Science.gov

Sample records for polymorphism based snp

  1. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2009-01-01

    Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and

  2. Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis

    PubMed Central

    Gopaul, Krishna K; Koylass, Mark S; Smith, Catherine J; Whatmore, Adrian M

    2008-01-01

    Background Brucellosis, caused by members of the genus Brucella, remains one of the world's major zoonotic diseases. Six species have classically been recognised within the family Brucella largely based on a combination of classical microbiology and host specificity, although more recently additional isolations of novel Brucella have been reported from various marine mammals and voles. Classical identification to species level is based on a biotyping approach that is lengthy, requires extensive and hazardous culturing and can be difficult to interpret. Here we describe a simple and rapid approach to identification of Brucella isolates to the species level based on real-time PCR analysis of species-specific single nucleotide polymorphisms (SNPs) that were identified following a robust and extensive phylogenetic analysis of the genus. Results Seven pairs of short sequence Minor Groove Binding (MGB) probes were designed corresponding to SNPs shown to possess an allele specific for each of the six classical Brucella spp and the marine mammal Brucella. Assays were optimised to identical reaction parameters in order to give a multiple outcome assay that can differentiate all the classical species and Brucella isolated from marine mammals. The scope of the assay was confirmed by testing of over 300 isolates of Brucella, all of which typed as predicted when compared to other phenotypic and genotypic approaches. The assay is sensitive being capable of detecting and differentiating down to 15 genome equivalents. We further describe the design and testing of assays based on three additional SNPs located within the 16S rRNA gene that ensure positive discrimination of Brucella from close phylogenetic relatives on the same platform. Conclusion The multiple-outcome assay described represents a new tool for the rapid, simple and unambiguous characterisation of Brucella to the species level. Furthermore, being based on a robust phylogenetic framework, the assay provides a platform

  3. MDM2 SNP309 polymorphism is associated with colorectal cancer risk

    PubMed Central

    Wang, Weizhi; Du, Mulong; Gu, Dongying; Zhu, Lingjun; Chu, Haiyan; Tong, Na; Zhang, Zhengdong; Xu, Zekuan; Wang, Meilin

    2014-01-01

    The human murine double minute 2 (MDM2) is known as an oncoprotein through inhibiting P53 transcriptional activity and mediating P53 ubiquitination. Therefore, the amplification of MDM2 may attenuate the P53 pathway and promote tumorigenesis. The SNP309 T>G polymorphism (rs2279744), which is located in the intronic promoter of MDM2 gene, was reported to contribute to the increased level of MDM2 protein. In this hospital-based case-control study, which consisted of 573 cases and 588 controls, we evaluated the association between MDM2 SNP309 and the risk of colorectal cancer (CRC) in a Chinese population by using the TaqMan method to genotype the polymorphism. We found that the MDM2 SNP309 polymorphism was significantly associated with CRC risk. In addition, in our meta-analysis, we found a significant association between MDM2 SNP309 and CRC risk among Asians, which was consistent with our results. In conclusion, we demonstrated that the MDM2 SNP309 polymorphism increased the susceptibility of CRC in Asian populations. PMID:24797837

  4. Pyrobayes: an improved base caller for SNP discovery in pyrosequences.

    PubMed

    Quinlan, Aaron R; Stewart, Donald A; Strömberg, Michael P; Marth, Gábor T

    2008-02-01

    Previously reported applications of the 454 Life Sciences pyrosequencing technology have relied on deep sequence coverage for accurate polymorphism discovery because of frequent insertion and deletion sequence errors. Here we report a new base calling program, Pyrobayes, for pyrosequencing reads. Pyrobayes permits accurate single-nucleotide polymorphism (SNP) calling in resequencing applications, even in shallow read coverage, primarily because it produces more confident base calls than the native base calling program.

  5. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  6. Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease

    PubMed Central

    Huijsmans, Cornelis J. J.; Poodt, Jeroen; Damen, Jan; van der Linden, Johannes C.; Savelkoul, Paul H. M.; Pruijt, Johannes F. M.; Hilbink, Mirrian; Hermans, Mirjam H. A.

    2012-01-01

    During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n = 6 25–50% and n = 6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25–50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci. PMID:22768290

  7. The Prediction of Radiotherapy Toxicity Using Single Nucleotide Polymorphism (SNP)-Based Models: A Step Towards Prevention

    PubMed Central

    Kerns, Sarah L.; Kundu, Suman; Oh, Jung Hun; Singhal, Sandeep K.; Janelsins, Michelle; Travis, Lois B.; Deasy, Joseph O.; Janssens, A. Cecile J. W.; Ostrer, Harry; Parliament, Matthew; Usmani, Nawaid; Rosenstein, Barry S.

    2015-01-01

    Radiotherapy is a mainstay of cancer treatment, used in either a curative or palliative manner to treat approximately 50% of cancer patients. Normal tissue toxicity limits the doses used in standard radiation therapy protocols and impedes improvements in radiotherapy efficacy. Damage to surrounding normal tissues can produce reactions ranging from bothersome symptoms that negatively affect quality of life to severe life-threatening complications. Improved ways of predicting, prior to treatment, the risk for development of normal tissue toxicity may allow for more personalized treatment and reduce the incidence and severity of late effects. There is increasing recognition that the cause of normal tissue toxicity is multifactorial and includes genetic factors in addition to radiation dose and volume of exposure, underlying co-morbidities, age, concomitant chemotherapy or hormonal therapy and use of other medications. An understanding of the specific genetic risk factors for normal tissue response to radiation has the potential to enhance our ability to predict adverse outcomes at the treatment planning stage. Therefore, the field of radiogenomics has focused upon the identification of genetic variants associated with normal tissue toxicity resulting from radiotherapy. Innovative analytic methods are being applied to the discovery of risk variants and development of integrative predictive models that build on traditional normal tissue complication probability models by incorporating genetic information. Results from initial studies provide promising evidence that genetic-based risk models could play an important role in the implementation of precision medicine for radiation oncology through enhancing the ability to predict normal tissue reactions and thereby improve cancer treatment. PMID:26384276

  8. Development of Single Nucleotide Polymorphism (SNP) Markers for Use in Commercial Maize (Zea Mays L.) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of single nucleotide polymorphism (SNP) markers in maize offer the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding, and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and ...

  9. Exercise improves adiponectin concentrations irrespective of the adiponectin gene polymorphisms SNP45 and the SNP276 in obese Korean women.

    PubMed

    Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A

    2013-03-10

    The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene.

  10. Analysis of gene-derived SNP marker polymorphism in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we analyzed 359 single nucleotide polymorphisms (SNPs) previously discovered in intron sequences of wheat genes to evaluate SNP marker polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.181 among 20 US wheat c...

  11. High throughput SNP detection system based on magnetic nanoparticles separation.

    PubMed

    Liu, Bin; Jia, Yingying; Ma, Man; Li, Zhiyang; Liu, Hongna; Li, Song; Deng, Yan; Zhang, Liming; Lu, Zhuoxuan; Wang, Wei; He, Nongyue

    2013-02-01

    Single-nucleotide polymorphism (SNP) was one-base variations in DNA sequence that can often be helpful to find genes associations for hereditary disease, communicable disease and so on. We developed a high throughput SNP detection system based on magnetic nanoparticles (MNPs) separation and dual-color hybridization or single base extension. This system includes a magnetic separation unit for sample separation, three high precision robot arms for pipetting and microtiter plate transferring respectively, an accurate temperature control unit for PCR and DNA hybridization and a high accurate and sensitive optical signal detection unit for fluorescence detection. The cyclooxygenase-2 gene promoter region--65G > C polymorphism locus SNP genotyping experiment for 48 samples from the northern Jiangsu area has been done to verify that if this system can simplify manual operation of the researchers, save time and improve efficiency in SNP genotyping experiments. It can realize sample preparation, target sequence amplification, signal detection and data analysis automatically and can be used in clinical molecule diagnosis and high throughput fluorescence immunological detection and so on.

  12. Analysis of population structure and genetic history of cattle breeds based on high-density SNP data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...

  13. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2015-03-17

    A PDMS-based microfluidic linear hydrogel array is developed for multiplexed single nucleotide polymorphism (SNP) detection. A sequence of three-dimensional (3D) hydrogel plugs containing the desired DNA probes is prepared by UV polymerization within a PDMS microchannel system. The fluorescently labeled target DNA is then electrophoresed through the sequence of hydrogel plugs for hybridization. Continued electrophoresis provides an electrophoretic wash that removes nonspecific binders. The capture gel array is imaged after washing at various temperatures (temperature gradient electrophoresis) to further distinguish perfect matches from mismatches. The ability of this microdevice to perform multiplex SNP genotyping is demonstrated by analyzing a mixture of model E. coli bacterial targets. This microfluidic hydrogel array is ∼1000 times more sensitive than planar microarrays due to the 3D gel capture, the hybridization time is much shorter due to electrophoretic control of the transport properties, and the stringent wash with temperature gradient electrophoresis enables analysis of single nucleotide mismatches with high specificity.

  14. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    PubMed

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous.

  15. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  16. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp.

    PubMed

    Garcés-Claver, Ana; Fellman, Shanna Moore; Gil-Ortega, Ramiro; Jahn, Molly; Arnedo-Andrés, María S

    2007-11-01

    A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.

  17. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication.

    PubMed

    Catalano, Valentina; Moreno-Sanz, Paula; Lorenzi, Silvia; Grando, Maria Stella

    2016-09-21

    The genetic varietal authentication of wine was investigated according to DNA isolation procedures reported for enological matrices and also by testing 11 commercial extraction kits and various protocol modifications. Samples were collected at different stages of the winemaking process of renowned Italian wines Brunello di Montalcino, Lambruschi Modenesi, and Trento DOC. Results demonstrated not only that grape DNA loss is produced by the fermentation process but also that clarification and stabilization operations contribute to the reduction of double-stranded DNA content on wine. Despite the presence of inhibitors, downstream PCR genotyping yielded reliable nuclear and chloroplast SSR markers for must samples, whereas no amplification or inconsistent results were obtained at later stages of the vinification. In addition, a TaqMan genotyping assay based on cultivar-specific single-nucleotide polymorphisms (SNPs) was designed, which allowed assessment of grapevine DNA mixtures. Once the wine matrix limitations are overcome, this sensitive tool may be implemented for the relative quantification of cultivars used for blend wines or frauds.

  18. Human Y-chromosome SNP characterization by multiplex amplified product-length polymorphism analysis.

    PubMed

    Medina, Laura Smeldy Jurado; Muzzio, Marina; Schwab, Marisol; Costantino, María Leticia Bravi; Barreto, Guillermo; Bailliet, Graciela

    2014-09-01

    We designed an allele-specific amplification protocol to optimize Y-chromosome SNP typing, which is an unavoidable step for defining the phylogenetic status of paternal lineages. It allows the simultaneous highly specific definition of up to six mutations in a single reaction by amplification fragment length polymorphism (AFLP) without the need of specialized equipment, at a considerably lower cost than that based on single-base primer extension (SNaPshot™) technology or PCR-RFLP systems, requiring as little as 0.5 ng DNA and compatible with the small fragments characteristic of low-quality DNA. By designation of two primers recognizing the derived and ancestral state for each SNP, which can be differentiated by size by the addition of a noncomplementary nucleotide tail, we could define major Y clades E, F, K, R, Q, and subhaplogroups R1, R1a, R1b, R1b1b, R1b1c, J1, J2, G1, G2, I1, Q1a3, and Q1a3a1 through amplification fragments that ranged between 60 and 158bp.

  19. Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification of individual genotypes is important for cacao (Theobroma cacao L.) breeding, germplasm conservation and seed propagation. The development of single nucleotide polymorphism (SNP) markers in cacao offers an effective way to use a high-throughput genotyping system for cacao gen...

  20. Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse.

    PubMed

    Do, Kyoung-Tag; Lee, Joon-Ho; Lee, Hak-Kyo; Kim, Jun; Park, Kyung-Do

    2014-01-01

    This study was conducted to estimate the effective population size using SNPs data of 240 Jeju horses that had raced at the Jeju racing park. Of the total 61,746 genotyped autosomal SNPs, 17,320 (28.1%) SNPs (missing genotype rate of >10%, minor allele frequency of <0.05 and Hardy-Weinberg equilibrium test P-value of <10(-6)) were excluded after quality control processes. SNPs on the X and Y chromosomes and genotyped individuals with missing genotype rate over 10% were also excluded, and finally, 44,426 (71.9%) SNPs were selected and used for the analysis. The measures of the LD, square of correlation coefficient (r(2)) between SNP pairs, were calculated for each allele and the effective population size was determined based on r(2) measures. The polymorphism information contents (PIC) and expected heterozygosity (HE) were 0.27 and 0.34, respectively. In LD, the most rapid decline was observed over the first 1 Mb. But r(2) decreased more slowly with increasing distance and was constant after 2 Mb of distance and the decline was almost linear with log-transformed distance. The average r(2) between adjacent SNP pairs ranged from 0.20 to 0.31 in each chromosome and whole average was 0.26, while the whole average r(2) between all SNP pairs was 0.02. We observed an initial pattern of decreasing Ne and estimated values were closer to 41 at 1 ~ 5 generations ago. The effective population size (41 heads) estimated in this study seems to be large considering Jeju horse's population size (about 2,000 heads), but it should be interpreted with caution because of the technical limitations of the methods and sample size.

  1. The MDM2 promoter polymorphism SNP309T→G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck

    PubMed Central

    Alhopuro, P; Ylisaukko-oja, S; Koskinen, W; Bono, P; Arola, J; Jarvinen, H; Mecklin, J; Atula, T; Kontio, R; Makitie, A; Suominen, S; Leivo, I; Vahteristo, P; Aaltonen, L; Aaltonen, L

    2005-01-01

    Background: MDM2 acts as a principal regulator of the tumour suppressor p53 by targeting its destruction through the ubiquitin pathway. A polymorphism in the MDM2 promoter (SNP309) was recently identified. SNP309 was shown to result, via Sp1, in higher levels of MDM2 RNA and protein, and subsequent attenuation of the p53 pathway. Furthermore, SNP309 was proposed to be associated with accelerated soft tissue sarcoma formation in both hereditary (Li-Fraumeni) and sporadic cases in humans. Methods: We evaluated the possible contribution of SNP309 to three tumour types known to be linked with the MDM2/p53 pathway, using genomic sequencing or restriction fragment length polymorphism as screening methods. Three separate Finnish tumour materials (population based sets of 68 patients with early onset uterine leiomyosarcomas and 1042 patients with colorectal cancer, and a series of 162 patients with squamous cell carcinoma of the head and neck) and a set of 185 healthy Finnish controls were analysed for SNP309. Results: Frequencies of SNP309 were similar in all four cohorts. In the colorectal cancer series, SNP309 was somewhat more frequent in women and in patients with microsatellite stable tumours. Female SNP309 carriers were diagnosed with colorectal cancer approximately 2.7 years earlier than those carrying the wild type gene. However, no statistically significant association of SNP309 with patients' age at disease onset or to any other clinicopathological parameter was found in these three tumour materials. Conclusion: SNP309 had no significant contribution to tumour formation in our materials. Possible associations of SNP309 with microsatellite stable colorectal cancer and with earlier disease onset in female carriers need to be examined in subsequent studies. PMID:16141004

  2. MDM2 SNP309 polymorphism contributes to endometrial cancer susceptibility: evidence from a meta-analysis

    PubMed Central

    2013-01-01

    Objective The SNP309 polymorphism (T-G) in the promoter of MDM2 gene has been reported to be associated with enhanced MDM2 expression and tumor development. Studies investigating the association between MDM2 SNP309 polymorphism and endometrial cancer risk reported conflicting results. We performed a meta-analysis of all available studies to explore this association. Methods All studies published up to August 2013 on the association between MDM2 SNP309 polymorphism and endometrial cancer risk were identified by searching electronic databases PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM). The association between the MDM2 SNP309 polymorphism and endometrial cancer risk was assessed by odds ratios (ORs) together with their 95% confidence intervals (CIs). Results Eight case–control studies with 2069 endometrial cancer cases and 4546 controls were identified. Overall, significant increase of endometrial cancer risk was found when all studies were pooled in the meta-analysis (GG vs. TT: OR = 1.464, 95% CI 1.246–1.721, P < 0.001; GG vs. TG + TT: OR = 1.726, 95% CI 1.251–2.380, P = 0.001; GG + TG vs. TT: OR = 1.169, 95% CI 1.048–1.304, P = 0.005). In subgroup analysis by ethnicity and HWE in controls, significant increase of endometrial cancer risks were observed in Caucasians and studies consistent with HWE. In subgroup analysis according to study quality, significant associations were observed in both high quality studies and low quality studies. Conclusions This meta-analysis suggests that MDM2 SNP309 polymorphism contributes to endometrial cancer susceptibility, especially in Caucasian populations. Further large and well-designed studies are needed to confirm this association. PMID:24423195

  3. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker.

    PubMed

    Yanagisawa, T; Kiribuchi-Otobe, C; Hirano, H; Suzuki, Y; Fujita, M

    2003-06-01

    We investigated a single nucleotide polymorphism (SNP) in the Wx-D1 gene, which was found in a mutant waxy wheat, and which expressed the Wx-D1 protein (granule-bound starch synthase I) as shown by immunoblot analysis. We also assayed starch synthase activity of granule-bound proteins. Using 22 doubled-haploid (DH) lines and 172 F(5) lines derived from the wild type x the mutant, we detected SNP via a PCR-based (dCAPS) marker. Amplified PCR products from Wx-D1 gene-specific primers, followed by mismatched primers designed for dCAPS analysis, were digested with the appropriate restriction enzyme. The two alleles, and the heterozygote genotype were easily and rapidly discriminated by gel-electrophoresis resolution to reveal SNP. All progeny lines that have the SNP of the mutant allele were waxy. Integrating the results of dCAPS analysis, immunoblot analysis and assays of starch synthase activity of granule-bound proteins indicates that the SNP in the Wx-D1 gene was responsible for its waxy character. This dCAPS marker is therefore useful as a marker to introduce the mutant allele into elite breeding lines.

  4. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  5. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  6. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expressed sequence tags (ESTs) were analyzed in silico in order to identify single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels) in cotton. A total of 1349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, m...

  7. Leu/Val SNP polymorphism of CYP1B1 and risk of uterine leiomyoma in a Black population.

    PubMed

    Bideau, Virgil S; Alleyne, Angela T

    2016-03-01

    Uterine leiomyoma (UL) is the most commonly occurring benign tumor that affects women of reproductive ages. Studies strongly suggest that ULs are hormonally dependent and that genes acting in estrogen metabolism might be involved in their development. The focus of this case-control study was to determine whether the Leucine432Valine single-nucleotide polymorphism (SNP) in the gene encoding cytochrome P450 1B1 (CYP1B1) was associated with an increased risk of UL in Black Barbadian women. The investigation comprised 37 women clinically diagnosed with UL and 52 controls. The CYP1B1 Leu432Val polymorphism (Leu/Val) was analyzed using the polymerase chain reaction-restriction fragment length polymorphism method. The homozygous Valine432 variant (Val/Val) was predominant in both cases and controls for this population (89 and 83 %, respectively). The odds ratio for risk of developing the disease was 1.33, but this was not statistically significant. We discuss a possible protective function for CYP1B1 based on the high prevalence of this mutant SNP and its lack of association with UL.

  8. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  9. Citrus (Rutaceae) SNP markers based on Competitive Allele-Specific PCR; transferability across the Aurantioideae subfamily1

    PubMed Central

    Garcia-Lor, Andres; Ancillo, Gema; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    • Premise of the study: Single nucleotide polymorphism (SNP) markers based on Competitive Allele-Specific PCR (KASPar) were developed from sequences of three Citrus species. Their transferability was tested in 63 Citrus genotypes and 19 relative genera of the subfamily Aurantioideae to estimate the potential of SNP markers, selected from a limited intrageneric discovery panel, for ongoing broader diversity analysis at the intra- and intergeneric levels and systematic germplasm bank characterization. • Methods and Results: Forty-two SNP markers were developed using KASPar technology. Forty-one were successfully genotyped in all of the Citrus germplasm, where intra- and interspecific polymorphisms were observed. The transferability and diversity decreased with increasing taxonomic distance. • Conclusions: SNP markers based on the KASPar method developed from sequence data of a limited intrageneric discovery panel provide a valuable molecular resource for genetic diversity analysis of germplasm within a genus and should be useful for germplasm fingerprinting at a much broader diversity level. PMID:25202535

  10. SNP-based prediction of the human germ cell methylation landscape.

    PubMed

    Xie, Hehuang; Wang, Min; Bischof, Jared; Bonaldo, Maria de Fatima; Soares, Marcelo Bento

    2009-05-01

    Base substitution occurs at a high rate at CpG dinucleotides due to the frequent methylation of CpG and the deamination of methylated cytosine to thymine. If these substitutions occur in germ cells, they constitute a heritable mutation that may eventually rise to polymorphic frequencies, hence resulting in a SNP that is methylation associated. In this study, we sought to identify clusters of methylation associated SNPs as a basis for prediction of methylation landscapes of germ cell genomes. Genomic regions enriched with methylation associated SNPs, namely "methylation associated SNP clusters", were identified with an agglomerative hierarchical clustering algorithm. Repetitive elements, segmental duplications, and syntenic tandem DNA repeats were enriched in methylation associated SNP clusters. The frequency of methylation associated SNPs in Alu Y/S elements exhibited a gradient pattern suggestive of linear spreading, being higher in proximity to methylation associated SNP clusters and lower closer to CpG islands. Interestingly, methylation associated SNP clusters were over-represented near the transcriptional initiation sites of immune response genes. We propose a de novo DNA methylation model during germ cell development whereby a pattern is established by long-range chromatic interactions through syntenic repeats combined with regional methylation spreading from methylation associated SNP clusters.

  11. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis

    PubMed Central

    de Oliveira, Marco Antônio Rott; Higashi, Wilson; Scapim, Carlos Alberto; Schuster, Ivan

    2017-01-01

    Mapping quantitative trait loci through the use of linkage disequilibrium (LD) in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max). The haplotype-based genome-wide association study (GWAS) has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW), plant height (PH) and seed yield (SY) in a soybean association mapping panel using single nucleotide polymorphism (SNP) markers and haplotype information. The soybean cultivars (N = 169) were field-evaluated across four locations of southern Brazil. The genome-wide haplotype association analysis (941 haplotypes) identified eleven, seventeen and fifty-nine SNP-based haplotypes significantly associated with SY, SW and PH, respectively. Although most marker-trait associations were environment and trait specific, stable haplotype associations were identified for SY and SW across environments (i.e., haplotypes Gm12_Hap12). The haplotype block 42 on Chr19 (Gm19_Hap42) was confirmed to be associated with PH in two environments. These findings enable us to refine the breeding strategy for tropical soybean, which confirm that haplotype-based GWAS can provide new insights on the genetic determinants that are not captured by the single-marker approach. PMID:28152092

  12. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals.

    PubMed

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K; Chowdhury, Shantanu

    2012-05-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14,500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter-remarkable difference in promoter activity in the 'quadruplex-destabilized' versus 'quadruplex-intact' promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.

  13. A SNP-Based Molecular Barcode for Characterization of Common Wheat

    PubMed Central

    Gao, LiFeng; Jia, JiZeng; Kong, XiuYing

    2016-01-01

    Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP) genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program. PMID:26985664

  14. SnpFilt: A pipeline for reference-free assembly-based identification of SNPs in bacterial genomes.

    PubMed

    Chan, Carmen H S; Octavia, Sophie; Sintchenko, Vitali; Lan, Ruiting

    2016-12-01

    De novo assembly of bacterial genomes from next-generation sequencing (NGS) data allows a reference-free discovery of single nucleotide polymorphisms (SNP). However, substantial rates of errors in genomes assembled by this approach remain a major barrier for the reference-free analysis of genome variations in medically important bacteria. The aim of this report was to improve the quality of SNP identification in bacterial genomes without closely related references. We developed a bioinformatics pipeline (SnpFilt) that constructs an assembly using SPAdes and then removes unreliable regions based on the quality and coverage of re-aligned reads at neighbouring regions. The performance of the pipeline was compared against reference-based SNP calling for Illumina HiSeq, MiSeq and NextSeq reads from a range of bacterial pathogens including Salmonella, which is one of the most common causes of food-borne disease. The SnpFilt pipeline removed all false SNP in all test NGS datasets consisting of paired-end Illumina reads. We also showed that for reliable and complete SNP calls, at least 40-fold coverage is required. Analysis of bacterial isolates associated with epidemiologically confirmed outbreaks using the SnpFilt pipeline produced results consistent with previously published findings. The SnpFilt pipeline improves the quality of de-novo assembly and precision of SNP calling in bacterial genomes by removal of regions of the assembly that may potentially contain assembly errors. SnpFilt is available from https://github.com/LanLab/SnpFilt.

  15. SNP-based markers for discriminating olive (Olea europaea L.) cultivars.

    PubMed

    Reale, S; Doveri, S; Díaz, A; Angiolillo, A; Lucentini, L; Pilla, F; Martín, A; Donini, P; Lee, D

    2006-09-01

    A set of 11 polymorphic markers (1 cleaved amplified polymorphic sequence (CAPS), 2 sequence-characterized amplified regions (SCARs), and 8 single-nucleotide polymorphism (SNP)-derived markers) was obtained for olive cultivar identification by comparing DNA sequences from different accessions. Marker development was more efficient, using sequences from the database rather than cloning arbitrary DNA fragments. Analyses of the sequences of 3 genes from 11 diverse cultivars revealed an SNP frequency of 1 per 190 base pairs in exons and 1 per 149 base pairs in introns. Most mutations were silent or had little perceptible effect on the polypeptide encoded. The higher incidence of transversions (55%) suggests that methylation is not the major driving force for DNA base changes. Evidence of linkage disequilibrium in 2 pairs of markers has been detected. The set of predominantly SNP-based markers was used to genotype 65 olive samples obtained from Europe and Australia, and was able clearly to discriminate 77% of the cultivars. Samples, putatively of the same cultivar but derived from different sources, were revealed as identical, demonstrating the utility of these markers as tools for resolving nomenclature issues. Genotyping data were used for constructing a dendrogram by UPGMA cluster analysis using the simple matching similarity coefficient. Relationships between cultivars are discussed in relation to the route of olive's spread.

  16. Supervised learning-based tagSNP selection for genome-wide disease classifications

    PubMed Central

    Liu, Qingzhong; Yang, Jack; Chen, Zhongxue; Yang, Mary Qu; Sung, Andrew H; Huang, Xudong

    2008-01-01

    Background Comprehensive evaluation of common genetic variations through association of single nucleotide polymorphisms (SNPs) with complex human diseases on the genome-wide scale is an active area in human genome research. One of the fundamental questions in a SNP-disease association study is to find an optimal subset of SNPs with predicting power for disease status. To find that subset while reducing study burden in terms of time and costs, one can potentially reconcile information redundancy from associations between SNP markers. Results We have developed a feature selection method named Supervised Recursive Feature Addition (SRFA). This method combines supervised learning and statistical measures for the chosen candidate features/SNPs to reconcile the redundancy information and, in doing so, improve the classification performance in association studies. Additionally, we have proposed a Support Vector based Recursive Feature Addition (SVRFA) scheme in SNP-disease association analysis. Conclusions We have proposed using SRFA with different statistical learning classifiers and SVRFA for both SNP selection and disease classification and then applying them to two complex disease data sets. In general, our approaches outperform the well-known feature selection method of Support Vector Machine Recursive Feature Elimination and logic regression-based SNP selection for disease classification in genetic association studies. Our study further indicates that both genetic and environmental variables should be taken into account when doing disease predictions and classifications for the most complex human diseases that have gene-environment interactions. PMID:18366619

  17. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip.

    PubMed

    Haynes, Gwilym D; Latch, Emily K

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the F(ST)-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present).

  18. A Unique Primer with an Inosine Chain at the 5'-Terminus Improves the Reliability of SNP Analysis Using the PCR-Amplified Product Length Polymorphism Method.

    PubMed

    Shojo, Hideki; Tanaka, Mayumi; Takahashi, Ryohei; Kakuda, Tsuneo; Adachi, Noboru

    2015-01-01

    Polymerase chain reaction-amplified product length polymorphism (PCR-APLP) is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP) analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3'-terminus of each primer. To use this method at least two allele-specific primers and one "counter-primer", which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3'-terminus, and another primer should have a few non-complementary flaps at the 5'-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5'-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.

  19. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley

    PubMed Central

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  20. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.

    PubMed

    Raman, Harsh; Dalton-Morgan, Jessica; Diffey, Simon; Raman, Rosy; Alamery, Salman; Edwards, David; Batley, Jacqueline

    2014-09-01

    An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.

  1. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers

    PubMed Central

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin

    2013-01-01

    Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of

  2. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide.

  3. SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa).

    PubMed

    Gimhani, D R; Gregorio, Glenn B; Kottearachchi, N S; Samarasinghe, W L G

    2016-12-01

    Breeding for salt tolerance is the most promising approach to enhance the productivity of saline prone areas. However, polygenic inheritance of salt tolerance in rice acts as a bottleneck in conventional breeding for salt tolerance. Hence, we set our goals to construct a single nucleotide polymorphism (SNP)-based molecular map employing high-throughput SNP marker technology and to investigate salinity tolerant QTLs with closest flanking markers using an elite rice background. Seedling stage salinity responses were assessed in a population of 281 recombinant inbred lines (RILs) derived from the cross between At354 (salt tolerant) and Bg352 (salt susceptible), by 11 morpho-physiological indices under a hydroponic system. Selected extreme 94 RILs were genotyped using Illumina Infinium rice 6K SNP array and densely saturated molecular map spanning 1460.81 cM of the rice genome with an average interval of 1.29 cM between marker loci was constructed using 1135 polymorphic SNP markers. The results revealed 83 significant QTLs for 11 salt responsive traits explaining 12.5-46.7 % of phenotypic variation in respective traits. Of them, 72 QTLs responsible for 10 traits were co-localized together forming 14 QTL hotspots at 14 different genomic regions. The all QTL hotspots were flanked less than 1 Mb intervals and therefore the SNP loci associated with these QTL hotspots would be important in candidate gene discovery for salt tolerance.

  4. Authentication of medicinal plants by SNP-based multiplex PCR.

    PubMed

    Lee, Ok Ran; Kim, Min-Kyeoung; Yang, Deok-Chun

    2012-01-01

    Highly variable intergenic spacer and intron regions from nuclear and cytoplasmic DNA have been used for species identification. Noncoding internal transcribed spacers (ITSs) located in 18S-5.8S-26S, and 5S ribosomal RNA genes (rDNAs) represent suitable region for medicinal plant authentication. Noncoding regions from two cytoplasmic DNA, chloroplast DNA (trnT-F intergenic spacer region), and mitochondrial DNA (fourth intron region of nad7 gene) are also successfully applied for the proper identification of medicinal plants. Single-nucleotide polymorphism (SNP) sites obtained from the amplification of intergenic spacer and intron regions are properly utilized for the verification of medicinal plants in species level using multiplex PCR. Multiplex PCR as a variant of PCR technique used to amplify more than two loci simultaneously.

  5. [Research progress on the phenotype informative SNP in forensic science].

    PubMed

    Liu, Yu-Xuan; Hu, Qing-Qing; Ma, Hong-Du; Huang, Dai-Xin

    2014-10-01

    Single nucleotide polymorphism (SNP) refers to the single base sequence variation in specific location of the human genome. Phenotype informative SNP has gradually become one of the research hot spots in forensic science. In this paper, the forensic research situation and application prospect of phenotype informative SNP in the characteristics of hair, eye and skin color, height, and facial feature are reviewed.

  6. SNP@lincTFBS: an integrated database of polymorphisms in human LincRNA transcription factor binding sites.

    PubMed

    Ning, Shangwei; Zhao, Zuxianglan; Ye, Jingrun; Wang, Peng; Zhi, Hui; Li, Ronghong; Wang, Tingting; Wang, Jianjian; Wang, Lihua; Li, Xia

    2014-01-01

    Large intergenic non-coding RNAs (lincRNAs) are a new class of functional transcripts, and aberrant expression of lincRNAs was associated with several human diseases. The genetic variants in lincRNA transcription factor binding sites (TFBSs) can change lincRNA expression, thereby affecting the susceptibility to human diseases. To identify and annotate these functional candidates, we have developed a database SNP@lincTFBS, which is devoted to the exploration and annotation of single nucleotide polymorphisms (SNPs) in potential TFBSs of human lincRNAs. We identified 6,665 SNPs in 6,614 conserved TFBSs of 2,423 human lincRNAs. In addition, with ChIPSeq dataset, we identified 139,576 SNPs in 304,517 transcription factor peaks of 4,813 lincRNAs. We also performed comprehensive annotation for these SNPs using 1000 Genomes Project datasets across 11 populations. Moreover, one of the distinctive features of SNP@lincTFBS is the collection of disease-associated SNPs in the lincRNA TFBSs and SNPs in the TFBSs of disease-associated lincRNAs. The web interface enables both flexible data searches and downloads. Quick search can be query of lincRNA name, SNP identifier, or transcription factor name. SNP@lincTFBS provides significant advances in identification of disease-associated lincRNA variants and improved convenience to interpret the discrepant expression of lincRNAs. The SNP@lincTFBS database is available at http://bioinfo.hrbmu.edu.cn/SNP_lincTFBS.

  7. Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive.

    PubMed

    İpek, Ahmet; İpek, Meryem; Ercişli, Sezai; Tangu, Nesrin Aktepe

    2017-02-18

    Molecular markers located in the genic regions of plants are valuable tools for the identification of candidate genes of economically important traits and consequent use in marker-assisted selection (MAS). In the past, simple sequence repeat markers (SSRs) and single-nucleotide polymorphisms (SNPs) located in expressed sequence tags (ESTs) were developed by sequencing RNA derived from different plant tissues, which involves laborious RNA extraction, mRNA isolation, and cDNA synthesis. In order to develop SNP markers located in olive transcriptomes, we used the recently developed genotyping-by-sequencing (GBS) technique. An analysis was done for 125 olive DNA samples (123 DNA samples from a cross-pollinated F1 mapping population, and two samples from parents). From 45 to 66% of Illumina reads from GBS analysis were aligned to the olive transcriptome. A total of 22,033 transcriptome-based SNP markers were identified, and 3384 of these were mapped in the olive genome. The genetic linkage map constructed in this study consists of 1 cleaved amplified polymorphic sequence (CAPS), 19 SSR, and 3384 transcriptome-based SNP markers. The map covers 3340.8 cM of the olive genome in 23 linkage groups, with the length of the linkage groups ranging from 55.6 to 248.7 cM. Average map distance between flanking markers was 0.98 cM. This genetic linkage map is a saturated genetic map and will be a useful tool for the localization of quantitative trait loci (QTLs) and gene(s) of interest and for the identification of candidate genes for economically important traits.

  8. Single-cell SNP analyses and interpretations based on RNA-Seq data for colon cancer research.

    PubMed

    Chen, Jiahuan; Zhou, Qian; Wang, Yangfan; Ning, Kang

    2016-09-28

    Single-cell sequencing is useful for illustrating the cellular heterogeneities inherent in many intricate biological systems, particularly in human cancer. However, owing to the difficulties in acquiring, amplifying and analyzing single-cell genetic material, obstacles remain for single-cell diversity assessments such as single nucleotide polymorphism (SNP) analyses, rendering biological interpretations of single-cell omics data elusive. We used RNA-Seq data from single-cell and bulk colon cancer samples to analyze the SNP profiles for both structural and functional comparisons. Colon cancer-related pathways with single-cell level SNP enrichment, including the TGF-β and p53 signaling pathways, were also investigated based on both their SNP enrichment patterns and gene expression. We also detected a certain number of fusion transcripts, which may promote tumorigenesis, at the single-cell level. Based on these results, single-cell analyses not only recapitulated the SNP analysis results from the bulk samples but also detected cell-to-cell and cell-to-bulk variations, thereby aiding in early diagnosis and in identifying the precise mechanisms underlying cancers at the single-cell level.

  9. A nuclear single-nucleotide polymorphism (SNP) potentially useful for the separation of Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae)

    PubMed Central

    Pavan, Márcio G.; Mesquita, Rafael D.; Lawrence, Gena G.; Lazoski, Cristiano; Dotson, Ellen M.; Abubucker, Sahar; Mitreva, Makedonka; Randall-Maher, Jennifer; Monteiro, Fernando A.

    2013-01-01

    The design and application of rational strategies that rely on accurate species identification are pivotal for effective vector control. When morphological identification of the target vector species is impractical, the use of molecular markers is required. Here we describe a non-coding, single-copy nuclear DNA fragment that contains a single-nucleotide polymorphism (SNP) with the potential to distinguish the important domestic Chagas disease vector, Rhodnius prolixus, from members of the four sylvatic Rhodnius robustus cryptic species complex. A total of 96 primer pairs obtained from whole genome shotgun sequencing of the R. prolixus genome (12,626 random reads) were tested on 43 R. prolixus and R. robustus s.l. samples. One of the seven amplicons selected (AmpG) presented a SNP, potentially diagnostic for R. prolixus, on the 280th site. The diagnostic nature of this SNP was then performed on 154 R. prolixus and R. robustus s.l. samples aimed at achieving the widest possible geographic coverage. The results of a 60% majority rule Bayesian consensus tree and a median-joining network constructed based on the genetic variability observed reveal the paraphyletic nature of the R. robustus species complex, with respect to R. prolixus. AmpG region is located in the fourth intron of the Transmembrane protein 165 gene, which seems to be in the R. prolixus X chromosome. Other possible chromosomal locations of the AmpG region in the R. prolixus genome are also presented and discussed. PMID:23219914

  10. A single nucleotide polymorphism (SNP839) in the adh1 reference gene affects the quantitation of genetically modified maize (Zea mays L.).

    PubMed

    Broothaerts, Wim; Corbisier, Philippe; Schimmel, Heinz; Trapmann, Stefanie; Vincent, Sandra; Emons, Hendrik

    2008-10-08

    The real-time PCR methods recommended in the European Union for the quantitation of genetically modified (GM) maize events NK603, GA21, and MON 863 measure the number of copies of the GM event in relation to those of the maize-specific adh1 reference gene. The study reported here revealed that the targeted 70 base pair adh1 region exhibits a single nucleotide polymorphism (SNP839) that hampers the binding of the reverse primer used in the adh1 detection method. Partial fragments of the adh1-A and adh1-F allele were cloned. By allele-specific real-time PCR, it was shown that SNP839 corresponds to a common allelic polymorphism in maize. As a result, the quantitation of the GM maize events mentioned is positively or negatively biased, depending on the adh1 genotype of sample and calibrant. Therefore, it is proposed to revise the quantitative detection methods for NK603, GA21, and MON 863 maize.

  11. Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 3: An Evaluation of SNP Incorporated National Health Information System of Turkey for Prostate Cancer

    PubMed Central

    Beyan, Timur

    2014-01-01

    Background A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a three part miniseries: (1) an overview of requirements, (2) the incorporation of SNP data into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods In the third article of this miniseries, we have evaluated the proposed complementary capabilities (ie, knowledge base and end-user application) with real data. Before the evaluation phase, clinicogenomic associations about increased prostate cancer risk were extracted from knowledge sources, and published predictive genomic models assessing individual prostate cancer risk were collected. To evaluate complementary capabilities, we also gathered personal SNP data of four prostate cancer cases and fifteen controls. Using these data files, we compared various independent and model-based, prostate cancer risk assessment approaches. Results Through the extraction and selection processes of SNP-prostate cancer risk associations, we collected 209 independent associations for increased risk of prostate cancer from the studied knowledge sources. Also

  12. SNP Arrays

    PubMed Central

    Louhelainen, Jari

    2016-01-01

    The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays) focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays. PMID:27792140

  13. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  14. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    PubMed Central

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  15. Evaluation of TP53 Pro72Arg and MDM2 SNP285-SNP309 polymorphisms in an Italian cohort of LFS suggestive patients lacking identifiable TP53 germline mutations.

    PubMed

    Ponti, Francesca; Corsini, Serena; Gnoli, Maria; Pedrini, Elena; Mordenti, Marina; Sangiorgi, Luca

    2016-10-01

    Li-Fraumeni syndrome (LFS) is a rare genetic cancer predisposition disease, partly determined by the presence of a TP53 germline mutation; lacking thereof, in presence of a typical LFS phenotype, defines a wide group of 'LFS Suggestive' patients. Alternative LFS susceptibility genes have been investigated without promising results, thus suggesting other genetic determinants involvement in cancer predisposition. Hence, this study explores the single and combined effects of cancer risk, age of onset and cancer type of three single nucleotide polymorphisms (SNPs)-TP53 Pro72Arg, MDM2 SNP285 and SNP309-already described as modifiers on TP53 mutation carriers but not properly investigated in LFS Suggestive patients. This case-control study examines 34 Italian LFS Suggestive lacking of germline TP53 mutations and 95 tumour-free subjects. A significant prevalence of homozygous MDM2 SNP309 G in the LFS Suggestive group (p < 0.0005) confirms its contribute to cancer susceptibility, also highlighted in LFS TP53 positive families. Conversely its anticipating role on tumour onset has not been confirmed, as in our results it was associated with the SNP309 T allele. A strong combined outcome with a 'dosage' effect has also been reported for TP53 P72 and MDM2 SNP309 G allele on cancer susceptibility (p < 0.0005). Whereas the MDM2 SNP285 C allele neutralizing effect on MDM2 SNP309 G variant is not evident in our population. Although it needs further evaluations, obtained results strengthen the role of MDM2 SNP309 as a genetic factor in hereditary predisposition to cancer, so improving LFS Suggestive patients management.

