Saudi Arabia, as well as 100 from patients with atherosclerosis, and 100 patients diagnosed with rheumatoid arthritis. All were screened for the levels of soluble TNF, C-reactive protein (CRP), interleukin6 (IL-6) and sTNFR1. In addition, they were screened for R92Q and P46L TNFRSF1A by RT-PCR. Moreover, phenotype and expression of peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry (FACS). Results: Across 500 normal individuals, 8 (1.6%) expressed both R92Q and P46L mutations. By contrast, of the 100 patients in our study with atherosclerosis, 34% expressed both the R92Q and P46L mutations, whilst 42% of patients with rheumatoid arthritis expressed both mutations R92Q and P46L. No significant differences were observed between cell markers of normal individuals (CD3, 4, 8, 16, 56, 19, 25, ICAM-1, VLA-4 & l-selectin) and patients with atherosclerosis. There were significantly high values of cell markers in patients with rheumatoid arthritis compared with normal individuals both in terms of percentage and absolute counts ( p < 0.05). Soluble IL-6 and sTNFR1 showed significant decreases in atherosclerosis and rheumatoid arthritis when compared with controls ( p < 0.05). In addition, CRP and sTNF showed significant increases in the atherosclerosis and rheumatoid arthritis groups when compared to controls ( p < 0.05). Conclusion: Our findings reasonably anticipate the presence of TRAPS disease (low penetrance mutations) amongst the Saudi population although further studies are needed to confirm these results.
Sorkheh, Karim; Amirbakhtiar, Nazanin; Ercisli, Sezai
2016-08-01
Wild pistachio species is important species in forests regions Iran and provide protection wind and soil erosion. Even though cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. Two molecular marker strategies, SCoT and IRAP markers were analyzed for assessment of 50 accessions of this species accumulated from diverse geographical areas of Iran. A thorough of 115 bands were amplified using eight IRAP primers, of which 104 (90.4 %) have been polymorphic, and 246 polymorphic bands (68.7 %) had been located in 358 bands amplified by way of forty-four SCoT primers. Average PIC for IRAP and SCoT markers became 0.32 and 0.48, respectively. This is exposed that SCoT markers have been extra informative than IRAP for the assessment of variety among pistachio accessions. Primarily based on the two extraordinary molecular markers, cluster evaluation revealed that the 50 accessions taken for the evaluation may be divided into three distinct clusters. Those results recommend that the performance of SCoT and IRAP markers was highly the equal in fingerprinting of accessions. The results affirmed a low genetic differentiation among populations, indicating the opportunity of gene drift most of the studied populations. These findings might render striking information in breeding management strategies for genetic conservation and cultivar improvement.
Cruz, M; Valladares-Salgado, A; Garcia-Mena, J; Ross, K; Edwards, M; Angeles-Martinez, J; Ortega-Camarillo, C; de la Peña, J Escobedo; Burguete-Garcia, A I; Wacher-Rodarte, N; Ambriz, R; Rivera, R; D'artote, A L; Peralta, J; Parra, Esteban J; Kumate, J
2010-05-01
Type 2 diabetes (T2D) is influenced by diverse environmental and genetic risk factors. Metabolic syndrome (MS) increases the risk of cardiovascular disease and diabetes. We analysed 14 cases of polymorphisms located in 10 candidate loci, in a sample of patients with T2D and controls from Mexico City. We analysed the association of 14 polymorphisms located within 10 genes (TCF7L2, ENPP1, ADRB3, KCNJ11, LEPR, PPARgamma, FTO, CDKAL1, SIRT1 and HHEX) with T2D and MS. The analysis included 519 subjects with T2D defined according to the ADA criteria, 389 with MS defined according to the AHA/NHLBI criteria and 547 controls. Association was tested with the program ADMIXMAP including individual ancestry, age, sex, education and in some cases body mass index (BMI), in a logistic regression model. The two markers located within the TCF7L2 gene showed strong associations with T2D (rs7903146, T allele, odd ratio (OR) = 1.76, p = 0.001 and rs12255372, T allele, OR = 1.78, p = 0.002), but did not show significant association with MS. The non-synonymous rs4994 polymorphism of the ADRB3 gene was associated with T2D (Trp allele, OR = 0.62, p = 0.001) and MS (Trp allele, OR = 0.74, p = 0.018). Nominally significant associations were also observed between T2D and the SIRT1 rs3758391 SNP and MS and the HHEX rs5015480 polymorphism. Variants located within the gene TCF7L2 are strongly associated with T2D but not with MS, providing support to previous evidence indicating that polymorphisms at the TCF7L2 gene increase T2D risk. In contrast, the non-synonymous ADRB3 rs4994 polymorphism is associated with T2D and MS.