  16. Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol

    PubMed Central

    Lu, Fei; Lipka, Alexander E.; Glaubitz, Jeff; Elshire, Rob; Cherney, Jerome H.; Casler, Michael D.; Buckler, Edward S.; Costich, Denise E.

    2013-01-01

    Switchgrass (Panicum virgatum L.) is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS) and genomic selection (GS). All of the 840 individuals were then genotyped using genotyping by sequencing (GBS), generating 350 GB of sequence in total. As a highly heterozygous polyploid (tetraploid and octoploid) species lacking a reference genome, switchgrass is highly intractable with earlier methodologies of single nucleotide polymorphism (SNP) discovery. To access the genetic diversity of species like switchgrass, we developed a SNP discovery pipeline based on a network approach called the Universal Network-Enabled Analysis Kit (UNEAK). Complexities that hinder single nucleotide polymorphism discovery, such as repeats, paralogs, and sequencing errors, are easily resolved with UNEAK. Here, 1.2 million putative SNPs were discovered in a diverse collection of primarily upland, northern-adapted switchgrass populations. Further analysis of this data set revealed the fundamentally diploid nature of tetraploid switchgrass. Taking advantage of the high conservation of genome structure between switchgrass and foxtail millet (Setaria italica (L.) P. Beauv.), two parent-specific, synteny-based, ultra high-density linkage maps containing a total of 88,217 SNPs were constructed. Also, our results showed clear patterns of isolation-by-distance and isolation-by-ploidy in natural populations of switchgrass. Phylogenetic analysis supported a general south-to-north migration path of switchgrass. In addition, this analysis suggested that upland tetraploid arose from upland octoploid. All together, this study provides unparalleled insights into the diversity, genomic complexity, population structure, phylogeny, phylogeography, ploidy, and evolutionary dynamics of

  17. A web-based genome browser for 'SNP-aware' assay design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...

  18. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics.

    PubMed

    Lamparter, David; Marbach, Daniel; Rueedi, Rico; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries.

  19. UASIS: Universal Automatic SNP Identification System

    PubMed Central

    2011-01-01

    Background SNP (Single Nucleotide Polymorphism), the most common genetic variations between human beings, is believed to be a promising way towards personalized medicine. As more and more research on SNPs are being conducted, non-standard nomenclatures may generate potential problems. The most serious issue is that researchers cannot perform cross referencing among different SNP databases. This will result in more resources and time required to track SNPs. It could be detrimental to the entire academic community. Results UASIS (Universal Automated SNP Identification System) is a web-based server for SNP nomenclature standardization and translation at DNA level. Three utilities are available. They are UASIS Aligner, Universal SNP Name Generator and SNP Name Mapper. UASIS maps SNPs from different databases, including dbSNP, GWAS, HapMap and JSNP etc., into an uniform view efficiently using a proposed universal nomenclature and state-of-art alignment algorithms. UASIS is freely available at http://www.uasis.tk with no requirement of log-in. Conclusions UASIS is a helpful platform for SNP cross referencing and tracking. By providing an informative, unique and unambiguous nomenclature, which utilizes unique position of a SNP, we aim to resolve the ambiguity of SNP nomenclatures currently practised. Our universal nomenclature is a good complement to mainstream SNP notations such as rs# and HGVS guidelines. UASIS acts as a bridge to connect heterogeneous representations of SNPs. PMID:22369494

  20. Combined effects of MDM2 SNP309 and TP53 R72P polymorphisms, and soy isoflavones on breast cancer risk among Chinese women in Singapore

    PubMed Central

    Van Den Berg, David; Jin, Aizhen; Wang, Renwei; Yuan, Jian-Min; Yu, Mimi C.

    2012-01-01

    The MDM2 oncoprotein regulates the p53 pathway and, while functional polymorphisms of the MDM2 and p53 genes have been investigated for association with breast cancer risk, results are largely null or non-conclusive. We have earlier reported that the increased intake of soy isoflavones reduces risk of postmenopausal breast cancer, and experimental studies suggest that dietary isoflavones can down-regulate the expression of the MDM2 oncoprotein. In this study, we investigated the association between the MDM2 SNP309 and TP53 R72P polymorphisms and breast cancer risk using a case–control study of 403 cases and 662 controls nested among 35,303 women in The Singapore Chinese Health Study, a population-based, prospective cohort of middle-aged and elderly men and women who have been continuously followed since 1993. The G allele of the TP53 R72P polymorphism and T allele of the MDM2 SNP309 polymorphism were putative high-risk alleles and exhibited a combined gene–dose-dependent joint effect on breast cancer risk that was more clearly observed in postmenopausal women. Among postmenopausal women, the simultaneous presence of G allele in TP53 and T allele in MDM2 polymorphisms was associated with an odds ratio (OR) of 2.42 [95% confidence interval (CI) 1.06–5.50]. Furthermore, the protective effect of dietary soy isoflavones on postmenopausal breast cancer was mainly confined to women homozygous for the high activity MDM2 allele (GG genotype). In this genetic subgroup, women consuming levels of soy isoflavones above the median level exhibited risk that was half of those with below median intake (OR 0.52; 95% CI 0.28–0.99). Our findings support experimental data implicating combined effects of MDM2 protein and the p53-mediated pathway in breast carcinogenesis, and suggest that soy isoflavones may exert protective effect via down-regulation of the MDM2 protein. PMID:21833626

  1. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

    PubMed Central

    Conran, Carly A; Na, Rong; Chen, Haitao; Jiang, Deke; Lin, Xiaoling; Zheng, S Lilly; Brendler, Charles B; Xu, Jianfeng

    2016-01-01

    Several different approaches are available to clinicians for determining prostate cancer (PCa) risk. The clinical validity of various PCa risk assessment methods utilizing single nucleotide polymorphisms (SNPs) has been established; however, these SNP-based methods have not been compared. The objective of this study was to compare the three most commonly used SNP-based methods for PCa risk assessment. Participants were men (n = 1654) enrolled in a prospective study of PCa development. Genotypes of 59 PCa risk-associated SNPs were available in this cohort. Three methods of calculating SNP-based genetic risk scores (GRSs) were used for the evaluation of individual disease risk such as risk allele count (GRS-RAC), weighted risk allele count (GRS-wRAC), and population-standardized genetic risk score (GRS-PS). Mean GRSs were calculated, and performances were compared using area under the receiver operating characteristic curve (AUC) and positive predictive value (PPV). All SNP-based methods were found to be independently associated with PCa (all P < 0.05; hence their clinical validity). The mean GRSs in men with or without PCa using GRS-RAC were 55.15 and 53.46, respectively, using GRS-wRAC were 7.42 and 6.97, respectively, and using GRS-PS were 1.12 and 0.84, respectively (all P < 0.05 for differences between patients with or without PCa). All three SNP-based methods performed similarly in discriminating PCa from non-PCa based on AUC and in predicting PCa risk based on PPV (all P > 0.05 for comparisons between the three methods), and all three SNP-based methods had a significantly higher AUC than family history (all P < 0.05). Results from this study suggest that while the three most commonly used SNP-based methods performed similarly in discriminating PCa from non-PCa at the population level, GRS-PS is the method of choice for risk assessment at the individual level because its value (where 1.0 represents average population risk) can be easily interpreted regardless

  2. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    DTIC Science & Technology

    2011-04-01

    distribution unlimited. QC – quality control QTL – quantitative trait loci SNP – single nucleotide polymorphism TE – Tris + EDTA TBE – Tris + Boric Acid + EDTA WGSA – whole genome sampling assay ...canine intelligence testing protocol EDTA – ethylenediaminetetraacetic acid GWAS – genome-wide association study LD – linkage disequilibrium MWD

  3. SNP genotyping by heteroduplex analysis.

    PubMed

    Paniego, Norma; Fusari, Corina; Lia, Verónica; Puebla, Andrea

    2015-01-01

    Heteroduplex-based genotyping methods have proven to be technologically effective and economically efficient for low- to medium-range throughput single-nucleotide polymorphism (SNP) determination. In this chapter we describe two protocols that were successfully applied for SNP detection and haplotype analysis of candidate genes in association studies. The protocols involve (1) enzymatic mismatch cleavage with endonuclease CEL1 from celery, associated with fragment separation using capillary electrophoresis (CEL1 cleavage), and (2) differential retention of the homo/heteroduplex DNA molecules under partial denaturing conditions on ion pair reversed-phase liquid chromatography (dHPLC). Both methods are complementary since dHPLC is more versatile than CEL1 cleavage for identifying multiple SNP per target region, and the latter is easily optimized for sequences with fewer SNPs or small insertion/deletion polymorphisms. Besides, CEL1 cleavage is a powerful method to localize the position of the mutation when fragment resolution is done using capillary electrophoresis.

  4. 1 + 1 = 3: Development and validation of a SNP-based algorithm to identify genetic contributions from three distinct inbred mouse strains.

    PubMed

    Gorham, James D; Ranson, Matthew S; Smith, Janebeth C; Gorham, Beverly J; Muirhead, Kristen-Ashley

    2012-12-01

    State-of-the-art, genome-wide assessment of mouse genetic background uses single nucleotide polymorphism (SNP) PCR. As SNP analysis can use multiplex testing, it is amenable to high-throughput analysis and is the preferred method for shared resource facilities that offer genetic background assessment of mouse genomes. However, a typical individual SNP query yields only two alleles (A vs. B), limiting the application of this methodology to distinguishing contributions from no more than two inbred mouse strains. By contrast, simple sequence length polymorphism (SSLP) analysis yields multiple alleles but is not amenable to high-throughput testing. We sought to devise a SNP-based technique to identify donor strain origins when three distinct mouse strains potentially contribute to the genetic makeup of an individual mouse. A computational approach was used to devise a three-strain analysis (3SA) algorithm that would permit identification of three genetic backgrounds while still using a binary-output SNP platform. A panel of 15 mosaic mice with contributions from BALB/c, C57Bl/6, and DBA/2 genetic backgrounds was bred and analyzed using a genome-wide SNP panel using 1449 markers. The 3SA algorithm was applied and then validated using SSLP. The 3SA algorithm assigned 85% of 1449 SNPs as informative for the C57Bl/6, BALB/c, or DBA/2 backgrounds, respectively. Testing the panel of 15 F2 mice, the 3SA algorithm predicted donor strain origins genome-wide. Donor strain origins predicted by the 3SA algorithm correlated perfectly with results from individual SSLP markers located on five different chromosomes (n=70 tests). We have established and validated an analysis algorithm based on binary SNP data that can successfully identify the donor strain origins of chromosomal regions in mice that are bred from three distinct inbred mouse strains.

  5. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management.

  6. SYBR green dye-based probe-free SNP genotyping: introduction of T-Plex real-time PCR assay.

    PubMed

    Baris, Ibrahim; Etlik, Ozdal; Koksal, Vedat; Ocak, Zeynep; Baris, Saniye Tugba

    2013-10-15

    Single-nucleotide polymorphism (SNP) genotyping is widely used in genetic association studies to characterize genetic factors underlying inherited traits. Despite many recent advances in high-throughput SNP genotyping, inexpensive and flexible methods with reasonable throughput levels are still needed. Real-time PCR methods for discovering and genotyping SNPs are becoming increasingly important in various fields of biology. In this study, we introduce a new, single-tube strategy that combines the tetra-primer ARMS PCR assay, SYBR Green I-based real-time PCR, and melting-point analysis with primer design strategies to detect the SNP of interest. This assay, T-Plex real-time PCR, is based on the T(m) discrimination of the amplified allele-specific amplicons in a single tube. The specificity, sensitivity, and robustness of the assay were evaluated for common mutations in the FV, PII, MTHFR, and FGFR3 genes. We believe that T-Plex real-time PCR would be a useful alternative for either individual genotyping requests or large epidemiological studies.

  7. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  8. Genetic polymorphisms of 54 mitochondrial DNA SNP loci in Chinese Xibe ethnic minority group

    PubMed Central

    Shen, Chun-Mei; Hu, Li; Yang, Chun-Hua; Yin, Cai-Yong; Li, Zhi-Dan; Meng, Hao-Tian; Guo, Yu-Xin; Mei, Ting; Chen, Feng; Zhu, Bo-Feng

    2017-01-01

    We analyzed the genetic polymorphisms of 54 mitochondrial DNA (mtDNA) variants in Chinese Xibe ethnic minority group. A total of 137 unrelated healthy volunteers from Chinese Xibe group were the objects of our study. Among the selected loci, there were 51 variable positions including transitions and transversions, and single nucleotide transitions were common (83.93%) versus transversions. These variations defined 64 different mtDNA haplotypes exclusive of (CA)n and 9 bp deletion variation. The haplotype diversity and discrimination power in Xibe population were 0.9800 ± 0.004 and 0.9699, respectively. Besides, we compared Xibe group with 18 other populations and reconstructed a phylogenetic tree using Neighbor-Joining method. The result revealed that Xibe group was a close to Xinjiang Han and Yanbian Korean groups. Our data also indicated that Xibe group has a close relationship with Daur and Ewenki groups, which is reflected by the history that Xibe was influenced by Daur and Ewenki groups during the development of these groups. In conclusion, the variants we studied are polymorphic and could be used as informative genetic markers for forensic and population genetic application. PMID:28327596

  9. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array

    PubMed Central

    Vukosavljev, Mirjana; Arens, Paul; Voorrips, Roeland E; van ‘t Westende, Wendy PC; Esselink, GD; Bourke, Peter M; Cox, Peter; van de Weg, W Eric; Visser, Richard GF; Maliepaard, Chris; Smulders, Marinus JM

    2016-01-01

    Dense genetic maps create a base for QTL analysis of important traits and future implementation of marker-assisted breeding. In tetraploid rose, the existing linkage maps include <300 markers to cover 28 linkage groups (4 homologous sets of 7 chromosomes). Here we used the 68k WagRhSNP Axiom single-nucleotide polymorphism (SNP) array for rose, in combination with SNP dosage calling at the tetraploid level, to genotype offspring from the garden rose cultivar ‘Red New Dawn’. The offspring proved to be not from a single bi-parental cross. In rose breeding, crosses with unintended parents occur regularly. We developed a strategy to separate progeny into putative populations, even while one of the parents was unknown, using principle component analysis on pairwise genetic distances based on sets of selected SNP markers that were homozygous, and therefore uninformative for one parent. One of the inferred populations was consistent with self-fertilization of ‘Red New Dawn’. Subsequently, linkage maps were generated for a bi-parental and a self-pollinated population with ‘Red New Dawn’ as the common maternal parent. The densest map, for the selfed parent, had 1929 SNP markers on 25 linkage groups, covering 1765.5 cM at an average marker distance of 0.9 cM. Synteny with the strawberry (Fragaria vesca) genome was extensive. Rose ICM1 corresponded to F. vesca pseudochromosome 7 (Fv7), ICM4 to Fv4, ICM5 to Fv3, ICM6 to Fv2 and ICM7 to Fv5. Rose ICM2 corresponded to parts of F. vesca pseudochromosomes 1 and 6, whereas ICM3 is syntenic to the remainder of Fv6. PMID:27818777

  10. De novo Transcriptome Assembly and SNP Discovery in the Wing Polymorphic Salt Marsh Beetle Pogonus chalceus (Coleoptera, Carabidae)

    PubMed Central

    Van Belleghem, Steven M.; Roelofs, Dick; Van Houdt, Jeroen; Hendrickx, Frederik

    2012-01-01

    Background The salt marsh beetle Pogonus chalceus represents a unique opportunity to understand and study the origin and evolution of dispersal polymorphisms as remarkable inter-population divergence in dispersal related traits (e.g. wing development, body size and metabolism) has been shown to persist in face of strong homogenizing gene flow. Sequencing and assembling the transcriptome of P. chalceus is a first step in developing large scale genetic information that will allow us to further study the recurrent phenotypic evolution in dispersal traits in these natural populations. Methodology/Results We used the Illumina HiSeq2000 to sequence 37 Gbases of the transcriptome and performed de novo transcriptome assembly with the Trinity short read assembler. This resulted in 65,766 contigs, clustering into 39,393 unique transcripts (unigenes). A subset of 12,987 show similarity (BLAST) to known proteins in the NCBI database and 7,589 are assigned Gene Ontology (GO). Using homology searches we identified all reported genes involved in wing development, juvenile- and ecdysteroid hormone pathways in Tribolium castaneum. About half (56.7%) of the unique assembled genes are shared among three life stages (third-instar larva, pupa, and imago). We identified 38,141 single nucleotide polymorphisms (SNPs) in these unigenes. Of these SNPs, 26,823 (70.3%) were found in a predicted open reading frame (ORF) and 6,998 (18.3%) were nonsynonymous. Conclusions The assembled transcriptome and SNP data are essential genomic resources for further study of the developmental pathways, genetic mechanisms and metabolic consequences of adaptive divergence in dispersal power in natural populations. PMID:22870338

  11. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    PubMed

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  12. Development of a SNP-based panel for human identification for Indian populations.

    PubMed

    Sarkar, Anujit; Nandineni, Madhusudan R

    2017-03-01

    The widely employed short tandem repeat (STR)-based panels for forensic human identification (HID) have limitations while dealing with challenging forensic samples involving DNA degradation, resulting in dropping-out of higher molecular weight alleles/loci. To address this issue, bialleic markers like single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), which can be scored even when the template DNA is heavily degraded (<100bp), have been suggested as alternative markers for HID testing. Recent studies have highlighted their utility in forensic HID and several panels based on biallelic markers have been described for worldwide populations. However, there has been very little information about the behavior of such DNA markers in Indian populations, which is known to possess great genetic diversity. This study describes a two-step approach for designing a SNP-based panel consisting of 70 SNPs for HID testing in Indian populations. In the first step, candidate SNPs were shortlisted from public databases by screening them for several criteria including allelic distribution, genomic location, potential phenotypic expression or functionality and species specificity. The second step involved genotyping the shortlisted SNPs in various Indian populations followed by shortlisting of the best performers for identity-testing. Starting with 592,652 SNPs listed in Human660W-Quad Beadchip (Illumina Inc.), we shortlisted 275 candidate SNPs for identity-testing and genotyped them in 462 unrelated individuals from different population groups in India. Post genotyping and statistical analyses based on biogeographic regions, 206 SNPs demonstrated desired allelic distribution (Heterozygosity≥0.4 and FST≤0.02), from which 2-4 widely separated (>20 Mb apart) SNPs from each chromosome were finally selected to construct a panel of 70 SNPs. This panel on average possessed match probability 10e-29 and probability of paternity of 0.99999997, which was orders of

  13. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  14. Influence of TP53 Codon 72 Polymorphism Alone or in Combination with HDM2 SNP309 on Human Infertility and IVF Outcome

    PubMed Central

    Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru

    2016-01-01

    To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71–0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations. PMID:27898708

  15. IL28B Gene Polymorphism SNP rs8099917 Genotype GG Is Associated with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in HTLV-1 Carriers

    PubMed Central

    Luiz, Olinda do Carmo; Malta, Fernanda; Pinho, João Renato Rebello; Gonçalves, Fernanda de Toledo; Duarte, Alberto Jose da Silva; de Oliveira, Augusto Cesar Penalva

    2014-01-01

    Background The polymorphisms of IL28B have been described as important in the pathogenesis of infections caused by some viruses. The aim of this research was to evaluate whether IL28B gene polymorphisms (SNP rs8099917 and SNP rs12979860) are associated with HAM/TSP. Methods The study included 229 subjects, classified according to their neurological status in two groups: Group I (136 asymptomatic HTLV-1 carriers) and Group II (93 HAM/TSP patients). The proviral loads were quantified, and the rs8099917 and rs12979860 SNPs in the region of IL28B-gene were analyzed by StepOnePlus Real-time PCR System. Results A multivariate model analysis, including gender, age, and HTLV-1 DNA proviral load, showed that IL28B polymorphisms were independently associated with HAM/TSP outcome in rs12979860 genotype CT (OR = 2.03; IC95% = 0.96–4.27) and in rs8099917 genotype GG (OR = 7.61; IC95% = 1.82–31.72). Conclusion Subjects with SNP rs8099917 genotype GG and rs12979618 genotype CT may present a distinct immune response against HTLV-1 infection. So, it seems reasonable to suggest that a search for IL28B polymorphisms should be performed for all HTLV-1-infected subjects in order to monitor their risk for disease development; however, since this is the first description of such finding in the literature, we should first replicate this study with more HTLV-1-infected persons to strengthen the evidence already provided by our results. PMID:25233462

  16. Multi-marker-LD based genetic algorithm for tag SNP selection.

    PubMed

    Mouawad, Amer E; Mansour, Nashat

    2014-12-01

    Despite the advances in genotyping technologies which have led to large reduction in genotyping cost, the Tag SNP Selection problem remains an important problem for computational biologists and geneticists. Selecting the smallest subset of tag SNPs that can predict the other SNPs would considerably minimize the complexity of genome-wide or block-based SNP-disease association studies. These studies would lead to better diagnosis and treatment of diseases. In this work, we propose three variations of a genetic algorithm based on two-marker linkage disequilibrium, multi-marker linkage disequilibrium, and a third measure that we denote by prediction power. The performance of the three algorithms are compared with those of a recognized tag SNP selection algorithm using three different real data sets from the HapMap project. The results indicate that the multi-marker linkage disequilibrium based genetic algorithm yields better prediction accuracy.

  17. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    SciTech Connect

    Huang, Chao-Yuan; Su, Chien-Tien; Chu, Jan-Show; Huang, Shu-Pin; Pu, Yeong-Shiau; Yang, Hsiu-Yuan; Chung, Chi-Jung; Wu, Chia-Chang; Hsueh, Yu-Mei

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  18. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    PubMed

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  19. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice

    PubMed Central

    Singh, Nisha; Jayaswal, Pawan Kumar; Panda, Kabita; Mandal, Paritra; Kumar, Vinod; Singh, Balwant; Mishra, Shefali; Singh, Yashi; Singh, Renu; Rai, Vandna; Gupta, Anita; Raj Sharma, Tilak; Singh, Nagendra Kumar

    2015-01-01

    Single nucleotide polymorphism (SNP) is the most abundant DNA sequence variation present in plant genomes. Here, we report the design and validation of a unique genic-SNP genotyping chip for genetic and evolutionary studies as well as molecular breeding applications in rice. The chip incorporates 50,051 SNPs from 18,980 different genes spanning 12 rice chromosomes, including 3,710 single-copy (SC) genes conserved between wheat and rice, 14,959 SC genes unique to rice, 194 agronomically important cloned rice genes and 117 multi-copy rice genes. Assays with this chip showed high success rate and reproducibility because of the SC gene based array with no sequence redundancy and cross-hybridisation problems. The usefulness of the chip in genetic diversity and phylogenetic studies of cultivated and wild rice germplasm was demonstrated. Furthermore, its efficacy was validated for analysing background recovery in improved mega rice varieties with submergence tolerance developed through marker-assisted backcross breeding. PMID:26111882

  20. SNP-based genotyping in lentil: linking sequence information with phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil (Lens culinaris) has been late to enter the world of high throughput molecular analysis due to a general lack of genomic resources. Using a 454 sequencing-based approach, SNPs have been identified in genes across the lentil genome. Several hundred have been turned into single SNP KASP assay...

  1. An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...

  2. Single nucleotide polymorphism (SNP) of the endothelial nitric oxide synthase (eNOS) gene (Glu298Asp variant) in infertile men with asthenozoospermia.

    PubMed

    Buldreghini, Eddi; Mahfouz, Reda Z; Vignini, Arianna; Mazzanti, Laura; Ricciardo-Lamonica, Giuseppe; Lenzi, Andrea; Agarwal, Ashok; Balercia, Giancarlo

    2010-01-01

    The objective of this study was to elucidate the missense Glu298Asp polymorphism within exon 7 of the endothelial nitric oxide synthase (eNOS) gene in infertile men with asthenozoospermia and its potential role in sperm motility. In this prospective controlled study conducted in our andrology unit, we investigated the frequency of the 894G>T polymorphism (Glu298Asp variant) within exon 7 of the eNOS gene in 70 infertile men and 60 healthy men. Sperm motion kinetics were assessed with computer-assisted semen analysis. The presence of G>T, a single nucleotide polymorphism (SNP) in exon 7 of the eNOS gene (NCBI SNP cluster rs1799983; GenBank accession number NG_011992; protein accession number NP_000594) was determined by allelespecific polymerase chain reaction followed by restriction fragment length polymorphism analysis. Sequencing analysis was used to confirm the specific genotype. The 894G>T eNOS allele (T) was found at a higher frequency in the patients with asthenozoospermia (60% vs 22.5% in the control group; P = .02). The percentage of progressive motile sperm (grade a + b) was lower in the asthenozoospermic infertile men with the homozygous eNOS (TT) genotype than in the wild-type eNOS (GG) (P = .02) and heterozygous eNOS (GT) genotypes (P = .01). However, the percentage of progressive motile sperm (grade a + b) was higher in the wild-type vs mutant eNOS (TT) (P = .03) and heterozygous eNOS (GT) genotypes (P = .04). Our findings suggest that the T allele encoding for aspartic acid of the eNOS (Glu298Asp) gene may contribute to poor sperm motility.

  3. A high resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to construct a high density genetic map of soybean (Glycine max L. Merr) using a high throughput single nucleotide polymorphism (SNP) genotyping on 357 F7 recombinant inbred lines (RILs) from a cross of ‘Wyandot’ × PI 567301B. Of 5,403 SNP loci scored from the Infiniu...

  4. Association between STR -794 CATT5-8 and SNP -173 G/C polymorphisms in the MIF gene and Lepromatous Leprosy in Mestizo patients of western Mexico.

    PubMed

    Martinez-Guzman, M A; Alvarado-Navarro, A; Pereira-Suarez, A L; Muñoz-Valle, J F; Fafutis-Morris, M

    2016-10-01

    Lepromatous Leprosy (LL) is the most common presentation of leprosy in Mexico. LL patients are unable to activate an effective inflammatory response against Mycobacterium leprae probably due to the genetics of the host. Macrophage Migration Inhibitory Factor (MIF) is important to trigger inflammation processes. Two polymorphisms have been reported for human MIF: STR -794 CATT5-8 and SNP -173 G/C. 7-8 CATT repeats at -794 and the C allele at -173 increase the expression of MIF. We aim to determine the association between the polymorphisms in MIF gene and LL. We carried a case and controls study with 100 Mexican LL patients and 100 healthy subjects (HS). PCR was used for genotyping of STR -794 CATT5-8 polymorphism and PCR-RFLP for -173 G/C. We found that LL patients possess high -794 CATT repeats (47.1%) more often than HS (32.7%). In conclusion, a MIF polymorphism is associated with susceptibility to LL in Western Mexican population.

  5. A Coordinated Approach to Peach SNP Discovery in RosBREED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...

  6. Translational Medicine and Reliability of Single-Nucleotide Polymorphism Studies: Can We Believe in SNP Reports or Not?

    PubMed Central

    Valachis, Antonis; Mauri, Davide; Neophytou, Christodoulos; Polyzos, Nikolaos P.; Tsali, Lampriani; Garras, Antonios; Papanikolau, Evangelos G.

    2011-01-01

    Background: The number of genetic association studies is increasing exponentially. Nonetheless, genetic association reports are prone to potential biases which may influence the reported outcome. Aim: We hypothesized that positive outcome for a determined polymorphism might be over-reported across genetic association studies analysing a small number of polymorphisms, when compared to studies analysing the same polymorphism together with a high number of other polymorphisms. Methods: We systematically reviewed published reports on the association of glutathione s-transferase (GST) single-nucleotide polymorphisms (SNPs) and cancer outcome. Result: We identified 79 eligible trials. Most of the studies examined the GSTM1, theGSTP1 Ile105Val mutation, and GSTT1polymorphisms (n = 54, 57 and 46, respectively). Studies analysing one to three polymorphisms (n = 39) were significantly more likely to present positive outcomes, compared to studies examining more than 3 polymorphisms (n=40) p = 0.004; this was particularly evident for studies analysing the GSTM1polymorphism (p =0.001). We found no significant associations between journal impact factor, number of citations, and probability of publishing positive studies or studies with 1-3 polymorphisms examined. Conclusions: We propose a new subtype of publication bias in genetic association studies. Positive results for genetic association studies analysing a small number of polymorphisms (n = 1-3) should be evaluated extremely cautiously, because a very large number of such studies are inconclusive and statistically under-powered. Indeed, publication of misleading reports may affect harmfully medical decision-making and use of resources, both in clinical and pharmacological development setting. PMID:21897762

  7. SNP-Based Linkage Mapping for Validation of QTLs for Resistance to Ascochyta Blight in Lentil

    PubMed Central

    Sudheesh, Shimna; Rodda, Matthew S.; Davidson, Jenny; Javid, Muhammad; Stephens, Amber; Slater, Anthony T.; Cogan, Noel O. I.; Forster, John W.; Kaur, Sukhjiwan

    2016-01-01

    Lentil (Lens culinaris Medik.) is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB), caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from three recombinant inbred line (RIL) populations. The IH × NF map contained 460 loci across 1461.6 cM, while the IH × DIG map contained 329 loci across 1302.5 cM and the third map, NF × DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across seven linkage groups (LGs), with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs) explaining 52 and 69% of phenotypic variation for resistance to infection in the IH × DIG and IH × NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted the

  8. Transcriptome sequencing to produce SNP-based genetic maps of onion.

    PubMed

    Duangjit, J; Bohanec, B; Chan, A P; Town, C D; Havey, M J

    2013-08-01

    We used the Roche-454 platform to sequence from normalized cDNA libraries from each of two inbred lines of onion (OH1 and 5225). From approximately 1.6 million reads from each inbred, 27,065 and 33,254 cDNA contigs were assembled from OH1 and 5225, respectively. In total, 3,364 well supported single nucleotide polymorphisms (SNPs) on 1,716 cDNA contigs were identified between these two inbreds. One SNP on each of 1,256 contigs was randomly selected for genotyping. OH1 and 5225 were crossed and 182 gynogenic haploids extracted from hybrid plants were used for SNP mapping. A total of 597 SNPs segregated in the OH1 × 5225 haploid family and a genetic map of ten linkage groups (LOD ≥8) was constructed. Three hundred and thirty-nine of the newly identified SNPs were also mapped using a previously developed segregating family from BYG15-23 × AC43, and 223 common SNPs were used to join the two maps. Because these new SNPs are in expressed regions of the genome and commonly occur among onion germplasms, they will be useful for genetic mapping, gene tagging, marker-aided selection, quality control of seed lots, and fingerprinting of cultivars.

  9. [Mechanism of genuineness of Glycyrrhiza uralensis based on SNP of β-Amyrin synthase gene].

    PubMed

    Zang, Yi-mei; Li, Yan-peng; Qiao, Jing; Chen, Hong-hao; Liu, Chun-sheng

    2015-07-01

    β-Amyrin synthase (β-AS) genes of Glycyrrhiza uralensis from 6 different regions were analyzed by PCR-SSCP and sequenced, then the correlationship between β-AS SNP and regions of Glycyrrhiza uralensis were determined. According to the 1 coding single nucleotide polymorphism on the first exon of β-AS gene at 94 bp site, Glycyrrhiza uralensis could be divided into 3 genotypes. In these genotypes, the percentage of 94A type in genuine regions was much higher, and it had significant differences with the percentage in non-genuine regions (P < 0.001). The results of the experiment proved that different β-AS genotypes at 94 bp site from different regions may be one of the important reasons to result in the genuineness of Glycyrrhiza uralensis.

  10. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    PubMed

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  11. Single nucleotide polymorphism (SNP) discovery in rainbow trout using restriction site associated DNA (RAD) sequencing of doubled haploids and assessment of polymorphism in a population survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Our goal is to produce a high-throughput SNP genotyping platform for genomic analyses in rainbow trout that will enable fine mapping of QTL, whole genome association studies, genomic selection for improved aquaculture production traits, and genetic analyses of wild populations that aid ...

  12. Exploring the efficacy of paternity and kinship testing based on single nucleotide polymorphisms.

    PubMed

    Mo, Shao-Kang; Liu, Ya-Cheng; Wang, Sheng-qi; Bo, Xiao-Chen; Li, Zhen; Chen, Ying; Ni, Ming

    2016-05-01

    Short tandem repeats (STRs) are conventional genetic markers typically used for paternity and kinship testing. As supplementary markers of STRs, single nucleotide polymorphisms (SNPs) have less discrimination power but broader applicability to degraded samples. The rapid improvement of next-generation sequencing (NGS) and multiplex amplification technologies also make it possible now to simultaneously identify dozens or even hundreds of SNP loci in a single pool. However, few studies have been endeavored to kinship testing based on SNP loci. In this study, we genotyped 90 autosomal human identity SNP loci with NGS, and investigated their testing efficacies based on the likelihood ratio model in eight pedigree scenarios involving paternity, half/full-sibling, uncle/nephew, and first-cousin relationships. We found that these SNPs might be sufficient to discriminate paternity and full-sibling, but impractical for more distant relatives such as uncle and cousin. Furthermore, we conducted an in silico study to obtain the theoretical tendency of how testing efficacy varied with increasing number of SNP loci. For each testing battery in a given pedigree scenario, we obtained distributions of logarithmic likelihood ratio for both simulated relatives and unrelated controls. The proportion of the overlapping area between the two distributions was defined as a false testing level (FTL) to evaluate the testing efficacy. We estimated that 85, 127, 491, and 1,858 putative SNP loci were required to discriminate paternity, full-sibling, half-sibling/uncle-nephew, and first-cousin (FTL, 0.1%), respectively. To test a half-sibling or nephew, an additional uncle relative could be included to decrease the required number of putative SNP loci to ∼320 (FTL, 0.1%). As a systematic computation of paternity and kinship testing based only on SNPs, our results could be informative for further studies and applications on paternity and kinship testing using SNP loci.

  13. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  14. Probability theory-based SNP association study method for identifying susceptibility loci and genetic disease models in human case-control data.

    PubMed

    Yuan, Xiguo; Zhang, Junying; Wang, Yue

    2010-12-01

    One of the most challenging points in studying human common complex diseases is to search for both strong and weak susceptibility single-nucleotide polymorphisms (SNPs) and identify forms of genetic disease models. Currently, a number of methods have been proposed for this purpose. Many of them have not been validated through applications into various genome datasets, so their abilities are not clear in real practice. In this paper, we present a novel SNP association study method based on probability theory, called ProbSNP. The method firstly detects SNPs by evaluating their joint probabilities in combining with disease status and selects those with the lowest joint probabilities as susceptibility ones, and then identifies some forms of genetic disease models through testing multiple-locus interactions among the selected SNPs. The joint probabilities of combined SNPs are estimated by establishing Gaussian distribution probability density functions, in which the related parameters (i.e., mean value and standard deviation) are evaluated based on allele and haplotype frequencies. Finally, we test and validate the method using various genome datasets. We find that ProbSNP has shown remarkable success in the applications to both simulated genome data and real genome-wide data.

  15. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    DTIC Science & Technology

    2011-09-01

    were down-selected and successfully genotyped for whole genome (WG) single nucleotide polymorphism (SNP) markers by means of the Affymetrix Canine...SUBJECT TERMS Military working dog genome-wide association study genetic marker intelligence... marker , intelligence, Canine Intelligence Testing Protocol, classification technique, clustering analysis Technical Report: September 2011 2

  16. Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT

    PubMed Central

    Neigenfind, Jost; Gyetvai, Gabor; Basekow, Rico; Diehl, Svenja; Achenbach, Ute; Gebhardt, Christiane; Selbig, Joachim; Kersten, Birgit

    2008-01-01

    Background Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous. Results Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given haplotype inference. The program is evaluated with simulated and experimental SNP data generated for heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype inference reported by the program, we can significantly improve the quality of the final result by applying additional methods that include scoring of the alternative haplotype inferences and genotype optimisation. For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons. Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes. Conclusion Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is freeware and is distributed as

  17. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.).

    PubMed

    Webb, Anne; Cottage, Amanda; Wood, Thomas; Khamassi, Khalil; Hobbs, Douglas; Gostkiewicz, Krystyna; White, Mark; Khazaei, Hamid; Ali, Mohamed; Street, Daniel; Duc, Gérard; Stoddard, Fred L; Maalouf, Fouad; Ogbonnaya, Francis C; Link, Wolfgang; Thomas, Jane; O'Sullivan, Donal M

    2016-01-01

    Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely related crop species, lentil and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2-cM interval of Vf chromosome 2 which was highly colinear with Mt3. The obvious candidate gene from 78 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene controlling anthocyanin production in Medicago and resequencing of the Vf orthologue showed a putative causative deletion of the entire 5' end of the gene.

  18. The rs5934505 single nucleotide polymorphism (SNP) is associated with low testosterone and late-onset hypogonadism, but the rs10822184 SNP is associated with overweight and obesity in a Chinese Han population: a case-control study.

    PubMed

    Chen, Y-P; Nie, L-L; Li, H-G; Liu, T-H; Fang, F; Zhao, K; Yang, R-F; Ma, X-L; Kong, X-B; Zhang, H-P; Guan, H-T; Xia, W; Hong, W-X; Duan, S; Zeng, X-C; Shang, X-J; Zhou, Y-Z; Gu, Y-Q; Wu, W-X; Xiong, C-L

    2016-01-01

    Low testosterone is associated with late-onset hypogonadism (LOH) and obesity. Recently, studies have shown that four single nucleotide polymorphisms (SNPs), rs12150660, rs727428, rs5934505, and rs10822184, are associated with testosterone levels in populations of European descent. Therefore, we investigated whether the SNP loci are related to low testosterone, LOH, or obesity in a Chinese Han population. Ruling out co-morbidities, DNA was prepared from 409 men (aged 40-65 years) with low serum testosterone (defined as total testosterone <11.6 nmol/L) and 1 : 1 normal controls (matched age, body mass index (BMI), and the same living area) who were selected from 6898 males. According to the same standards, 310 men with LOH and 1 : 1 normal controls were selected from 6898 males. Excluding the cases with an unreliable sequencing result, genetic analyses were performed. The minor allele frequencies of the SNP loci rs12150660, rs727428, rs5934505, and rs10822184 were 0.1%, 44.6%, 18.7%, and 38.9%, respectively. rs5934505 was associated with the serum total testosterone and calculated free testosterone (CFT) levels (p = 0.045 and p = 0.021). rs5934505 (C>T) was associated with an increased risk of low total testosterone, low CFT, and LOH and adjusted for other factors, with an odds ratio (OR) of 2.01 (1.34-3.01), 2.14 (1.42-3.20), and 1.64 (1.04-2.58). rs10822184 was significantly correlated with weight and BMI (p = 0.035 and p = 0.027). rs10822184 (T>C) was associated with an increased risk of overweight and obesity. We adjusted for other factors, with odds ratios (ORs) of 1.94 (1.36-2.78) and 1.56 (1.00-2.43). In summary, our study provided convincing evidence that rs5934505 (C>T) was associated with the risk of low testosterone and LOH in Chinese populations. We were the first to find that rs10822184 (T>C) was significantly correlated with the risk of overweight and obesity in Chinese populations. However, further large and functional studies are warranted to confirm

  19. A SNP Based High-Density Linkage Map of Apis cerana Reveals a High Recombination Rate Similar to Apis mellifera

    PubMed Central

    Huang, Zachary Y.; Wu, Xiao Bo; Zhu, Yong Qiang; Zheng, Hua Jun; Zeng, Zhi Jiang

    2013-01-01

    Background The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. Results F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. Conclusion We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera. PMID:24130775

  20. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data

    PubMed Central

    2012-01-01

    Background Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP) discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A. auriculiformis x A. mangium hybrids. Results We identified a total of 37,786 putative SNPs by aligning short read transcriptome data from four parents of two Acacia hybrid mapping populations using Bowtie against 7,839 de novo transcriptome contigs. Given a set of 10 validated SNPs from two lignin genes, our in silico SNP detection approach is highly accurate (100%) compared to the traditional in vitro approach (44%). Further validation of 96 SNPs using Illumina GoldenGate Assay gave an overall assay success rate of 89.6% and conversion rate of 37.5%. We explored possible factors lowering assay success rate by predicting exon-intron boundaries and paralogous genes of Acacia contigs using Medicago truncatula genome as reference. This assessment revealed that presence of exon-intron boundary is the main cause (50%) of assay failure. Subsequent SNPs filtering and improved assay design resulted in assay success and conversion rate of 92.4% and 57.4%, respectively based on 768 SNPs genotyping. Analysis of clustering patterns revealed that 27.6% of the assays were not reproducible and flanking sequence might play a role in determining cluster compression. In addition, we identified a total of 258 and 319 polymorphic SNPs in A. auriculiformis and A. mangium natural germplasms, respectively. Conclusion We have successfully discovered a large number of SNP markers in A. auriculiformis x A. mangium hybrids using next generation transcriptome sequencing. By using a reference genome from the most closely related species, we

  1. SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development.

    PubMed

    Thiel, Thomas; Kota, Raja; Grosse, Ivo; Stein, Nils; Graner, Andreas

    2004-01-02

    With the influx of various SNP genotyping assays in recent years, there has been a need for an assay that is robust, yet cost effective, and could be performed using standard gel-based procedures. In this context, CAPS markers have been shown to meet these criteria. However, converting SNPs to CAPS markers can be a difficult process if done manually. In order to address this problem, we describe a computer program, SNP2CAPS, that facilitates the computational conversion of SNP markers into CAPS markers. 413 multiple aligned sequences derived from barley ESTs were analysed for the presence of polymorphisms in 235 distinct restriction sites. 282 (90%) of 314 alignments that contain sequence variation due to SNPs and InDels revealed at least one polymorphic restriction site. After reducing the number of restriction enzymes from 235 to 10, 31% of the polymorphic sites could still be detected. In order to demonstrate the usefulness of this tool for marker development, we experimentally validated some of the results predicted by SNP2CAPS.

  2. SNP-VISTA

    SciTech Connect

    Shah, Nameeta; Teplitsky, Michael; Minovitsky, Simon; Dubchak, Inna

    2005-11-07

    SNP-VISTA aids in analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) Mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNPs data.

  3. Effect of bovine ABCG2 polymorphism Y581S SNP on secretion into milk of enterolactone, riboflavin and uric acid.

    PubMed

    Otero, J A; Miguel, V; González-Lobato, L; García-Villalba, R; Espín, J C; Prieto, J G; Merino, G; Álvarez, A I

    2016-02-01

    The ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP) is an efflux protein involved in the bioavailability and milk secretion of endogenous and exogenous compounds, actively affecting milk composition. A limited number of physiological substrates have been identified. However, no studies have reported the specific effect of this polymorphism on the secretion into milk of compounds implicated in milk quality such as vitamins or endogenous compounds. The bovine ABCG2 Y581S polymorphism is described as a gain-of-function polymorphism that increases milk secretion and decreases plasma levels of its substrates. This work aims to study the impact of Y581S polymorphism on plasma disposition and milk secretion of compounds such as riboflavin (vitamin B2), enterolactone, a microbiota-derived metabolite from the dietary lignan secoisolariciresinol and uric acid. In vitro transport of these compounds was assessed in MDCK-II cells overexpressing the bovine ABCG2 (WT-bABCG2) and its Y581S variant (Y581S-bABCG2). Plasma and milk levels were obtained from Y/Y homozygous and Y/S heterozygous cows. The results show that riboflavin was more efficiently transported in vitro by the Y581S variant, although no differences were noted in vivo. Both uric acid and enterolactone were substrates in vitro of the bovine ABCG2 variants and were actively secreted into milk with a two-fold increase in the milk/plasma ratio for Y/S with respect to Y/Y cows. The in vitro ABCG2-mediated transport of the drug mitoxantrone, as a model substrate, was inhibited by enterolactone in both variants, suggesting the possible in vivo use of this enterolignan to reduce ABCG2-mediated milk drug transfer in cows. The Y581S variant was inhibited to a lesser extent probably due to its higher transport capacity. All these findings point to a significant role of the ABCG2 Y581S polymorphism in the milk disposition of enterolactone and the endogenous molecules riboflavin and uric acid

  4. The Genetic Architecture of Arsenic Metabolism Efficiency:A SNP-Based Heritability Study of Bangladeshi Adults

    PubMed Central

    Gao, Jianjun; Tong, Lin; Argos, Maria; Bryan, Molly Scannell; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Kibriya, Muhammad G.; Jasmine, Farzana; Slavkovich, Vesna; Graziano, Joseph H.

    2015-01-01

    Background Consumption of arsenic-contaminated drinking water adversely affects health. There is interindividual variation in arsenic metabolism efficiency, partially due to genetic variation in the arsenic methyltransferase (AS3MT) gene region. Objectives The goal of this study was to assess the overall contribution of genetic factors to variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethylarsinic acid (DMA%) in urine. Methods Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based approaches for heritability estimation and polygenic modeling. Results Using data on all participants, the percent variance explained (PVE) for DMA% by all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, p = 4.4 × 10–10), but revealed no additional regions. We observed a moderate association between a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs reported in prior candidate gene studies of arsenic metabolism. Conclusions Our results suggest that there are common variants outside of the AS3MT region that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are very weak compared with variants near AS3MT. The high heritability estimates observed using family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured environmental factors. Citation Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A, Rakibuz-Zaman M, Kibriya MG

  5. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  6. MultiBLUP: improved SNP-based prediction for complex traits

    PubMed Central

    Balding, David J.

    2014-01-01

    BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breeding, and increasingly in human genetics. The BLUP mathematical model, which consists of a single random effect term, was adequate when kinships were measured from pedigrees. However, when genome-wide SNPs are used to measure kinships, the BLUP model implicitly assumes that all SNPs have the same effect-size distribution, which is a severe and unnecessary limitation. We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing greatly improved prediction when the random effects correspond to classes of SNPs with distinct effect-size variances. The SNP classes can be specified in advance, for example, based on SNP functional annotations, and we also provide an adaptive procedure for determining a suitable partition of SNPs. We apply MultiBLUP to genome-wide association data from the Wellcome Trust Case Control Consortium (seven diseases), and from much larger studies of celiac disease and inflammatory bowel disease, finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is computationally very efficient; for the largest data set, which includes 12,678 individuals and 1.5 M SNPs, the total analysis can be run on a single desktop PC in less than a day and can be parallelized to run even faster. Tools to perform MultiBLUP are freely available in our software LDAK. PMID:24963154

  7. Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.).

    PubMed

    Li, Feng; Hasegawa, Yoichi; Saito, Masako; Shirasawa, Sachiko; Fukushima, Aki; Ito, Toyoaki; Fujii, Hiroshi; Kishitani, Sachie; Kitashiba, Hiroyasu; Nishio, Takeshi

    2011-10-01

    A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction-mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.

  8. Extensive Chromosome Homoeology among Brassiceae Species Were Revealed by Comparative Genetic Mapping with High-Density EST-Based SNP Markers in Radish (Raphanus sativus L.)‡

    PubMed Central

    Li, Feng; Hasegawa, Yoichi; Saito, Masako; Shirasawa, Sachiko; Fukushima, Aki; Ito, Toyoaki; Fujii, Hiroshi; Kishitani, Sachie; Kitashiba, Hiroyasu; Nishio, Takeshi

    2011-01-01

    A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another. PMID:21816873

  9. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  10. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  11. A new anti-lipopolysaccharide factor (ALF) gene with its SNP polymorphisms related to WSSV-resistance of Litopenaeus vannamei.

    PubMed

    Liu, Jingwen; Yu, Yang; Li, Fuhua; Zhang, Xiaojun; Xiang, Jianhai

    2014-07-01

    Anti-lipopolysaccharide factors (ALFs) of crustacean play an important role against bacteria or virus infection. In this study, the cDNA sequence and genomic sequence of one new isoform of ALF designated as nLvALF1 were reported. The open reading frame (ORF) of nLvALF1 consisted of 369 bp encoding 123 amino acids and the genomic structure of nLvALF1 comprised four introns and three exons. The predicted pI of the deduced protein was 8.82 and the molecular weight (MW) was 13.72 KDa. The deduced amino acid sequence of nLvALF1 contained a typical functional domain of ALF: LPS-binding domain. Phylogenetic analysis showed that nLvALF1 had the closest relationship with FcALF1 from Fenneropenaeus chinensis. The nLvALF1 was specifically expressed in lymphoid organ (Oka) of shrimp. Its transcriptional level was significantly up-regulated after white spot syndrome virus (WSSV) challenge, suggesting that nLvALF1 might participate in defense against WSSV in Litopenaeus vannamei. In order to search potential genetic markers associated with WSSV-resistance, we scanned the polymorphisms of the genomic fragment with 397 bp where the LPS-binding domain encoding sequence located and 18 SNPs were found. The distribution frequency of these SNPs was analyzed in WSSV susceptible shrimp and resistant shrimp separately. Significant differences existed in allelic frequencies at loci g.1361-T > C, g.1370-T > C, g.1419-T > A between the WSSV-resistant group and the WSSV-susceptible/susceptible group (P < 0.05). The specific haplotype CT consisted of g.1415-C > A and g.1419-T > A was associated with susceptibility to WSSV (P < 0.05). These findings provide theoretical support for selection of WSSV-resistant varieties of L. vannamei.

  12. Exploring of new Y-chromosome SNP loci using Pyrosequencing and the SNaPshot methods.

    PubMed

    Wei, Wei; Luo, Hai-Bo; Yan, Jing; Hou, Yi-Ping

    2012-11-01

    The single nucleotide polymorphisms on the Y chromosome (Y-SNP) have been considered to be important in forensic casework. However, Y-SNP loci were mostly population specific and lacked biallelic polymorphisms in the Asian population. In this study, we developed a strategy for seeking and genotyping new Y-SNP markers based on both Pyrosequencing and the SNaPshot methods. As results, 34 new biallelic markers were observed to be polymorphic in the Chinese Han population by estimation of allele frequencies of 103 candidate's Y-SNP loci in DNA pools using Pyrosequencing technology. Then, a multiplex system with 20 Y-SNP loci was genotyped using the SNaPshot™ multiplex kit. Twenty Y-SNP loci defined 56 different haplotypes, and the haplotype diversity was estimated to be 0.9539. Our result demonstrated that the strategy could be used as an efficient tool to search and genotype biallelic markers from a large amount of candidate loci. In addition, 20 Y-SNP loci constructed a multiplex system, which could provide supplementary information for forensic identification.

  13. SNP-array based whole genome homozygosity mapping: a quick and powerful tool to achieve an accurate diagnosis in LGMD2 patients.

    PubMed

    Papić, Lea; Fischer, Dirk; Trajanoski, Slave; Höftberger, Romana; Fischer, Carina; Ströbel, Thomas; Schmidt, Wolfgang M; Bittner, Reginald E; Schabhüttl, Maria; Gruber, Karin; Pieber, Thomas R; Janecke, Andreas R; Auer-Grumbach, Michaela

    2011-01-01

    A large number of novel disease genes have been identified by homozygosity mapping and the positional candidate approach. In this study we used single nucleotide polymorphism (SNP) array-based, whole genome homozygosity mapping as the first step to a molecular diagnosis in the highly heterogeneous muscle disease, limb girdle muscular dystrophy (LGMD). In a consanguineous family, both affected siblings showed homozygous blocks on chromosome 15 corresponding to the LGMD2A locus. Direct sequencing of CAPN3, encoding calpain-3, identified a homozygous deletion c.483delG (p.Ile162SerfsX17). In a sporadic LGMD patient complete absence of caveolin-3 on Western blot was observed. However, a mutation in CAV3 could not be detected. Homozygosity mapping revealed a large homozygous block at the LGMD2I locus, and direct sequencing of FKRP encoding fukutin-related-protein detected the common homozygous c.826 C>A (p.Leu276Ile) mutation. Subsequent re-examination of this patient's muscle biopsy showed aberrant α-dystroglycan glycosylation. In summary, we show that whole-genome homozygosity mapping using low cost SNP arrays provides a fast and non-invasive method to identify disease-causing mutations in sporadic patients or sibs from consanguineous families in LGMD2. Furthermore, this is the first study describing that in addition to PTRF, encoding polymerase I and transcript release factor, FKRP mutations may cause secondary caveolin-3 deficiency.

  14. Variable Selection in Logistic Regression for Detecting SNP-SNP Interactions: the Rheumatoid Arthritis Example

    PubMed Central

    Lin, H. Y.; Desmond, R.; Liu, Y. H.; Bridges, S. L.; Soong, S. J.

    2013-01-01

    Summary Many complex disease traits are observed to be associated with single nucleotide polymorphism (SNP) interactions. In testing small-scale SNP-SNP interactions, variable selection procedures in logistic regressions are commonly used. The empirical evidence of variable selection for testing interactions in logistic regressions is limited. This simulation study was designed to compare nine variable selection procedures in logistic regressions for testing SNP-SNP interactions. Data on 10 SNPs were simulated for 400 and 1000 subjects (case/control ratio=1). The simulated model included one main effect and two 2-way interactions. The variable selection procedures included automatic selection (stepwise, forward and backward), common 2-step selection, AIC- and BIC-based selection. The hierarchical rule effect, in which all main effects and lower order terms of the highest-order interaction term are included in the model regardless of their statistical significance, was also examined. We found that the stepwise variable selection without the hierarchical rule which had reasonably high authentic (true positive) proportion and low noise (false positive) proportion, is a better method compared to other variable selection procedures. The procedure without the hierarchical rule requires fewer terms in testing interactions, so it can accommodate more SNPs than the procedure with the hierarchical rule. For testing interactions, the procedures without the hierarchical rule had higher authentic proportion and lower noise proportion compared with ones with the hierarchical rule. These variable selection procedures were also applied and compared in a rheumatoid arthritis study. PMID:18231122

  15. SNP-based large-scale identification of allele-specific gene expression in human B cells.

    PubMed

    Song, Min-Young; Kim, Hye-Eun; Kim, Sun; Choi, Ick-Hwa; Lee, Jong-Keuk

    2012-02-10

    Polymorphism and variations in gene expression provide the genetic basis for human variation. Allelic variation of gene expression, in particular, may play a crucial role in phenotypic variation and disease susceptibility. To identify genes with allelic expression in human cells, we genotyped genomic DNA and cDNA isolated from 31 immortalized B cell lines from three Centre d'Etude du Polymorphisme Humain (CEPH) families using high-density single-nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs. We identified seven SNPs in five genes with monoallelic expression, 146 SNPs in 125 genes with allelic imbalance in expression with preferentially higher expression of one allele in a heterozygous individual. The monoallelically expressed genes (ERAP2, MDGA1, LOC644422, SDCCAG3P1 and CLTCL1) were regulated by cis-acting, non-imprinted differential allelic control. In addition, all monoallelic gene expression patterns and allelic imbalances in gene expression in B cells were transmitted from parents to offspring in the pedigree, indicating genetic transmission of allelic gene expression. Furthermore, frequent allele substitution, probably due to RNA editing, was also observed in 21 genes in 23 SNPs as well as in 48 SNPs located in regions containing no known genes. In this study, we demonstrated that allelic gene expression is frequently observed in human B cells, and SNP chips are very useful tools for detecting allelic gene expression. Overall, our data provide a valuable framework for better understanding allelic gene expression in human B cells.

  16. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.

    PubMed

    Morris, Andrew P

    2005-09-01

    We describe a novel method for assessing the strength of disease association with single nucleotide polymorphisms (SNPs) in a candidate gene or small candidate region, and for estimating the corresponding haplotype relative risks of disease, using unphased genotype data directly. We begin by estimating the relative frequencies of haplotypes consistent with observed SNP genotypes. Under the Bayesian partition model, we specify cluster centres from this set of consistent SNP haplotypes. The remaining haplotypes are then assigned to the cluster with the "nearest" centre, where distance is defined in terms of SNP allele matches. Within a logistic regression modelling framework, each haplotype within a cluster is assigned the same disease risk, reducing the number of parameters required. Uncertainty in phase assignment is addressed by considering all possible haplotype configurations consistent with each unphased genotype, weighted in the logistic regression likelihood by their probabilities, calculated according to the estimated relative haplotype frequencies. We develop a Markov chain Monte Carlo algorithm to sample over the space of haplotype clusters and corresponding disease risks, allowing for covariates that might include environmental risk factors or polygenic effects. Application of the algorithm to SNP genotype data in an 890-kb region flanking the CYP2D6 gene illustrates that we can identify clusters of haplotypes with similar risk of poor drug metaboliser (PDM) phenotype, and can distinguish PDM cases carrying different high-risk variants. Further, the results of a detailed simulation study suggest that we can identify positive evidence of association for moderate relative disease risks with a sample of 1,000 cases and 1,000 controls.

  17. Y chromosome SNP analysis using the single-base extension: a hierarchical multiplex design.

    PubMed

    Brión, María

    2005-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent polymorphisms described in the human genome, and their analysis is becoming an extensive routine in molecular biology, not only in the forensic field, but also in population and clinical genetics. In particular, SNPs located on the Y chromosome have a specific utility as forensic tools, and based on this fact, we have designed a strategy that allows us to identify the most frequent haplogroups in European populations. We selected 29 markers among the 245 binary polymorphisms described in the Y-Chromosome Consortium tree. The whole set was grouped into four multiplexes in a hierarchical way, allowing us to determine the final haplogroup using only one or two multiplexes. In this way, we only type in the best-case nine SNPs, and in the worst possible combination 17 SNPs, to define the haplogroup. The selected strategy to type the SNPs was a single-base extension method using the SNaPshot multiplex kit from Applied Biosystems, and detailed practical procedures are described here. With this hierarchical strategy adapted for European populations the massive typing of SNPs was avoided, and therefore the time and money involved in the study was also reduced.

  18. 14-bp ins/del polymorphism and +3142C>G SNP of the HLA-G gene have a significant impact on acute rejection after liver transplantation.

    PubMed

    Thude, Hansjörg; Janssen, Maike; Sterneck, Martina; Nashan, Björn; Koch, Martina

    2016-12-01

    Expression of human leukocyte antigen G (HLA-G) has been associated with increased graft survival and decreased rejection episodes. It has been described that the HLA-G 14-base pair (bp) insertion/deletion (ins/del) (rs66554220) and +3142C>G (rs1063320) gene polymorphisms modify the expression level of HLA-G. The aim of the study was to investigate whether these HLA-G polymorphisms have an impact on acute rejection after liver transplantation. In total, 146 liver transplant recipients (57 with acute rejection and 89 without acute rejection) and 99 corresponding liver donors were genotyped for both polymorphisms. In liver transplantation the 14-bp ins/ins and the +3142GG genotypes are more frequent in recipients without rejection compared to recipients with rejection (3.5% vs. 31.5%, p=<0.001; 12.3% vs. 41.6%, p=<0.001) demonstrating an association with protection from acute rejection. In contrast, in liver donors we could not reveal an association. We conclude that 14-bp ins/ins and +3142GG genotypes of HLA-G in liver transplant recipients are of importance for prediction of acute rejection after liver transplantation. Thus genotyping of liver recipients for both polymorphisms might be useful to stratify liver transplant recipients according to the risk of acute liver transplant rejection.

  19. A scan statistic for identifying chromosomal patterns of SNP association.

    PubMed

    Sun, Yan V; Levin, Albert M; Boerwinkle, Eric; Robertson, Henry; Kardia, Sharon L R

    2006-11-01

    We have developed a single nucleotide polymorphism (SNP) association scan statistic that takes into account the complex distribution of the human genome variation in the identification of chromosomal regions with significant SNP associations. This scan statistic has wide applicability for genetic analysis, whether to identify important chromosomal regions associated with common diseases based on whole-genome SNP association studies or to identify disease susceptibility genes based on dense SNP positional candidate studies. To illustrate this method, we analyzed patterns of SNP associations on chromosome 19 in a large cohort study. Among 2,944 SNPs, we found seven regions that contained clusters of significantly associated SNPs. The average width of these regions was 35 kb with a range of 10-72 kb. We compared the scan statistic results to Fisher's product method using a sliding window approach, and detected 22 regions with significant clusters of SNP associations. The average width of these regions was 131 kb with a range of 10.1-615 kb. Given that the distances between SNPs are not taken into consideration in the sliding window approach, it is likely that a large fraction of these regions represents false positives. However, all seven regions detected by the scan statistic were also detected by the sliding window approach. The linkage disequilibrium (LD) patterns within the seven regions were highly variable indicating that the clusters of SNP associations were not due to LD alone. The scan statistic developed here can be used to make gene-based or region-based SNP inferences about disease association.

  20. [Advances in development of gene-gene interaction analysis methods based on SNP data: a review].

    PubMed

    Luan, Yi-Zhao; Zuo, Xiao-Yu; Liu, Ke; Li, Gu; Rao, Shao-Qi

    2013-12-01

    The SNP-based association analysis has become one of the most important approaches to interpret the underlying molecular mechanisms for human complex diseases. Nevertheless, the widely-used singe-locus analysis is only capable of capturing a small portion of susceptible SNPs with prominent marginal effects, leaving the important genetic component, epistasis or joint effects, to be undetectable. Identifying the complex interplays among multiple genes in the genome-wide context is an essential task for systematically unraveling the molecular mechanisms for complex diseases. Many approaches have been used to detect genome-wide gene-gene interactions and provided new insights into the genetic basis of complex diseases. This paper reviewed recent advances of the methods for detecting gene-gene interaction, categorized into three types, model-based and model-free statistical methods, and data mining methods, based on their characteristics in theory and numerical algorithm. In particular, the basic principle, numerical implementation and cautions for application for each method were elucidated. In addition, this paper briefly discussed the limitations and challenges associated with detecting genome-wide epistasis, in order to provide some methodological consultancies for scientists in the related fields.

  1. High-density single-nucleotide polymorphism (SNP) map in the 96-kb region containing the entire human DiGeorge syndrome critical region 2 (DGCR2) gene at 22q11.2.

    PubMed

    Iida, A; Ohnishi, Y; Ozaki, K; Ariji, Y; Nakamura, Y; Tanaka, T

    2001-01-01

    We constructed a high-density single-nucleotide polymorphism (SNP) map in the 96-kb region containing the DiGeorge syndrome critical region 2 (DGCR2) gene at chromosome 22q11.2, a human counterpart of mouse seizure-related gene SEZ-12. A total of 102 SNPs were isolated from the region by systematic screening among 48 Japanese individuals: 9 SNPs in the 5' flanking region, 3 in the 5' untranslated region, 2 in the coding regions, 77 in introns, 7 in the 3' untranslated region, and 4 in the 3' flanking region. By a comparison of our data with SNPs deposited in the dbSNP database in the National Center for Biotechnology Information, 80 SNPs (78.4%) were considered to be novel. The ratio of transition to transversion was 3.08:1. In addition, eight other types of genetic variations (one GA dinucleotide polymorphism and seven insertion/deletion polymorphisms) were discovered. The high-resolution map that we constructed will be a useful resource for analyzing gene scans of complex diseases mapped to this local segment on chromosome 22.

  2. A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples.

    PubMed

    Kraus, Robert H S; vonHoldt, Bridgett; Cocchiararo, Berardino; Harms, Verena; Bayerl, Helmut; Kühn, Ralph; Förster, Daniel W; Fickel, Jörns; Roos, Christian; Nowak, Carsten

    2015-03-01

    Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single-nucleotide polymorphism (SNP)-based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost-effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.

  3. High-throughput SNP-based authentication of human cell lines

    PubMed Central

    Castro, Felipe; Dirks, Wilhelm G.; Fähnrich, Silke; Hotz-Wagenblatt, Agnes; Pawlita, Michael; Schmitt, Markus

    2012-01-01

    Use of false cell lines remains a major problem in biological research. Short tandem repeat (STR) profiling represents the gold standard technique for cell line authentication. However, mismatch repair (MMR) deficient cell lines are characterized by microsatellite instability, which could force allelic drifts in combination with a selective outgrowth of otherwise persisting side lines, and thus, are likely to be misclassified by STR-profiling. Based on the high-throughput Luminex platform, we developed a 24-plex SNP-profiling assay, called Multiplex Cell Authentication (MCA), for determining authentication of human cell lines. MCA was evaluated by analysing a collection of 436 human cell lines from the DSMZ, previously characterised by eight loci STR profiling. Both assays showed a very high degree of concordance and similar average matching probabilities (~1 × 10−8 for STR-profiling and ~1 × 10−9 for MCA). MCA enabled the detection of less than 3% contaminating human cells. Analysing MMR deficient cell lines, evidence was obtained for a higher robustness of the MCA compared to STR profiling. In conclusion, MCA could complement routine cell line authentication and replace the standard authentication STR technique in case of MSI cell lines. PMID:22700458

  4. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    PubMed Central

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  5. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22.

    PubMed

    Middleton, F A; Pato, M T; Gentile, K L; Morley, C P; Zhao, X; Eisener, A F; Brown, A; Petryshen, T L; Kirby, A N; Medeiros, H; Carvalho, C; Macedo, A; Dourado, A; Coelho, I; Valente, J; Soares, M J; Ferreira, C P; Lei, M; Azevedo, M H; Kennedy, J L; Daly, M J; Sklar, P; Pato, C N

    2004-05-01

    We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.

  6. Genomewide Linkage Analysis of Bipolar Disorder by Use of a High-Density Single-Nucleotide–Polymorphism (SNP) Genotyping Assay: A Comparison with Microsatellite Marker Assays and Finding of Significant Linkage to Chromosome 6q22

    PubMed Central

    Middleton, F. A.; Pato, M. T.; Gentile, K. L.; Morley, C. P.; Zhao, X.; Eisener, A. F.; Brown, A.; Petryshen, T. L.; Kirby, A. N.; Medeiros, H.; Carvalho, C.; Macedo, A.; Dourado, A.; Coelho, I.; Valente, J.; Soares, M. J.; Ferreira, C. P.; Lei, M.; Azevedo, M. H.; Kennedy, J. L.; Daly, M. J.; Sklar, P.; Pato, C. N.

    2004-01-01

    We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide–polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11. PMID:15060841

  7. SNP Cutter: a comprehensive tool for SNP PCR–RFLP assay design

    PubMed Central

    Zhang, Ruifang; Zhu, Zanhua; Zhu, Hongming; Nguyen, Tu; Yao, Fengxia; Xia, Kun; Liang, Desheng; Liu, Chunyu

    2005-01-01

    The Polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) is a relatively simple and inexpensive method for genotyping single nucleotide polymorphisms (SNPs). It requires minimal investment in instrumentation. Here, we describe a web application, ‘SNP Cutter,’ which designs PCR–RFLP assays on a batch of SNPs from the human genome. NCBI dbSNP rs IDs or formatted SNPs are submitted into the SNP Cutter which then uses restriction enzymes from a pre-selected list to perform enzyme selection. The program is capable of designing primers for either natural PCR–RFLP or mismatch PCR–RFLP, depending on the SNP sequence data. SNP Cutter generates the information needed to evaluate and perform genotyping experiments, including a PCR primers list, sizes of original amplicons and different allelic fragment after enzyme digestion. Some output data is tab-delimited, therefore suitable for database archiving. The SNP Cut-ter is available at . PMID:15980518

  8. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  9. TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions.

    PubMed

    Lin, Hui-Yi; Chen, Y Ann; Tsai, Ya-Yu; Qu, Xiaotao; Tseng, Tung-Sung; Park, Jong Y

    2012-01-01

    Studies have shown that interactions of single nucleotide polymorphisms (SNPs) may play an important role in understanding the causes of complex disease. We have proposed an integrated machine learning method that combines two machine-learning methods-Random Forests (RF) and Multivariate Adaptive Regression Splines (MARS)-to identify a subset of important SNPs and detect interaction patterns more effectively and efficiently. In this two-stage RF-MARS (TRM) approach, RF is first applied to detect a predictive subset of SNPs, and then MARS is used to identify the interaction patterns. We evaluated the TRM performances in four models. RF variable selection was based on out-of-bag classification error rate (OOB) and variable important spectrum (IS). Our results support that RF(OOB) had better performance than MARS and RF(IS) in detecting important variables. This study demonstrates that TRM(OOB) , which is RF(OOB) plus MARS, has combined the strengths of RF and MARS in identifying SNP-SNP interactions in a scenario of 100 candidate SNPs. TRM(OOB) had greater true positive rate and lower false positive rate compared with MARS, particularly for searching interactions with a strong association with the outcome. Therefore, the use of TRM(OOB) is favored for exploring SNP-SNP interactions in a large-scale genetic variation study.

  10. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yoshinaga; Ohtake, Tomoko; Okada, Hajime; Ami, Takehiro; Tsukaguchi, Tadashi; Fujimoto, Kenzo

    2009-06-01

    We describe a simple and inexpensive single-nucleotide polymorphism (SNP) typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  11. Non-Invasive Prenatal Detection of Trisomy 13 Using a Single Nucleotide Polymorphism- and Informatics-Based Approach

    PubMed Central

    Hall, Megan P.; Hill, Matthew; Zimmermann, Bernhard; Sigurjonsson, Styrmir; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2014-01-01

    Purpose To determine how a single nucleotide polymorphism (SNP)- and informatics-based non-invasive prenatal aneuploidy test performs in detecting trisomy 13. Methods Seventeen trisomy 13 and 51 age-matched euploid samples, randomly selected from a larger cohort, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that interrogated 19,488 SNPs covering chromosomes 13, 18, 21, X, and Y, and sequenced. Analysis and copy number identification involved a Bayesian-based maximum likelihood statistical method that generated chromosome- and sample-specific calculated accuracies. Results Of the samples that passed a stringent DNA quality threshold (94.1%), the algorithm correctly identified 15/15 trisomy 13 and 49/49 euploid samples, for 320/320 correct copy number calls. Conclusions This informatics- and SNP-based method accurately detects trisomy 13-affected fetuses non-invasively and with high calculated accuracy. PMID:24805989

  12. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls

  13. SNIT: SNP identification for strain typing

    PubMed Central

    2011-01-01

    With ever-increasing numbers of microbial genomes being sequenced, efficient tools are needed to perform strain-level identification of any newly sequenced genome. Here, we present the SNP identification for strain typing (SNIT) pipeline, a fast and accurate software system that compares a newly sequenced bacterial genome with other genomes of the same species to identify single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels). Based on this information, the pipeline analyzes the polymorphic loci present in all input genomes to identify the genome that has the fewest differences with the newly sequenced genome. Similarly, for each of the other genomes, SNIT identifies the input genome with the fewest differences. Results from five bacterial species show that the SNIT pipeline identifies the correct closest neighbor with 75% to 100% accuracy. The SNIT pipeline is available for download at http://www.bhsai.org/snit.html PMID:21902825

  14. Atomic Force Microscopy for DNA SNP Identification

    NASA Astrophysics Data System (ADS)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  15. Predicting drug response and toxicity based on gene polymorphisms.

    PubMed

    Robert, Jacques; Morvan, Valérie Le; Smith, Denis; Pourquier, Philippe; Bonnet, Jacques

    2005-06-01

    The sequencing of the human genome has allowed the identification of thousands of gene polymorphisms, most often single nucleotide polymorphims (SNP), which may play an important role in the expression level and activity of the corresponding proteins. When these polymorphisms occur at the level of drug metabolising enzymes or transporters, the disposition of the drug may be altered and, consequently, its efficacy may be compromised or its toxicity enhanced. Polymorphisms can also occur at the level of proteins directly involved in drug action, either when the protein is the target of the drug or when the protein is involved in the repair of drug-induced lesions. There again, these polymorphisms may lead to alterations in drug efficacy and/or toxicity. The identification of functional polymorphisms in patients undergoing chemotherapy may help the clinician prescribe the optimal drug combination or schedule and predict with more accuracy the response to these prescriptions. We have recorded in this review the polymorphisms that have been identified up till now in genes involved in anticancer drug activity. Some of them appear especially important in predicting drug toxicity and should be determined in routine before drug administration; this is the case of the most common variations of thiopurine methyltransferase for 6-mercaptopurine and of dihydropyrimidine dehydrogenase for fluorouracil. Other appear determinant for drug response, such as the common SNPs found in glutathione S-transferase P1 or xereoderma pigmentosum group D enzyme for the activity of oxaliplatin. However, confusion factors may exist between the role of gene polymorphisms in cancer risk or overall prognosis and their role in drug response.

  16. Prim-SNPing: a primer designer for cost-effective SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Chuang, Li-Yeh; Cheng, Yu-Huei; Hung, Yu-Chen; Wen, Cheng-Hao; Gu, De-Leung; Yang, Cheng-Hong

    2009-05-01

    Many kinds of primer design (PD) software tools have been developed, but most of them lack a single nucleotide polymorphism (SNP) genotyping service. Here, we introduce the web-based freeware "Prim-SNPing," which, in addition to general PD, provides three kinds of primer design functions for cost-effective SNP genotyping: natural PD, mutagenic PD, and confronting two-pair primers (CTPP) PD. The natural PD and mutagenic PD provide primers and restriction enzyme mining for polymerase chain reaction-restriction fragment of length polymorphism (PCR-RFLP), while CTPP PD provides primers for restriction enzyme-free SNP genotyping. The PCR specificity and efficiency of the designed primers are improved by BLAST searching and evaluating secondary structure (such as GC clamps, dimers, and hairpins), respectively. The length pattern of PCR-RFLP using natural PD is user-adjustable, and the restriction sites of the RFLP enzymes provided by Prim-SNPing are confirmed to be absent within the generated PCR product. In CTPP PD, the need for a separate digestion step in RFLP is eliminated, thus making it faster and cheaper. The output of Prim-SNPing includes the primer list, melting temperature (Tm) value, GC percentage, and amplicon size with enzyme digestion information. The reference SNP (refSNP, or rs) clusters from the Single Nucleotide Polymorphism database (dbSNP) at the National Center for Biotechnology Information (NCBI), and multiple other formats of human, mouse, and rat SNP sequences are acceptable input. In summary, Prim-SNPing provides interactive, user-friendly and cost-effective primer design for SNP genotyping. It is freely available at http://bio.kuas.edu.tw/prim-snping.

  17. Single nucleotide polymorphism array-based karyotyping in acute myeloid leukemia or myelodysplastic syndrome with trisomy 8 as the sole chromosomal abnormality.

    PubMed

    Hahm, Chorong; Mun, Yeung Chul; Seong, Chu Myong; Han, Sung-Hee; Chung, Wha Soon; Huh, Jungwon

    2013-01-01

    The clinical heterogeneity of patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) with trisomy 8 as the sole abnormality may result from cytogenetically undetectable genetic changes. The purpose of this study was to identify hidden genomic aberrations not detected by metaphase cytogenetics (MC) using high-resolution single nucleotide polymorphism array (SNP-A)-based karyotyping in AML/MDS patients with a sole trisomy 8. The study group included 8 patients (3 AML and 5 MDS) and array-based karyotyping was done using whole-genome SNP-A (SNP 6.0 and SNP 2.7M). By SNP-A, additional genomic aberrations not detected by MC were identified in 2 patients: 1 AML patient exhibited a copy-neutral loss of heterozygosity (CN-LOH) of 3q21.1-q29 and 11q13.1-q25 and the other patient with MDS (refractory cytopenia with unilineage dysplasia) had CN-LOH of 2p25.3-p15. In particular, the latter patient progressed to AML 18 months after the diagnosis. In 3 patients, aberrations in addition to trisomy 8 were not identified by SNP-A. In the remaining 3 patients, SNP-A could not detect trisomy 8, while trisomy 8 was found in 25-67% of metaphase cells by MC. This study suggests that additional genomic aberrations may in fact be present even in cases of trisomy 8 as sole abnormality by MC, and SNP-A could be a useful karyotyping tool to identify hidden aberrations such as CN-LOH.

  18. SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dramatic decreases in the cost of DNA sequencing have enabled the development of very large numbers of markers based on single nucleotide polymorphism (SNP) for phylogenetic studies, population genetics, linkage mapping, marker-assisted breeding and other applications. Using Illumina next-generatio...

  19. Microsatellite Imputation for parental verification from SNP across multiple Bos taurus and indicus breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international demands fro...

  20. Genetic diversity and relatedness of sweet cherry (prunus avium L.) cultivars based on single nucleotide polymorphic markers.

    PubMed

    Fernandez I Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font I Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3' untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3' UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, "Stella" was separated from "Compact Stella." This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3' UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry.

  1. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses.

    PubMed

    Orr, N; Back, W; Gu, J; Leegwater, P; Govindarajan, P; Conroy, J; Ducro, B; Van Arendonk, J A M; MacHugh, D E; Ennis, S; Hill, E W; Brama, P A J

    2010-12-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results.

  2. Set up of cutoff thresholds for kinship determination using SNP loci.

    PubMed

    Cho, Sohee; Shin, Eun Soon; Yu, Hyung Jin; Lee, Ji Hyun; Seo, Hee Jin; Kim, Moon Young; Lee, Soong Deok

    2017-03-08

    The usefulness of single nucleotide polymorphism (SNP) loci for kinship testing has been demonstrated in many case works, and suggested as a promising marker for relationship identification. For interpreting results based on the calculation of the likelihood ratio (LR) in kinship testing, it is important to prepare cutoffs for respective relatives which are dependent on genetic relatedness. For this, analysis using true pedigree data is significant and reliable as it reflects the actual frequencies of markers in the population. In this study, the kinship index was explored through 1209 parent-child pairs, 1373 full sibling pairs, and 247 uncle-nephew pairs using 136 SNP loci. The cutoffs for LR were set up using different numbers of SNP loci with accuracy, sensitivity, and specificity. It is expected that this study can support the application of SNP loci-based kinship testing for various relationships.

  3. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies.

  4. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing.

    PubMed

    Campbell, Nathan R; Harmon, Stephanie A; Narum, Shawn R

    2015-07-01

    Genotyping-in-Thousands by sequencing (GT-seq) is a method that uses next-generation sequencing of multiplexed PCR products to generate genotypes from relatively small panels (50-500) of targeted single-nucleotide polymorphisms (SNPs) for thousands of individuals in a single Illumina HiSeq lane. This method uses only unlabelled oligos and PCR master mix in two thermal cycling steps for amplification of targeted SNP loci. During this process, sequencing adapters and dual barcode sequence tags are incorporated into the amplicons enabling thousands of individuals to be pooled into a single sequencing library. Post sequencing, reads from individual samples are split into individual files using their unique combination of barcode sequences. Genotyping is performed with a simple perl script which counts amplicon-specific sequences for each allele, and allele ratios are used to determine the genotypes. We demonstrate this technique by genotyping 2068 individual steelhead trout (Oncorhynchus mykiss) samples with a set of 192 SNP markers in a single library sequenced in a single Illumina HiSeq lane. Genotype data were 99.9% concordant to previously collected TaqMan(™) genotypes at the same 192 loci, but call rates were slightly lower with GT-seq (96.4%) relative to Taqman (99.0%). Of the 192 SNPs, 187 were genotyped in ≥90% of the individual samples and only 3 SNPs were genotyped in <70% of samples. This study demonstrates amplicon sequencing with GT-seq greatly reduces the cost of genotyping hundreds of targeted SNPs relative to existing methods by utilizing a simple library preparation method and massive efficiency of scale.

  5. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  6. Regression Modeling and Meta-Analysis of Diagnostic Accuracy of SNP-Based Pathogenicity Detection Tools for UGT1A1 Gene Mutation

    PubMed Central

    Rahim, Fakher; Galehdari, Hamid; Mohammadi-asl, Javad; Saki, Najmaldin

    2013-01-01

    Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38–82.69). The highest MCC and ACC belonged to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%). The AUC analysis showed a significance overall performance of our suggested model compared to the selected SNP-based pathogenicity detection tool (P = 0.046). Conclusion. Our suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of the molecular basis of mutation pathogenesis. PMID:23997956

  7. SNP marker detection and genotyping in tilapia.

    PubMed

    Van Bers, N E M; Crooijmans, R P M A; Groenen, M A M; Dibbits, B W; Komen, J

    2012-09-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288-305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei's genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.

  8. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations

    PubMed Central

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 – 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 – 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures. PMID:23875061

  9. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed.

  10. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  11. Associations between polymorphisms of the gene and milk production traits in water buffaloes.

    PubMed

    Deng, T X; Pang, C Y; Lu, X R; Zhu, P; Duan, A Q; Liang, X W

    2016-03-01

    Signal transducer and activator of transcription 1 () is an important regulator of mammary gland differentiation and cell survival that has been regarded as a candidate gene affecting milk production traits in mammals. Therefore, this study was conducted to evaluate significant associations between SNP of the gene and milk production traits in buffaloes. Here, 18 SNP were identified in the buffalo gene, including 15 intronic mutations and 3 exon mutations. All the identified SNP were then genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry methods from 192 buffaloes. All the SNP were in Hardy-Weinberg equilibrium, and 2 haplotype blocks were successfully constructed based on these SNP data, which formed 5 and 3 major haplotypes in the population (>5%), respectively. The results of association analysis showed that only SNP13 located in exon 10 was significantly associated with the milk production traits in the population ( < 0.05). Single nucleotide polymorphism 2, SNP5, SNP8, and SNP9 were associated with protein percentage, and SNP4 and SNP10 were associated with 305-d milk yield ( < 0.05). Our results provide evidence that polymorphisms of the buffalo gene are associated with milk production traits and can be used as a candidate gene for marker-assisted selection in buffalo breeding.

  12. Validation of a Cost-Efficient Multi-Purpose SNP Panel for Disease Based Research

    PubMed Central

    Hou, Liping; Phillips, Christopher; Azaro, Marco; Brzustowicz, Linda M.; Bartlett, Christopher W.

    2011-01-01

    Background Here we present convergent methodologies using theoretical calculations, empirical assessment on in-house and publicly available datasets as well as in silico simulations, that validate a panel of SNPs for a variety of necessary tasks in human genetics disease research before resources are committed to larger-scale genotyping studies on those samples. While large-scale well-funded human genetic studies routinely have up to a million SNP genotypes, samples in a human genetics laboratory that are not yet part of such studies may be productively utilized in pilot projects or as part of targeted follow-up work though such smaller scale applications require at least some genome-wide genotype data for quality control purposes such as DNA “barcoding” to detect swaps or contamination issues, determining familial relationships between samples and correcting biases due to population effects such as population stratification in pilot studies. Principal Findings Empirical performance in classification of relative types for any two given DNA samples (e.g., full siblings, parental, etc) indicated that for outbred populations the panel performs sufficiently to classify relationship in extended families and therefore also for smaller structures such as trios and for twin zygosity testing. Additionally, familial relationships do not significantly diminish the (mean match) probability of sharing SNP genotypes in pedigrees, further indicating the uniqueness of the “barcode.” Simulation using these SNPs for an African American case-control disease association study demonstrated that population stratification, even in complex admixed samples, can be adequately corrected under a range of disease models using the SNP panel. Conclusion The panel has been validated for use in a variety of human disease genetics research tasks including sample barcoding, relationship verification, population substructure detection and statistical correction. Given the ease of genotyping

  13. Weighted SNP set analysis in genome-wide association study.

    PubMed

    Dai, Hui; Zhao, Yang; Qian, Cheng; Cai, Min; Zhang, Ruyang; Chu, Minjie; Dai, Juncheng; Hu, Zhibin; Shen, Hongbing; Chen, Feng

    2013-01-01

    Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk. Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis (wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population. Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than the linear kernel, IBS kernel and PCA.

  14. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data.