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-01-01
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615
SNP Discovery and Linkage Map Construction in Cultivated Tomato
Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi
2010-01-01
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984
Grativol, Clícia; da Fonseca Lira-Medeiros, Catarina; Hemerly, Adriana Silva; Ferreira, Paulo Cavalcanti Gomes
2011-10-01
Jatropha curcas L. is found in all tropical regions and has garnered lot of attention for its potential as a source of biodiesel. As J. curcas is a plant that is still in the process of being domesticated, interest in improving its agronomic traits has increased in an attempt to select more productive varieties, aiming at sustainable utilization of this plant for biodiesel production. Therefore, the study of genetic diversity in different accessions of J. curcas in Brazil constitutes a necessary first step in genetic programs designed to improve this species. In this study we have used ISSR markers to assess the genetic variability of 332 accessions from eight states in Brazil that produce J. curcas seeds for commercialization. Seven ISSR primers amplified a total of 21,253 bands, of which 19,472 bands (91%) showed polymorphism. Among the polymorphic bands 275 rare bands were identified (present in fewer than 15% of the accessions). Polymorphic information content (PIC), marker index (MI) and resolving power (RP) averaged 0.26, 17.86 and 19.87 per primer, respectively, showing the high efficiency and reliability of the markers used. ISSR markers analyses as number of polymorphic loci, genetic diversity and accession relationships through UPGMA-phenogram and MDS showed that Brazilian accessions are closely related but have a higher level of genetic diversity than accessions from other countries, and the accessions from Natal (RN) are the most diverse, having high value as a source of genetic diversity for breeding programs of J. curcas in the world.
Rajesh, M K; Sabana, A A; Rachana, K E; Rahman, Shafeeq; Jerard, B A; Karun, Anitha
2015-12-01
Coconut (Cocos nucifera L.) is one of the important palms grown both as a homestead and plantation crop in countries and most island territories of tropical regions. Different DNA-based marker systems have been utilized to assess the extent of genetic diversity in coconut. Advances in genomics research have resulted in the development of novel gene-targeted markers. In the present study, we have used a simple and novel marker system, start codon targeted polymorphism (SCoT), for its evaluation as a potential marker system in coconut. SCoT markers were utilized for assessment of genetic diversity in 23 coconut accessions (10 talls and 13 dwarfs), representing different geographical regions. Out of 25 SCoT primers screened, 15 primers were selected for this study based on their consistent amplification patterns. A total of 102 scorable bands were produced by the 15 primers, 88 % of which were polymorphic. The scored data were used to construct a similarity matrix. The similarity coefficient values ranged between 0.37 and 0.91. These coefficients were utilized to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA). The extent of genetic diversity observed based on SCoT analysis of coconut accessions was comparable to earlier findings using other marker systems. Tall and dwarf coconut accessions were clearly demarcated, and in general, coconut accessions from the same geographical region clustered together. The results indicate the potential of SCoT markers to be utilized as molecular markers to detect DNA polymorphism in coconut accessions.
A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica.
Doucleff, M; Jin, Y; Gao, F; Riaz, S; Krivanek, A F; Walker, M A
2004-10-01
A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.
Genetic structure of seven Mexican indigenous populations based on five polymarker loci.
Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Loeza, Francisco; Salamanca-Gomez, Fabio; Cerda-Flores, Ricardo M
2003-01-01
This descriptive study investigates the genetic structure of seven Mexican indigenous populations (Mixteca Alta, Mixteca Baja, Otomies, Purepecha, Nahuas-Guerrero, Nahuas-Xochimilco, and Tzeltales) on the basis of five PCR-based polymorphic DNA loci: LDLR, GYPA, HBGG, D7S8, and GC. Genetic distance and diversity analyses indicate that these Mexican indigenous are similar and that more than 96% of the total gene diversity (H(T)) can be attributed to individual variation within populations. Mixteca-Alta, Mixteca-Baja, and Nahuas-Xochimilco show indications of higher admixture with European-derived persons. The demonstration of a relative genetic homogeneity of Mexican Indians for the markers studied suggests that this population is suitable for studying disease-marker associations in the search for candidate genes of complex diseases. Copyright 2002 Wiley-Liss, Inc.
Wang, Shian-Shiang; Liu, Yu-Fan; Ou, Yen-Chuan; Chen, Chuan-Shu; Li, Jian-Ri; Yang, Shun-Fa
2013-01-01
Carbonic anhydrase 9 (CA9) is reportedly overexpressed in several types of carcinomas and is generally considered a marker of malignancy. The current study explored the effect of CA9 gene polymorphisms on the susceptibility of developing urothelial cell carcinoma (UCC) and the clinicopathological status. A total of 442 participants, including 221 healthy people and 221 patients with UCC, were recruited for this study. Four single-nucleotide polymorphisms (SNPs) of the CA9 gene were assessed by a real-time PCR with the TaqMan assay. After adjusting for other co-variants, the individuals carrying at least one A allele at CA9 rs1048638 had a 2.303-fold risk of developing UCC than did wild-type (CC) carriers. Furthermore, UCC patients who carried at least one A allele at rs1048638 had a higher invasive stage risk (p< 0.05) than did patients carrying the wild-type allele. Moreover, among the UCC patients with smoker, people with at least one A allele of CA9 polymorphisms (rs1048638) had a 4.75-fold (95% CI = 1.204-18.746) increased risk of invasive cancer. The rs1048638 polymorphic genotypes of CA9 might contribute to the prediction of susceptibility to and pathological development of UCC. This is the first study to provide insight into risk factors associated with CA9 variants in carcinogenesis of UCC in Taiwan.
Juárez-Velázquez, Rocio; Canto, Patricia; Canto-Cetina, Thelma; Rangel-Villalobos, Hector; Rosas-Vargas, Haydee; Rodríguez, Maricela; Canizales-Quinteros, Samuel; Velázquez Wong, Ana Claudia; Ordoñez-Razo, Rosa María; Vilchis-Dorantes, Guadalupe; Coral-Vázquez, Ramón Mauricio
2010-01-01
Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT), A222V 5,10 methylenete-trahydrofolate reductase (MTHFR), L33P glycoprotein IIIa (GPIIIa), and I105V glutathione S-transferase P1 (GSTP1) polymorphisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic discrimination. Allele and genotype frequencies were compared using χ2 tests. All populations followed the Hardy Weinberg equilibrium for assay markers with the exception of the Triki, whose were in Hardy Weinberg dysequilibrium for the glutathione S-transferase P1 polymorphism. Interestingly, according to all the analyzed single nucleotide polymorphisms (SNPs), the Triki population was the most differentiated and homogeneous group of the six populations analyzed. A comparison of our data with those previously published for some Caucasian, Asian and Black populations showed quite significant differences. These differences were remarkable with all the Mexican populations having a lower frequency of the 105V allele of the glutathione S-transferase P1 and reduced occurrence of the 222A allele of the 5,10 methylenetetrahydrofolate reductase. Our results show the genetic diversity among different Mexican populations and with other racial groups. PMID:20592457
Song, W; Cao, L-J; Wang, Y-Z; Li, B-Y; Wei, S-J
2017-06-01
The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFM's genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.
Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K
2012-05-01
Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.
Nguyen, Trung Thanh; Genini, Sem; Bui, Linh Chi; Voegeli, Peter; Stranzinger, Gerald; Renard, Jean-Paul; Maillard, Jean-Charles; Nguyen, Bui Xuan
2007-11-06
The wild gaur (Bos gaurus) is an endangered wild cattle species. In Vietnam, the total number of wild gaurs is estimated at a maximum of 500 individuals. Inbreeding and genetic drift are current relevant threats to this small population size. Therefore, information about the genetic status of the Vietnamese wild gaur population is essential to develop strategies for conservation and effective long-term management for this species. In the present study, we performed cross-species amplification of 130 bovine microsatellite markers, in order to evaluate the applicability and conservation of cattle microsatellite loci in the wild gaur genome. The genetic diversity of Vietnamese wild gaur was also investigated, based on data collected from the 117 successfully amplified loci. One hundred-thirty cattle microsatellite markers were tested on a panel of 11 animals. Efficient amplifications were observed for 117 markers (90%) with a total of 264 alleles, and of these, 68 (58.1%) gave polymorphic band patterns. The number of alleles per locus among the polymorphic markers ranged from two to six. Thirteen loci (BM1314, BM2304, BM6017, BMC2228, BMS332, BMS911, CSSM023, ETH123, HAUT14, HEL11, HEL5, ILSTS005 and INRA189) distributed on nine different cattle chromosomes failed to amplify wild gaur genomic DNA. Three cattle Y-chromosome specific microsatellite markers (INRA124, INRA126 and BM861) were also highly specific in wild gaur, only displaying an amplification product in the males. Genotype data collected from the 117 successfully amplified microsatellites were used to assess the genetic diversity of this species in Vietnam. Polymorphic Information Content (PIC) values varied between 0.083 and 0.767 with a mean of 0.252 while observed heterozygosities (Ho) ranged from 0.091 to 0.909 (mean of 0.269). Nei's unbiased mean heterozygosity and the mean allele number across loci were 0.298 and 2.2, respectively. Extensive conservation of cattle microsatellite loci in the wild gaur genome, as shown by our results, indicated a high applicability of bovine microsatellites for genetic characterization and population genetic studies of this species. Moreover, the low genetic diversity observed in Vietnamese wild gaur further underlines the necessity of specific strategies and appropriate management plans to preserve this endangered species from extinction.