    PubMed

    He, Quanze; He, Quanyuan; Liu, Xiaohui; Wei, Youheng; Shen, Suqin; Hu, Xiaohui; Li, Qiao; Peng, Xiangwen; Wang, Lin; Yu, Long

    2014-01-01

    Identifying cancer driver genes and exploring their functions are essential and the most urgent need in basic cancer research. Developing efficient methods to differentiate between driver and passenger somatic mutations revealed from large-scale cancer genome sequencing data is critical to cancer driver gene discovery. Here, we compared distinct features of SNP with SNV data in detail and found that the weighted ratio of SNV to SNP (termed as WVPR) is an excellent indicator for cancer driver genes. The power of WVPR was validated by accurate predictions of known drivers. We ranked most of human genes by WVPR and did functional analyses on the list. The results demonstrate that driver genes are usually highly enriched in chromatin organization related genes/pathways. And some protein complexes, such as histone acetyltransferase, histone methyltransferase, telomerase, centrosome, sin3 and U12-type spliceosomal complexes, are hot spots of driver mutations. Furthermore, this study identified many new potential driver genes (e.g. NTRK3 and ZIC4) and pathways including oxidative phosphorylation pathway, which were not deemed by previous methods. Taken together, our study not only developed a method to identify cancer driver genes/pathways but also provided new insights into molecular mechanisms of cancer development.

  15. Association analysis between functional polymorphism of the rs4606 SNP in the RGS2 gene and antipsychotic-induced Parkinsonism in Japanese patients with schizophrenia: results from the Juntendo University Schizophrenia Projects (JUSP).

    PubMed

    Higa, Masayuki; Ohnuma, Tohru; Maeshima, Hitoshi; Hatano, Tokiko; Hanzawa, Ryo; Shibata, Nobuto; Sakai, Yoshie; Suzuki, Toshihito; Arai, Heii

    2010-01-18

    Antipsychotic-induced extrapyramidal symptoms (AIEPSs) are commonly recognized side effects of typical 1st generation antipsychotics, and considerable variability is seen in the susceptibility of individual patients to AIEPSs. Regulator of G-protein signaling 2 (RGS2) proteins regulate intracellular signaling and second messenger activation of molecules including dopamine, serotonin, and acetylcholine receptors, all of which appear to be involved in the pathophysiology of AIEPSs. Previous studies have shown an association between AIEPSs in schizophrenia and RGS2, especially the minor G allele of single nucleotide polymorphism (SNP) rs4606 (+2971C>G) in RGS2, and have suggested a possible protective effect by the G allele on AIEPSs. In this study, we investigated whether the rs4606 SNP in RGS2 alone also showed an effect on AIEPSs by utilizing the Drug-Induced Extrapyramidal Symptom Scale (DIEPSS) in 103 Japanese patients with schizophrenia. In the assumed G allele recessive model, sialorrhea and total Parkinsonism scores were significantly higher in subjects with the GG genotype than in subjects with other genotypes. Other clinical variables were not significantly different among the various genotype groups. Controlling for clinical variables as covariates, a one-way analysis of covariance found no association between rs4606 genotypes and DIEPSS scores. Taken together, these results, although preliminary, suggest that rs4606 does not affect AIEPSs in Japanese subjects.

  16. Linear reduction methods for tag SNP selection.

    PubMed

    He, Jingwu; Zelikovsky, Alex

    2004-01-01

    It is widely hoped that constructing a complete human haplotype map will help to associate complex diseases with certain SNP's. Unfortunately, the number of SNP's is huge and it is very costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNP's that should be sequenced to considerably small number of informative representatives, so called tag SNP's. In this paper, we propose a new linear algebra based method for selecting and using tag SNP's. Our method is purely combinatorial and can be combined with linkage disequilibrium (LD) and block based methods. We measure the quality of our tag SNP selection algorithm by comparing actual SNP's with SNP's linearly predicted from linearly chosen tag SNP's. We obtain an extremely good compression and prediction rates. For example, for long haplotypes (>25000 SNP's), knowing only 0.4% of all SNP's we predict the entire unknown haplotype with 2% accuracy while the prediction method is based on a 10% sample of the population.

  17. Detecting Susceptibility to Breast Cancer with SNP-SNP Interaction Using BPSOHS and Emotional Neural Networks

    PubMed Central

    Wang, Xiao; Fan, Yue

    2016-01-01

    Studies for the association between diseases and informative single nucleotide polymorphisms (SNPs) have received great attention. However, most of them just use the whole set of useful SNPs and fail to consider the SNP-SNP interactions, while these interactions have already been proven in biology experiments. In this paper, we use a binary particle swarm optimization with hierarchical structure (BPSOHS) algorithm to improve the effective of PSO for the identification of the SNP-SNP interactions. Furthermore, in order to use these SNP interactions in the susceptibility analysis, we propose an emotional neural network (ENN) to treat SNP interactions as emotional tendency. Different from the normal architecture, just as the emotional brain, this architecture provides a specific path to treat the emotional value, by which the SNP interactions can be considered more quickly and directly. The ENN helps us use the prior knowledge about the SNP interactions and other influence factors together. Finally, the experimental results prove that the proposed BPSOHS_ENN algorithm can detect the informative SNP-SNP interaction and predict the breast cancer risk with a much higher accuracy than existing methods. PMID:27294121

  18. Transcriptome sequencing to produce SNP-based genetic maps of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used the 454 platform to sequence from normalized cDNA libraries from each of two inbred lines of onion (OH1 and 5225). From approximately 1.6 million reads from each inbred, 27,065 and 33,254 cDNA contigs were assembled from OH1 and 5225, respectively. In total, 3,364 single nucleotide polymorph...

  19. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  20. Genetic diversity in populations of Slovak Spotted cattle based on single nucleotide polymorphisms analyses.

    PubMed

    Moravčíková, Nina; Trakovická, Anna; Navrátilová, Alica

    2013-01-01

    The aim of this study was to identify SNPs in leptin (LEP), leptin receptor (LEPR) and growth hormone (GH) genes in order to analyze genetic diversity of Slovak Spotted cattle. The total numbers of blood samples were taken from 353 Slovak Spotted cows originating from four farms. Genomic DNA was isolated by phenol-chloroform extraction method and analyzed by PCR-RFLP method. After digestion with restriction, enzymes were detected in whole population of cow's alleles with frequency: LEP/Sau3AI A 0.84 and B 0.16 (±0.0152); LEPR/BseGI C 0.95 and T 0.05 (±0.0089) and GH/AluI L 0.70 and V 0.30 (±0.0188). Based on the observed vs. expected genotypes frequencies populations across loci were in Hardy-Weinberg equilibrium (P\\>0.05). Predominant for SNP LEP/Sau3AI was AA genotype (0.70), for SNP LEPR/T945M CC genotype (0.91), and LL genotype (0.48) was most frequent for SNP GH/AluI. The observed heterozygosity of SNPs across populations was also transferred to the low or median polymorphic information content 0.24 (He 0.28), 0.08 (He 0.09) and 0.33 (He 0.47) for LEP, LEPR and GH genes, respectively. Within genetic variability estimating negative values of fixation indexes FIS (-0.09-0.05) and FIT (-0.07-0.03) indicating heterozygote excess were observed. The value of FST indexes (0.018-0.023) shows very low levels of genetic differentiation in allele frequencies of loci among evaluated subpopulations. The low values of genetic distances (0.0018-0.0159) indicated high genetic relatedness among animals in subpopulations caused probably by common ancestry used in breeding program at farms.

  1. A novel, single nucleotide polymorphism-based assay to detect 22q11 deletions.

    PubMed

    Funke, Birgit H; Brown, Alison C; Ramoni, Marco F; Regan, Maura E; Baglieri, Chris; Finn, Christine T; Babcock, Melanie; Shprintzen, Robert J; Morrow, Bernice E; Kucherlapati, Raju

    2007-01-01

    Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.

  2. SKM-SNP: SNP markers detection method.

    PubMed

    Liu, Yang; Li, Mark; Cheung, Yiu M; Sham, Pak C; Ng, Michael K

    2010-04-01

    SKM-SNP, SNP markers detection program, is proposed to identify a set of relevant SNPs for the association between a disease and multiple marker genotypes. We employ a subspace categorical clustering algorithm to compute a weight for each SNP in the group of patient samples and the group of normal samples, and use the weights to identify the subsets of relevant SNPs that categorize these two groups. The experiments on both Schizophrenia and Parkinson Disease data sets containing genome-wide SNPs are reported to demonstrate the program. Results indicate that our method can find some relevant SNPs that categorize the disease samples. The online SKM-SNP program is available at http://www.math.hkbu.edu.hk/~mng/SKM-SNP/SKM-SNP.html.

  3. Highly effective SNP-based association mapping and management of recessive defects in livestock.

    PubMed

    Charlier, Carole; Coppieters, Wouter; Rollin, Frédéric; Desmecht, Daniel; Agerholm, Jorgen S; Cambisano, Nadine; Carta, Eloisa; Dardano, Sabrina; Dive, Marc; Fasquelle, Corinne; Frennet, Jean-Claude; Hanset, Roger; Hubin, Xavier; Jorgensen, Claus; Karim, Latifa; Kent, Matthew; Harvey, Kirsten; Pearce, Brian R; Simon, Patricia; Tama, Nico; Nie, Haisheng; Vandeputte, Sébastien; Lien, Sigbjorn; Longeri, Maria; Fredholm, Merete; Harvey, Robert J; Georges, Michel

    2008-04-01

    The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.

  4. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species.

    PubMed

    Xu, Pei; Wu, Xiaohua; Wang, Baogen; Liu, Yonghua; Ehlers, Jeffery D; Close, Timothy J; Roberts, Philip A; Diop, Ndeye-Ndack; Qin, Dehui; Hu, Tingting; Lu, Zhongfu; Li, Guojing

    2011-01-06

    Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as 'long beans' or 'asparagus beans'. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.

  5. Large-Scale SNP Discovery through RNA Sequencing and SNP Genotyping by Targeted Enrichment Sequencing in Cassava (Manihot esculenta Crantz)

    PubMed Central

    Pootakham, Wirulda; Shearman, Jeremy R.; Ruang-areerate, Panthita; Sonthirod, Chutima; Sangsrakru, Duangjai; Jomchai, Nukoon; Yoocha, Thippawan; Triwitayakorn, Kanokporn; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10. PMID:25551642

  6. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz).

    PubMed

    Pootakham, Wirulda; Shearman, Jeremy R; Ruang-Areerate, Panthita; Sonthirod, Chutima; Sangsrakru, Duangjai; Jomchai, Nukoon; Yoocha, Thippawan; Triwitayakorn, Kanokporn; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10.

  7. Association of Neuroantibodies(NAB) with Glutathione-S-Tranferase(GST) Isozyme Polymorphisms(SNP) in African-American Children with Heavy Metal Exposure

    EPA Science Inventory

    Polymorphisms in GST isozymes have implications in heavy metal accumulation, neurodegeneration, and immune-mediated disease. Blood cell DNA and sera from 131 African-American children were used to determine GST Pi [rs947895 (C>A), rs17593068 (G>T), rs6591256 (A>G), rs187...

  8. Neuroantibodies (NAB) in African-American Children with Heavy Metal Exposures are Associated with Cytokine and Human Leukocyte Antigen (HLA) Polymorphisms (SNP)

    EPA Science Inventory

    Polymorphisms in cytokine and HLA genes are associated with allergies, autoimmunity and neurodegeneration (ND). Samples from 131 African-American children (71 males; 60 females) in the Mechanistic Indicators of Childhood Asthma (MICA) study were used to determine SNPs of IL-4, IL...

  9. Family-Based Multi-SNP X Chromosome Analysis Using Parent Information.

    PubMed

    Wise, Alison S; Shi, Min; Weinberg, Clarice R

    2016-01-01

    We propose a method for association analysis of haplotypes on the X chromosome that offers both improved power and robustness to population stratification in studies of affected offspring and their parents if all three have been genotyped. The method makes use of assumed parental haplotype exchangeability (PHE), a weaker assumption than Hardy-Weinberg equilibrium (HWE). PHE requires that in the source population, of the three X chromosome haplotypes carried by the two parents, each is equally likely to be carried by the father. We propose a pseudo-sibling approach that exploits that exchangeability assumption. Our method extends the single-SNP PIX-LRT method to multiple SNPs in a high linkage block. We describe methods for testing the PHE assumption and also for determining how apparent violations can be distinguished from true fetal effects or maternally-mediated effects. We show results of simulations that demonstrate nominal type I error rate and good power. The methods are then applied to dbGaP data on the birth defect oral cleft, using both Asian and Caucasian families with cleft.

  10. Family-Based Multi-SNP X Chromosome Analysis Using Parent Information

    PubMed Central

    Wise, Alison S.; Shi, Min; Weinberg, Clarice R.

    2016-01-01

    We propose a method for association analysis of haplotypes on the X chromosome that offers both improved power and robustness to population stratification in studies of affected offspring and their parents if all three have been genotyped. The method makes use of assumed parental haplotype exchangeability (PHE), a weaker assumption than Hardy-Weinberg equilibrium (HWE). PHE requires that in the source population, of the three X chromosome haplotypes carried by the two parents, each is equally likely to be carried by the father. We propose a pseudo-sibling approach that exploits that exchangeability assumption. Our method extends the single-SNP PIX-LRT method to multiple SNPs in a high linkage block. We describe methods for testing the PHE assumption and also for determining how apparent violations can be distinguished from true fetal effects or maternally-mediated effects. We show results of simulations that demonstrate nominal type I error rate and good power. The methods are then applied to dbGaP data on the birth defect oral cleft, using both Asian and Caucasian families with cleft. PMID:26941777

  11. SNP marker development for linkage map construction, anchoring of the common bean whole genome sequence and genetic research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were to identify SNP DNA markers based on a diverse set of common bean cultivars via next generation sequencing technologies; to develop Illumina Infinium BeadChip assays containing SNPs with high polymorphism within and between common bean market classes, to create high density genet...

  12. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP) -based assays. Despite domestic and international demands fr...

  13. Common SNP-Based Haplotype Analysis of the 4p16.3 Huntington Disease Gene Region

    PubMed Central

    Lee, Jong-Min; Gillis, Tammy; Mysore, Jayalakshmi Srinidhi; Ramos, Eliana Marisa; Myers, Richard H.; Hayden, Michael R.; Morrison, Patrick J.; Nance, Martha; Ross, Christopher A.; Margolis, Russell L.; Squitieri, Ferdinando; Griguoli, Annamaria; Di Donato, Stefano; Gomez-Tortosa, Estrella; Ayuso, Carmen; Suchowersky, Oksana; Trent, Ronald J.; McCusker, Elizabeth; Novelletto, Andrea; Frontali, Marina; Jones, Randi; Ashizawa, Tetsuo; Frank, Samuel; Saint-Hilaire, Marie-Helene; Hersch, Steven M.; Rosas, Herminia D.; Lucente, Diane; Harrison, Madaline B.; Zanko, Andrea; Abramson, Ruth K.; Marder, Karen; Sequeiros, Jorge; MacDonald, Marcy E.; Gusella, James F.

    2012-01-01

    Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of “synthetic association” with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ∼50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ∼83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder. PMID:22387017

  14. Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber

    NASA Astrophysics Data System (ADS)

    Majeed, Bivragh; Jones, Ben; Tezcan, Deniz S.; Tutunjyan, Nina; Haspeslagh, Luc; Peeters, Sara; Fiorini, Paolo; de Beeck, Maaike Op; Van Hoof, Chris; Hiraoka, Maki; Tanaka, Hiroyuki; Yamashita, Ichiro

    2012-04-01

    A single nucleotide polymorphism (SNP) is a difference in the DNA sequence of one nucleotide only. We recently proposed a lab-on-a-chip (LoC) system which has the potentiality of fast, sensitive and highly specific SNP detection. Most of the chip components are silicon based and fabricated within a single process. In this paper, the newly developed fabrication method for the silicon chip is presented. The robust and reliable process allows etching structures on the same chip with very different aspect ratios. The characterization of a crucial component to the LoC SNP detector, the microreactor where DNA amplification is performed, is also detailed. Thanks to innovative design and fabrication methodologies, the microreactor has an excellent thermal isolation from the surrounding silicon substrate. This allows for highly localized temperature control. Furthermore, the microreactor is demonstrated to have rapid heating and cooling rates, allowing for rapid amplification of the target DNA fragments. Successful DNA amplification in the microreactor is demonstrated.

  15. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    PubMed

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize (Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  16. SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    PubMed Central

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-01

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. PMID:27899579

  17. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/.

  18. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population identified QTL for seed Isoflavone contents in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is one of the most important crops worldwide for its protein, oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense SNP-Based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population and quantitative t...

  19. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis

    PubMed Central

    Hong, Yanbin; Pandey, Manish K.; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K.; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  20. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  1. SNP-based association mapping of the polled gene in divergent cattle breeds.

    PubMed

    Seichter, D; Russ, I; Rothammer, S; Eder, J; Förster, M; Medugorac, I

    2012-10-01

    Naturally, hornless cattle are called polled. Although the POLL locus could be assigned to a c. 1.36-Mb interval in the centromeric region of BTA1, the underlying genetic basis for the polled trait is still unknown. Here, an association mapping design was set up to refine the candidate region of the polled trait for subsequent high-throughput sequencing. The case group comprised 101 homozygous polled animals from nine divergent cattle breeds, the majority represented by Galloway, Angus, Fleckvieh and Holstein Friesian. Additionally, this group included some polled individuals of Blonde d'Aquitaine, Charolais, Hereford, Jersey and Limousin breeds. The control group comprised horned Belgian Blue, Fleckvieh, Holstein Friesian and Illyrian Buša cattle. A genome-wide scan using 49,163 SNPs was performed, which revealed one shared homozygous haplotype block consisting of nine neighbouring SNPs in all polled animals. This segment defines a 381-kb interval on BTA1 that we consider to be the most likely location of the POLL mutation. Our results further demonstrate that the polled-associated haplotype is also frequent in horned animals included in this study, and thus the haplotype as such cannot be used for population-wide genetic testing. The actual trait-associated haplotype may be revealed by using higher-density SNP arrays. For the final identification of the causal mutation, we suggest high-throughput sequencing of the entire candidate region, because the identification of functional candidate genes is difficult owing to the lack of a comparable model.

  2. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    PubMed Central

    Muktar, Meki S.; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2015-01-01

    Late blight of potato (Solanum tuberosum L.) caused by the oomycete Phytophthora infestans (Mont.) de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i) the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii) the discovery of diagnostic single nucleotide polymorphism (SNP) markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression) in groups of plants with contrasting levels of maturity corrected resistance (MCR). Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28 to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111) identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification, and in the response to pathogen elicitors. PMID:26442110

  3. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.).

    PubMed

    Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto

    2013-04-01

    Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.

  4. Development of loop-mediated isothermal amplification (LAMP)-based SNP markers for shelf-life in melon (Cucumis melo L.).

    PubMed

    Fukuta, Shiro; Mizukami, Yuko; Ishida, Akira; Kanbe, Michio

    2006-01-01

    In this study, LAMP markers linked to shelf-life in melon (Cucumis melo L.) were developed by converting a cleaved amplified polymorphic sequences (CAPS) marker (C2). The CAPS-PCR fragments from the long-shelf-life melon (O-3) and short-shelf-life melon (Nat-2) were cloned and sequenced to construct LAMP primers. A single nucleotide polymorphism (SNP) was identified between O-3 and Nat-2. LAMP primers were designed to detect the SNP. In the LAMP reaction to detect long-shelf-life melon, the turbidity of the templates using O-3, F1, homozygous long-shelf-life F2 lines and heterozygous long-shelf-life F2 lines started to increase after 40 min. In contrast, the turbidity of Nat-2 and homozygous short-shelf-life F2 lines did not increase even after 90 min. In the LAMP reaction to detect short-shelf-life melon, the turbidity of the templates using Nat-2, F1, homozygous short-shelf-life F2 lines and heterozygous long-shelf-life F2 lines started to increase after 40 min. But the turbidity of O-3 and homozygous long-shelf-life F2 lines did not increase after 90 min. This attests to the high reliability and usefulness of LAMP for marker-assisted selection.

  5. A Picea abies Linkage Map Based on SNP Markers Identifies QTLs for Four Aspects of Resistance to Heterobasidion parviporum Infection

    PubMed Central

    Lind, Mårten; Källman, Thomas; Chen, Jun; Ma, Xiao-Fei; Bousquet, Jean; Morgante, Michele; Zaina, Giusi; Karlsson, Bo; Elfstrand, Malin; Lascoux, Martin; Stenlid, Jan

    2014-01-01

    A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length) correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size). Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor. PMID:25036209

  6. Genetic Diversity and Relatedness of Sweet Cherry (Prunus Avium L.) Cultivars Based on Single Nucleotide Polymorphic Markers

    PubMed Central

    Fernandez i Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font i Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3′ untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3′ UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, “Stella” was separated from “Compact Stella.” This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3′ UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry. PMID:22737155

  7. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241

  8. SNP discrimination through proofreading and OFF-switch of exo+ polymerase.

    PubMed

    Zhang, Jia; Li, Kai; Pardinas, Jose R; Liao, Duan F; Li, Hong J; Zhang, Xu

    2004-05-01

    Single nucleotide polymorphisms (SNPs) are useful physical markers for genetic studies as well as the cause of some genetic diseases. To develop more reliable SNP assays, we examined the underlying molecular mechanisms by which deoxyribonucleic acid (DNA) polymerases with 3' exonuclease activity maintain the high fidelity of DNA replication. In addition to mismatch removal by proofreading, we have discovered a premature termination of polymerization mediated by a novel OFF-switch mechanism. Two SNP assays were developed, one based on proofreading using 3' end-labeled primer extension and the other based on the newly identified OFF-switch, respectively. These two new assays are well suited for conventional techniques, such as electrophoresis and microplates detection systems as well as the sophisticated microchips. Application of these reliable SNP assays will greatly facilitate genetic and biomedical studies in the postgenome era.

  9. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions fr...

  10. BAC-end sequence-based SNP mining in Allotetraploid Cotton (Gossypium) utilizing re-sequencing data, phylogenetic inferences and perspectives for genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial artificial chromosome (BAC) library and BAC-end sequences for Gossypium hirsutum L. have recently been developed. Here we report on genomic-based genome-wide SNP mining utilizing re-sequencing data with a BAC-end sequence reference for twelve G. hirsutum L. lines, one G. barbadense L. li...

  11. Simultaneous detection of the exon 10 polymorphism and a novel intronic single base insertion polymorphism in the XPD gene using single strand conformation polymorphism.

    PubMed

    Kumar, Rajiv; Angelini, Sabrina; Hemminki, Kari

    2003-03-01

    We developed a new method based on the single strand conformation polymorphism (SSCP) technique for the detection of a G23591A (Asp312Asn) polymorphism in exon 10 of the XPD gene. In the process we also identified a novel polymorphism 23623C-ins (IVS10+17C-ins) in intron 10 of the same gene. With this newly developed SSCP-based method of genotyping we could detect both polymorphisms in the same assay and thus consequently determine the haplotype. In order to determine the population frequency of the novel polymorphism and the haplotype frequency, 302 healthy individuals were genotyped. The allelic frequency of the 23623C-ins intronic polymorphism was 0.16, whereas the frequency of the variant allele for the G23591A polymorphism was 0.39. Forty-three individuals (14%) were heterozygous for both polymorphisms but none carried polymorphic variants for both G23591A and 23623C-ins on the same allele. The effect of the novel intronic insertion polymorphism, which is located 16 nt downstream of the 3'-end of exon 10 of the XPD gene and involves a mononucleotide C repeat sequence, on expression remains to be determined.

  12. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    PubMed

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  13. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    PubMed Central

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  14. SNP genotypes of Mycobacterium leprae isolates in Thailand and their combination with rpoT and TTC genotyping for analysis of leprosy distribution and transmission.

    PubMed

    Phetsuksiri, Benjawan; Srisungngam, Sopa; Rudeeaneksin, Janisara; Bunchoo, Supranee; Lukebua, Atchariya; Wongtrungkapun, Ruch; Paitoon, Soontara; Sakamuri, Rama Murthy; Brennan, Patrick J; Vissa, Varalakshmi

    2012-01-01

    Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.

  15. High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  16. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study

    PubMed Central

    Orlow, Irene; Reiner, Anne S.; Thomas, Nancy E.; Roy, Pampa; Kanetsky, Peter A.; Luo, Li; Paine, Susan; Armstrong, Bruce K.; Kricker, Anne; Marrett, Loraine D.; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B.; Anton-Culver, Hoda; Gallagher, Richard P.; Dwyer, Terence; Busam, Klaus; Begg, Colin B.; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics. PMID:26521212

  17. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study.

    PubMed

    Orlow, Irene; Reiner, Anne S; Thomas, Nancy E; Roy, Pampa; Kanetsky, Peter A; Luo, Li; Paine, Susan; Armstrong, Bruce K; Kricker, Anne; Marrett, Loraine D; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B; Anton-Culver, Hoda; Gallagher, Richard P; Dwyer, Terence; Busam, Klaus; Begg, Colin B; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics.

  18. SNP Discovery and Development of a High-Density Genotyping Array for Sunflower

    PubMed Central

    Bachlava, Eleni; Taylor, Christopher A.; Tang, Shunxue; Bowers, John E.; Mandel, Jennifer R.; Burke, John M.; Knapp, Steven J.

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible. PMID:22238659

  19. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization

    PubMed Central

    Yuan, Hsiang-Yu; Chiou, Jen-Jie; Tseng, Wen-Hsien; Liu, Chia-Hung; Liu, Chuan-Kun; Lin, Yi-Jung; Wang, Hui-Hung; Yao, Adam; Chen, Yuan-Tsong; Hsu, Chun-Nan

    2006-01-01

    Single nucleotide polymorphism (SNP) prioritization based on the phenotypic risk is essential for association studies. Assessment of the risk requires access to a variety of heterogeneous biological databases and analytical tools. FASTSNP (function analysis and selection tool for single nucleotide polymorphisms) is a web server that allows users to efficiently identify and prioritize high-risk SNPs according to their phenotypic risks and putative functional effects. A unique feature of FASTSNP is that the functional effect information used for SNP prioritization is always up-to-date, because FASTSNP extracts the information from 11 external web servers at query time using a team of web wrapper agents. Moreover, FASTSNP is extendable by simply deploying more Web wrapper agents. To validate the results of our prioritization, we analyzed 1569 SNPs from the SNP500Cancer database. The results show that SNPs with a high predicted risk exhibit low allele frequencies for the minor alleles, consistent with a well-known finding that a strong selective pressure exists for functional polymorphisms. We have been using FASTSNP for 2 years and FASTSNP enables us to discover a novel promoter polymorphism. FASTSNP is available at . PMID:16845089

  20. SNP discovery and development of a high-density genotyping array for sunflower.

    PubMed

    Bachlava, Eleni; Taylor, Christopher A; Tang, Shunxue; Bowers, John E; Mandel, Jennifer R; Burke, John M; Knapp, Steven J

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible.

  1. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet.

    PubMed

    Ulloa, Pilar E; Rincón, Gonzalo; Islas-Trejo, Alma; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2015-06-01

    The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.

  2. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  3. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  4. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.

    PubMed

    Gardner, Shea N; Hall, Barry G

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.

  5. Polymorphism among EST-based markers in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated tomato (Lycopersicon esculentum Mill.) has a narrow genetic base. This is in part due to population genetic processes such as founder events, genetic bottlenecks, and natural and artificial selection during domestication. We characterize the nucleotide polymorphism in 26 EST-based markers...

  6. Mining for SNPs and SSRs using SNPServer, dbSNP and SSR taxonomy tree.

    PubMed

    Batley, Jacqueline; Edwards, David

    2009-01-01

    Molecular genetic markers represent one of the most powerful tools for the analysis of genomes and the association of heritable traits with underlying genetic variation. The development of high-throughput methods for the detection of single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) has led to a revolution in their use as molecular markers. The availability of large sequence data sets permits mining for these molecular markers, which may then be used for applications such as genetic trait mapping, diversity analysis and marker assisted selection in agriculture. Here we describe web-based automated methods for the discovery of SSRs using SSR taxonomy tree, the discovery of SNPs from sequence data using SNPServer and the identification of validated SNPs from within the dbSNP database. SSR taxonomy tree identifies pre-determined SSR amplification primers for virtually all species represented within the GenBank database. SNPServer uses a redundancy based approach to identify SNPs within DNA sequences. Following submission of a sequence of interest, SNPServer uses BLAST to identify similar sequences, CAP3 to cluster and assemble these sequences and then the SNP discovery software autoSNP to detect SNPs and insertion/deletion (indel) polymorphisms. The NCBI dbSNP database is a catalogue of molecular variation, hosting validated SNPs for several species within a public-domain archive.

  7. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  8. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  9. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array

    PubMed Central

    2012-01-01

    Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and

  10. QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map

    PubMed Central

    Zhai, Huijie; Feng, Zhiyu; Li, Jiang; Liu, Xinye; Xiao, Shihe; Ni, Zhongfu; Sun, Qixin

    2016-01-01

    Wheat yield can be enhanced by modifying the spike morphology and the plant height. In this study, a population of 191 F9 recombinant inbred lines (RILs) was developed from a cross between two winter cultivars Yumai 8679 and Jing 411. A dense genetic linkage map with 10,816 markers was constructed by incorporating single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker information. Five spike morphological traits and plant height were evaluated under nine environments for the RILs and parental lines, and the number of detected environmentally stable QTLs were 18 and three, respectively. The 1RS/1BL (rye) translocation increased both spike length and spikelet number with constant spikelet compactness. The QPht.cau-2D.1 was identical to gene Rht8, which decreased spike length without modifying spikelet number. Notably, four novel QTLs locating on chromosomes 1AS (QSc.cau-1A.1), 2DS (QSc.cau-2D.1), and 7BS (QSl.cau-7B.1 and QSl.cau-7B.2) were firstly identified in this study, which provide further insights into the genetic factors that shaped the spike morphology in wheat. Moreover, SNP markers tightly linked to previously reported QTLs will eventually facilitate future studies including their positional cloning or marker-assisted selection. PMID:27872629

  11. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival

    PubMed Central

    Jamshidi, Maral; Fagerholm, Rainer; Khan, Sofia; Aittomäki, Kristiina; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Andrulis, Irene L.; Chang-Claude, Jenny; Devilee, Peter; Fasching, Peter A.; Michailidou, Kyriaki; Bolla, Manjeet K.; Dennis, Joe; Wang, Qin; Guo, Qi; Rhenius, Valerie; Cornelissen, Sten; Rudolph, Anja; Knight, Julia A.; Loehberg, Christian R.; Burwinkel, Barbara; Marme, Frederik; Hopper, John L.; Southey, Melissa C.; Bojesen, Stig E.; Flyger, Henrik; Brenner, Hermann; Holleczek, Bernd; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Dyck, Laurien Van; Nevelsteen, Ines; Couch, Fergus J.; Olson, Janet E.; Giles, Graham G.; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Winqvist, Robert; Pylkäs, Katri; Tollenaar, Rob A.E.M.; García-Closas, Montserrat; Figueroa, Jonine; Hooning, Maartje J.; Martens, John W.M.; Cox, Angela; Cross, Simon S.; Simard, Jacques; Dunning, Alison M.; Easton, Douglas F.; Pharoah, Paul D.P.; Hall, Per; Blomqvist, Carl; Schmidt, Marjanka K.; Nevanlinna, Heli

    2015-01-01

    In breast cancer, constitutive activation of NF-κB has been reported, however, the impact of genetic variation of the pathway on patient prognosis has been little studied. Furthermore, a combination of genetic variants, rather than single polymorphisms, may affect disease prognosis. Here, in an extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-κB pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox’ regression models of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P = 1.42E-07), and patients carrying at least one rare allele for rs17243893 and rs57890595 had better survival (HRinteraction 0.51, 95% CI=0.3-0.6, P = 2.19E-05). Based on in silico functional analyses and literature, we speculate that the rs5996080 and rs7973914 loci may affect the BAFFR and TNFR1/TNFR3 receptors and breast cancer survival, possibly by disturbing both the canonical and non-canonical NF-κB pathways or their dynamics, whereas, rs17243893-rs57890595 interaction on survival may be mediated through TRAF2-TRAIL-R4 interplay. These results warrant further validation and functional analyses. PMID:26317411

  12. Forensic SNP genotyping with SNaPshot: Technical considerations for the development and optimization of multiplexed SNP assays.

    PubMed

    Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V

    2017-01-01

    This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions).

  13. Diabetes Insipidus as an Initial Presentation of Myelodysplastic Syndrome: Diagnosis with Single-Nucleotide Polymorphism Array-Based Karyotyping.

    PubMed

    Sun, Ruixue; Wang, Chun; Zhong, Xushu; Wu, Yu

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic diseases characterized by cytopenia, dysplasia and increased risk of development to acute myeloid leukemia (AML). Unfavorable cytogenetic changes such as complex karyotypes or chromosome 7 anomalies are predictive of the progression to AML and poor prognosis. Central diabetes insipidus (CDI) is the result of a deficiency of arginine vasopressin, and its major causes are idiopathic, primary or secondary tumors, neurosurgery and trauma. Importantly, CDI is a rare complication of MDS. To date, only 5 cases of MDS co-occurring with CDI have been reported; 3 of 5 had cytogenetic abnormalities uncovered by metaphase cytogenetics and 3 of 5 evolved to AML. Here, we describe a 74-year-old woman who presented with CDI as her initial symptom of MDS and eventually progressed to AML. The metaphase cytogenetics, combined with the single-nucleotide polymorphism array (SNP-A)-based karyotyping, with superiority in resolution and detecting copy number variation, revealed a complex karyotype that included monosomy of chromosome 7, deletion of 20q, and absence of heterogeneity (AOH) in more than one chromosome. To the best of our knowledge, this is the first case report of MDS co-occurring with CDI with numerous cytogenetic abnormalities revealed by the SNP-A-based karyotyping. Our case supports that the cytogenetic abnormalities may be associated with the clinical features and the prognosis of MDS co-occurring with CDI. The SNP-A-based karyotyping is helpful in revealing more subtle cytogenetic abnormalities and unveiling their roles in the pathogenesis of MDS.

  14. Simple SNP-based minimal marker genotyping for (Humulus lupulus L.) identification and variety validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hop is a perennial crop with clonal propagation system for varietal distribution. Brewers and growers are highly concerned about variety purity and regularly seek genotype testing. Current means for genotyping are based upon SSRs OR AFLPs that are relatively accurate but cannot differentiate close...

  15. Development Of Interspecific Cssls In Rice Using SNP-Based Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six libraries of chromosome segment substitution lines (CSSLs) are being developed based on crosses between three diverse accessions of O. rufipogon (from China, Laos and Indonesia) and two O. sativa recurrent parents, IR64, an indica variety (from the Philippines), and Cybonnet, a tropical japonica...

  16. Development of SNP-genotyping arrays in two shellfish species.

    PubMed

    Lapègue, S; Harrang, E; Heurtebise, S; Flahauw, E; Donnadieu, C; Gayral, P; Ballenghien, M; Genestout, L; Barbotte, L; Mahla, R; Haffray, P; Klopp, C

    2014-07-01

    Use of SNPs has been favoured due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium-throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three-generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality Score) were analysed and compared with other model and nonmodel species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programmes.

  17. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria

    PubMed Central

    Eiben, B.; Krapp, M.; Borth, H.; Kutur, N.; Kreiselmaier, P.; Glaubitz, R.; Deutinger, J.; Merz, E.

    2015-01-01

    Background & Patient: Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented. Method: The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies. Result: In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases. Conclusion: SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening. PMID:27689149

  18. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  19. Objective evaluation measures of genetic marker selection in large-scale SNP genotyping.

    PubMed

    Kaminuma, Eli; Masuya, Hiroshi; Miura, Ikuo; Motegi, Hiromi; Takahasi, Kenzi R; Nakazawa, Miki; Matsui, Minami; Gondo, Yoichi; Noda, Tetsuo; Shiroishi, Toshihiko; Wakana, Shigeharu; Toyoda, Tetsuro

    2008-10-01

    High-throughput single nucleotide polymorphism (SNP) genotyping systems provide two kinds of fluorescent signals detected from different alleles. In current technologies, the process of genotype discrimination requires subjective judgments by expert operators, even when using clustering algorithms. Here, we propose two evaluation measures to manage fluorescent scatter data with nonclear plot aggregation. The first is the marker ranking measure, which provides a ranking system for the SNP markers based on the distance between the scatter plot distribution and a user-defined ideal distribution. The second measure, called individual genotype membership, uses the membership probability of each genotype related to an individual plot in the scatter data. In verification experiments, the marker ranking measure determined the ranking of SNP markers correlated with the subjective order of SNP markers judged by an expert operator. The experiment using the individual genotype membership measure clarified that the total number of unclassified individuals was remarkably reduced compared to that of manually unclassified ones. These two evaluation measures were implemented as the GTAssist software. GTAssist provides objective standards and avoids subjective biases in SNP genotyping workflows.

  20. [Effect of the Gly972Arg, SNP43 and Prol2Ala polymorphisms of the genes IRS1, CAPN10 and PPARG2 on secondary failure to sulphonylurea and metformin in patients with type 2 diabetes in Yucatán, México].

    PubMed

    García-Escalante, María Guadalupe; Suárez-Solís, Víctor Manuel; López-Avila, María Teresa de Jesús; Pinto-Escalante, Doris del Carmen; Laviada-Molina, Hugo

    2009-03-01

    In Yucatán, 52% of patients with type 2 diabetes (DT2) present secondary failure to treatment associated with sulphonylurea and metformin. A possible explanation may be due to polymorphisms in the genes IRS1, CAPN10, PPARG2, which are involved in pancreatic beta cell dysfunction and a poor response to the action of insulin. The association of the polymorphisms Gly972Arg, SNP43, and Pro12Ala, of the genes IRS1, CAPN10, PPARG2, with the risk of failure to sulphonylurea and metformin therapies was determinated in patients with DT2 in Yucatán, México. One hundred and thirty and two subjects with DT2 were classified in groups of responders (HbA1c < 8%) and non-responders (HbA1c > 8%) to the treatment, according to the control of hyperglucemia with sulphonylurea and metformin. Demographic, anthropometric and metabolic data were obtained from each subject. The polymorphisms were identified by means of DNA analysis by PCR/RFLP and PCR/OAL. Genotypic and allelic frequencies and the Hardy-Weinberg equilibrium were determined. Statistical analyses consisted of X2 and multiple logistic regression tests (Epi-Info 2000 and SPSS version 12). Obese subjects carrying the genotype AA SNP43 showed 4.69 times more risk of failure to respond to treatment (p = 0.027), when compared with subjects sharing GA genotype: X2 (OR = 4.69, IC: 1.15-20.59) and multiple logistic regression, p = 0.048, (OR = 3.72, IC: 1.009-13.718). The interaction between genotype AA and the BMI > 27 showed also a significant difference (p = 0.009). The findings suggest the fact that polymorphism SNP43 may influence the response to treatment with sulphonylurea and metformin, the expression being dependent on obesity.

  1. Testing Allele Transmission of an SNP Set Using a Family-Based Generalized Genetic Random Field Method.

    PubMed

    Li, Ming; Li, Jingyun; He, Zihuai; Lu, Qing; Witte, John S; Macleod, Stewart L; Hobbs, Charlotte A; Cleves, Mario A

    2016-05-01

    Family-based association studies are commonly used in genetic research because they can be robust to population stratification (PS). Recent advances in high-throughput genotyping technologies have produced a massive amount of genomic data in family-based studies. However, current family-based association tests are mainly focused on evaluating individual variants one at a time. In this article, we introduce a family-based generalized genetic random field (FB-GGRF) method to test the joint association between a set of autosomal SNPs (i.e., single-nucleotide polymorphisms) and disease phenotypes. The proposed method is a natural extension of a recently developed GGRF method for population-based case-control studies. It models offspring genotypes conditional on parental genotypes, and, thus, is robust to PS. Through simulations, we presented that under various disease scenarios the FB-GGRF has improved power over a commonly used family-based sequence kernel association test (FB-SKAT). Further, similar to GGRF, the proposed FB-GGRF method is asymptotically well-behaved, and does not require empirical adjustment of the type I error rates. We illustrate the proposed method using a study of congenital heart defects with family trios from the National Birth Defects Prevention Study (NBDPS).

  2. Allele frequencies for 40 autosomal SNP loci typed for US population samples using electrospray ionization mass spectrometry

    PubMed Central

    Kiesler, Kevin M.; Vallone, Peter M.

    2013-01-01

    Aim To type a set of 194 US African American, Caucasian, and Hispanic samples (self-declared ancestry) for 40 autosomal single nucleotide polymorphism (SNP) markers intended for human identification purposes. Methods Genotyping was performed on an automated commercial electrospray ionization time-of-flight mass spectrometer, the PLEX-ID. The 40 SNP markers were amplified in eight unique 5plex PCRs, desalted, and resolved based on amplicon mass. For each of the three US sample groups statistical analyses were performed on the resulting genotypes. Results The assay was found to be robust and capable of genotyping the 40 SNP markers consuming approximately 4 nanograms of template per sample. The combined random match probabilities for the 40 SNP assay ranged from 10−16 to 10−21. Conclusion The multiplex PLEX-ID SNP-40 assay is the first fully automated genotyping method capable of typing a panel of 40 forensically relevant autosomal SNP markers on a mass spectrometry platform. The data produced provided the first allele frequencies estimates for these 40 SNPs in a National Institute of Standards and Technology US population sample set. No population bias was detected although one locus deviated from its expected level of heterozygosity. PMID:23771752

  3. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    PubMed

    Yu, ShiGang; Chu, WeiWei; Zhang, LiFan; Han, HouMing; Zhao, RongXue; Wu, Wei; Zhu, JiangNing; Dodson, Michael V; Wei, Wei; Liu, HongLin; Chen, Jie

    2015-01-01

    Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying

  4. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing

    PubMed Central

    Yu, ShiGang; Chu, WeiWei; Zhang, LiFan; Han, HouMing; Zhao, RongXue; Wu, Wei; Zhu, JiangNing; Dodson, Michael V.; Wei, Wei; Liu, HongLin; Chen, Jie

    2015-01-01

    Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying

  5. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  6. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  7. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    SciTech Connect

    2014-11-18

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.