Nguyen, Trung Thanh; Genini, Sem; Bui, Linh Chi; Voegeli, Peter; Stranzinger, Gerald; Renard, Jean-Paul; Maillard, Jean-Charles; Nguyen, Bui Xuan
2007-01-01
Background The wild gaur (Bos gaurus) is an endangered wild cattle species. In Vietnam, the total number of wild gaurs is estimated at a maximum of 500 individuals. Inbreeding and genetic drift are current relevant threats to this small population size. Therefore, information about the genetic status of the Vietnamese wild gaur population is essential to develop strategies for conservation and effective long-term management for this species. In the present study, we performed cross-species amplification of 130 bovine microsatellite markers, in order to evaluate the applicability and conservation of cattle microsatellite loci in the wild gaur genome. The genetic diversity of Vietnamese wild gaur was also investigated, based on data collected from the 117 successfully amplified loci. Results One hundred-thirty cattle microsatellite markers were tested on a panel of 11 animals. Efficient amplifications were observed for 117 markers (90%) with a total of 264 alleles, and of these, 68 (58.1%) gave polymorphic band patterns. The number of alleles per locus among the polymorphic markers ranged from two to six. Thirteen loci (BM1314, BM2304, BM6017, BMC2228, BMS332, BMS911, CSSM023, ETH123, HAUT14, HEL11, HEL5, ILSTS005 and INRA189) distributed on nine different cattle chromosomes failed to amplify wild gaur genomic DNA. Three cattle Y-chromosome specific microsatellite markers (INRA124, INRA126 and BM861) were also highly specific in wild gaur, only displaying an amplification product in the males. Genotype data collected from the 117 successfully amplified microsatellites were used to assess the genetic diversity of this species in Vietnam. Polymorphic Information Content (PIC) values varied between 0.083 and 0.767 with a mean of 0.252 while observed heterozygosities (Ho) ranged from 0.091 to 0.909 (mean of 0.269). Nei's unbiased mean heterozygosity and the mean allele number across loci were 0.298 and 2.2, respectively. Conclusion Extensive conservation of cattle microsatellite loci in the wild gaur genome, as shown by our results, indicated a high applicability of bovine microsatellites for genetic characterization and population genetic studies of this species. Moreover, the low genetic diversity observed in Vietnamese wild gaur further underlines the necessity of specific strategies and appropriate management plans to preserve this endangered species from extinction. PMID:17986322
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan
2010-02-01
Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.
Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays
Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua
2009-01-01
Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702
2009-01-01
In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers. PMID:21637444
Choi, Hong-Il; Kim, Nam Hoon; Kim, Jun Ha; Choi, Beom Soon; Ahn, In-Ok; Lee, Joon-Soo; Yang, Tae-Jin
2011-01-01
Little is known about the genetics or genomics of Panax ginseng. In this study, we developed 70 expressed sequence tag-derived polymorphic simple sequence repeat markers by trials of 140 primer pairs. All of the 70 markers showed reproducible polymorphism among four Panax speciesand 19 of them were polymorphic in six P. ginseng cultivars. These markers segregated 1:2:1 manner of Mendelian inheritance in an F2 population of a cross between two P. ginseng cultivars, ‘Yunpoong’ and ‘Chunpoong’, indicating that these are reproducible and inheritable mappable markers. A phylogenetic analysis using the genotype data showed three distinctive groups: a P. ginseng-P. japonicus clade, P. notoginseng and P. quinquefolius, with similarity coefficients of 0.70. P. japonicus was intermingled with P. ginseng cultivars, indicating that both species have similar genetic backgrounds. P. ginseng cultivars were subdivided into three minor groups: an independent cultivar ‘Chunpoong’, a subgroup with three accessions including two cultivars, ‘Gumpoong’ and ‘Yunpoong’ and one landrace ‘Hwangsook’ and another subgroup with two accessions including one cultivar, ‘Gopoong’ and one landrace ‘Jakyung’. Each primer pair produced 1 to 4 bands, indicating that the ginseng genome has a highly replicated paleopolyploid genome structure. PMID:23717085
Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp.)
Zhang, Liwu; Li, Yanru; Tao, Aifen; Fang, Pingping; Qi, Jianmin
2015-01-01
Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively). The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute. PMID:26512891
CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar.
Tollenaere, C; Rahalison, L; Ranjalahy, M; Rahelinirina, S; Duplantier, J-M; Brouat, C
2008-12-01
Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.
Um, Jae-Young; An, Nyeon-Hyoung; Yang, Gui-Bi; Lee, Geon-Mok; Cho, Ju-Jang; Cho, Jae-Woon; Hwang, Woo-Jun; Chae, Han-Jung; Kim, Hyung-Ryong; Hong, Seung-Heon; Kim, Hyung-Min
2005-01-01
Iridology is the study of the iris of the eye to detect the conditions of the body and its organs, genetic strengths and weaknesses, etc. Although iridology is not widely used as a scientific tool for healthcare professionals to get to the source of people's health conditions, it has been used as a supplementary source to help the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris among some Korean Oriental medical doctors. Angiotensin converting enzyme (ACE) gene polymorphism is one of the most well studied genetic markers of vascular disease. We investigated the relationship between iridological constitution and ACE polymorphism in hypertensives. We classified 87 hypertensives and 79 controls according to iris constitution and determined the ACE genotype of each individual. DD genotype was more prevalent in patients with a neurogenic constitution than in controls. This finding supports the hypothesis that D allele is a candidate gene for hypertension and demonstrates the association among ACE genotype, Korean hypertensives and iris constitution.
Genetic diversity analysis of tree peony germplasm using iPBS markers.
Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G
2015-07-06
We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties.
Effect of Gamma Rays on Sophora davidii and Detection of DNA Polymorphism through ISSR Marker
Wang, Puchang; Mo, Bentian; Luo, Tianqiong
2017-01-01
Sophora davidii (Franch.) Kom. ex Pavol is an important medicinal plant and a feeding scrub with ecological value. The effects of different gamma irradiation doses (20–140 Kr) on seed germination and seedling morphology were investigated in S. davidii, and intersimple sequence repeat (ISSR) markers were used to identify the DNA polymorphism among mutants. Significant variations were observed for seed germination, stem diameter, and number of branches per plant. The improved agronomic traits, such as stem diameter and number of branches per plant, were recorded at 80 Kr dose and 20 Kr dose for seed germination. ISSR analysis generated in total 183 scorable fragments, of which 94 (51.37%) were polymorphic. The percentage of polymorphism ranged from 14.29 to 93.33 with an average of 45.69%. Jaccard's coefficients of dissimilarity varied from 0.6885 to 1.000, indicative of the level of genetic variation among the mutants. The constructed dendrogram grouped the entities into five clusters. Consequently, it was concluded that gamma rays irradiation of seeds generates a sufficient number of induced mutations and that ISSR analysis offered a useful molecular marker for the identification of mutants. PMID:28612030
Kang, Byeong-Teck; Kim, Kyung-Seok; Min, Mi-Sook; Chae, Young-Jin; Kang, Jung-Won; Yoon, Junghee; Choi, Jihye; Seong, Je-Kyung; Park, Han-Chan; An, Junghwa; Lee, Mun-Han; Park, Hee-Myung; Lee, Hang
2009-06-01
To investigate the population structure of five dog breeds in South Korea and to validate polymorphic microsatellite markers for the parentage test, microsatellite loci analyses were conducted for two Korean native dog breeds, Poongsan and Jindo, and three imported dog breeds, German Shepherd, Beagle and Greyhound. Overall genetic diversity was high across all dog breeds (expected heterozygosity range: 0.71 to 0.85), although breeds differed in deviations from Hardy-Weinberg equilibrium (HWE). Significant reduction of heterozygosity in the Poongsan and Greyhound breeds was caused by non-random mating and population substructure within these breeds (the Wahlund effects). The close relationship and high degree of genetic diversity for two Korean native dog breeds were substantial. The mean polymorphism information content value was highest in Jindos (0.82) and Poongsans (0.81), followed by Beagles (0.74), Greyhounds (0.72), and German Shepherds (0.66). Accumulated exclusion power values, as an indication of marker validity for parentage tests, were varied but very high across breeds, 0.9999 for Jindos, Poongsans, and Beagles, 0.9997 for Greyhounds, and 0.9995 for German Shepherds. Taken together, the microsatellite loci investigated in this study can serve as suitable markers for the parentage test and as individual identification to establish a reliable pedigree verification system of dog breeds in South Korea. This study also stresses that the population subdivision within breeds can become an important cause of deviation from HWE in dog breeds.