  8. Flow cytometry-based DNA hybridization and polymorphism analysis

    SciTech Connect

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  9. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  10. A Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly From Urine Specimens

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Billig, Mariya; Chattopadhyay, Sujay; Aprikian, Pavel; Chan, Diana; Pseunova, Julietta; Rechkina, Elena; Riddell, Kim; Scholes, Delia; Fang, Ferric C.; Johnson, James R.; Sokurenko, Evgeni V.

    2016-01-01

    Background. Escherichia coli is a highly clonal pathogen. Extraintestinal isolates belong to a limited number of genetically related groups, which often exhibit characteristic antimicrobial resistance profiles. Methods. We developed a rapid clonotyping method for extraintestinal E coli based on detection of the presence or absence of 7 single nucleotide polymorphisms (SNPs) within 2 genes (fumC and fimH). A reference set of 2559 E coli isolates, primarily of urinary origin, was used to predict the resolving power of the 7-SNP-based typing method, and 582 representative strains from this set were used to evaluate test robustness. Results. Fifty-four unique SNP combinations (“septatypes”) were identified in the reference strains. These septatypes yielded a clonal group resolution power on par with that of traditional multilocus sequence typing. In 72% of isolates, septatype identity predicted sequence type identity with at least 90% (mean, 97%) accuracy. Most septatypes exhibited highly distinctive antimicrobial susceptibility profiles. The 7-SNP-based test could be performed with high specificity and sensitivity using single or multiplex conventional polymerase chain reaction (PCR) and quantitative PCR. In the latter format, E coli presence and septatype identity were determined directly in urine specimens within 45 minutes with bacterial loads as low as 102 colony-forming units/mL and, at clinically significant bacterial loads, with 100% sensitivity and specificity. Conclusions. 7-SNP-based typing of E coli can be used for both epidemiological studies and clinical diagnostics, which could greatly improve the empirical selection of antimicrobial therapy. PMID:26925427

  11. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most

  12. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data.

    PubMed

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package "MAFsnp" implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/.

  13. Improving LASSO performance for Grey Leaf Spot disease resistance prediction based on genotypic data by considering all possible two-way SNP interactions.

    PubMed

    Patel, Rinkal; Caraviello, Daniel; Qian, Wei

    2012-05-01

    Disease resistance prediction using genotypic data has been widely pursued in animal as well as plant research, mostly in cases where genotypic data can be readily available for a large number of subjects. With the evolution of SNP marker genotyping technology and the consequent cost reduction for genotyping thousands of SNP markers, significant research effort is being undertaken in the statistics and machine learning community to perform efficient analysis of these multidimensional datasets. For large plant breeding programs, besides identifying biomarkers associated with disease resistance, developing accurate predictive models of the phenotype based on the genotype alone is one of the most relevant scientific goals, as it allows for efficient selection without having to grow and phenotype every individual. While the importance of interactions for understanding diseases has been shown in many studies, the majority of the existing methods are limited by considering each biomarker as an independent variable, completely ignoring complex interactions among biomarkers. In this study, logistic regression p-value, Pearson correlation and mutual information were calculated for all two-way SNP interactions with respect to the Grey Leaf Spot (GLS) disease resistance phenotype. These interactions were subsequently ranked based on these measures and the performance of the LASSO algorithm for GLS disease resistance prediction was then shown to be maximized by adding the top 10 000 two-way interactions from the logistic regression p-value based rank. The logistic regression p-value based rank also led to an error rate of more than 3 percentual points lower than not adding any interaction and more than 3.5 percentual points lower than adding interactions chosen at random.

  14. The use of SNP markers for linkage mapping in diploid and tetraploid peanuts.

    PubMed

    Bertioli, David J; Ozias-Akins, Peggy; Chu, Ye; Dantas, Karinne M; Santos, Silvio P; Gouvea, Ediene; Guimarães, Patricia M; Leal-Bertioli, Soraya C M; Knapp, Steven J; Moretzsohn, Marcio C

    2014-01-10

    Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)(4×)]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.

  15. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes

    PubMed Central

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel

    2009-01-01

    Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481

  16. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data

    PubMed Central

    2013-01-01

    Background Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity. Methods We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA. Results A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration. Conclusions We propose a detection method for complex disease causal SNP combinations

  17. SNP Array in Hematopoietic Neoplasms: A Review

    PubMed Central

    Song, Jinming; Shao, Haipeng

    2015-01-01

    Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants. PMID:27600067

  18. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation

  19. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch].

    PubMed

    Bielenberg, Douglas Gary; Rauh, Bradley; Fan, Shenghua; Gasic, Ksenija; Abbott, Albert Glenn; Reighard, Gregory Lynn; Okie, William R; Wells, Christina Elizabeth

    2015-01-01

    Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR) and 'UFGold' (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR.

  20. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Stoffel, Kevin; Zheng, Xiuting; Saski, Christopher A; Scheffler, Brian E; Fang, David D; Chen, Z Jeffrey; Van Deynze, Allen; Stelly, David M

    2015-04-09

    A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies.

  1. is-rSNP: a novel technique for in silico regulatory SNP detection

    PubMed Central

    Macintyre, Geoff; Bailey, James; Haviv, Izhak; Kowalczyk, Adam

    2010-01-01

    Motivation: Determining the functional impact of non-coding disease-associated single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) is challenging. Many of these SNPs are likely to be regulatory SNPs (rSNPs): variations which affect the ability of a transcription factor (TF) to bind to DNA. However, experimental procedures for identifying rSNPs are expensive and labour intensive. Therefore, in silico methods are required for rSNP prediction. By scoring two alleles with a TF position weight matrix (PWM), it can be determined which SNPs are likely rSNPs. However, predictions in this manner are noisy and no method exists that determines the statistical significance of a nucleotide variation on a PWM score. Results: We have designed an algorithm for in silico rSNP detection called is-rSNP. We employ novel convolution methods to determine the complete distributions of PWM scores and ratios between allele scores, facilitating assignment of statistical significance to rSNP effects. We have tested our method on 41 experimentally verified rSNPs, correctly predicting the disrupted TF in 28 cases. We also analysed 146 disease-associated SNPs with no known functional impact in an attempt to identify candidate rSNPs. Of the 11 significantly predicted disrupted TFs, 9 had previous evidence of being associated with the disease in the literature. These results demonstrate that is-rSNP is suitable for high-throughput screening of SNPs for potential regulatory function. This is a useful and important tool in the interpretation of GWAS. Availability: is-rSNP software is available for use at: www.genomics.csse.unimelb.edu.au/is-rSNP Contact: gmaci@csse.unimelb.edu.au; adam.kowalczyk@nicta.com.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20823317

  2. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A. I.; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection. PMID:26110423

  3. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2012-06-01

    could decrease the effectiveness of treatment. These outcomes are likely due to the increased expression of mdm2 protein in SNP309 individuals, which...expression at the protein level occur in the mdm2 SNP309 cell line. There was no association between the mdm2 SNP309 and clinical outcome of breast cancer...with chemotherapy, hormonal therapy and radiation therapy. 1S. SUBJECT TERMS mdm2, breast cancer, polymorphisms 16. SECURITY CLASSIFICATION OF: 17

  4. SNP panels/Imputation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Participants from thirteen countries discussed services that Interbull can perform or recommendations that Interbull can make to promote harmonization and assist member countries in improving their genomic evaluations in regard to SNP panels and imputation. The panel recommended: A mechanism to shar...

  5. Exploration of SNP variants affecting hair colour prediction in Europeans.

    PubMed

    Söchtig, Jens; Phillips, Chris; Maroñas, Olalla; Gómez-Tato, Antonio; Cruz, Raquel; Alvarez-Dios, Jose; de Cal, María-Ángeles Casares; Ruiz, Yarimar; Reich, Kristian; Fondevila, Manuel; Carracedo, Ángel; Lareu, María V

    2015-09-01

    DNA profiling is a key tool for forensic analysis; however, current methods identify a suspect either by direct comparison or from DNA database searches. In cases with unidentified suspects, prediction of visible physical traits e.g. pigmentation or hair distribution of the DNA donors can provide important probative information. This study aimed to explore single nucleotide polymorphism (SNP) variants for their effect on hair colour prediction. A discovery panel of 63 SNPs consisting of already established hair colour markers from the HIrisPlex hair colour phenotyping assay as well as additional markers for which associations to human pigmentation traits were previously identified was used to develop multiplex assays based on SNaPshot single-base extension technology. A genotyping study was performed on a range of European populations (n = 605). Hair colour phenotyping was accomplished by matching donor's hair to a graded colour category system of reference shades and photography. Since multiple SNPs in combination contribute in varying degrees to hair colour predictability in Europeans, we aimed to compile a compact marker set that could provide a reliable hair colour inference from the fewest SNPs. The predictive approach developed uses a naïve Bayes classifier to provide hair colour assignment probabilities for the SNP profiles of the key SNPs and was embedded into the Snipper online SNP classifier ( http://mathgene.usc.es/snipper/ ). Results indicate that red, blond, brown and black hair colours are predictable with informative probabilities in a high proportion of cases. Our study resulted in the identification of 12 most strongly associated SNPs to hair pigmentation variation in six genes.

  6. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  7. Grouping preprocess for haplotype inference from SNP and CNV data

    NASA Astrophysics Data System (ADS)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Kamatani, Naoyuki; Inoue, Masato

    2009-12-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  8. Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™.

    PubMed

    Eduardoff, M; Santos, C; de la Puente, M; Gross, T E; Fondevila, M; Strobl, C; Sobrino, B; Ballard, D; Schneider, P M; Carracedo, Á; Lareu, M V; Parson, W; Phillips, C

    2015-07-01

    Next generation sequencing (NGS) offers the opportunity to analyse forensic DNA samples and obtain massively parallel coverage of targeted short sequences with the variants they carry. We evaluated the levels of sequence coverage, genotyping precision, sensitivity and mixed DNA patterns of a prototype version of the first commercial forensic NGS kit: the HID-Ion AmpliSeq™ Identity Panel with 169-markers designed for the Ion PGM™ system. Evaluations were made between three laboratories following closely matched Ion PGM™ protocols and a simple validation framework of shared DNA controls. The sequence coverage obtained was extensive for the bulk of SNPs targeted by the HID-Ion AmpliSeq™ Identity Panel. Sensitivity studies showed 90-95% of SNP genotypes could be obtained from 25 to 100pg of input DNA. Genotyping concordance tests included Coriell cell-line control DNA analyses checked against whole-genome sequencing data from 1000 Genomes and Complete Genomics, indicating a very high concordance rate of 99.8%. Discordant genotypes detected in rs1979255, rs1004357, rs938283, rs2032597 and rs2399332 indicate these loci should be excluded from the panel. Therefore, the HID-Ion AmpliSeq™ Identity Panel and Ion PGM™ system provide a sensitive and accurate forensic SNP genotyping assay. However, low-level DNA produced much more varied sequence coverage and in forensic use the Ion PGM™ system will require careful calibration of the total samples loaded per chip to preserve the genotyping reliability seen in routine forensic DNA. Furthermore, assessments of mixed DNA indicate the user's control of sequence analysis parameter settings is necessary to ensure mixtures are detected robustly. Given the sensitivity of Ion PGM™, this aspect of forensic genotyping requires further optimisation before massively parallel sequencing is applied to routine casework.

  9. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India.

    PubMed

    Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U

    2013-11-01

    Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community.

  10. SNP Markers and Their Impact on Plant Breeding

    PubMed Central

    Mammadov, Jafar; Aggarwal, Rajat; Buyyarapu, Ramesh; Kumpatla, Siva

    2012-01-01

    The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-increasing sequence information in public databases; however, complex genomes pose special challenges in the identification of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key experimental strategies and cases exemplifying their impact. PMID:23316221

  11. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  12. Effect of candidate gene polymorphisms on reproductive traits in a Large White pig population.

    PubMed

    Sato, Shuji; Kikuchi, Takashi; Uemoto, Yoshinobu; Mikawa, Satoshi; Suzuki, Keiichi

    2016-12-01

    The objective of this study was to test for association of candidate single nucleotide polymorphisms (SNPs) with sow prolificacy reproductive traits, such as litter size, ovulation rate and lifetime performance, in gilts of a Large White pig population. Preliminary research on 25 animals selected from the high- and low-performance groups of 347 animals with case-control studies indicated that seven genes were associated with total number of piglets born (TNB). Six of the seven genes were associated with reproductive traits, including TNB, number of piglets born alive (NBA) and average weight of piglet weaning (AWW). A MBL2 SNP was significantly associated with TNB and NBA in first parity. A CFB SNP was associated with TNB in first parity. An ACE SNP was associated with TNB in first and second parities. An EGF polymorphism was associated with TNB, NBA and AWW in second parity. A KCNC2 polymorphism was significantly associated with TNB and NBA in second parity. A SLC22A5 SNP was associated with TNB and NBA in second parity. Six candidate SNPs were associated with TNB; the only exception was a PRKAG3 polymorphism. A candidate gene approach enables some of these polymorphisms to be used in genetic improvement programs based on marker-assisted selection.

  13. Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans.

    PubMed

    Lu, Yaping; Liu, Yemao; Niu, Xiaohui; Yang, Qingyong; Hu, Xuehai; Zhang, Hong-Yu; Xia, Jingbo

    2015-01-01

    In the post-GWAS (Genome-Wide Association Scan) era, the interpretation of GWAS results is crucial to screen for highly relevant phenotype-genotype association pairs. Based on the single genotype-phenotype association test and a pathway enrichment analysis, we propose a Metabolite-pathway-based Phenome-Wide Association Scan (M-PheWAS) to analyze the key metabolite-SNP pairs in rice and determine the regulatory relationship by assessing similarities in the changes of enzymes and downstream products in a pathway. Two SNPs, sf0315305925 and sf0315308337, were selected using this approach, and their molecular function and regulatory relationship with Enzyme EC:5.5.1.6 and with flavonoids, a significant downstream regulatory metabolite product, were demonstrated. Moreover, a total of 105 crucial SNPs were screened using M-PheWAS, which may be important for metabolite associations.

  14. The genetics of alcohol dependence: Twin and SNP-based heritability, and genome-wide association study based on AUDIT scores.

    PubMed

    Mbarek, Hamdi; Milaneschi, Yuri; Fedko, Iryna O; Hottenga, Jouke-Jan; de Moor, Marleen H M; Jansen, Rick; Gelernter, Joel; Sherva, Richard; Willemsen, Gonneke; Boomsma, Dorret I; Penninx, Brenda W; Vink, Jacqueline M

    2015-12-01

    Alcohol dependence (AD) is among the most common and costly public health problems contributing to morbidity and mortality throughout the world. In this study, we investigate the genetic basis of AD in a Dutch population using data from the Netherlands Twin Register (NTR) and the Netherlands Study of Depression and Anxiety (NESDA). The presence of AD was ascertained via the Alcohol Use Disorders Identification Test (AUDIT) applying cut-offs with good specificity and sensitivity in identifying those at risk for AD. Twin-based heritability of AD-AUDIT was estimated using structural equation modeling of data in 7,694 MZ and DZ twin pairs. Variance in AD-AUDIT explained by all SNPs was estimated with genome-wide complex trait analysis (GCTA). A genome-wide association study (GWAS) was performed in 7,842 subjects. GWAS SNP effect concordance analysis was performed between our GWAS and a recent AD GWAS using DSM-IV diagnosis. The twin-based heritability of AD-AUDIT was estimated at 60% (55-69%). GCTA showed that common SNPs jointly capture 33% (SE = 0.12, P = 0.002) of this heritability. In the GWAS, the top hits were positioned within four regions (4q31.1, 2p16.1, 6q25.1, 7p14.1) with the strongest association detected for rs55768019 (P = 7.58 × 10(-7) ). This first GWAS of AD using the AUDIT measure found results consistent with previous genetic studies using DSM diagnosis: concordance in heritability estimates and direction of SNPs effect and overlap with top hits from previous GWAS. Thus, the use of appropriate questionnaires may represent cost-effective strategies to phenotype samples in large-scale biobanks or other population-based datasets.

  15. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe.

    PubMed

    Zhang, Hongge; Wang, Minjuan; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2011-05-15

    A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F(0)=2.73 C (μM)+1.14 (R=0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N=3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.

  16. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  17. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  18. PCR-based polymorphisms in neurofibromatosis type 1 (NFI)

    SciTech Connect

    Lai, P.S.; Chee, S.; Low, P.S.

    1994-09-01

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans with an incidence of 1 in 3,000. The NF1 gene is located on chromosome 17q 11.2 and encodes an ubiquitously expressed transcript of about 13kb. Direct mutation detection is difficult in this disorder due to the large gene size, high mutation rate and variety of mutations. We have studied the allele frequencies of seven PCR-based polymorphisms. Six of the probes used flank the NF1 gene, namely p11.3C4.2/Msp I (proximal), pEW206/Msp I (distal), p2.f9.8/Rsa I (distal), pEW207/Bgl II (distal), pEW207/Hind III (distal) and pHHH202/Rsa I (proximal). An intragenic RFLP, pEvi 2B-B/Eco R1 polymorphism in intron 27, was also analyzed by PCR. Allele frequencies for 48 normal unrelated individuals were obtained as follows: A1 = 0.40, A2 = 0.6 (p11.3C4.2/Msp I), A1 = 0.44, A2 = 0.56 (pEW206/Msp I), A1 = 0.17, A2 = 0.83 (p2.F9.8/Rsa I), A1 = 0.64, A2 = 0.36 (pEW207/Bgl I), A1 = 0.45, A2 = 0.55 (pEvi 2B-B/Eco RI). Heterozygosity rates of the alleles ranged from 20.8% to 51.7%. Using a combination of these markers, seven local families with NF1 were studied. Normal Mendelian segregation of alleles was observed in these families and no recombination was detected so far. These PCR-based markers were found to be useful for linkage analysis in our families.

  19. High-Density Genetic Linkage Mapping in Turbot (Scophthalmus maximus L.) Based on SNP Markers and Major Sex- and Growth-Related Regions Detection

    PubMed Central

    Wang, Weiji; Hu, Yulong; Ma, Yu; Xu, Liyong; Guan, Jiantao; Kong, Jie

    2015-01-01

    This paper describes the development of a high density consensus genetic linkage map of a turbot (Scophthalmus maximus L.) family composed of 149 mapping individuals using Single Nucleotide Polymorphisms (SNP) developed using the restriction-site associated DNA (RAD) sequencing technique with the restriction enzyme, PstI. A total of 6,647 SNPs were assigned to 22 linkage groups, which is equal to the number of chromosome pairs in turbot. For the first time, the average marker interval reached 0.3958 cM, which is equal to approximately 0.1203 Mb of the turbot genome. The observed 99.34% genome coverage indicates that the linkage map was genome-wide. A total of 220 Quantitative Traits Locus (QTLs) associated with two body length traits, two body weight traits in different growth periods and sex determination were detected with an LOD > 5.0 in 12 linkage groups (LGs), which explained the corresponding phenotypic variance (R2), ranging from 14.4–100%. Among them, 175 overlapped with linked SNPs, and the remaining 45 were located in regions between contiguous SNPs. According to the QTLs related to growth trait distribution and the changing of LGs during different growth periods, the growth traits are likely controlled by multi-SNPs distributed on several LGs; the effect of these SNPs changed during different growth periods. Most sex-related QTLs were detected at LG 21 with a linkage span of 70.882 cM. Additionally, a small number of QTLs with high feasibility and a narrow R2 distribution were also observed on LG7 and LG14, suggesting that multi LGs or chromosomes might be involved in sex determination. High homology was recorded between LG21 in Cynoglossus semilaevis and turbot. This high-saturated turbot RAD-Seq linkage map is undoubtedly a promising platform for marker assisted selection (MAS) and flatfish genomics research. PMID:25775256

  20. PCR amplification of SNP loci from crude DNA for large-scale genotyping of oomycetes.

    PubMed

    Hu, Jian; Lyon, Rebecca; Zhou, Yuxin; Lamour, Kurt

    2014-01-01

    Similar to other eukaryotes, single nucleotide polymorphism (SNP) markers are abundant in many oomycete plant pathogen genomes. High resolution DNA melting analysis (HR-DMA) is a cost-effective method for SNP genotyping, but like many SNP marker technologies, is limited by the amount and quality of template DNA. We describe PCR preamplification of Phytophthora and Peronospora SNP loci from crude DNA extracted from a small amount of mycelium and/or infected plant tissue to produce sufficient template to genotype at least 10 000 SNPs. The approach is fast, inexpensive, requires minimal biological material and should be useful for many organisms in a variety of contexts.

  1. Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats.

    PubMed

    Cardoso, Sara D; Gonçalves, David; Robalo, Joana I; Almada, Vitor C; Canário, Adelino V M; Oliveira, Rui F

    2013-09-01

    Transcriptome data are a good resource to develop microsatellites due to their potential in targeting candidate genes. However, developing microsatellites can be a time-consuming enterprise due to the numerous primer pairs to be tested. Therefore, the use of methodologies that make it efficient to identify polymorphic microsatellites is desirable. Here we used a 62,038 contigs transcriptome assembly, obtained from pyrosequencing a peacock blenny (Salaria pavo) multi-tissue cDNA library, to mine for microsatellites and in silico evaluation of their polymorphism. A total of 4190 microsatellites were identified in 3670 unique unigenes, and from these microsatellites, in silico polymorphism was detected in 733. We selected microsatellites based either on their in silico polymorphism and annotation results or based only on their number of repeats. Using these two approaches, 28 microsatellites were successfully amplified in twenty-six individuals, and all but 2 were found to be polymorphic, being the first genetic markers for this species. Our results showed that the strategy of selection based on number of repeats is more efficient in obtaining polymorphic microsatellites than the strategy of in silico polymorphism (allelic richness was 8.2±3.85 and 4.56±2.45 respectively). This study demonstrates that combining the knowledge of number of repeats with other predictors of variability, for example in silico microsatellite polymorphism, improves the rates of polymorphism, yielding microsatellites with higher allelic richness, and decreases the number of monomorphic microsatellites obtained.

  2. Triallelic SNP-mediated genotyping of regenerated protoplasts of the heterokaryotic fungus Rhizoctonia solani.

    PubMed

    Thomas, Elizabeth; Pakala, Suman; Fedorova, Natalie D; Nierman, William C; Cubeta, Marc A

    2012-04-15

    The aneuploid and heterokaryotic nuclear condition of the soil fungus Rhizoctonia solani have provided challenges in obtaining a complete genome sequence. To better aid in the assembly and annotation process, a protoplast and single nucleotide polymorphism (SNP)-based method was developed to identify regenerated protoplasts with a reduced nuclear genome. Protocol optimization experiments showed that enzymatic digestion of mycelium from a 24 h culture of R. solani increased the proportion of protoplasts with a diameter of ≤7.5 μm and 1-4 nuclei. To determine whether strains regenerated from protoplasts with a reduced number of nuclei were genetically different from the parental strain, triallelic SNPs identified from variance records of the genomic DNA sequence reads of R. solani were used in PCR-based genotyping assays. Results from 16 of the 24 SNP-based PCR assays provided evidence that one of the three alleles was missing in the 11 regenerated protoplast strains, suggesting that these strains represent a reduced genomic complement of the parental strain. The protoplast and triallelic SNP-based method used in this study may be useful in strain development and analysis of other basidiomycete fungi with complex nuclear genomes.

  3. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing.

    PubMed

    Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies.

  4. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

    PubMed Central

    Li, Gang; Hillier, LaDeana W.; Grahn, Robert A.; Zimin, Aleksey V.; David, Victor A.; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O’Brien, Stephen J.; Minx, Pat; Wilson, Richard K.; Lyons, Leslie A.; Warren, Wesley C.; Murphy, William J.

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  5. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  6. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy

    PubMed Central

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc’h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques. PMID:27379109

  7. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy.

    PubMed

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc'h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques.

  8. [Allele polymorphism analysis in coagulation factors F2, F5 and folate metabolism gene MTHFR by using microchip-based multiplex real time PCR].

    PubMed

    Bogdanov, K V; Nikitin, M M; Slyadnev, M N

    2015-01-01

    Single nucleotide polymorphism (SNP) genotyping methods are widely used for the detection of hereditary thrombophilias caused by genetic defects in the coagulation system. The hereditary thrombophilias are frequently associated with higher incidences of point mutations in hemostasis (F2 20210G>A, F5 1691G>A) and folate metabolism (MTHFR 677C>Т, MTHFR 1298A>C) genes. Moreover, the combination of gene abnormalities in F2 or/and MTHFR with F5 Leiden mutation leads to increased risk of developing thrombosis. Thus, simultaneous detection of the multiple gene mutations in a sample has important clinical relevance. The microchip-based multiplex real time PCR for estimation of allele specific polymorphism in hemostatic and folate metabolism genes presented here has a high efficiency and may be used for laboratory diagnosis. The optimized protocol for estimation of 4 different types of genetic polymorphisms allowed PCR to be performed with minimal quantity of DNA template and PCR reagents including Taq polymerase and a short-term thermocycling.

  9. The case-only independence assumption: associations between genetic polymorphisms and smoking among controls in two population-based studies

    PubMed Central

    Hodgson, M Elizabeth; Olshan, Andrew F; North, Kari E; Poole, Charles L; Zeng, Donglin; Tse, Chiu-Kit; Keku, Tope O; Galanko, Joseph; Sandler, Robert; Millikan, Robert C

    2012-01-01

    The independence assumption for a case-only analysis of statistical interaction, i. e. that genetic (G) and environmental exposures (E) are not associated in the source population, is often checked in surrogate populations. Few studies have examined G-E association in empirical data, particularly in controls from population-based studies, the type of controls expected to provide the most valid surrogate estimates of G-E association. We used controls from two population-based case-control studies to evaluate G-E independence for 43 selected genetic polymorphisms and smoking behavior. The odds ratio (ORz) was used to estimate G-E association and, therefore, the magnitude of bias introduced into the case-only odds ratio (COR). Odds ratios of moderate magnitude [mmORz], defined as ORz≤0.7 or ORz≥1.4, were found at least one of the six smoking measures (ever, former, current, cig/day, years smoked, pack-years) for 45% and 59% of the SNPs examined in the control groups of two independently conducted North Carolina studies, respectively. Consequently, case-only estimates of G-E interaction in the context of a multiplicative benchmark would be biased for these SNPs and smoking measures. MmORzs were found more often for smoking amount than smoking status. We recommend that a stand-alone case-only study should only be conducted when G-E independence can be verified for each polymorphism and exposure metric with population-specific data. Our results suggest that ORz is specific to each underlying population rather than an estimate of a ‘universal’ ORz for that SNP and smoking measure. Further, misspecification of smoking is likely to introduce bias into the COR. PMID:23205185

  10. The case-only independence assumption: associations between genetic polymorphisms and smoking among controls in two population-based studies.

    PubMed

    Hodgson, M Elizabeth; Olshan, Andrew F; North, Kari E; Poole, Charles L; Zeng, Donglin; Tse, Chiu-Kit; Keku, Tope O; Galanko, Joseph; Sandler, Robert; Millikan, Robert C

    2012-01-01

    The independence assumption for a case-only analysis of statistical interaction, i. e. that genetic (G) and environmental exposures (E) are not associated in the source population, is often checked in surrogate populations. Few studies have examined G-E association in empirical data, particularly in controls from population-based studies, the type of controls expected to provide the most valid surrogate estimates of G-E association. We used controls from two population-based case-control studies to evaluate G-E independence for 43 selected genetic polymorphisms and smoking behavior. The odds ratio (OR(z)) was used to estimate G-E association and, therefore, the magnitude of bias introduced into the case-only odds ratio (COR). Odds ratios of moderate magnitude [mmOR(z)], defined as OR(z)≤0.7 or OR(z)≥1.4, were found at least one of the six smoking measures (ever, former, current, cig/day, years smoked, pack-years) for 45% and 59% of the SNPs examined in the control groups of two independently conducted North Carolina studies, respectively. Consequently, case-only estimates of G-E interaction in the context of a multiplicative benchmark would be biased for these SNPs and smoking measures. MmOR(z)s were found more often for smoking amount than smoking status. We recommend that a stand-alone case-only study should only be conducted when G-E independence can be verified for each polymorphism and exposure metric with population-specific data. Our results suggest that OR(z) is specific to each underlying population rather than an estimate of a 'universal' OR(z) for that SNP and smoking measure. Further, misspecification of smoking is likely to introduce bias into the COR.

  11. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean.

    PubMed

    Kim, M Y; Van, K; Lestari, P; Moon, J-K; Lee, S-H

    2005-04-01

    Supernodulation in soybean (Glycine max L. Merr.) is an important source of nitrogen supply to subterranean ecological systems. Single nucleotide-amplified polymorphism (SNAP) markers for supernodulation should allow rapid screening of the trait in early growth stages, without the need for inoculation and phenotyping. The gene GmNARK (Glycine max nodule autoregulation receptor kinase), controlling autoregulation of nodulation, was found to have a single nucleotide polymorphism (SNP) between the wild-type cultivar Sinpaldalkong 2 and its supernodulating mutant, SS2-2. Transversion of A to T at the 959-bp position of the GmNARK sequence results in a change of lysine (AAG) to a stop codon (TAG), thus terminating its translation in SS2-2. Based on the identified SNP in GmNARK, five primer pairs specific to each allele were designed using the WebSnaper program to develop a SNAP marker for supernodulation. One A-specific primer pair produced a band present in only Sinpaldalkong 2, while two T-specific pairs showed a band in only SS2-2. Both complementary PCRs, using each allele-specific primer pair were performed to genotype supernodulation against F2 progeny of Sinpaldalkong 2 x SS2-2. Among 28 individuals with the normal phenotype, eight individuals having only the A-allele-specific band were homozygous and normal, while 20 individuals were found to be heterozygous at the SNP having both A and T bands. Twelve supernodulating individuals showed only the band specific to the T allele. This SNAP marker for supernodulation could easily be analyzed through simple PCR and agarose gel electrophoresis. Therefore, use of this SNAP marker might be faster, cheaper, and more reproducible than using other genotyping methods, such as a cleaved amplified polymorphic sequence marker, which demand of restriction enzymes.

  12. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas)

    PubMed Central

    Li, Chunyan; Wang, Wei; Li, Busu; Li, Li

    2017-01-01

    Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics. PMID:28328985

  13. Genetic profiling by single-nucleotide polymorphism-based array analysis defines three distinct subtypes of orbital meningioma.

    PubMed

    Ho, Cheng-Ying; Mosier, Stacy; Safneck, Janice; Salomao, Diva R; Miller, Neil R; Eberhart, Charles G; Gocke, Christopher D; Batista, Denise A S; Rodriguez, Fausto J

    2015-03-01

    Orbital meningiomas can be classified as primary optic nerve sheath (ON) meningiomas, primary intraorbital ectopic (Ob) meningiomas and spheno-orbital (Sph-Ob) meningiomas based on anatomic site. Single-nucleotide polymorphism (SNP)-based array analysis with the Illumina 300K platform was performed on formalin-fixed, paraffin-embedded tissue from 19 orbital meningiomas (5 ON, 4 Ob and 10 Sph-Ob meningiomas). Tumors were World Health Organization (WHO) grade I except for two grade II meningiomas, and one was NF2-associated. We found genomic alterations in 68% (13 of 19) of orbital meningiomas. Sph-Ob tumors frequently exhibited monosomy 22/22q loss (70%; 7/10) and deletion of chromosome 1p, 6q and 19p (50% each; 5/10). Among genetic alterations, loss of chromosome 1p and 6q were more frequent in clinically progressive tumors. Chromosome 22q loss also was detected in the majority of Ob meningiomas (75%; 3/4) but was infrequent in ON meningiomas (20%; 1/5). In general, Ob tumors had fewer chromosome alterations than Sph-Ob and ON tumors. Unlike Sph-Ob meningiomas, most of the Ob and ON meningiomas did not progress even after incomplete excision, although follow-up was limited in some cases. Our study suggests that ON, Ob and Sph-Ob meningiomas are three molecularly distinct entities. Our results also suggest that molecular subclassification may have prognostic implications.

  14. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  15. Analyzing cancer samples with SNP arrays.

    PubMed

    Van Loo, Peter; Nilsen, Gro; Nordgard, Silje H; Vollan, Hans Kristian Moen; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Lingjærde, Ole Christian

    2012-01-01

    Single nucleotide polymorphism (SNP) arrays are powerful tools to delineate genomic aberrations in cancer genomes. However, the analysis of these SNP array data of cancer samples is complicated by three phenomena: (a) aneuploidy: due to massive aberrations, the total DNA content of a cancer cell can differ significantly from its normal two copies; (b) nonaberrant cell admixture: samples from solid tumors do not exclusively contain aberrant tumor cells, but always contain some portion of nonaberrant cells; (c) intratumor heterogeneity: different cells in the tumor sample may have different aberrations. We describe here how these phenomena impact the SNP array profile, and how these can be accounted for in the analysis. In an extended practical example, we apply our recently developed and further improved ASCAT (allele-specific copy number analysis of tumors) suite of tools to analyze SNP array data using data from a series of breast carcinomas as an example. We first describe the structure of the data, how it can be plotted and interpreted, and how it can be segmented. The core ASCAT algorithm next determines the fraction of nonaberrant cells and the tumor ploidy (the average number of DNA copies), and calculates an ASCAT profile. We describe how these ASCAT profiles visualize both copy number aberrations as well as copy-number-neutral events. Finally, we touch upon regions showing intratumor heterogeneity, and how they can be detected in ASCAT profiles. All source code and data described here can be found at our ASCAT Web site ( http://www.ifi.uio.no/forskning/grupper/bioinf/Projects/ASCAT/).

  16. A Bayesian Framework for SNP Identification

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Havre, Susan L.; Payne, Deborah A.

    2005-07-01

    Current proteomics techniques, such as mass spectrometry, focus on protein identification, usually ignoring most types of modifications beyond post-translational modifications, with the assumption that only a small number of peptides have to be matched to a protein for a positive identification. However, not all proteins are being identified with current techniques and improved methods to locate points of mutation are becoming a necessity. In the case when single-nucleotide polymorphisms (SNPs) are observed, brute force is the most common method to locate them, quickly becoming computationally unattractive as the size of the database associated with the model organism grows. We have developed a Bayesian model for SNPs, BSNP, incorporating evolutionary information at both the nucleotide and amino acid levels. Formulating SNPs as a Bayesian inference problem allows probabilities of interest to be easily obtained, for example the probability of a specific SNP or specific type of mutation over a gene or entire genome. Three SNP databases were observed in the evaluation of the BSNP model; the first SNP database is a disease specific gene in human, hemoglobin, the second is also a disease specific gene in human, p53, and the third is a more general SNP database for multiple genes in mouse. We validate that the BSNP model assigns higher posterior probabilities to the SNPs defined in all three separate databases than can be attributed to chance under specific evolutionary information, for example the amino acid model described by Majewski and Ott in conjunction with either the four-parameter nucleotide model by Bulmer or seven-parameter nucleotide model by Majewski and Ott.

  17. Sniper: improved SNP discovery by multiply mapping deep sequenced reads.

    PubMed

    Simola, Daniel F; Kim, Junhyong

    2011-06-20

    SNP (single nucleotide polymorphism) discovery using next-generation sequencing data remains difficult primarily because of redundant genomic regions, such as interspersed repetitive elements and paralogous genes, present in all eukaryotic genomes. To address this problem, we developed Sniper, a novel multi-locus Bayesian probabilistic model and a computationally efficient algorithm that explicitly incorporates sequence reads that map to multiple genomic loci. Our model fully accounts for sequencing error, template bias, and multi-locus SNP combinations, maintaining high sensitivity and specificity under a broad range of conditions. An implementation of Sniper is freely available at http://kim.bio.upenn.edu/software/sniper.shtml.

  18. Rapid SNP Detection and Genotyping of Bacterial Pathogens by Pyrosequencing.

    PubMed

    Amoako, Kingsley K; Thomas, Matthew C; Janzen, Timothy W; Goji, Noriko

    2017-01-01

    Bacterial identification and typing are fixtures of microbiology laboratories and are vital aspects of our response mechanisms in the event of foodborne outbreaks and bioterrorist events. Whole genome sequencing (WGS) is leading the way in terms of expanding our ability to identify and characterize bacteria through the identification of subtle differences between genomes (e.g. single nucleotide polymorphisms (SNPs) and insertions/deletions). Modern high-throughput technologies such as pyrosequencing can facilitate the typing of bacteria by generating short-read sequence data of informative regions identified by WGS analyses, at a fraction of the cost of WGS. Thus, pyrosequencing systems remain a valuable asset in the laboratory today. Presented in this chapter are two methods developed in the Amoako laboratory that detail the identification and genotyping of bacterial pathogens. The first targets canonical single nucleotide polymorphisms (canSNPs) of evolutionary importance in Bacillus anthracis, the causative agent of Anthrax. The second assay detects Shiga-toxin (stx) genes, which are associated with virulence in Escherichia coli and Shigella spp., and differentiates the subtypes of stx-1 and stx-2 based on SNP loci. These rapid methods provide end users with important information regarding virulence traits as well as the evolutionary and biogeographic origin of isolates.

  19. Prognostic significance of interleukin-6 single nucleotide polymorphism genotypes in neuroblastoma: rs1800795 (promoter) and rs8192284 (receptor)

    PubMed Central

    Lagmay, Joanne P.; London, Wendy B.; Gross, Thomas G.; Termuhlen, Amanda; Sullivan, Nicholas; Axel, Amy; Mundy, Bethany; Ranalli, Mark; Canner, Jason; McGrady, Patrick; Hall, Brett

    2009-01-01

    Purpose Neuroblastoma is a childhood cancer of the sympathetic nervous system and many patients present with high risk disease. Risk stratification, based on pathology and tumor-derived biomarkers, has improved prediction of clinical outcomes, but overall survival rates remain unfavorable and new therapeutic targets are needed. Some studies suggest a link between interleukin-6 and more aggressive behavior in neuroblastoma tumor cells. Therefore, we examined the impact of two IL-6 single nucleotide polymorphisms (SNP) on neuroblastoma disease progression. Experimental design DNA samples from 96 high risk neuroblastoma patients were screened for two SNP that are known to regulate the serum levels of IL-6 and the soluble IL-6 receptor (IL-6R), rs1800795 and rs8192284 respectively. The genotype for each SNP was determined in a blinded fashion and independent statistical analysis was performed to determine SNP-related event free survival (EFS) and overall survival (OS) rates. Results The rs1800795 IL-6 promoter SNP is an independent prognostic factor for EFS and OS in -high risk neuroblastoma patients. In contrast, the rs8192284 IL-6 receptor SNP revealed no prognostic value. Conclusions The rs1800795 SNP (-174 IL-6 (G>C) represents a novel and independent prognostic marker for both EFS and OS in high risk neuroblastoma. Since the rs1800795 SNP (-174 IL-6 (G>C) has been shown to correlate with production of IL-6, this cytokine may represent a target for development of new therapies in neuroblastoma. PMID:19671870

  20. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  1. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms

    NASA Astrophysics Data System (ADS)

    Hui, Wenli; Zhang, Sinong; Zhang, Chao; Wan, Yinsheng; Zhu, Juanli; Zhao, Gang; Wu, Songdi; Xi, Dujuan; Zhang, Qinlu; Li, Ningning; Cui, Yali

    2016-02-01

    Current techniques for single nucleotide polymorphism (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticle (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amounts from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1721 individuals for the C677T genotypes. The concordance rate of the genotyping results detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven to be rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes.

  2. Identification of a candidate single-nucleotide polymorphism related to chemotherapeutic response through a combination of knowledge-based algorithm and hypothesis-free genomic data.

    PubMed

    Takahashi, Hiro; Kaniwa, Nahoko; Saito, Yoshiro; Sai, Kimie; Hamaguchi, Tetsuya; Shirao, Kuniaki; Shimada, Yasuhiro; Matsumura, Yasuhiro; Ohtsu, Atsushi; Yoshino, Takayuki; Takahashi, Anna; Odaka, Yoko; Okuyama, Misuzu; Sawada, Jun-ichi; Sakamoto, Hiromi; Yoshida, Teruhiko

    2013-12-01

    Inter-individual variations in drug responses among patients are known to cause serious problems in medicine. Genome-wide association study (GWAS) is powerful for examining single-nucleotide polymorphisms (SNPs) and their relationships with drug response variations. However, no significant SNP has been identified using GWAS due to multiple testing problems. Therefore, we propose a combination method consisting of knowledge-based algorithm, two stages of screening, and permutation test for identifying SNPs in the present study. We applied this method to a genome-wide pharmacogenomics study for which 109,365 SNPs had been genotyped using Illumina Human-1 BeadChip for 119 gastric cancer patients treated with fluoropyrimidine. We identified rs2293347 in epidermal growth factor receptor (EGFR) is as a candidate SNP related to chemotherapeutic response. The p value for the rs2293347 was 2.19 × 10(-5) for Fisher's exact test, and the p value was 0.00360 for the permutation test (multiple testing problems are corrected). Additionally, rs2293347 was clearly superior to clinical parameters and showed a sensitivity value of 55.0% and specificity value of 94.4% in the evaluation by using multiple regression models. Recent studies have shown that combination chemotherapy of fluoropyrimidine and EGFR-targeting agents is effective for gastric cancer patients highly expressing EGFR. These results suggest that rs2293347 is a potential predictive factor for selecting chemotherapies, such as fluoropyrimidine alone or combination chemotherapies.