[Genetic diversity of DNA microsatellite for Tibetan Yak].
Li, Duo; Chai, Zhi-Xin; Ji, Qiu-Mei; Zhang, Cheng-Fu; Xin, Jin-Wei; Zhong, Jin-Cheng
2013-02-01
To assess the genetic diversity and relationship of the Tibetan yak breeds. The genetic diversity and phylogenies of a total of 480 individual from 11 Tibetan yak groups were analyzed using PCR and multiplex gel electrophoresis of silver staining technology with eight pairs of microsatellite markers.The result showed that these markers were highly polymorphic loci with rich genetic diversity in the Tibetan yak populations.The average polymorphic information content (PIC) in 11 groups of yak were higher than 0.5. The highest HEL13 was 0.8496, and the lowest TGLA57 was 0.7349. Among them, the PICof Dingqing yak was minimum (0.7505), indicating that the group is relatively pure.Sangri Yak had the highest PIC value (0.7949) indicating greater genetic variationwithinthe groups. Among the 11 groups examined, the order of heterozygosity size wasSangri(0.8193)>Jiangda(0.8190)>Sangsang(0.8157)>Baqing(0.8150)>Kangbu(0.8123)> Jiali(0.8087)>Gongbujiangda(0.8054)>Sibu(0.8041)>Leiwuqi(0.8033)>Pali(0.8031)>Dingqing(0.7831). The groups from eastern Tibet had grater genetic diversity than those from Western Tibet, which indicate that Tibet may be one of the cradles of the yak.According to the genetic distance, the cluster relationship constructed with UPGMA and NJ methods showed that 11 yak groups in Tibet could be divided into three forms. In summary,Tibet yak has abundant genetic diversity and the selected microsatellite markers can be used to evaluategenetic diversity of Tibetan yak.
Shafiei-Astani, Behnam; Ong, Alan Han Kiat; Valdiani, Alireza; Tan, Soon Guan; Yien, Christina Yong Seok; Ahmady, Fatemeh; Alitheen, Noorjahan Banu; Ng, Wei Lun; Kuar, Taranjeet
2015-10-15
Tomistoma schlegelii, also referred to as the "false gharial", is one of the most exclusive and least known of the world's fresh water crocodilians, limited to Southeast Asia. Indeed, lack of economic value for its skin has led to neglect the biodiversity of the species. The current study aimed to investigate the mentioned case using 40 simple sequence repeat (SSR) primer pairs and 45 inter-simple sequence repeat (ISSR) primers. DNA analysis of 17 T. schlegelii samples using the SSR and ISSR markers resulted in producing a total of 49 and 108 polymorphic bands, respectively. Furthermore, the SSR- and ISSR-based cluster analyses both generated two main clusters. However, the SSR based results were found to be more in line with the geographical distributions of the crocodile samples collected across the country as compared with the ISSR-based results. The observed heterozygosity (HO) and expected heterozygosity (HE) of the polymorphic SSRs ranged between 0.588-1 and 0.470-0.891, respectively. The present results suggest that the Malaysian T. schlegelii populations had originated from a core population of crocodiles. In cooperation with the SSR markers, the ISSRs showed high potential for studying the genetic variation of T. schlegelii, and these markers are suitable to be employed in conservation genetic programs of this endangered species. Both SSR- and ISSR-based STRUCTURE analyses suggested that all the individuals of T. schlegelii are genetically similar with each other. Copyright © 2015 Elsevier B.V. All rights reserved.