  3. Two single base polymorphisms in introns 41 and 16 of the NF1 gene

    SciTech Connect

    Shen, Ming Hong; Upadhyaya, M.

    1995-04-24

    We have characterized two intragenic polymorphisms in the neurofibromatosis type 1 (NF1) gene by direct sequencing of PCR products. The variants for these polymorphisms were initially detected on Hydrolink gels. One of the polymorphisms involves a G to A transition in intron 41 at the 28th base upstream of exon 42 with an observed {open_quote}G{close_quote}/{open_quote}A{close_quote} heterozygosity of 0.42. The other polymorphism is a T to C transition in intron 16 at the 16th base upstream of exon 17 with an observed {open_quote}T{close_quote}/{open_quote}C{close_quote} heterozygosity of 0.09. In combination with other documented polymorphisms in the NF1 gene, these variants should assist in genetic analysis of NF1 families. 24 refs., 3 figs.

  4. Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA.

    PubMed

    Asari, Masaru; Watanabe, Satoshi; Matsubara, Kazuo; Shiono, Hiroshi; Shimizu, Keiko

    2009-03-01

    Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.

  5. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

    PubMed Central

    Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang

    2008-01-01

    Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146

  6. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples.

    PubMed

    Daksis, Jasmine I; Erikson, Glen H

    2007-03-21

    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.

  7. First identification of the F200Y SNP in the β-tubulin gene linked to benzimidazole resistance in Ancylostoma caninum.

    PubMed

    Furtado, Luis Fernando Viana; Bello, Ana Cristina Passos de Paiva; dos Santos, Hudson Andrade; Carvalho, Maria Raquel Santos; Rabelo, Élida Mara Leite

    2014-12-15

    Single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene in codons 167, 198 and 200 have been associated with benzimidazole resistance in some nematodes, although no polymorphisms in this gene have been described in the hookworm Ancylostoma caninum to date. This study aimed to screen for SNPs in the β-tubulin isotype 1 gene at codons 198 and 200 associated with benzimidazole resistance in A. caninum worms recovered from naturally infected dogs from two Brazilian states (Minas Gerais and Piauí). To perform this analysis, a molecular technique based on the amplification refractory mutation system (ARMS-PCR) was standardized. A total of 110 individual worms recovered from 9 dogs in Piauí and 124 individual worms recovered from 10 dogs in Minas Gerais were analyzed using this methodology. The presence of a SNP at position 200 was observed at a low frequency (0.8%), which was only detected in the worm population from Minas Gerais State. A total of 75 randomly selected samples were sequenced to validate this technique, and the presence of the SNP was confirmed. Furthermore, SNP at position 198 were evaluated by sequencing, and none were detected in this region. This is the first report of the presence of a SNP in the β-tubulin isotype 1 gene associated with benzimidazole resistance in an A. caninum population.

  8. Comparing genotyping-by-sequencing and Single Nucleotide Polymorphism chip genotyping in Quantitive Trait Loci mapping in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  9. Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

    PubMed Central

    Sharma, Aditi; Lim, Dajeong; Chai, Han-Ha; Choi, Bong-Hwan; Cho, Yongmin

    2016-01-01

    Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which r2 value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average r2 between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on r2 varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts. PMID:28154516

  10. Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip.

    PubMed

    Sharma, Aditi; Lim, Dajeong; Chai, Han-Ha; Choi, Bong-Hwan; Cho, Yongmin

    2016-12-01

    Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which r(2) value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average r(2) between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on r(2) varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts.

  11. Inference of kinship coefficients from Korean SNP genotyping data.

    PubMed

    Park, Seong-Jin; Yang, Jin Ok; Kim, Sang Cheol; Kwon, Jekeun; Lee, Sanghyuk; Lee, Byungwook

    2013-06-01

    The determination of relatedness between individuals in a family is crucial in analysis of common complex diseases. We present a method to infer close inter-familial relationships based on SNP genotyping data and provide the relationship coefficient of kinship in Korean families. We obtained blood samples from 43 Korean individuals in two families. SNP data was obtained using the Affymetrix Genome-wide Human SNP array 6.0 and the Illumina Human 1M-Duo chip. To measure the kinship coefficient with the SNP genotyping data, we considered all possible pairs of individuals in each family. The genetic distance between two individuals in a pair was determined using the allele sharing distance method. The results show that genetic distance is proportional to the kinship coefficient and that a close degree of kinship can be confirmed with SNP genotyping data. This study represents the first attempt to identify the genetic distance between very closely related individuals.

  12. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data.

    PubMed

    Batley, Jacqueline; Barker, Gary; O'Sullivan, Helen; Edwards, Keith J; Edwards, David

    2003-05-01

    We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.

  13. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  14. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    PubMed

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.

  15. Genome-wide SNP-Based Linkage Scan Identifies a Locus on 8q24 for an Age-Related Hearing Impairment Trait

    PubMed Central

    Huyghe, Jeroen R.; Van Laer, Lut; Hendrickx, Jan-Jaap; Fransen, Erik; Demeester, Kelly; Topsakal, Vedat; Kunst, Sylvia; Manninen, Minna; Jensen, Mona; Bonaconsa, Amanda; Mazzoli, Manuela; Baur, Manuela; Hannula, Samuli; Mäki-Torkko, Elina; Espeso, Angeles; Van Eyken, Els; Flaquer, Antonia; Becker, Christian; Stephens, Dafydd; Sorri, Martti; Orzan, Eva; Bille, Michael; Parving, Agnete; Pyykkö, Ilmari; Cremers, Cor W.R.J.; Kremer, Hannie; Van de Heyning, Paul H.; Wienker, Thomas F.; Nürnberg, Peter; Pfister, Markus; Van Camp, Guy

    2008-01-01

    Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait. PMID:18760390

  16. Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait.

    PubMed

    Huyghe, Jeroen R; Van Laer, Lut; Hendrickx, Jan-Jaap; Fransen, Erik; Demeester, Kelly; Topsakal, Vedat; Kunst, Sylvia; Manninen, Minna; Jensen, Mona; Bonaconsa, Amanda; Mazzoli, Manuela; Baur, Manuela; Hannula, Samuli; Mäki-Torkko, Elina; Espeso, Angeles; Van Eyken, Els; Flaquer, Antonia; Becker, Christian; Stephens, Dafydd; Sorri, Martti; Orzan, Eva; Bille, Michael; Parving, Agnete; Pyykkö, Ilmari; Cremers, Cor W R J; Kremer, Hannie; Van de Heyning, Paul H; Wienker, Thomas F; Nürnberg, Peter; Pfister, Markus; Van Camp, Guy

    2008-09-01

    Age-related hearing impairment (ARHI), or presbycusis, is a very common multifactorial disorder. Despite the knowledge that genetics play an important role in the etiology of human ARHI as revealed by heritability studies, to date, its precise genetic determinants remain elusive. Here we report the results of a cross-sectional family-based genetic study employing audiometric data. By using principal component analysis, we were able to reduce the dimensionality of this multivariate phenotype while capturing most of the variation and retaining biologically important features of the audiograms. We conducted a genome-wide association as well as a linkage scan with high-density SNP microarrays. Because of the presence of genetic population substructure, association testing was stratified after which evidence was combined by meta-analysis. No association signals reaching genome-wide significance were detected. Linkage analysis identified a linkage peak on 8q24.13-q24.22 for a trait correlated to audiogram shape. The signal reached genome-wide significance, as assessed by simulations. This finding represents the first locus for an ARHI trait.

  17. The SNP rs931794 in 15q25.1 Is Associated with Lung Cancer Risk: A Hospital-Based Case-Control Study and Meta-Analysis

    PubMed Central

    Hu, Weiguo; Lu, Xuzai; Wang, Zhenling; Gong, Hongyun; Xu, Tangpeng; Chen, Xueqin; Xu, Bin; Liu, Cheng; Sun, Yun; Gong, Yajie; Yang, Yang; Zhu, Ying

    2015-01-01

    Background Lung cancer is one of the most common human malignant diseases and the leading cause of cancer death worldwide. The rs931794, a SNP located in 15q25.1, has been suggested to be associated with lung cancer risk. Nevertheless, several genetic association studies yielded controversial results. Methods and Findings A hospital-based case-control study involving 611 cases and 1062 controls revealed the variant of rs931794 was related to increased lung cancer risk. Stratified analyses revealed the G allele was significantly associated with lung cancer risk among smokers. Following meta-analysis including 6616 cases and 7697 controls confirmed the relevance of rs931794 variant with increased lung cancer risk once again. Heterogeneity should be taken into account when interpreting the consequences. Stratified analysis found ethnicity, histological type and genotyping method were not the sources of between-study heterogeneity. Further sensitivity analysis revealed that the study “Hsiung et al (2010)” might be the major contributor to heterogeneity. Cumulative meta-analysis showed the trend was increasingly obvious with adding studies, confirming the significant association. Conclusions Results from our current case-control study and meta-analysis offered insight of association between rs931794 and lung cancer risk, suggesting the variant of rs931794 might be related with increased lung cancer risk. PMID:26079375

  18. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data.

    PubMed

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R; Wang, Xiaolu

    2016-03-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon.

  19. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data

    PubMed Central

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu

    2016-01-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496

  20. Light whole genome sequence for SNP discovery across domestic cat breeds

    PubMed Central

    2010-01-01

    Background The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV) that are homologues to human scourges (cancer, SARS, and AIDS respectively). However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP) map is required in order to accomplish disease and phenotype association discovery. Description To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%. Conclusions These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases. PMID:20576142

  1. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  2. dbQSNP: a database of SNPs in human promoter regions with allele frequency information determined by single-strand conformation polymorphism-based methods.

    PubMed

    Tahira, Tomoko; Baba, Shingo; Higasa, Koichiro; Kukita, Yoji; Suzuki, Yutaka; Sugano, Sumio; Hayashi, Kenshi

    2005-08-01

    We present a database, dbQSNP (http://qsnp.gen.kyushu-u.ac.jp/), that provides sequence and allele frequency information for single-nucleotide polymorphisms (SNPs) located in the promoter regions of human genes, which were defined by the 5' ends of full-length cDNA clones. We searched for the SNPs in these regions by sequencing or single-strand conformation polymorphism (SSCP) analysis. The allele frequencies of the identified SNPs in two ethnic groups were quantified by SSCP analyses of pooled DNA samples. The accuracy of our estimation is supported by strong correlations between the frequencies in our data and those in other databases for the same ethnic groups. The frequencies vary considerably between the two ethnic groups studied, suggesting the need for population-based collections and allele frequency determination of SNPs, in, e.g., association studies of diseases. We show profiles of SNP densities that are characteristic of transcription start site regions. A fraction of the SNPs revealed a significantly different allele frequency between the groups, suggesting differential selection of the genes involved.

  3. A gel-based solid-phase amplification and its application for SNP typing and sequencing on-chip.

    PubMed

    Huang, Huan; Xiao, Pengfeng; Qi, Zongtai; Bu, Ying; Liu, Wenbo; Zhou, Guohua

    2009-12-01

    As conventional solid-phase amplification (SPA) on a two-dimensional slide has a low amplification capacity due to a limited amount of immobilized primers, we propose a three-dimensional SPA by immobilizing primers in hydrogel attached to a slide. One of the PCR primers, modified with an acrylamide group at the 5'-terminal, was copolymerized with both polyacrylamide gel and an acryl-modified glass slide, resulting in a high amplification capacity. The immobilization process was carried out by adding the catalysis reagent N,N,N',N'-tetramethylethylenediamine (TEMED) volatilized in vacuum, with uniform sample-concentration and gel-viscosity in the course of one-step nucleic acid immobilization. The porous structure of polyacrylamide gel, which allows PCR reagents such as Taq DNA polymerase, primers, dNTPs and DNA templates to freely enter the gel matrix, provides a homogeneous solution-mimicking environment for SPA on the interface or the inside of gel pads. Based on gel-based SPA, genotypes of different samples were accurately discriminated by either dual-color fluorescence hybridization or BAMPER (Bioluminometric Assay coupled with Modified Primer Extension Reactions). Pyrosequencing was also successfully carried out on SPA products. As the linkage between DNA molecules and gel is very strong, SPA products immobilized on gel pads could be reused several times if extended strands were removed by electrophoresis. Thus, the gel-based SPA provides a powerful tool for directly using on-chip amplicons for parallel detection.

  4. Genetic Diversity of the Mycobacterium tuberculosis Beijing Family Based on SNP and VNTR Typing Profiles in Asian Countries

    PubMed Central

    Chen, Yih-Yuan; Chang, Jia-Ru; Huang, Wei-Feng; Kuo, Shu-Chen; Su, Ih-Jen; Sun, Jun-Ren; Chiueh, Tzong-Shi; Huang, Tsi-Shu; Chen, Yao-Shen; Dou, Horng-Yunn

    2012-01-01

    The Mycobacterium tuberculosis (MTB) Beijing strain is highly virulent, drug resistant, and endemic over Asia. To explore the genetic diversity of this family in several different regions of eastern Asia, 338 Beijing strains collected in Taiwan (Republic of China) were analyzed by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and compared with published MIRU-VNTR profiles and by the Hunter-Gaston diversity index (HGDI) of Beijing strains from Japan and South Korea. The results revealed that VNTR2163b (HGDI>0.6) and five other loci (VNTR424, VNTR4052, VNTR1955, VNTR4156 and VNTR 2996; HGDI>0.3) could be used to discriminate the Beijing strains in a given geographic region. Analysis based on the number of VNTR repeats showed three VNTRs (VNTR424, 3192, and 1955) to be phylogenetically informative loci. In addition, to determine the geographic variation of sequence types in MTB populations, we also compared sequence type (ST) data of our strains with published ST profiles of Beijing strains from Japan and Thailand. ST10, ST22, and ST19 were found to be prevalent in Taiwan (82%) and Thailand (92%). Furthermore, classification of Beijing sublineages as ancient or modern in Taiwan was found to depend on the repeat number of VNTR424. Finally, phylogenetic relationships of MTB isolates in Taiwan, South Korea, and Japan were revealed by a minimum spanning tree based on MIRU-VNTR genotyping. In this topology, the MIRU-VNTR genotypes of the respective clusters were tightly correlated to other genotypic characters. These results are consistent with the hypothesis that clonal evolution of these MTB lineages has occurred. PMID:22808061

  5. MA-SNP--A new genotype calling method for oligonucleotide SNP arrays modeling the batch effect with a normal mixture model.

    PubMed

    Wen, Yalu; Li, Ming; Fu, Wenjiang J

    2011-08-30

    Genome-wide association studies hold great promise in identifying disease-susceptibility variants and understanding the genetic etiology of complex diseases. Microarray technology enables the genotyping of millions of single nucleotide polymorphisms. Many factors in microarray studies, such as probe selection, sample quality, and experimental process and batch, have substantial effect on the genotype calling accuracy, which is crucial for downstream analyses. Failure to account for the variability of these sources may lead to inaccurate genotype calls and false positive and false negative findings. In this study, we develop a SNP-specific genotype calling algorithm based on the probe intensity composite representation (PICR) model, while using a normal mixture model to account for the variability of batch effect on the genotype calls. We demonstrate our method with SNP array data in a few studies, including the HapMap project, the coronary heart disease and the UK Blood Service Control studies by the Wellcome Trust Case-Control Consortium, and a methylation profiling study. Our single array based approach outperforms PICR and is comparable to the best multi-array genotype calling methods.

  6. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies.

  7. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    PubMed

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments.

  8. Genome-wide single nucleotide polymorphism-based assay for high-resolution epidemiological analysis of the methicillin-resistant Staphylococcus aureus hospital clone EMRSA-15.

    PubMed

    Holmes, A; McAllister, G; McAdam, P R; Hsien Choi, S; Girvan, K; Robb, A; Edwards, G; Templeton, K; Fitzgerald, J R

    2014-02-01

    The EMRSA-15 clone is a major cause of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK and elsewhere but existing typing methodologies have limited capacity to discriminate closely related strains, and are often poorly reproducible between laboratories. Here, we report the design, development and validation of a genome-wide single nucleotide polymorphism (SNP) typing method and compare it to established methods for typing of EMRSA-15. In order to identify discriminatory SNPs, the genomes of 17 EMRSA-15 strains, selected to represent the breadth of genotypic and phenotypic diversity of EMRSA-15 isolates in Scotland, were determined and phylogenetic reconstruction was carried out. In addition to 17 phylogenetically informative SNPs, five binary markers were included to form the basis of an EMRSA-15 genotyping assay. The SNP-based typing assay was as discriminatory as pulsed-field gel electrophoresis, and significantly more discriminatory than staphylococcal protein A (spa) typing for typing of a representative panel of diverse EMRSA-15 strains, isolates from two EMRSA-15 hospital outbreak investigations, and a panel of bacteraemia isolates obtained in healthcare facilities in the east of Scotland during a 12-month period. The assay is a rapid, and reproducible approach for epidemiological analysis of EMRSA-15 clinical isolates in Scotland. Unlike established methods the DNA sequence-based method is ideally suited for inter-laboratory comparison of identified genotypes, and its flexibility lends itself to supplementation with additional SNPs or markers for the identification of novel S. aureus strains in other regions of the world.

  9. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP.

    PubMed

    Nadimi, Motahareh; Rahgozar, Soheila; Moafi, Alireza; Tavassoli, Manoochehr; Mesrian Tanha, Hamzeh

    2016-01-01

    Acute leukemia is the most common cancer in children and involves several factors that contribute to the development of multidrug resistance and treatment failure. According to our recent studies, the BAALC gene is identified to have high mRNA expression levels in childhood acute lymphoblastic leukemia (ALL) and those with multidrug resistance. Several polymorphisms are associated with the expression of this gene. To date, there has been no study on the rs62527607 [GT] single nucleotide polymorphism (SNP) of BAALC gene and its link with childhood acute lymphoblastic and myeloid leukemia (AML). The purpose of this study is to evaluate the prevalence of this polymorphism in pediatric acute leukemia, as well as its relationship with prognosis. DNA samples were extracted from bone marrow slides of 129 children with ALL and 16 children with AML. The rs62527607 [GT] SNP was evaluated using mismatch polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based analysis. The association between the SNP alleles and patient disease-free survival was then assessed. The prevalence of the T-allele of rs62527607 [GT] SNP in childhood T-ALL and pre-B-ALL was 28.3% and 11.2%, respectively. In the pre-B-ALL patients, 3 year disease free survival was associated with the GG genotype. Results showed a robust association between the rs62527607 SNP and the risk of relapse in ALL, but not AML, patients. T-ALL patients with the GT genotype had an 8.75 fold higher risk of relapse. The current study demonstrates a significant association between the genotype GT and the polymorphic allele G424T, and introduces this SNP as a negative prognostic factor in children with ALL.

  10. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated.

  11. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  12. Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs)

    NASA Astrophysics Data System (ADS)

    Batta-Lona, Paola G.; Bucklin, Ann; Wiebe, Peter H.; Patarnello, Tomaso; Copley, Nancy J.

    2011-07-01

    The Southern Ocean krill, Euphausia superba, is one of the best-studied marine zooplankton species in terms of population genetic diversity and structure; with few exceptions, previous studies have shown the species to be genetically homogeneous at larger spatial scales. The goals of this study are to examine sub-regional scale population genetic diversity and structure of E. superba using molecular characters selected with this goal in mind, and to thereby examine hypotheses of the source(s) of recruitment for krill populations of the Western Antarctic Peninsula (WAP). Collections were made throughout the WAP region during US GLOBEC cruises in austral fall, 2001 and 2002. A total of 585 E. superba (including all 6 furcilia larval stages, juveniles, and adults) was analyzed after confirmation of species identification using a competitive multiplexed species-specific PCR (SS-PCR) reaction based on mitochondrial cytochrome oxidase I (mtCOI) sequences. The molecular markers used were allele frequencies at single nucleotide polymorphism (SNP) sites in the gene encoding mitochondrial Cytochrome b (cyt b). Four SNP sites that showed desirable patterns of allelic variation were selected; alleles were detected using a multiplexed single-base extension PCR protocol. A total of 22 SNP haplotypes (i.e., strings of polymorphisms at the four SNP sites) was observed; haplotype diversity (Hd)=0.811 (s.d.=0.008). Analysis of molecular variation within and among samples, areas (i.e., Marguerite Bay, Crystal Sound, shelf, and offshore) and collection years revealed no difference between 2001 and 2002 collections overall, although differences between 2001 and 2002 collections from Marguerite Bay explained 7.4% of the variance ( FST=0.072; p=0.002±0.001). Most of the variation (96.3%) occurred within samples each year, with no significant differentiation among areas. There was small, but significant differentiation among samples within areas in 2001 (4.6%; FST=0.045; p=0.015±0

  13. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian-but not endometrial cancer.

    PubMed

    Gansmo, Liv B; Bjørnslett, Merete; Halle, Mari Kyllesø; Salvesen, Helga B; Dørum, Anne; Birkeland, Einar; Hveem, Kristian; Romundstad, Pål; Vatten, Lars; Lønning, Per Eystein; Knappskog, Stian

    2016-08-01

    The MDM4 protein (also known as MDMX or HDMX) is a negative regulator of p53, not only by direct interaction but also through its interaction with MDM2. Further, MDM4 overexpression and amplification have been observed in several cancer forms. Recently, a single nucleotide polymorphism (SNP) in the 3' untranslated region of the MDM4 gene, SNP34091A > C (rs4245739) was reported to alter MDM4 messenger RNA (mRNA) stability by modulating a microRNA binding site, thereby leading to decreased MDM4 levels. In this case-control study, we aimed to evaluate the possible association between MDM4 SNP34091 status and cancer risk by comparing the genotype frequencies in large hospital-based cohorts of endometrial- (n = 1404) and ovarian (n = 1385) cancer patients with healthy female controls (n = 1870). Genotype frequencies were compared by odds ratio (OR) estimates and Fisher exact tests. We found that individuals harboring the MDM4 SNP34091AC/CC genotypes had a significantly elevated risk for serous ovarian cancer (SOC) in general and high-grade serous ovarian cancer (HGSOC) in particular (SOC: OR = 1.18., 95 % CI = 1.01-1.39; HGSOC: OR = 1.25, CI = 1.02-1.53). No association between SNP34091 genotypes and endometrial cancer risk was observed. Our data indicate the MDM4 SNP34091AC/CC genotypes to be associated with an elevated risk for SOC and in particular the HGSOC type.

  14. Software solutions for the livestock genomics SNP array revolution.

    PubMed

    Nicolazzi, E L; Biffani, S; Biscarini, F; Orozco Ter Wengel, P; Caprera, A; Nazzicari, N; Stella, A

    2015-08-01

    Since the beginning of the genomic era, the number of available single nucleotide polymorphism (SNP) arrays has grown considerably. In the bovine species alone, 11 SNP chips not completely covered by intellectual property are currently available, and the number is growing. Genomic/genotype data are not standardized, and this hampers its exchange and integration. In addition, software used for the analyses of these data usually requires not standard (i.e. case specific) input files which, considering the large amount of data to be handled, require at least some programming skills in their production. In this work, we describe a software toolkit for SNP array data management, imputation, genome-wide association studies, population genetics and genomic selection. However, this toolkit does not solve the critical need for standardization of the genotypic data and software input files. It only highlights the chaotic situation each researcher has to face on a daily basis and gives some helpful advice on the currently available tools in order to navigate the SNP array data complexity.

  15. Linkage Disequilibrium Patterns and tagSNP Transferability among European Populations

    PubMed Central

    Mueller, Jakob C.; Lõhmussaar, Elin; Mägi, Reedik; Remm, Maido; Bettecken, Thomas; Lichtner, Peter; Biskup, Saskia; Illig, Thomas; Pfeufer, Arne; Luedemann, Jan; Schreiber, Stefan; Pramstaller, Peter; Pichler, Irene; Romeo, Giovanni; Gaddi, Anthony; Testa, Alessandra; Wichmann, Heinz-Erich; Metspalu, Andres; Meitinger, Thomas

    2005-01-01

    The pattern of linkage disequilibrium (LD) is critical for association studies, in which disease-causing variants are identified by allelic association with adjacent markers. The aim of this study is to compare the LD patterns in several distinct European populations. We analyzed four genomic regions (in total, 749 kb) containing candidate genes for complex traits. Individuals were genotyped for markers that are evenly distributed at an average spacing of ∼2–4 kb in eight population-based samples from ongoing epidemiological studies across Europe. The Centre d'Etude du Polymorphisme Humain (CEPH) trios of the HapMap project were included and were used as a reference population. In general, we observed a conservation of the LD patterns across European samples. Nevertheless, shifts in the positions of the boundaries of high-LD regions can be demonstrated between populations, when assessed by a novel procedure based on bootstrapping. Transferability of LD information among populations was also tested. In two of the analyzed gene regions, sets of tagging single-nucleotide polymorphisms (tagSNPs) selected from the HapMap CEPH trios performed surprisingly well in all local European samples. However, significant variation in the other two gene regions predicts a restricted applicability of CEPH-derived tagging markers. Simulations based on our data set show the extent to which further gain in tagSNP efficiency and transferability can be achieved by increased SNP density. PMID:15637659

  16. Selected Polymorphisms of Base Excision Repair Genes and Pancreatic Cancer Risk in Japanese

    PubMed Central

    Nakao, Makoto; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Mizuno, Nobumasa; Sato, Shigeki; Yatabe, Yasushi; Yamao, Kenji; Ueda, Ryuzo; Tajima, Kazuo; Tanaka, Hideo; Matsuo, Keitaro

    2012-01-01

    Background Although several reports have described a possible association between DNA repair genes and pancreatic cancer (PC) in smokers, this association has not been fully evaluated in an Asian population. We assessed the impact of genetic polymorphisms in the base excision repair (BER) pathway on PC risk among Japanese. Methods This case-control study compared the frequency of 5 single-nucleotide polymorphisms (SNPs) of BER genes, namely rs1052133 in OGG1, rs1799782 and rs25487 in XRCC1, rs1130409 in APE1, and rs1136410 in PARP1. SNPs were investigated using the TaqMan assay in 185 PC cases and 1465 controls. Associations of PC risk with genetic polymorphisms and gene–environment interaction were examined with an unconditional logistic regression model. Exposure to risk factors was assessed from the results of a self-administered questionnaire. We also performed haplotype-based analysis. Results We observed that the minor allele of rs25487 in XRCC1 was significantly associated with PC risk in the per-allele model (odds ratio = 1.29, CI = 1.01–1.65; trend P = 0.043). Haplotype analysis of XRCC1 also showed a statistically significant association with PC risk. No statistically significant interaction between XRCC1 polymorphisms and smoking status was seen. Conclusions Our findings suggest that XRCC1 polymorphisms affect PC risk in Japanese. PMID:22850545

  17. [Identification of the polymorphs of clopidogrel bisulfate based on the steric morphology parameters of crystals].

    PubMed

    Chen, Long; Wang, Liu-yi; Yin, Xian-zhen; Wang, Jin-can; Liu, Rui-hao; Wang, Dan; Li, Hai-yan; Zhu, Wei-feng; Zhang, Ji-wen

    2013-09-01

    The crystal form of solid substance had intrinsic correlation with its three dimensional crystal morphology. Based on the characterization of the three dimensional crystal morphology of clopidogrel bisulfate, this research is to establish a model based on the three dimensional morphological parameters. The granular samples composed of polymorphs of clopidogrel bisulfate and microcrystalline cellulose (MCC) were scanned by synchrotron radiation X-ray microscopic CT technology (SR-microCT) and the three dimensional structural models for which were constructed. Seven groups of three dimensional morphological parameters were calculated. Finally, the mathematical model was established with the multi-layer perception (MLP) artificial neutral network methods to identify and predict the polymorphs of clopidogrel bisulfate. The success rate of the model prediction for the polymorphs of clopidogrel bisulfate was 92.7% and the area under the ROC curve was 96.2%. The polymorphs of drugs could be identified and predicted through the numerical description of the three dimensional morphology. The volume, number of the vertices and the surface area were the major determinants for the identification of the polymorphs of clopidogrel bisulfate.

  18. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    PubMed

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.

  19. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    PubMed

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  20. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies.

    PubMed

    Yamaguchi-Kabata, Yumi; Nakazono, Kazuyuki; Takahashi, Atsushi; Saito, Susumu; Hosono, Naoya; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki

    2008-10-01

    Because population stratification can cause spurious associations in case-control studies, understanding the population structure is important. Here, we examined Japanese population structure by "Eigenanalysis," using the genotypes for 140,387 SNPs in 7003 Japanese individuals, along with 60 European, 60 African, and 90 East-Asian individuals, in the HapMap project. Most Japanese individuals fell into two main clusters, Hondo and Ryukyu; the Hondo cluster includes most of the individuals from the main islands in Japan, and the Ryukyu cluster includes most of the individuals from Okinawa. The SNPs with the greatest frequency differences between the Hondo and Ryukyu clusters were found in the HLA region in chromosome 6. The nonsynonymous SNPs with the greatest frequency differences between the Hondo and Ryukyu clusters were the Val/Ala polymorphism (rs3827760) in the EDAR gene, associated with hair thickness, and the Gly/Ala polymorphism (rs17822931) in the ABCC11 gene, associated with ear-wax type. Genetic differentiation was observed, even among different regions in Honshu Island, the largest island of Japan. Simulation studies showed that the inclusion of different proportions of individuals from different regions of Japan in case and control groups can lead to an inflated rate of false-positive results when the sample sizes are large.

  1. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay

  2. Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions.

    PubMed

    Shivaramaiah, Radha; Lander, Laura; Nagabhushana, G P; Rousse, Gwenaëlle; Tarascon, Jean-Marie; Navrotsky, Alexandra

    2016-11-04

    FeSO4 F-based frameworks have recently emerged as attractive candidates for alkali insertion electrodes. Mainly owing to their rich crystal chemistry, they offer a variety of new host structures with different electrochemical performances and physical properties. In this paper we report the thermodynamic stability of two such K-based "FeSO4 F" host structures based on direct solution calorimetric measurements. KFeSO4 F has been reported to crystallize in two different polymorphic modifications-monoclinic and orthorhombic. The obtained enthalpies of formation from binary components (KF plus FeSO4 ) are negative for both polymorphs, indicating that they are thermodynamically stable at room temperature, which is very promising for the future exploration of sulfate based cathode materials. Our measurements show that the low-temperature monoclinic polymorph is enthalpically more stable than the orthorhombic phase by ≈10 kJ mol(-1) , which is consistent with the preferential formation of monoclinic KFeSO4 F at low temperature. Furthermore, observed phase transformations and difficulties in the synthesis process can be explained based on the obtained calorimetric results. The KMnSO4 F orthorhombic phase is more stable than both polymorphs of KFeSO4 F.

  3. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species

    PubMed Central

    Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma JJ; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco CAM; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric

    2016-01-01

    Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species. PMID:27917289

  4. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays

    USGS Publications Warehouse

    Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon

    2012-01-01

    Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.

  5. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays.

    PubMed

    Amish, Stephen J; Hohenlohe, Paul A; Painter, Sally; Leary, Robb F; Muhlfeld, Clint; Allendorf, Fred W; Luikart, Gordon

    2012-07-01

    Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.

  6. Development of an Alfalfa SNP Array and Its Use to Evaluate Patterns of Population Structure and Linkage Disequilibrium

    PubMed Central

    Li, Xuehui; Han, Yuanhong; Wei, Yanling; Acharya, Ananta; Farmer, Andrew D.; Ho, Julie; Monteros, Maria J.; Brummer, E. Charles

    2014-01-01

    A large set of genome-wide markers and a high-throughput genotyping platform can facilitate the genetic dissection of complex traits and accelerate molecular breeding applications. Previously, we identified about 0.9 million SNP markers by sequencing transcriptomes of 27 diverse alfalfa genotypes. From this SNP set, we developed an Illumina Infinium array containing 9,277 SNPs. Using this array, we genotyped 280 diverse alfalfa genotypes and several genotypes from related species. About 81% (7,476) of the SNPs met the criteria for quality control and showed polymorphisms. The alfalfa SNP array also showed a high level of transferability for several closely related Medicago species. Principal component analysis and model-based clustering showed clear population structure corresponding to subspecies and ploidy levels. Within cultivated tetraploid alfalfa, genotypes from dormant and nondormant cultivars were largely assigned to different clusters; genotypes from semidormant cultivars were split between the groups. The extent of linkage disequilibrium (LD) across all genotypes rapidly decayed to 26 Kbp at r2 = 0.2, but the rate varied across ploidy levels and subspecies. A high level of consistency in LD was found between and within the two subpopulations of cultivated dormant and nondormant alfalfa suggesting that genome-wide association studies (GWAS) and genomic selection (GS) could be conducted using alfalfa genotypes from throughout the fall dormancy spectrum. However, the relatively low LD levels would require a large number of markers to fully saturate the genome. PMID:24416217

  7. Role of Genetic Polymorphisms in the Development and Prognosis of Sporadic and Familial Prostate Cancer

    PubMed Central

    Reis, Sabrina T.; Viana, Nayara I.; Leite, Katia R. M.; Diogenes, Erico; Antunes, Alberto A.; Iscaife, Alexandre; Nesrallah, Adriano J.; Passerotti, Carlo C.; Srougi, Victor; Pontes-Junior, José; Salles, Mary Ellen; Nahas, William C.; Srougi, Miguel

    2016-01-01

    Backgrounds Our aim was to evaluate the role of 20 genetic polymorphisms in the development and prognosis of sporadic and familial PC. A case-control study of 185 patients who underwent radical prostatectomy from 1997 to 2011. These patients were divided into two groups based on their family history. Gleason grade, PSA value and pathological TNM 2002 stage were used as prognostic factors. Blood samples from 70 men without PC were used as controls. The SNPs were genotyped using a TaqMan® SNP Genotyping Assay Kit. Results Considering susceptibility, the polymorphic allele in the SNP rs2660753 on chromosome 3 was significantly more prevalent in controls (p = 0.01). For familial clustering, the polymorphic homozygote genotype of the SNP rs7931342 was five times more frequent in patients with familial PC compared to sporadic PC (p = 0.01). Regarding the SNP 1447295, the polymorphic homozygote genotype was more prevalent in patients with organ-confined PC (p = 0.05), and most importantly, the polymorphic allele occurred more frequently in patients without biochemical recurrence (p = 0.01). Kaplan-Meier analysis showed a median biochemical recurrence free survival of 124.2 compared to 85.6 months for patients with the wild-type allele (p = 0.007). Conclusion Our findings provide the evidence for the association of 20 recently highlighted SNPs and their susceptibility, familial clustering, staging, Gleason score and biochemical recurrence of PC. We believe that the association between these SNPs and PC may contribute to the development of alternative tools that can facilitate the early detection and prognosis of this disease. PMID:27906997

  8. Plastid DNA sequencing and nuclear SNP genotyping help resolve the puzzle of central American Platanus

    PubMed Central

    De Castro, Olga; Di Maio, Antonietta; Lozada García, José Armando; Piacenti, Danilo; Vázquez-Torres, Mario; De Luca, Paolo

    2013-01-01

    Background and Aims Recent research on the history of Platanus reveals that hybridization phenomena occurred in the central American species. This study has two goals: to help resolve the evolutive puzzle of central American Platanus, and to test the potential of real-time polymerase chain reaction (PCR) for detecting ancient hybridization. Methods Sequencing of a uniparental plastid DNA marker [psbA-trnH(GUG) intergenic spacer] and qualitative and quantitative single nucleotide polymorphism (SNP) genotyping of biparental nuclear ribosomal DNA (nrDNA) markers [LEAFY intron 2 (LFY-i2) and internal transcribed spacer 2 (ITS2)] were used. Key Results Based on the SNP genotyping results, several Platanus accessions show the presence of hybridization/introgression, including some accessions of P. rzedowskii and of P. mexicana var. interior and one of P. mexicana var. mexicana from Oaxaca (= P. oaxacana). Based on haplotype analyses of the psbA-trnH spacer, five haplotypes were detected. The most common of these is present in taxa belonging to P. orientalis, P. racemosa sensu lato, some accessions of P. occidentalis sensu stricto (s.s.) from Texas, P. occidentalis var. palmeri, P. mexicana s.s. and P. rzedowskii. This is highly relevant to genetic relationships with the haplotypes present in P. occidentalis s.s. and P. mexicana var. interior. Conclusions Hybridization and introgression events between lineages ancestral to modern central and eastern North American Platanus species occurred. Plastid haplotypes and qualitative and quantitative SNP genotyping provide information critical for understanding the complex history of Mexican Platanus. Compared with the usual molecular techniques of sub-cloning, sequencing and genotyping, real-time PCR assay is a quick and sensitive technique for analysing complex evolutionary patterns. PMID:23798602

  9. A Web-Based Genetic Polymorphism Learning Approach for High School Students and Science Teachers

    ERIC Educational Resources Information Center

    Amenkhienan, Ehichoya; Smith, Edward J.

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using…

  10. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    PubMed Central

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, Robin FA

    2003-01-01

    The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees. PMID:12729553

  11. Development of SNP markers identifying European wildcats, domestic cats, and their admixed progeny.

    PubMed

    Nussberger, B; Greminger, M P; Grossen, C; Keller, L F; Wandeler, P

    2013-05-01

    Introgression can be an important evolutionary force but it can also lead to species extinction and as such is a crucial issue for species conservation. However, introgression is difficult to detect, morphologically as well as genetically. Hybridization with domestic cats (Felis silvestris catus) is a major concern for the conservation of European wildcats (Felis s. silvestris). The available morphologic and genetic markers for the two Felis subspecies are not sufficient to reliably detect hybrids beyond first generation. Here we present a single nucleotide polymorphism (SNP) based approach that allows the identification of introgressed individuals. Using high-throughput sequencing of reduced representation libraries we developed a diagnostic marker set containing 48 SNPs (Fst > 0.8) which allows the identification of wildcats, domestic cats, their hybrids and backcrosses. This allows assessing introgression rate in natural wildcat populations and is key for a better understanding of hybridization processes.

  12. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers.

    PubMed

    Farzan, Valentina M; Markelov, Mikhail L; Skoblov, Alexander Yu; Shipulin, German A; Zatsepin, Timofei S

    2017-03-13

    Molecular beacons (MBs) are valuable tools in molecular biology, clinical diagnostics and analytical chemistry. Here we describe a novel approach for the design of MBs with nucleotide or non-nucleotide linkers between the stem and loop regions. Such modified MBs have significantly improved specificity and performance for single nucleotide polymorphism (SNP) detection. These advantages are especially distinct, when compared to the classic MBs, in the case of possible interactions between the stem and loop regions. We demonstrated the applicability of such modified MBs for the discrimination of common Factor V, NOS3 and ADRB2 SNPs in model plasmids and in clinical samples. The developed approach could be applicable not only to fluorescently labeled MBs, but also to other biosensors based on nucleic acids with stem-loop structures.

  13. Prediction of a time-to-event trait using genome wide SNP data

    PubMed Central

    2013-01-01

    Background A popular objective of many high-throughput genome projects is to discover various genomic markers associated with traits and develop statistical models to predict traits of future patients based on marker values. Results In this paper, we present a prediction method for time-to-event traits using genome-wide single-nucleotide polymorphisms (SNPs). We also propose a MaxTest associating between a time-to-event trait and a SNP accounting for its possible genetic models. The proposed MaxTest can help screen out nonprognostic SNPs and identify genetic models of prognostic SNPs. The performance of the proposed method is evaluated through simulations. Conclusions In conjunction with the MaxTest, the proposed method provides more parsimonious prediction models but includes more prognostic SNPs than some naive prediction methods. The proposed method is demonstrated with real GWAS data. PMID:23418752

  14. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere.

  15. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters

    PubMed Central

    2015-01-01

    Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we

  16. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  17. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis.

    PubMed

    Scaltriti, Erika; Sassera, Davide; Comandatore, Francesco; Morganti, Marina; Mandalari, Carmen; Gaiarsa, Stefano; Bandi, Claudio; Zehender, Gianguglielmo; Bolzoni, Luca; Casadei, Gabriele; Pongolini, Stefano

    2015-04-01

    We retrospectively analyzed a rare Salmonella enterica serovar Manhattan outbreak that occurred in Italy in 2009 to evaluate the potential of new genomic tools based on differential single nucleotide polymorphism (SNP) analysis in comparison with the gold standard genotyping method, pulsed-field gel electrophoresis. A total of 39 isolates were analyzed from patients (n=15) and food, feed, animal, and environmental sources (n=24), resulting in five different pulsed-field gel electrophoresis (PFGE) profiles. Isolates epidemiologically related to the outbreak clustered within the same pulsotype, SXB_BS.0003, without any further differentiation. Thirty-three isolates were considered for genomic analysis based on different sets of SNPs, core, synonymous, nonsynonymous, as well as SNPs in different codon positions, by Bayesian and maximum likelihood algorithms. Trees generated from core and nonsynonymous SNPs, as well as SNPs at the second and first plus second codon positions detailed four distinct groups of isolates within the outbreak pulsotype, discriminating outbreak-related isolates of human and food origins. Conversely, the trees derived from synonymous and third-codon-position SNPs clustered food and human isolates together, indicating that all outbreak-related isolates constituted a single clone, which was in line with the epidemiological evidence. Further experiments are in place to extend this approach within our regional enteropathogen surveillance system.

  18. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    PubMed

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.

  19. Association of matrilin‐3 polymorphisms with spinal disc degeneration and osteoarthritis of the first carpometacarpal joint of the hand

    PubMed Central

    Min, J L; Meulenbelt, I; Riyazi, N; Kloppenburg, M; Houwing‐Duistermaat, J J; Seymour, A B; van Duijn, C M; Slagboom, P E

    2006-01-01

    Background Seven polymorphisms in the matrilin‐3(MATN3) gene were previously tested for genetic association with hand osteoarthritis in an Icelandic cohort. One of the variants, involving a conserved amino acid substitution (T303M; SNP5), was related to idiopathic hand osteoarthritis. Objectives To investigate SNP5 and two other promising polymorphisms (rs2242190; SNP3, rs8176070; SNP6) for association with radiographic and symptomatic hand osteoarthritis phenotypes, as well as other heritable phenotypes. Methods Polymorphisms were examined in two distinct cohorts of subjects: a population based sample from the Rotterdam study (n = 809), and affected siblings from the genetics, osteoarthrosis and progression (GARP) study (n = 382). Results The originally described association of T303M with the hand osteoarthritis phenotype was not observed in the populations studied. In the Rotterdam sample, however, carrying the T allele of T303M conferred an odds ratio of 2.9 (95% confidence interval (CI), 1.2 to 7.3; p = 0.02) for spinal disc degeneration. In the GARP study, carriers of the A allele of SNP6 had an odds ratio of 2.0 (95% CI, 1.3 to 3.1, p = 0.004) for osteoarthritis of the first carpometacarpal joint (CMC1) as compared with the Rotterdam sample as a control group. Subsequent haplotype analysis showed that a common haplotype, containing the risk allele of SNP6, conferred a significant risk in sibling pairs with CMC1 osteoarthritis (odds ratio = 1.7 (95% CI, 1.1 to 2.7, p = 0.02)). Conclusions These associations suggest that the MATN3 region also determines susceptibility to spinal disc degeneration and CMC1 osteoarthritis. PMID:16396979

  20. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    PubMed

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  1. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  2. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  3. Association mapping of resistance to leaf rust in emmer wheat using high throughput SNP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emmer wheat (Triticum turgidum L. subsp. dicoccum) is known to be a useful source of genes for many desirable characters for improvement of modern cultivated wheat. Recently, a panel of 181 emmer wheat accessions has been genotyped with wheat 9K SNP (single nucleotide polymorphism) markers and exte...

  4. SNP genotyping of animal and human derived isolates of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Wynne, James W; Beller, Christie; Boyd, Victoria; Francis, Barry; Gwoźdź, Jacek; Carajias, Marios; Heine, Hans G; Wagner, Josef; Kirkwood, Carl D; Michalski, Wojtek P

    2014-08-27

    Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic granulomatous enteritis that affects ruminants worldwide. While the ability of MAP to cause disease in animals is clear, the role of this bacterium in human inflammatory bowel diseases remains unresolved. Previous whole genome sequencing of MAP isolates derived from human and three animal hosts showed that human isolates were genetically similar and showed a close phylogenetic relationship to one bovine isolate. In contrast, other animal derived isolates were more genetically diverse. The present study aimed to investigate the frequency of this human strain across 52 wild-type MAP isolates, collected predominantly from Australia. A Luminex based SNP genotyping approach was utilised to genotype SNPs that had previously been shown to be specific to the human, bovine or ovine isolate types. Fourteen SNPs were initially evaluated across a reference panel of isolates with known genotypes. A subset of seven SNPs was chosen for analysis within the wild-type collection. Of the seven SNPs, three were found to be unique to paediatric human isolates. No wild-type isolates contain these SNP alleles. Interestingly, and in contrast to the paediatric isolates, three additional adult human isolates (derived from adult Crohn's disease patients) also did not contain these SNP alleles. Furthermore we identified two SNPs, which demonstrate extensive polymorphism within the animal-derived MAP isolates. One of which appears unique to ovine and a single camel isolate. From this study we suggest the existence of genetic heterogeneity between human derived MAP isolates, some of which are highly similar to those derived from bovine hosts, but others of which are more divergent.

  5. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz).

    PubMed

    Rabbi, Ismail Yusuf; Kulembeka, Heneriko Philbert; Masumba, Esther; Marri, Pradeep Reddy; Ferguson, Morag

    2012-07-01

    Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.

  6. HapRice, an SNP haplotype database and a web tool for rice.

    PubMed

    Yonemaru, Jun-ichi; Ebana, Kaworu; Yano, Masahiro

    2014-01-01

    Genome-wide single nucleotide polymorphism (SNP) analysis is a promising tool to examine the genetic diversity of rice populations and genetic traits of scientific and economic importance. Next-generation sequencing technology has accelerated the re-sequencing of diverse rice varieties and the discovery of genome-wide SNPs. Notably, validation of these SNPs by a high-throughput genotyping system, such as an SNP array, could provide a manageable and highly accurate SNP set. To enhance the potential utility of genome-wide SNPs for geneticists and breeders, analysis tools need to be developed. Here, we constructed an SNP haplotype database, which allows visualization of the allele frequency of all SNPs in the genome browser. We calculated the allele frequencies of 3,334 SNPs in 76 accessions from the world rice collection and 3,252 SNPs in 177 Japanese rice accessions; all these SNPs have been validated in our previous studies. The SNP haplotypes were defined by the allele frequency in each cultivar group (aus, indica, tropical japonica and temperate japonica) for the world rice accessions, and in non-irrigated and three irrigated groups (three variety registration periods) for Japanese rice accessions. We also developed web tools for finding polymorphic SNPs between any two rice accessions and for the primer design to develop cleaved amplified polymorphic sequence markers at any SNP. The 'HapRice' database and the web tools can be accessed at http://qtaro.abr.affrc.go.jp/index.html. In addition, we established a core SNP set consisting of 768 SNPs uniformly distributed in the rice genome; this set is of a practically appropriate size for use in rice genetic analysis.

  7. Informatics Enhanced SNP Microarray Analysis of 30 Miscarriage Samples Compared to Routine Cytogenetics

    PubMed Central

    Lathi, Ruth B.; Loring, Megan; Massie, Jamie A. M.; Demko, Zachary P.; Johnson, David; Sigurjonsson, Styrmir; Gemelos, George; Rabinowitz, Matthew

    2012-01-01

    Purpose The metaphase karyotype is often used as a diagnostic tool in the setting of early miscarriage; however this technique has several limitations. We evaluate a new technique for karyotyping that uses single nucleotide polymorphism microarrays (SNP). This technique was compared in a blinded, prospective fashion, to the traditional metaphase karyotype. Methods Patients undergoing dilation and curettage for first trimester miscarriage between February and August 2010 were enrolled. Samples of chorionic villi were equally divided and sent for microarray testing in parallel with routine cytogenetic testing. Results Thirty samples were analyzed, with only four discordant results. Discordant results occurred when the entire genome was duplicated or when a balanced rearrangement was present. Cytogenetic karyotyping took an average of 29 days while microarray-based karytoyping took an average of 12 days. Conclusions Molecular karyotyping of POC after missed abortion using SNP microarray analysis allows for the ability to detect maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis. PMID:22403611

  8. Predicting Alzheimer's Disease Using Combined Imaging-Whole Genome SNP Data.

    PubMed

    Kong, Dehan; Giovanello, Kelly S; Wang, Yalin; Lin, Weili; Lee, Eunjee; Fan, Yong; Murali Doraiswamy, P; Zhu, Hongtu

    2015-01-01

    The growing public threat of Alzheimer's disease (AD) has raised the urgency to discover and validate prognostic biomarkers in order to predicting time to onset of AD. It is anticipated that both whole genome single nucleotide polymorphism (SNP) data and high dimensional whole brain imaging data offer predictive values to identify subjects at risk for progressing to AD. The aim of this paper is to test whether both whole genome SNP data and whole brain imaging data offer predictive values to identify subjects at risk for progressing to AD. In 343 subjects with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI-1), we extracted high dimensional MR imaging (volumetric data on 93 brain regions plus a surface fluid registration based hippocampal subregion and surface data), and whole genome data (504,095 SNPs from GWAS), as well as routine neurocognitive and clinical data at baseline. MCI patients were then followed over 48 months, with 150 participants progressing to AD. Combining information from whole brain MR imaging and whole genome data was substantially superior to the standard model for predicting time to onset of AD in a 48-month national study of subjects at risk. Our findings demonstrate the promise of combined imaging-whole genome prognostic markers in people with mild memory impairment.

  9. A Pipeline for Classifying Relationships Using Dense SNP/SNV Data and Putative Pedigree Information.

    PubMed

    Zeng, Zhen; Weeks, Daniel E; Chen, Wei; Mukhopadhyay, Nandita; Feingold, Eleanor

    2016-02-01

    When genome-wide association studies (GWAS) or sequencing studies are performed on family-based datasets, the genotype data can be used to check the structure of putative pedigrees. Even in datasets of putatively unrelated people, close relationships can often be detected using dense single-nucleotide polymorphism/variant (SNP/SNV) data. A number of methods for finding relationships using dense genetic data exist, but they all have certain limitations, including that they typically use average genetic sharing, which is only a subset of the available information. Here, we present a set of approaches for classifying relationships in GWAS datasets or large-scale sequencing datasets. We first propose an empirical method for detecting identity by descent segments in close relative pairs using un-phased dense SNP data and demonstrate how that information can assist in building a relationship classifier. We then develop a strategy to take advantage of putative pedigree information to enhance classification accuracy. Our methods are tested and illustrated with two datasets from two distinct populations. Finally, we propose classification pipelines for checking and identifying relationships in datasets containing a large number of small pedigrees.

  10. Performance of different SNP panels for parentage testing in two East Asian cattle breeds.

    PubMed

    Strucken, E M; Gudex, B; Ferdosi, M H; Lee, H K; Song, K D; Gibson, J P; Kelly, M; Piper, E K; Porto-Neto, L R; Lee, S H; Gondro, C

    2014-08-01

    The International Society for Animal Genetics (ISAG) proposed a panel of single nucleotide polymorphisms (SNPs) for parentage testing in cattle (a core panel of 100 SNPs and an additional list of 100 SNPs). However, markers specific to East Asian taurine cattle breeds were not included, and no information is available as to whether the ISAG panel performs adequately for these breeds. We tested ISAG's core (100 SNP) and full (200 SNP) panels on two East Asian taurine breeds: the Korean Hanwoo and the Japanese Wagyu, the latter from the Australian herd. Even though the power of exclusion was high at 0.99 for both ISAG panels, the core panel performed poorly with 3.01% false-positive assignments in the Hanwoo population and 3.57% in the Wagyu. The full ISAG panel identified all sire-offspring relations correctly in both populations with 0.02% of relations wrongly excluded in the Hanwoo population. Based on these results, we created and tested two population-specific marker panels: one for the Wagyu population, which showed no false-positive assignments with either 100 or 200 SNPs, and a second panel for the Hanwoo, which still had some false-positive assignments with 100 SNPs but no false positives using 200 SNPs. In conclusion, for parentage assignment in East Asian cattle breeds, only the full ISAG panel is adequate for parentage testing. If fewer markers should be used, it is advisable to use population-specific markers rather than the ISAG panel.

  11. Forensically relevant SNaPshot(®) assays for human DNA SNP analysis: a review.

    PubMed

    Mehta, Bhavik; Daniel, Runa; Phillips, Chris; McNevin, Dennis

    2017-01-01

    Short tandem repeats are the gold standard for human identification but are not informative for forensic DNA phenotyping (FDP). Single-nucleotide polymorphisms (SNPs) as genetic markers can be applied to both identification and FDP. The concept of DNA intelligence emerged with the potential for SNPs to infer biogeographical ancestry (BGA) and externally visible characteristics (EVCs), which together enable the FDP process. For more than a decade, the SNaPshot(®) technique has been utilised to analyse identity and FDP-associated SNPs in forensic DNA analysis. SNaPshot is a single-base extension (SBE) assay with capillary electrophoresis as its detection system. This multiplexing technique offers the advantage of easy integration into operational forensic laboratories without the requirement for any additional equipment. Further, the SNP panels from SNaPshot(®) assays can be incorporated into customised panels for massively parallel sequencing (MPS). Many SNaPshot(®) assays are available for identity, BGA and EVC profiling with examples including the well-known SNPforID 52-plex identity assay, the SNPforID 34-plex BGA assay and the HIrisPlex EVC assay. This review lists the major forensically relevant SNaPshot(®) assays for human DNA SNP analysis and can be used as a guide for selecting the appropriate assay for specific identity and FDP applications.

  12. A comparison in association and linkage genome-wide scans for alcoholism susceptibility genes using single-nucleotide polymorphisms.

    PubMed

    Chiu, Yen-Feng; Liu, Su-Yun; Tsai, Ya-Yu

    2005-12-30

    We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P SNP and microsatellite genome scans are fairly consistent; however, the peaks of the NPL scores are mostly higher in the SNP-based scan than those using microsatellite markers, which might be located at different regions. Furthermore, SNPs identified from linkage screens were not so strongly associated with alcoholism (the most significant SNP had a p-value of 0.030) as those identified from association genomic screening (the most significant SNP had a p-value of 2.0 x 10(-8)).

  13. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers.

    PubMed

    Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P

    2008-07-22

    Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.

  14. Single Nucleotide Polymorphism Array Genotyping is Equivalent to Metaphase Cytogenetics for Diagnosis of Turner Syndrome

    PubMed Central

    Prakash, Siddharth; Guo, Dongchuan; Maslen, Cheryl L.; Silberbach, Michael; Investigators, GenTAC; Milewicz, Dianna; Bondy, Carolyn A.

    2013-01-01

    Background Turner syndrome (TS) is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1:2500 females. We hypothesized that single nucleotide polymorphism (SNP) array genotyping can provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. Methods We genotyped 187 TS patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for TS based on karyotypes (60%) or characteristic physical features. SNP array results confirmed the diagnosis of TS in 100% of cases. Results We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present including isochromosomes (16%), rings (5%) and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that SNP array data did not detect X;autosome translocations (3 cases), but did identify 2 derivative Y chromosomes and 13 large copy number variants that were not detected by karyotyping. Conclusions Our data is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in TS. PMID:23743550

  15. Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing.

    PubMed

    Carmichael, Stephen N; Bekaert, Michaël; Taggart, John B; Christie, Hayden R L; Bassett, David I; Bron, James E; Skuce, Philip J; Gharbi, Karim; Skern-Mauritzen, Rasmus; Sturm, Armin

    2013-01-01

    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies.

  16. Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals.

    PubMed

    Vukosavljev, M; Esselink, G D; van 't Westende, W P C; Cox, P; Visser, R G F; Arens, P; Smulders, M J M

    2015-01-01

    The first hurdle in developing microsatellite markers, cloning, has been overcome by next-generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still performed manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired-end transcriptome sequences of 11 roses. Of 48 tested two markers failed to amplify, but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single- and multilocus markers largely overlapped. Of the remainder, half were replicate markers (i.e. multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6-20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy therefore represents a major step forward in the development of highly polymorphic microsatellite markers.

  17. Association of COL2A1 Gene Polymorphism with Degenerative Lumbar Scoliosis

    PubMed Central

    Hwang, Dae Woo; Lee, Sang Hoon; Kim, Jung Youn; Kim, Dong Hwan

    2014-01-01

    Background Degenerative lumbar scoliosis (DLS) progresses with aging after 50-60 years, and the genetic association of DLS remains largely unclear. In this study, the genetic association between collagen type II alpha 1 (COL2A1) gene and DLS was investigated. Methods COL2A1 gene polymorphism was investigated in DLS subjects compared to healthy controls to investigate the possibility of its association with COL2A1 gene. Based on a single nucleotide polymorphism (SNP) database, SNP (rs2276454) in COL2A1 were selected and genotyped using direct sequencing in 51 patients with DLS and 235 healthy controls. The SNP effects were analyzed using three models of codominant, dominant, and recessive. Logistic regression models were calculated for odds ratios (ORs) with 95% confidence intervals (CIs) and corresponding p-values, controlling age and gender as co-variables. Results SNP (rs2276454) in COL2A1 was significantly associated with the degenerative lumbar scoliosis in the codominant (OR, 1.90; 95% CI, 1.17 to 3.10; p = 0.008) and dominant models (OR, 3.58; 95% CI, 1.59 to 9.29; p = 0.001). Conclusions The results suggest that COL2A1 is associated with the risk of DLS in Korean population. PMID:25436060

  18. Evidence for SNP-SNP interaction identified through targeted sequencing of cleft case-parent trios.

    PubMed

    Xiao, Yanzi; Taub, Margaret A; Ruczinski, Ingo; Begum, Ferdouse; Hetmanski, Jacqueline B; Schwender, Holger; Leslie, Elizabeth J; Koboldt, Daniel C; Murray, Jeffrey C; Marazita, Mary L; Beaty, Terri H

    2017-04-01

    Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans, affecting 1 in 700 live births. This malformation has a complex etiology where multiple genes and several environmental factors influence risk. At least a dozen different genes have been confirmed to be associated with risk of NSCL/P in previous studies. However, all the known genetic risk factors cannot fully explain the observed heritability of NSCL/P, and several authors have suggested gene-gene (G × G) interaction may be important in the etiology of this complex and heterogeneous malformation. We tested for G × G interactions using common single nucleotide polymorphic (SNP) markers from targeted sequencing in 13 regions identified by previous studies spanning 6.3 Mb of the genome in a study of 1,498 NSCL/P case-parent trios. We used the R-package trio to assess interactions between polymorphic markers in different genes, using a 1 degree of freedom (1df) test for screening, and a 4 degree of freedom (4df) test to assess statistical significance of epistatic interactions. To adjust for multiple comparisons, we performed permutation tests. The most significant interaction was observed between rs6029315 in MAFB and rs6681355 in IRF6 (4df P = 3.8 × 10(-8) ) in case-parent trios of European ancestry, which remained significant after correcting for multiple comparisons. However, no significant interaction was detected in trios of Asian ancestry.

  19. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  20. The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes

    PubMed Central

    2011-01-01

    The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes. The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes. In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome. PMID:21548990

  1. The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes.

    PubMed

    Dendooven, Amélie; Nguyen, Tri Q; Brosens, Lodewijk; Li, Dongxia; Tarnow, Lise; Parving, Hans-Henrik; Rossing, Peter; Goldschmeding, Roel

    2011-05-08

    The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes. The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes. In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome.

  2. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  3. A system for exact and approximate genetic linkage analysis of SNP data in large pedigrees

    PubMed Central

    Silberstein, Mark; Weissbrod, Omer; Otten, Lars; Tzemach, Anna; Anisenia, Andrei; Shtark, Oren; Tuberg, Dvir; Galfrin, Eddie; Gannon, Irena; Shalata, Adel; Borochowitz, Zvi U.; Dechter, Rina; Thompson, Elizabeth; Geiger, Dan

    2013-01-01

    Motivation: The use of dense single nucleotide polymorphism (SNP) data in genetic linkage analysis of large pedigrees is impeded by significant technical, methodological and computational challenges. Here we describe Superlink-Online SNP, a new powerful online system that streamlines the linkage analysis of SNP data. It features a fully integrated flexible processing workflow comprising both well-known and novel data analysis tools, including SNP clustering, erroneous data filtering, exact and approximate LOD calculations and maximum-likelihood haplotyping. The system draws its power from thousands of CPUs, performing data analysis tasks orders of magnitude faster than a single computer. By providing an intuitive interface to sophisticated state-of-the-art analysis tools coupled with high computing capacity, Superlink-Online SNP helps geneticists unleash the potential of SNP data for detecting disease genes. Results: Computations performed by Superlink-Online SNP are automatically parallelized using novel paradigms, and executed on unlimited number of private or public CPUs. One novel service is large-scale approximate Markov Chain–Monte Carlo (MCMC) analysis. The accuracy of the results is reliably estimated by running the same computation on multiple CPUs and evaluating the Gelman–Rubin Score to set aside unreliable results. Another service within the workflow is a novel parallelized exact algorithm for inferring maximum-likelihood haplotyping. The reported system enables genetic analyses that were previously infeasible. We demonstrate the system capabilities through a study of a large complex pedigree affected with metabolic syndrome. Availability: Superlink-Online SNP is freely available for researchers at http://cbl-hap.cs.technion.ac.il/superlink-snp. The system source code can also be downloaded from the system website. Contact: omerw@cs.technion.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23162081

  4. Transcriptome profiling and validation of gene based single nucleotide polymorphism (SNP) markers in sorghum genotypes with contrasting response to cold stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which seriously limits stand-establishment and seedling growth. To gain further insight on the molecular mechanism of cold tolerance in sorghum we perform...

  5. Development of a forensic identity SNP panel for Indonesia.

    PubMed

    Augustinus, Daniel; Gahan, Michelle E; McNevin, Dennis

    2015-07-01

    Genetic markers included in forensic identity panels must exhibit Hardy-Weinberg and linkage equilibrium (HWE and LE). "Universal" panels designed for global use can fail these tests in regional jurisdictions exhibiting high levels of genetic differentiation such as the Indonesian archipelago. This is especially the case where a single DNA database is required for allele frequency estimates to calculate random match probabilities (RMPs) and associated likelihood ratios (LRs). A panel of 65 single nucleotide polymorphisms (SNPs) and a reduced set of 52 SNPs have been selected from 15 Indonesian subpopulations in the HUGO Pan Asian SNP database using a SNP selection strategy that could be applied to any panel of forensic identity markers. The strategy consists of four screening steps: (1) application of a G test for HWE; (2) ranking for high heterozygosity; (3) selection for LE; and (4) selection for low inbreeding depression. SNPs in our Indonesian panel perform well in comparison to some other universal SNP and short tandem repeat (STR) panels as measured by Fisher's exact test for HWE and LE and Wright's F statistics.

  6. Polymorphism of the ovocalyxin-32 gene and its association with egg production traits in the chicken.

    PubMed

    Uemoto, Y; Suzuki, C; Sato, S; Sato, S; Ohtake, T; Sasaki, O; Takahashi, H; Kobayashi, E

    2009-12-01

    We performed candidate gene analysis to identify SNP in the chicken ovocalyxin-32 (OCX-32) gene in the F(2) resource population, to develop a PCR-RFLP method for genotyping and to evaluate the associations of the gene polymorphism with egg production traits. The F(2) resource population-comprising 272 chickens-was obtained by crossing White Leghorn (WL) males and Rhode Island Red (RIR) females. They were measured for egg production traits and used for candidate gene analysis. Among parental individuals of the F(2) population, 2 novel nonsynonymous polymorphisms (c.267T>G and c.494A>C) and 1 known nonsynonymous polymorphism (c.381G>C) in the coding sequences of the chicken OCX-32 gene were detected. The PCR-RFLP method was used for screening the chickens of the F(2) population. In parental populations, genotype c.267T>G and c.494A>C were segregated within WL and RIR breeds, respectively, but genotype c.381G>C was breed-specific SNP between WL and RIR breeds. A total of 4 haplotypes were constructed based on the 3 SNP in parental populations, and there was no recombination between c.267T>G and c.494A>C. There was a significant association (P < 0.05) between the OCX-32 gene SNP and egg production traits, but there was no significant association between the haplotypes of the OCX-32 gene and egg production traits in the F(2) population. In the present study, there was the most significant association between c.381G>C of the OCX-32 gene and rate of egg production. The current study is the first step to confirm the relationship between OCX-32 gene polymorphisms and egg production traits.

  7. Extensive Variation in the Density and Distribution of DNA Polymorphism in Sorghum Genomes

    PubMed Central

    Evans, Joseph; McCormick, Ryan F.; Morishige, Daryl; Olson, Sara N.; Weers, Brock; Hilley, Josie; Klein, Patricia; Rooney, William; Mullet, John

    2013-01-01

    Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09) and dw3 (SBI-07) had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination. PMID:24265758

  8. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.

    PubMed

    Evans, Joseph; McCormick, Ryan F; Morishige, Daryl; Olson, Sara N; Weers, Brock; Hilley, Josie; Klein, Patricia; Rooney, William; Mullet, John

    2013-01-01

    Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19(th) century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09) and dw3 (SBI-07) had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination.

  9. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences.

    PubMed

    Sanromán-Iglesias, María; Lawrie, Charles H; Liz-Marzán, Luis M; Grzelczak, Marek

    2017-03-01

    Circulating DNA (ctDNA) and specifically the detection cancer-associated mutations in liquid biopsies promises to revolutionize cancer detection. The main difficulty however is that the length of typical ctDNA fragments (∼150 bases) can form secondary structures potentially obscuring the mutated fragment from detection. We show that an assay based on gold nanoparticles (65 nm) stabilized with DNA (Au@DNA) can discriminate single nucleotide polymorphism in clinically relevant ssDNA sequences (70-140 bases). The preincubation step was crucial to this process, allowing sequential bridging of Au@DNA, so that single base mutation can be discriminated, down to 100 pM concentration.

  10. RASSF1A and the rs2073498 Cancer Associated SNP

    PubMed Central

    Donninger, Howard; Barnoud, Thibaut; Nelson, Nick; Kassler, Suzanna; Clark, Jennifer; Cummins, Timothy D.; Powell, David W.; Nyante, Sarah; Millikan, Robert C.; Clark, Geoffrey J.

    2011-01-01

    RASSF1A is one of the most frequently inactivated tumor suppressors yet identified in human cancer. It is pro-apoptotic and appears to function as a scaffolding protein that interacts with a variety of other tumor suppressors to modulate their function. It can also complex with the Ras oncoprotein and may serve to integrate pro-growth and pro-death signaling pathways. A SNP has been identified that is present in approximately 29% of European populations [rs2073498, A(133)S]. Several studies have now presented evidence that this SNP is associated with an enhanced risk of developing breast cancer. We have used a proteomics based approach to identify multiple differences in the pattern of protein/protein interactions mediated by the wild type compared to the SNP variant protein. We have also identified a significant difference in biological activity between wild type and SNP variant protein. However, we have found only a very modest association of the SNP with breast cancer predisposition. PMID:22649770

  11. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-02-06

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.

  12. A clustering algorithm based on two distance functions for MEC model.

    PubMed

    Wang, Ying; Feng, Enmin; Wang, Ruisheng

    2007-04-01

    Haplotype reconstruction, based on aligned single nucleotide polymorphism (SNP) fragments, is to infer a pair of haplotypes from localized polymorphism data gathered through short genome fragment assembly. This paper first presents two distance functions, which are used to measure the difference degree and similarity degree between SNP fragments. Based on the two distance functions, a clustering algorithm is proposed in order to solve MEC model. The algorithm involves two sections. One is to determine the initial haplotype pair, the other concerns with inferring true haplotype pair by re-clustering. The comparison results prove that our algorithm utilizing two distance functions is effective and feasible.

  13. Melanin-based colour polymorphism responding to climate change.

    PubMed

    Roulin, Alexandre

    2014-11-01

    Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is

  14. Association of Interleukin 1 beta (IL-1B) gene polymorphism with early pregnancy loss risk in the North Indian population.

    PubMed

    Nair, R R; Khanna, A; Singh, K

    2014-02-01

    C+3953T IL-1 B single-nucleotide polymorphism (SNP) genotyping was carried out in 140 unrelated early pregnancy loss (EPL) patients and in 198 fertile healthy control women and in chorionic villous samples by PCR-RFLP. In Indian population, this is the first report on association of IL-1 B SNP C+3953T polymorphism and EPL.

  15. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase

    PubMed Central

    Hill, Jeff W.; Evans, Michele K.

    2006-01-01

    Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence. PMID:16549874

  16. SNP and mutation data on the web - hidden treasures for uncovering.

    PubMed

    Barnes, Michael R

    2002-01-01

    SNP data has grown exponentially over the last two years, SNP database evolution has matched this growth, as initial development of several independent SNP databases has given way to one central SNP database, dbSNP. Other SNP databases have instead evolved to complement this central database by providing gene specific focus and an increased level of curation and analysis on subsets of data, derived from the central data set. By contrast, human mutation data, which has been collected over many years, is still stored in disparate sources, although moves are afoot to move to a similar central database. These developments are timely, human mutation and polymorphism data both hold complementary keys to a better understanding of how genes function and malfunction in disease. The impending availability of a complete human genome presents us with an ideal framework to integrate both these forms of data, as our understanding of the mechanisms of disease increase, the full genomic context of variation may become increasingly significant.

  17. Single nucleotide polymorphism (SNP) detection using microelectrode biochip array

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Sung; Lee, Kyung-Sup; Park, Dae-Hee

    2005-10-01

    In this paper, a microelectrode array DNA chip was fabricated on a glass slide using photolithography technology. Several probe DNAs with mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer utilizing the affinity between gold and sulfur. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Cyclic voltammetry in a 5 mM ferricyanide/ferrocyanide solution at 100 mV s-1 confirmed the immobilization of probe DNA on the gold electrodes. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. This was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrids. It is suggested that this DNA chip could recognize sequence specific genes. It is also suggested that a multichannel electrochemical DNA microarray is useful to develop a portable device for a clinical gene diagnostic system.

  18. A genome-wide search for common SNP x SNP interactions on the risk of venous thrombosis

    PubMed Central

    2013-01-01

    Background Venous Thrombosis (VT) is a common multifactorial disease with an estimated heritability between 35% and 60%. Known genetic polymorphisms identified so far only explain ~5% of the genetic variance of the disease. This study was aimed to investigate whether pair-wise interactions between common single nucleotide polymorphisms (SNPs) could exist and modulate the risk of VT. Methods A genome-wide SNP x SNP interaction analysis on VT risk was conducted in a French case–control study and the most significant findings were tested for replication in a second independent French case–control sample. The results obtained in the two studies totaling 1,953 cases and 2,338 healthy subjects were combined into a meta-analysis. Results The smallest observed p-value for interaction was p = 6.00 10-11 but it did not pass the Bonferroni significance threshold of 1.69 10-12 correcting for the number of investigated interactions that was 2.96 1010. Among the 37 suggestive pair-wise interactions with p-value less than 10-8, one was further shown to involve two SNPs, rs9804128 (IGFS21 locus) and rs4784379 (IRX3 locus) that demonstrated significant interactive effects (p = 4.83 10-5) on the variability of plasma Factor VIII levels, a quantitative biomarker of VT risk, in a sample of 1,091 VT patients. Conclusion This study, the first genome-wide SNP interaction analysis conducted so far on VT risk, suggests that common SNPs are unlikely exerting strong interactive effects on the risk of disease. PMID:23509962

  19. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  20. Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel

    PubMed Central

    Yang, Jing; Guo, Baocheng; Shikano, Takahito; Liu, Xiaolin; Merilä, Juha

    2016-01-01

    Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations. Using a dense panel of SNP-markers obtained by restriction site associated DNA sequencing of an F2 recombinant cross, we found 22 QTL that explained 3.5–12.9% of phenotypic variance in the traits under investigation. We detected one fairly large-effect (PVE = 9.6%) QTL for caudal peduncle length–a trait with a well-established adaptive function showing clear differentiation among marine and freshwater populations. We also identified two large-effect QTL for lateral plate numbers, which are different from the lateral plate QTL reported in earlier studies of this and related species. Hence, apart from identifying several large-effect QTL in shape traits showing adaptive differentiation in response to different environmental conditions, the results suggest intra- and interspecific heterogeneity in the genomic basis of lateral plate number variation. PMID:27226078

  1. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages

    PubMed Central

    Mikheecheva, Natalya E.; Zaychikova, Marina V.; Melerzanov, Alexander V.

    2017-01-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin–antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. PMID:28338924

  2. De novo transcriptome assembly and the identification of gene-associated single-nucleotide polymorphism markers in Asian and American ginseng roots.

    PubMed

    Jo, Ick-Hyun; Lee, Seung-Ho; Kim, Young-Chang; Kim, Dong-Hwi; Kim, Hong-Sig; Kim, Kee-Hong; Chung, Jong-Wook; Bang, Kyong-Hwan

    2015-06-01

    We performed de novo transcriptome sequencing for Panax ginseng and Panax quinquefolius accessions using the 454 GS FLX Titanium System and discovered annotation-based genome-wide single-nucleotide polymorphism (SNPs) using next-generation ginseng transcriptome data without reference genome sequence. The comprehensive transcriptome characterization with the mature roots of four ginseng accessions generated 297,170 reads for 'Cheonryang' cultivar, 305,673 reads for 'Yunpoong' cultivar, 311,861 reads for the G03080 breeding line, and 308,313 reads for P. quinquefolius. In transcriptome assembly, the lengths of the sample read were 156.42 Mb for 'Cheonryang', 161.95 Mb for 'Yunpoong', 165.07 Mb for G03080 breeding line, and 166.48 Mb for P. quinquefolius. A total of 97 primer pairs were designed with the homozygous SNP presented in all four accessions. SNP genotyping using high-resolution melting (HRM) analysis was performed to validate the putative SNP markers of 97 primer pairs. Out of the 73 primer pairs, 73 primer pairs amplified the target sequence and 34 primer pairs showed polymorphic melting curves in samples from 11 P. ginseng cultivars and one P. quinquefolius accession. Among the 34 polymorphic HRM-SNP primers, four primers were useful to distinguish ginseng cultivars. In the present study, we demonstrated that de novo transcriptome assembly and mapping analyses are useful in providing four HRM-SNP primer pairs that reliably show a high degree of polymorphism among ginseng cultivars.

  3. Association study of MIF promoter polymorphisms with suicide completers in the Japanese population

    PubMed Central

    Shimmyo, Naofumi; Hishimoto, Akitoyo; Otsuka, Ikuo; Okazaki, Satoshi; Boku, Shuken; Mouri, Kentaro; Horai, Tadasu; Takahashi, Motonori; Ueno, Yasuhiro; Shirakawa, Osamu; Sora, Ichiro

    2017-01-01

    Background Numerous studies suggest that inflammation plays a key role in suicidal behavior. Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has received increasing attention in depression research. However, no study has investigated whether MIF has genetic involvement in completed suicide. In this study, we sought to explore the relationship between two functional polymorphisms on the MIF gene promoter (MIF-794CATT5–8 microsatellite and MIF-173G/C single-nucleotide polymorphism [SNP]) and completed suicide by using one of the largest samples of suicide completers ever reported. Methods The subjects comprised 602 suicide completers and 728 healthy controls. We genotyped MIF-794CATT5–8 microsatellite by polymerase chain reaction–based size discrimination assay and MIF-173G/C SNP by TaqMan® SNP genotyping assay. The allele-, genotype-, or haplotype-based association analyses between the suicide completers and the controls were carried out with the χ2 test, the Cochran–Armitage trend test, or Fisher’s exact test. Results Analyses of allele or genotype frequency distributions of the polymorphisms studied here did not reveal any significant differences between the suicide completers and the controls. Haplotype analysis also revealed no association with completed suicide. Conclusion To our knowledge, this is the first study that has examined the genetic association between MIF and completed suicide. Our results suggest that the effects of MIF-794CATT5–8 microsatellite and MIF-173G/C SNP on the MIF gene promoter might not contribute to the genetic risk of completed suicide in the Japanese population. PMID:28367056

  4. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris).

    PubMed

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.

  5. Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data

    PubMed Central

    2014-01-01

    Background High-throughput genotype (HTG) data has been used primarily in genome-wide association (GWA) studies; however, GWA results explain only a limited part of the complete genetic variation of traits. In systems genetics, network approaches have been shown to be able to identify pathways and their underlying causal genes to unravel the biological and genetic background of complex diseases and traits, e.g., the Weighted Gene Co-expression Network Analysis (WGCNA) method based on microarray gene expression data. The main objective of this study was to develop a scale-free weighted genetic interaction network method using whole genome HTG data in order to detect biologically relevant pathways and potential genetic biomarkers for complex diseases and traits. Results We developed the Weighted Interaction SNP Hub (WISH) network method that uses HTG data to detect genome-wide interactions between single nucleotide polymorphism (SNPs) and its relationship with complex traits. Data dimensionality reduction was achieved by selecting SNPs based on its: 1) degree of genome-wide significance and 2) degree of genetic variation in a population. Network construction was based on pairwise Pearson's correlation between SNP genotypes or the epistatic interaction effect between SNP pairs. To identify modules the Topological Overlap Measure (TOM) was calculated, reflecting the degree of overlap in shared neighbours between SNP pairs. Modules, clusters of highly interconnected SNPs, were defined using a tree-cutting algorithm on the SNP dendrogram created from the dissimilarity TOM (1-TOM). Modules were selected for functional annotation based on their association with the trait of interest, defined by the Genome-wide Module Association Test (GMAT). We successfully tested the established WISH network method using simulated and real SNP interaction data and GWA study results for carcass weight in a pig resource population; this resulted in detecting modules and key functional and

  6. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map.

    PubMed

    Tayeh, Nadim; Aluome, Christelle; Falque, Matthieu; Jacquin, Françoise; Klein, Anthony; Chauveau, Aurélie; Bérard, Aurélie; Houtin, Hervé; Rond, Céline; Kreplak, Jonathan; Boucherot, Karen; Martin, Chantal; Baranger, Alain; Pilet-Nayel, Marie-Laure; Warkentin, Thomas D; Brunel, Dominique; Marget, Pascal; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith

    2015-12-01

    Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.

  7. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  8. HLA-C -35kb expression SNP is associated with differential control of β-HPV infection in squamous cell carcinoma cases and controls.

    PubMed

    Vineretsky, Karin A; Karagas, Margaret R; Kuriger-Laber, Jacquelyn K; Waterboer, Tim; Pawlita, Michael; Nelson, Heather H

    2014-01-01

    A single nucleotide polymorphism (SNP) 35 kb upstream of the HLA-C gene is associated with HLA-C expression, and the high expressing genotype (CC) has been associated with HIV-I control. HLA-C is unique among the classical MHC class I molecules for its role in the control of viral infections and recognition of abnormal or missing self. This immunosurveillance is central to the pathogenesis of non-melanoma skin cancer (NMSC), and of squamous cell carcinoma (SCC) in particular. While sun exposure is a major risk factor for these cancers, cutaneous infections with genus β-HPV have been implicated in the development of SCC. We hypothesized that the high expression HLA-C genotype is associated with β-HPV infections. Therefore, we investigated the association between β-HPV serology and the -35 kb SNP (rs9264942) in a population-based case-control study of 510 SCC cases and 608 controls. Among controls, the high expression -35 kb SNP genotype (CC) reduced the likelihood of positive serology for multiple (≥2) β-HPV infections (OR = 0.49, 95% CI: 0.25-0.97), and β-HPV species 2 infection (OR = 0.43, 95% CI: 0.23-0.79). However, no association with β-HPV status was observed among SCC cases. Our findings suggest that underlying immunogenotype plays an important role in differential control of β-HPV in SCC cases and controls.

  9. Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease

    PubMed Central

    Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.

    2013-01-01

    Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889

  10. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.

  11. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  12. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance.

    PubMed

    Kaur, Sukhjiwan; Cogan, Noel O I; Stephens, Amber; Noy, Dianne; Butsch, Mirella; Forster, John W; Materne, Michael

    2014-03-01

    Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic 'orphan' crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab × ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2 years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.

  13. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  14. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome.

    PubMed

    Brooks, Samantha A; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F

    2010-04-15

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.

  15. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  16. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover

    PubMed Central

    2013-01-01

    Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for

  17. SNP uniqueness problem: a proof-of-principle in HapMap SNPs.

    PubMed

    Doron, Shany; Shweiki, Dorit

    2011-04-01

    SNP-based research strongly affects our biomedical and clinically associated knowledge. Nonunique and false-positive SNP existence in commonly used datasets may thus lead to biased, inaccurate clinically associated conclusions. We designed a computational study to reveal the degree of nonunique/false-positive SNPs in the HapMap dataset. Two sets of SNP flanking sequences were used as queries for BLAT analysis against the human genome. 4.2% and 11.9% of HapMap SNPs align to the genome nonuniquely (long and short, respectively). Furthermore, an average of 7.9% nonunique SNPs are included in common commercial genotyping arrays (according to our designed probes). Nonunique SNPs identified in this study are represented to various degrees in clinically associated databases, stressing the consequence of inaccurate SNP annotation and hence SNP utilization. Unfortunately, our results question some disease-related genotyping analyses, raising a worrisome concern on their validity.

  18. Development of SNP-based dCAPS markers for identifying male sterile gene tms5 in two-line hybrid rice.

    PubMed

    Song, F S; Ni, J L; Qian, Y L; Li, L; Ni, D H; Yang, J B

    2016-08-29

    Molecular markers can increase both the efficiency and speed of breeding programs. Functional markers that detect the functional mutations causing phenotypic changes offer a precise method for genetic identification. In this study, we used newly derived cleaved amplified polymorphic sequence markers to detect the functional mutations of tms5, which is a male sterile gene that is widely used in rice production in China. In addition, restriction cutting sites were designed to specifically digest amplicons of tms5 but not wild type (TMS5), in order to avoid the risk of false positive results. By optimizing the condition of the polymerase chain reaction amplifications and restriction enzyme digestions, the newly designed markers could accurately distinguish between tms5 and TMS5. These markers can be applied in marker-assisted selection for breeding novel thermo-sensitive genic male sterile (TGMS) lines, as well as to rapidly identify the TGMS hybrid seed purity.

  19. A novel Tetra-primer ARMS-PCR based assay for genotyping SNP rs12303764(G/T) of human Unc-51 like kinase 1 gene.

    PubMed

    Randhawa, Rohit; Duseja, Ajay; Changotra, Harish

    2017-02-01

    Various case-control studies have shown association of single nucleotide polymorphism rs12303764(G/T) in ULK1 with crohn's disease. The techniques used in these studies were time consuming, complicated and require sophisticated/expensive instruments. Therefore, in order to overcome these problems, we have developed a new, rapid and cost effective Tetra-primer ARMS-PCR assay to genotype single nucleotide polymorphism rs12303764(G/T) of ULK1 gene. We manually designed allele specific primers. DNA fragment amplified using outer primers was sequenced to obtain samples with known genotypes (GG, GT and TT) for further use in the development of T-ARMS-PCR assay. Amplification conditions were optimized for parameters; annealing temperature, Taq DNA polymerase and primers. The developed T-ARMS-PCR assay was applied to genotype one hundred samples from healthy individuals. Genotyping results of 10 DNA samples from healthy individuals for rs12303764(G/T) by T-ARMS-PCR assay and sequencing were concordant. The newly developed assay was further applied to genotype samples from 100 healthy individuals of North Indian origin. Genotype frequencies were 9, 34 and 57 % for GG, GT and TT, respectively. Allele frequencies were 0.26 and 0.74 for G and T, respectively. The allele frequencies were in Hardy-Weinberg's equilibrium (p = 0.2443). T-ARMS-PCR assay developed in our laboratory for genotyping rs12303764 (G/T) of ULK1 gene is time saving and cost-effective as compared to the available methods. Furthermore, this is the first study reporting allelic and genotype frequencies of ULK1 rs12303764 (G/T) variants in North Indian population.

  20. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  1. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  2. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows.

    PubMed

    Ortega, M Sofia; Denicol, Anna C; Cole, John B; Null, Daniel J; Taylor, Jeremy F; Schnabel, Robert D; Hansen, Peter J

    2017-03-02

    Many genetic markers related to health or production traits are not evaluated in populations independent of the discovery population or related to phenotype. Here we evaluated 68 single nucleotide polymorphisms (SNP) in candidate genes previously associated with genetic merit for fertility and production traits for association with phenotypic measurements of fertility in a population of Holstein cows that was selected based on predicted transmitting ability (PTA) for daughter pregnancy rate (DPR; high, ≥1, n = 989; low, ≤ -1.0, n = 1,285). Cows with a high PTA for DPR had higher pregnancy rate at first service, fewer services per conception, and fewer days open than cows with a low PTA for DPR. Of the 68 SNP, 11 were associated with pregnancy rate at first service, 16 with services per conception, and 19 with days open. Single nucleotide polymorphisms in 12 genes (BDH2, BSP3, CAST, CD2, CD14, FUT1, FYB, GCNT3, HSD17B7, IBSP, OCLN, and PCCB) had significant associations with 2 fertility traits, and SNP in 4 genes (CSPP1, FCER1G, PMM2, and TBC1D24) had significant associations with each of the 3 traits. Results from this experiment were compared with results from 2 earlier studies in which the SNP were associated with genetic estimates of fertility. One study involved the same animals as used here, and the other study was of an independent population of bulls. A total of 13 SNP associated with 1 or more phenotypic estimates of fertility were directionally associated with genetic estimates of fertility in the same cow population. Moreover, 14 SNP associated with reproductive phenotype were directionally associated with genetic estimates of fertility in the bull population. Nine SNP (located in BCAS, BSP3, CAST, FUT1, HSD17B7, OCLN, PCCB, PMM2, and TBC1D24) had a directional association with fertility in all 3 studies. Examination of the function of the genes with SNP associated with reproduction in more than one study indicates the importance of steroid hormones

  3. Genomic and genotyping characterization of haplotype-based polymorphic microsatellites in Prunus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient utilization of microsatellites in genetic studies remains impeded largely due to the unknown status of their primer reliability, chromosomal location, and allele polymorphism. Discovery and characterization of microsatellite polymorphisms in a taxon will disclose the unknowns and gain new ...

  4. B-DNA structure is intrinsically polymorphic: even at the level of base pair positions

    SciTech Connect

    Maehigashi, Tatsuya; Hsiao, Chiaolong; Woods, Kristen Kruger; Moulaei, Tinoush; Hud, Nicholas V.; Williams, Loren Dean

    2012-10-23

    Increasingly exact measurement of single crystal X-ray diffraction data offers detailed characterization of DNA conformation, hydration and electrostatics. However, instead of providing a more clear and unambiguous image of DNA, highly accurate diffraction data reveal polymorphism of the DNA atomic positions and conformation and hydration. Here we describe an accurate X-ray structure of B-DNA, painstakingly fit to a multistate model that contains multiple competing positions of most of the backbone and of entire base pairs. Two of ten base-pairs of CCAGGCCTGG are in multiple states distinguished primarily by differences in slide. Similarly, all the surrounding ions are seen to fractionally occupy discrete competing and overlapping sites. And finally, the vast majority of water molecules show strong evidence of multiple competing sites. Conventional resolution appears to give a false sense of homogeneity in conformation and interactions of DNA. In addition, conventional resolution yields an average structure that is not accurate, in that it is different from any of the multiple discrete structures observed at high resolution. Because base pair positional heterogeneity has not always been incorporated into model-building, even some high and ultrahigh-resolution structures of DNA do not indicate the full extent of conformational polymorphism.

  5. Polymorphic Regions in the Interleukin-1 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study

    PubMed Central

    Lavu, Vamsi; Venkatesan, Vettriselvi; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya; Venugopal, Priyanka; Paul, Solomon Franklin Durairaj

    2015-01-01

    Objective: The objectives of this study were to determine the association between single nucleotide polymorphisms (SNPs) in IL1B (−511, +3954), IL1A (−889, +4845), and the variable number of tandem repeats (VNTRs) polymorphism in the IL-1RN gene with chronic periodontitis susceptibility and to analyze gene–gene interactions in a hospital-based sample population from South India. Subjects and Methods: A total of 400 individuals were recruited for this study; 200 individuals with healthy gingiva and 200 chronic periodontitis patients. Genomic DNA was isolated from peripheral blood samples and genotyping was performed for the above-mentioned single nucleotide and VNTR polymorphisms by polymerase chain reaction, DNA sequencing, and agarose gel electrophoresis. Results: A higher proportion of the variant alleles were observed in the chronic periodontitis group for all the SNPs examined. The SNP at +3954 (C>T) in the IL1B gene was found to be significantly associated with chronic periodontitis (p=0.007). VNTR genotypes (χ2 value: 5.163, df=1, p=0.023) and alleles (χ2 value: 6.818, df=1, p=0.009) were found to have a significant association with chronic periodontitis susceptibility. Conclusion: In the study population examined, the SNP in the IL1B gene (+3954) and VNTR polymorphisms in the IL1RN gene were found to have a significant association with chronic periodontitis susceptibility. PMID:25710474

  6. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  7. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.).

    PubMed

    Koning-Boucoiran, Carole F S; Esselink, G Danny; Vukosavljev, Mirjana; van 't Westende, Wendy P C; Gitonga, Virginia W; Krens, Frans A; Voorrips, Roeland E; van de Weg, W Eric; Schulz, Dietmar; Debener, Thomas; Maliepaard, Chris; Arens, Paul; Smulders, Marinus J M

    2015-01-01

    In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.

  8. Target SNP selection in complex disease association studies

    PubMed Central

    Wjst, Matthias

    2004-01-01

    Background The massive amount of SNP data stored at public internet sites provides unprecedented access to human genetic variation. Selecting target SNP for disease-gene association studies is currently done more or less randomly as decision rules for the selection of functional relevant SNPs are not available. Results We implemented a computational pipeline that retrieves the genomic sequence of target genes, collects information about sequence variation and selects functional motifs containing SNPs. Motifs being considered are gene promoter, exon-intron structure, AU-rich mRNA elements, transcription factor binding motifs, cryptic and enhancer splice sites together with expression in target tissue. As a case study, 396 genes on chromosome 6p21 in the extended HLA region were selected that contributed nearly 20,000 SNPs. By computer annotation ~2,500 SNPs in functional motifs could be identified. Most of these SNPs are disrupting transcription factor binding sites but only those introducing new sites had a significant depressing effect on SNP allele frequency. Other decision rules concern position within motifs, the validity of SNP database entries, the unique occurrence in the genome and conserved sequence context in other mammalian genomes. Conclusion Only 10% of all gene-based SNPs have sequence-predicted functional relevance making them a primary target for genotyping in association studies. PMID:15248903

  9. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse

    PubMed Central

    Moran, Jennifer L.; Bolton, Andrew D.; Tran, Pamela V.; Brown, Alison; Dwyer, Noelle D.; Manning, Danielle K.; Bjork, Bryan C.; Li, Cheng; Montgomery, Kate; Siepka, Sandra M.; Vitaterna, Martha Hotz; Takahashi, Joseph S.; Wiltshire, Tim; Kwiatkowski, David J.; Kucherlapati, Raju; Beier, David R.

    2006-01-01

    Phenotype-driven genetics can be used to create mouse models of human disease and birth defects. However, the utility of these mutant models is limited without identification of the causal gene. To facilitate genetic mapping, we developed a fixed single nucleotide polymorphism (SNP) panel of 394 SNPs as an alternative to analyses using simple sequence length polymorphism (SSLP) marker mapping. With the SNP panel, chromosomal locations for 22 monogenic mutants were identified. The average number of affected progeny genotyped for mapped monogenic mutations is nine. Map locations for several mutants have been obtained with as few as four affected progeny. The average size of genetic intervals obtained for these mutants is 43 Mb, with a range of 17–83 Mb. Thus, our SNP panel allows for identification of moderate resolution map position with small numbers of mice in a high-throughput manner. Importantly, the panel is suitable for mapping crosses from many inbred and wild-derived inbred strain combinations. The chromosomal localizations obtained with the SNP panel allow one to quickly distinguish between potentially novel loci or remutations in known genes, and facilitates fine mapping and positional cloning. By using this approach, we identified DNA sequence changes in two ethylnitrosourea-induced mutants. PMID:16461637

  10. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken

    PubMed Central

    Wang, Yan; Yin, Huadong; Zhou, Lanyun; Zhong, Chengling

    2017-01-01

    The hypoxia adaptation to high altitudes is of considerable interest in the biological sciences. As a breed with adaptability to highland environments, the Tibetan chicken (Gallus gallus domestics), provides a biological model to search for genetic differences between high and lowland chickens. To address mechanisms of hypoxia adaptability at high altitudes for the Tibetan chicken, we focused on the Endothelial PAS domain protein 1 (EPAS1), a key regulatory factor in hypoxia responses. Detected were polymorphisms of EPAS1 exons in 157 Tibetan chickens from 8 populations and 139 lowland chickens from 7 breeds. We then designed 15 pairs of primers to amplify exon sequences by Sanger sequencing methods. Six single nucleotide polymorphisms (SNPs) were detected, including 2 missense mutations (SNP3 rs316126786 and SNP5 rs740389732) and 4 synonymous mutations (SNP1 rs315040213, SNP4 rs739281102, SNP6 rs739010166, and SNP2 rs14330062). There were negative correlations between altitude and mutant allele frequencies for both SNP6 (rs739010166, r = 0.758, p<0.001) and SNP3 (rs316126786, r = 0.844, P<0.001). We also aligned the EPAS1 protein with ortholog proteins from diverse vertebrates and focused that SNP3 (Y333C) was a conserved site among species. Also, SNP3 (Y333C) occurred in a well-defined protein domain Per-AhR-Arnt-Sim (PAS domain). These results imply that SNP3 (Y333C) is the most likely casual mutation for the high-altitude adaption in Tibetan chicken. These variations of EPAS1 provide new insights into the gene’s function. PMID:28222154

  11. Association of the ABCG2 C421A polymorphism with prostate cancer risk and survival

    PubMed Central

    Gardner, Erin R.; Ahlers, Christoph M.; Shukla, Suneet; Sissung, Tristan M.; Ockers, Sandra B.; Price, Douglas K.; Hamada, Akinobu; Robey, Robert W.; Steinberg, Seth M.; Ambudkar, Suresh V.; Dahut, William L.; Figg, William D.

    2009-01-01

    Objective To determine if the C421A single nucleotide polymorphism (SNP) in the ATP-binding cassette transporter ABCG2 increases prostate cancer risk or affects survival. Patients, subjects and methods Numerous studies have suggested that dietary, hormonal and environmental factors all play a role in the initiation in prostate cancer; among these, the carcinogenic heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a known substrate of the ABCG2. A SNP of ABCG2, C421A, resulting in a glutamine to lysine change at amino acid 141, has been shown to result in decreased function of the protein. Due to the expression of ABCG2 in the prostate, together with the purported role of dietary carcinogens and steroids in the development and progression of prostate cancer, 311 individuals were genotyped for the ABCG2 C421A SNP, 170 patients with androgen-independent prostate cancer (AIPC) and 141 ‘healthy’ controls. We also evaluated the effect of this SNP on the intracellular accumulation of PhIP and testosterone in vitro. Results There were no significant differences in the prevalence of prostate cancer based on ABCG2 genetic variation in this population. However, survival was significantly longer for individuals with wild-type ABCG2, as compared with those hetero- or homozygous for the C421A SNP (7.4 years vs 5.3 years, P = 0.044). Conclusion Intracellular accumulation of PhIP was 80% higher in HEK293 cells transfected with Q141K ABCG2 than in wild-type cells, confirming that this SNP decreases transport of PhIP. In contrast, testosterone was not transported by either wild-type or variant transfected cells, nor did it act as in inhibitor of ABCG2 in subsequent transport assays. PMID:18710444

  12. Transcriptome analysis and SNP validation in sorghum using RNA seq data from germplasm with differential response to cold tolerance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently there is a critical need for breeder friendly, easy access and high troughput single nucleotide polymorphic (SNP) markers in implementation of molecular breeding for sorghum improvement. To address this need we performed transcriptome profiling between cold sensitive and tolerant sorghum l...

  13. DNA sequences of Pima (Gossypium barbadense L.) cotton leaf for examining transcriptome diversity and SNP biomarker discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...

  14. Comparative analysis of CNV calling algorithms: literature survey and a case study using bovine high-density SNP data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been ...

  15. Translational genomics for abiotic stress in sorghum: transcriptional profiling and validation of SNP markers between germplasm with differential cold tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...

  16. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    PubMed

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  17. Nuclear Species-Diagnostic SNP Markers Mined from 454 Amplicon Sequencing Reveal Admixture Genomic Structure of Modern Citrus Varieties

    PubMed Central

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  18. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals

    PubMed Central

    Kawai, Yosuke; Mimori, Takahiro; Kojima, Kaname; Nariai, Naoki; Danjoh, Inaho; Saito, Rumiko; Yasuda, Jun; Yamamoto, Masayuki; Nagasaki, Masao

    2015-01-01

    The Tohoku Medical Megabank Organization constructed the reference panel (referred to as the 1KJPN panel), which contains >20 million single nucleotide polymorphisms (SNPs), from whole-genome sequence data from 1070 Japanese individuals. The 1KJPN panel contains the largest number of haplotypes of Japanese ancestry to date. Here, from the 1KJPN panel, we designed a novel custom-made SNP array, named the Japonica array, which is suitable for whole-genome imputation of Japanese individuals. The array contains 659 253 SNPs, including tag SNPs for imputation, SNPs of Y chromosome and mitochondria, and SNPs related to previously reported genome-wide association studies and pharmacogenomics. The Japonica array provides better imputation performance for Japanese individuals than the existing commercially available SNP arrays with both the 1KJPN panel and the International 1000 genomes project panel. For common SNPs (minor allele frequency (MAF)>5%), the genomic coverage of the Japonica array (r2>0.8) was 96.9%, that is, almost all common SNPs were covered by this array. Nonetheless, the coverage of low-frequency SNPs (0.5%SNP arrays based on a population-specific reference panel is a practical way to facilitate further association studies through genome-wide genotype imputations. PMID:26108142

  19. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa.

    PubMed

    Gilchrist, Erin J; Haughn, George W; Ying, Cheng C; Otto, Sarah P; Zhuang, Jun; Cheung, Dorothy; Hamberger, Björn; Aboutorabi, Fariba; Kalynyak, Tatyana; Johnson, Lee; Bohlmann, Joerg; Ellis, Brian E; Douglas, Carl J; Cronk, Quentin C B

    2006-04-01

    Abstract Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large-scale studies of genetic variation in this tree. A publicly available, live reference collection of P. trichocarpa from the University of British Columbia Botanical Garden was used in this study to survey variation in nine different genes among individuals from 41 different populations. A large amount of genetic variation was detected, but the level of variation appears to be less than in the related species, Populus tremula, based on reported statistics for that tree. Genes examined varied considerably in their level of variation, from PoptrTB1 which had a single SNP, to PoptrLFY which had more than 23 in the 1000-bp region examined. Overall nucleotide diversity, measured as (Total), was relatively low at 0.00184. Linkage disequilibrium, on the other hand, was higher than reported for some woody plant species, with mean r2 equal to 0.34. This study reveals the potential of Ecotilling as a rapid genotype discovery method to explore and utilize the large pool of genetic variation in tree species.

  20. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  1. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.

  2. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L.

    PubMed

    Chopra, Ratan; Burow, Gloria; Farmer, Andrew; Mudge, Joann; Simpson, Charles E; Wilkins, Thea A; Baring, Michael R; Puppala, Naveen; Chamberlin, Kelly D; Burow, Mark D

    2015-06-01

    Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.

  3. Assessment of microsatellite and SNP markers for parentage assignment in ex situ African Penguin (Spheniscus demersus) populations.

    PubMed

    Labuschagne, Christiaan; Nupen, Lisa; Kotzé, Antoinette; Grobler, Paul J; Dalton, Desiré L

    2015-10-01

    Captive management of ex situ populations of endangered species is traditionally based on pedigree information derived from studbook data. However, molecular methods could provide a powerful set of complementary tools to verify studbook records and also contribute to improving the understanding of the genetic status of captive populations. Here, we compare the utility of single nucleotide polymorphisms (SNPs) and microsatellites (MS) and two analytical methods for assigning parentage in ten families of captive African penguins held in South African facilities. We found that SNPs performed better than microsatellites under both analytical frameworks, but a combination of all markers was most informative. A subset of combined SNP (n = 14) and MS loci (n = 10) provided robust assessments of parentage. Captive or supportive breeding programs will play an important role in future African penguin conservation efforts as a source of individuals for reintroduction. Cooperation among these captive facilities is essential to facilitate this process and improve management. This study provided us with a useful set of SNP and MS markers for parentage and relatedness testing among these captive populations. Further assessment of the utility of these markers over multiple (>3) generations and the incorporation of a larger variety of relationships among individuals (e.g., half-siblings or cousins) is strongly suggested.

  4. Effectiveness of single-nucleotide polymorphisms to investigate cattle rustling.

    PubMed

    Fernández, María E; Rogberg-Muñoz, Andrés; Lirón, Juan P; Goszczynski, Daniel E; Ripoli, María V; Carino, Mónica H; Peral-García, Pilar; Giovambattista, Guillermo

    2014-11-01

    Short tandem repeats (STR)s have been the eligible markers for forensic animal genetics, despite single-nucleotide polymorphisms (SNP)s became acceptable. The technology, the type, and amount of markers could limit the investigation in degraded forensic samples. The performance of a 32-SNP panel genotyped through OpenArrays(TM) (real-time PCR based) was evaluated to resolve cattle-specific forensic cases. DNA from different biological sources was used, including samples from an alleged instance of cattle rustling. SNPs and STRs performance and repeatability were compared. SNP call rate was variable among sample type (average = 80.18%), while forensic samples showed the lowest value (70.94%). The repeatability obtained (98.7%) supports the used technology. SNPs had better call rates than STRs in 12 of 20 casework samples, while forensic index values were similar for both panels. In conclusion, the 32-SNPs used are as informative as the standard bovine STR battery and hence are suitable to resolve cattle rustling investigations.

  5. Family-Based Association Study of rs17300539 and rs12495941 Polymorphism in Adiponectin Gene and Polycystic Ovary Syndrome in a Chinese Population

    PubMed Central

    Sun, Xianchang; Wu, Xingguo; Duan, Yunmin; Liu, Guanghai; Yu, Xinyan; Zhang, Wenjuan

    2017-01-01

    Backgriond Polycystic ovary syndrome (PCOS) is a complex disease that has both genetic and environmental components. Adiponectin plays an important role in the regulation of insulin sensitivity and insulin resistance (IR) in PCOS. The aim of this study was to determine 2 single-nucleotide polymorphisms (SNPs) variants (rs12495941 and rs17300539) of the adiponectin gene (ADIPOQ) in polycystic ovary syndrome (PCOS) families. Material/Methods We recruited 197 PCOS probands, their biological parents, and 192 controls. Anthropometric variables, including hip circumference (HC) and waist circumference (WC), were measured in all subjects during their first visit to the outpatient department. Serum T, FBG, FINS, TC, TG, LDL, and HDL levels were measured. PCOS patients were divided into 2 groups based on BMI: group A (BMI <25 kg/m2) and group B (BMI ≥25 kg/m2). Parents of PCOS were accordingly categorized into group C and group D (fathers), and group E and group F (mothers). The associations among ADIPOQ rs12495941, rs17300539, and PCOS were analyzed using the transmission disequilibrium test (TDT). Results A significant association was found between SNP rs17300539 and PCOS in our Chinese population. The levels of TG and FINS and the genotype frequencies of rs17300539 are significantly different between overweight and lean PCOS. No significant association was detected for rs12495941. Conclusions TDT confirms that rs17300539 of ADIPOQ is strongly associated with the risk of PCOS in a Chinese Han population, but rs12495941 of ADIPOQ is not associated with the occurrence of PCOS. PMID:28060790

  6. Sensitive Quantification of Mosaicism Using High Density SNP Arrays and the Cumulative Distribution Function

    PubMed Central

    Markello, Thomas C.; Carlson-Donohoe, Hannah; Sincan, Murat; Adams, David; Bodine, David M.; Farrar, Jason E.; Vlachos, Adrianna; Lipton, Jeffrey M.; Auerbach, Arleen D.; Ostrander, Elaine A.; Chandrasekharappa, Settara C.; Boerkoel, Cornelius F.; Gahl, William A.

    2012-01-01

    Medicine is rapidly applying exome and genome sequencing to the diagnosis and management of human disease. Somatic mosaicism, however, is not readily detectable by these means, and yet it accounts for a significant portion of undiagnosed disease. We present a rapid and sensitive method, the Continuous Distribution Function as applied to single nucleotide polymorphism (SNP) array data, to quantify somatic mosaicism throughout the genome. We also demonstrate application of the method to novel diseases and mechanisms. PMID:22277120

  7. Two-stage designs to identify the effects of SNP combinations on complex diseases.

    PubMed

    Kang, Guolian; Yue, Weihua; Zhang, Jifeng; Huebner, Marianne; Zhang, Handi; Ruan, Yan; Lu, Tianlan; Ling, Yansu; Zuo, Yijun; Zhang, Dai

    2008-01-01

    The genetic basis of complex diseases is expected to be highly heterogeneous, with many disease genes, where each gene by itself has only a small effect. Based on the nonlinear contributions of disease genes across the genome to complex diseases, we introduce the concept of single nucleotide polymorphism (SNP) synergistic blocks. A two-stage approach is applied to detect the genetic association of synergistic blocks with a disease. In the first stage, synergistic blocks associated with a complex disease are identified by clustering SNP patterns and choosing blocks within a cluster that minimize a diversity criterion. In the second stage, a logistic regression model is given for a synergistic block. Using simulated case-control data, we demonstrate that our method has reasonable power to identify gene-gene interactions. To further evaluate the performance of our method, we apply our method to 17 loci of four candidate genes for paranoid schizophrenia in a Chinese population. Five synergistic blocks are found to be associated with schizophrenia, three of which are negatively associated (odds ratio, OR < 0.3, P < 0.05), while the others are positively associated (OR > 2.0, P < 0.05). The mathematical models of these five synergistic blocks are presented. The results suggest that there may be interactive effects for schizophrenia among variants of the genes neuregulin 1 (NRG1, 8p22-p11), G72 (13q34), the regulator of G-protein signaling-4 (RGS4, 1q21-q22) and frizzled 3 (FZD3, 8p21). Using synergistic blocks, we can reduce the dimensionality in a multi-locus association analysis, and evaluate the sizes of interactive effects among multiple disease genes on complex phenotypes.

  8. A SNP Based Linkage Map of the Arctic Charr (Salvelinus alpinus) Genome Provides Insights into the Diploidization Process After Whole Genome Duplication.

    PubMed

    Nugent, Cameron M; Easton, Anne A; Norman, Joseph D; Ferguson, Moira M; Danzmann, Roy G

    2017-02-09

    Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus), a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) genomes were determined. Paralogous sequence variants (PSVs) were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.

  9. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations.

    PubMed

    Shi, Wentao; Ayub, Qasim; Vermeulen, Mark; Shao, Rong-guang; Zuniga, Sofia; van der Gaag, Kristiaan; de Knijff, Peter; Kayser, Manfred; Xue, Yali; Tyler-Smith, Chris

    2010-02-01

    We have investigated human male demographic history using 590 males from 51 populations in the Human Genome Diversity Project - Centre d'Etude du Polymorphisme Humain worldwide panel, typed with 37 Y-chromosomal Single Nucleotide Polymorphisms and 65 Y-chromosomal Short Tandem Repeats and analyzed with the program Bayesian Analysis of Trees With Internal Node Generation. The general patterns we observe show a gradient from the oldest population time to the most recent common ancestors (TMRCAs) and expansion times together with the largest effective population sizes in Africa, to the youngest times and smallest effective population sizes in the Americas. These parameters are significantly negatively correlated with distance from East Africa, and the patterns are consistent with most other studies of human variation and history. In contrast, growth rate showed a weaker correlation in the opposite direction. Y-lineage diversity and TMRCA also decrease with distance from East Africa, supporting a model of expansion with serial founder events starting from this source. A number of individual populations diverge from these general patterns, including previously documented examples such as recent expansions of the Yoruba in Africa, Basques in Europe, and Yakut in Northern Asia. However, some unexpected demographic histories were also found, including low growth rates in the Hazara and Kalash from Pakistan and recent expansion of the Mozabites in North Africa.

  10. Genome-wide SNP typing reveals signatures of population history.

    PubMed

    Hughes, Austin L; Welch, Robert; Puri, Vinita; Matthews, Casey; Haque, Kashif; Chanock, Stephen J; Yeager, Meredith

    2008-07-01

    Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.

  11. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

    PubMed Central

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M. K.; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014–2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  12. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species

    SciTech Connect

    Geraldes, Armando; Hannemann, Jan; Grassa, Chris; Farzaneh, Nima; Porth, Ilga; McKown, Athena; Skyba, Oleksandr; Li, Eryang; Mike, Fujita; Friedmann, Michael; Wasteneys, Geoffrey; Guy, Robert; El-Kassaby, Yousry; Mansfield, Shawn; Cronk, Quentin; Ehlting, Juergen; Douglas, Carl; DiFazio, Stephen P; Slavov, Gancho; Ranjan, Priya; Muchero, Wellington; Gunter, Lee E; Wymore, Ann; Tuskan, Gerald A; Martin, Joel; Schackwitz, Wendy; Pennacchio, Christa; Rokhsar, Daniel

    2013-01-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. Despite the declining costs of genotyping by sequencing, for most studies, the use of large SNP genotyping arrays still offers the most cost-effective solution for large-scale targeted genotyping. Here we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species range. Due to the rapid decay of linkage disequilibrium in P. trichocarpa we adopted a candidate gene approach to the array design that resulted in the selection of 34,131 SNPs, the majority of which are located in, or within 2 kb, of 3,543 candidate genes. A subset of the SNPs (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%, indicating that high-quality data are generated with this array. We demonstrate that even among small numbers of samples (n=10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that due to ascertainment bias the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca (P. balsamifera and P. angustifolia). Finally, we provide evidence for the utility of the array for intraspecific studies of genetic differentiation and for species assignment and the detection of natural hybrids.

  13. Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms

    PubMed Central

    2012-01-01

    Background A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). Results The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar ‘Chandler’ were mapped to 48,661 ‘Chandler’ bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium Bead

  14. N-Acetyltransferase 1 Polymorphism and Breast Cancer Risk

    DTIC Science & Technology

    2011-10-01

    analysis of the N-acetyltransferase 1 gene (NAT1*) using polymerase chain reaction-restriction fragment- single strand conformation polymorphism assay...risk of smoking-induced lung cancer (Bouchardy et al., 1998). NAT1*14B is characterized by a single nucleotide polymorphism (SNP) G560A (rs4986782...Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev 40, 169-184. Zheng, W., Deitz, A.C., Campbell

  15. Identification of single nucleotide polymorphisms in the bovine solute carrier family 11 member 1 (SLC11A1) gene and their association with infection by Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Ruiz-Larrañaga, O; Garrido, J M; Manzano, C; Iriondo, M; Molina, E; Gil, A; Koets, A P; Rutten, V P M G; Juste, R A; Estonba, A

    2010-04-01

    Johne's disease is a chronic enteritis caused by Mycobacterium avium ssp. paratuberculosis (MAP) that causes substantial financial losses for the cattle industry. Susceptibility to MAP infection is reported to be determined in part by genetic factors, so marker-assisted selection could help to obtain bovine populations that are increasingly resistant to MAP infection. Solute carrier family 11 member 1 (SLC11A1) was adjudged to be a potential candidate gene because of its role in innate immunity, its involvement in susceptibility to numerous intracellular infections, and its previous association with bovine MAP infection. The objectives of this study were to carry out an exhaustive process of discovery and compilation of polymorphisms in SLC11A1 gene, and to perform a population-based genetic association study to test its implication in susceptibility to MAP infection in cattle. In all, 57 single nucleotide polymorphisms (SNP) were detected, 25 of which are newly described in Bos taurus. Twenty-four SNP and two 3'-untranslated region polymorphisms, previously analyzed, were selected for a subsequent association study in 558 European Holstein-Friesian animals. The SNP c.1067C>G and c.1157-91A>T and a haplotype formed by these 2 SNP yielded significant association with susceptibility to MAP infection. The c.1067C>G is a nonsynonymous SNP that causes an amino acid change in codon 356 from proline to alanine (P356A) that could alter SLC11A1 protein function. This association study supports the involvement of SLC11A1 gene in susceptibility to MAP infection in cattle. Our results suggest that SNP c.1067C>G may be a potential causal variant, although functional studies are needed to assure this point.

  16. Gel-based nonradioactive single-strand conformational polymorphism and mutation detection: limitations and solutions.

    PubMed

    Gupta, Vibhuti; Arora, Reetakshi; Gochhait, Sailesh; Bairwa, Narendra K; Bamezai, Rameshwar N K

    2014-01-01

    Single-strand conformation polymorphism (SSCP) for screening mutations/single-nucleotide polymorphisms (SNPs) is a simple, cost-effective technique, saving an expensive exercise of sequencing each and every polymerase chain reaction product and assisting in choosing only the amplicons of interest with expected mutations. The principle of detection of small changes in DNA sequences is based on changes in single-strand DNA conformations. The changes in electrophoretic mobility that SSCP detects are sequence dependent. The limitations faced in SSCP range from routine polyacrylamide gel electrophoresis (PAGE) problems to the problems of resolving mutant DNA bands. Both these problems can be solved by controlling PAGE conditions and by varying physical and environmental conditions such as pH, temperature, voltage, gel type and percentage, addition of additives or denaturants, and others. Despite much upgrading of the technology for mutation detection, SSCP remains the method of choice to analyze mutations and SNPs in order to understand genomic variations, both spontaneous and induced, and the genetic basis of diseases.

  17. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle.

    PubMed

    Heaton, Michael P; Harhay, Gregory P; Bennett, Gary L; Stone, Roger T; Grosse, W Michael; Casas, Eduardo; Keele, John W; Smith, Timothy P L; Chitko-McKown, Carol G; Laegreid, William W

    2002-05-01

    DNA marker technology represents a promising means for determining the genetic identity and kinship of an animal. Compared with other types of DNA markers, single nucleotide polymorphisms (SNPs) are attractive because they are abundant, genetically stable, and amenable to high-throughput automated analysis. In cattle, the challenge has been to identify a minimal set of SNPs with sufficient power for use in a variety of popular breeds and crossbred populations. This report describes a set of 32 highly informative SNP markers distributed among 18 autosomes and both sex chromosomes. Informativity of these SNPs in U.S. beef cattle populations was estimated from the distribution of allele and genotype frequencies in two panels: one consisting of 96 purebred sires representing 17 popular breeds, and another with 154 purebred American Angus from six herds in four Midwestern states. Based on frequency data from these panels, the estimated probability that two randomly selected, unrelated individuals will possess identical genotypes for all 32 loci was 2.0 x 10(-13) for multi-breed composite populations and 1.9 x 10(-10) for purebred Angus populations. The probability that a randomly chosen candidate sire will be excluded from paternity was estimated to be 99.9% and 99.4% for the same respective populations. The DNA immediately surrounding the 32 target SNPs was sequenced in the 96 sires of the multi-breed panel and found to contain an additional 183 polymorphic sites. Knowledge of these additional sites, together with the 32 target SNPs, allows the design of robust, accurate genotype assays on a variety of high-throughput SNP genotyping platforms.

  18. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers

    PubMed Central

    2011-01-01

    Background Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. Results This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. Conclusions Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus. PMID:21992066

  19. A SNP Based Linkage Map of the Arctic Charr (Salvelinus alpinus) Genome Provides Insights into the Diploidization Process After Whole Genome Duplication

    PubMed Central

    Nugent, Cameron M.; Easton, Anne A.; Norman, Joseph D.; Ferguson, Moira M.; Danzmann, Roy G.

    2016-01-01

    Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus), a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) genomes were determined. Paralogous sequence variants (PSVs) were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions. PMID:27986793

  20. QuickSNP: an automated web server for selection of tagSNPs

    PubMed Central

    Grover, Deepak; Woodfield, Alonzo S.; Verma, Ranjana; Zandi, Peter P.; Levinson, Douglas F.; Potash, James B.

    2007-01-01

    Although large-scale genetic association studies involving hundreds to thousands of SNPs have become feasible, the associated cost is substantial. Even with the increased efficiency introduced by the use of tagSNPs, researchers are often seeking ways to maximize resource utilization given a set of SNP-based gene-mapping goals. We have developed a web server named QuickSNP in order to provide cost-effective selection of SNPs, and to fill in some of the gaps in existing SNP selection tools. One useful feature of QuickSNP is the option to select only gene-centric SNPs from a chromosomal region in an automated fashion. Other useful features include automated selection of coding non-synonymous SNPs, SNP filtering based on inter-SNP distances and information regarding the availability of genotyping assays for SNPs and whether they are present on whole genome chips. The program produces user-friendly summary tables and results, and a link to a UCSC Genome Browser track illustrating the position of the selected tagSNPs in relation to genes and other genomic features. We hope the unique combination of features of this server will be useful for researchers aiming to select markers for their genotyping studies. The server is freely available and can be accessed at the URL http://bioinformoodics.jhmi.edu/quickSNP.pl. PMID:17517769

  1. A method for calling copy number polymorphism using haplotypes

    PubMed Central

    Ho Jang, Gun; Christie, Jason D.; Feng, Rui

    2013-01-01

    Single nucleotide polymorphism (SNP) and copy number variation (CNV) are both widespread characteristic of the human genome, but are often called separately on common genotyping platforms. To capture integrated SNP and CNV information, methods have been developed for calling allelic specific copy numbers or so called copy number polymorphism (CNP), using limited inter-marker correlation. In this paper, we proposed a haplotype-based maximum likelihood method to call CNP, which takes advantage of the valuable multi-locus linkage disequilibrium (LD) information in the population. We also developed a computationally efficient algorithm to estimate haplotype frequencies and optimize individual CNP calls iteratively, even at presence of missing data. Through simulations, we demonstrated our model is more sensitive and accurate in detecting various CNV regions, compared with commonly-used CNV calling methods including PennCNV, another hidden Markov model (HMM) using CNP, a scan statistic, segCNV, and cnvHap. Our method often performs better in the regions with higher LD, in longer CNV regions, and in common CNV than the opposite. We implemented our method on the genotypes of 90 HapMap CEU samples and 23 patients with acute lung injury (ALI). For each ALI patient the genotyping was performed twice. The CNPs from our method show good consistency and accuracy comparable to others. PMID:24069028

  2. Cardiovascular pharmacogenetics in the SNP era.

    PubMed

    Mooser, V; Waterworth, D M; Isenhour, T; Middleton, L

    2003-07-01

    In the past pharmacological agents have contributed to a significant reduction in age-adjusted incidence of cardiovascular events. However, not all patients treated with these agents respond favorably, and some individuals may develop side-effects. With aging of the population and the growing prevalence of cardiovascular risk factors worldwide, it is expected that the demand for cardiovascular drugs will increase in the future. Accordingly, there is a growing need to identify the 'good' responders as well as the persons at risk for developing adverse events. Evidence is accumulating to indicate that responses to drugs are at least partly under genetic control. As such, pharmacogenetics - the study of variability in drug responses attributed to hereditary factors in different populations - may significantly assist in providing answers toward meeting this challenge. Pharmacogenetics mostly relies on associations between a specific genetic marker like single nucleotide polymorphisms (SNPs), either alone or arranged in a specific linear order on a certain chromosomal region (haplotypes), and a particular response to drugs. Numerous associations have been reported between selected genotypes and specific responses to cardiovascular drugs. Recently, for instance, associations have been reported between specific alleles of the apoE gene and the lipid-lowering response to statins, or the lipid-elevating effect of isotretinoin. Thus far, these types of studies have been mostly limited to a priori selected candidate genes due to restricted genotyping and analytical capacities. Thanks to the large number of SNPs now available in the public domain through the SNP Consortium and the newly developed technologies (high throughput genotyping, bioinformatics software), it is now possible to interrogate more than 200,000 SNPs distributed over the entire human genome. One pharmacogenetic study using this approach has been launched by GlaxoSmithKline to identify the approximately 4% of

  3. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics.

    PubMed

    Ngo, Hoan T; Gandra, Naveen; Fales, Andrew M; Taylor, Steve M; Vo-Dinh, Tuan

    2016-07-15

    One of the major obstacles to implement nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is the lack of sensitive and practical DNA detection methods that can be seamlessly integrated into portable platforms. Herein we present a sensitive yet simple DNA detection method using a surface-enhanced Raman scattering (SERS) nanoplatform: the ultrabright SERS nanorattle. The method, referred to as the nanorattle-based method, involves sandwich hybridization of magnetic beads that are loaded with capture probes, target sequences, and ultrabright SERS nanorattles that are loaded with reporter probes. Upon hybridization, a magnet was applied to concentrate the hybridization sandwiches at a detection spot for SERS measurements. The ultrabright SERS nanorattles, composed of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for signal detection. Using this method, a specific DNA sequence of the malaria parasite Plasmodium falciparum could be detected with a detection limit of approximately 100 attomoles. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. These test models demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. Furthermore, the method's simplicity makes it a suitable candidate for integration into portable platforms for POC and in resource-limited settings applications.

  4. Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers.

    PubMed

    Weigel, K A; de los Campos, G; González-Recio, O; Naya, H; Wu, X L; Long, N; Rosa, G J M; Gianola, D

    2009-10-01

    The objective of the present study was to assess the predictive ability of subsets of single nucleotide polymorphism (SNP) markers for development of low-cost, low-density genotyping assays in dairy cattle. Dense SNP genotypes of 4,703 Holstein bulls were provided by the USDA Agricultural Research Service. A subset of 3,305 bulls born from 1952 to 1998 was used to fit various models (training set), and a subset of 1,398 bulls born from 1999 to 2002 was used to evaluate their predictive ability (testing set). After editing, data included genotypes for 32,518 SNP and August 2003 and April 2008 predicted transmitting abilities (PTA) for lifetime net merit (LNM$), the latter resulting from progeny testing. The Bayesian least absolute shrinkage and selection operator method was used to regress August 2003 PTA on marker covariates in the training set to arrive at estimates of marker effects and direct genomic PTA. The coefficient of determination (R(2)) from regressing the April 2008 progeny test PTA of bulls in the testing set on their August 2003 direct genomic PTA was 0.375. Subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP were created by choosing equally spaced and highly ranked SNP, with the latter based on the absolute value of their estimated effects obtained from the training set. The SNP effects were re-estimated from the training set for each subset of SNP, and the 2008 progeny test PTA of bulls in the testing set were regressed on corresponding direct genomic PTA. The R(2) values for subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP with largest effects (evenly spaced SNP) were 0.184 (0.064), 0.236 (0.111), 0.269 (0.190), 0.289 (0.179), 0.307 (0.228), 0.313 (0.268), and 0.322 (0.291), respectively. These results indicate that a low-density assay comprising selected SNP could be a cost-effective alternative for selection decisions and that significant gains in predictive ability may be achieved by increasing the number of SNP allocated to

  5. Haplotype assembly from aligned weighted SNP fragments.

    PubMed

    Zhao, Yu-Ying; Wu, Ling-Yun; Zhang, Ji-Hong; Wang, Rui-Sheng; Zhang, Xiang-Sun

    2005-08-01

    Given an assembled genome of a diploid organism the haplotype assembly problem can be formulated as retrieval of a pair of haplotypes from a set of aligned weighted SNP fragments. Known computational formulations (models) of this problem are minimum letter flips (MLF) and the weighted minimum letter flips (WMLF; Greenberg et al. (INFORMS J. Comput. 2004, 14, 211-213)). In this paper we show that the general WMLF model is NP-hard even for the gapless case. However the algorithmic solutions for selected variants of WMFL can exist and we propose a heuristic algorithm based on a dynamic clustering technique. We also introduce a new formulation of the haplotype assembly problem that we call COMPLETE WMLF (CWMLF). This model and algorithms for its implementation take into account a simultaneous presence of multiple kinds of data errors. Extensive computational experiments indicate that the algorithmic implementations of the CWMLF model achieve higher accuracy of haplotype reconstruction than the WMLF-based algorithms, which in turn appear to be more accurate than those based on MLF.

  6. Evaluation of the iPLEX® Sample ID Plus Panel designed for the Sequenom MassARRAY® system. A SNP typing assay developed for human identification and sample tracking based on the SNPforID panel.

    PubMed

    Johansen, P; Andersen, J D; Børsting, C; Morling, N

    2013-09-01

    Sequenom launched the first commercial SNP typing kit for human identification, named the iPLEX(®) Sample ID Plus Panel. The kit amplifies 47 of the 52 SNPs in the SNPforID panel