Science.gov

Sample records for polymorphism based snp

  1. Nanoparticle-based detection and quantification of DNA with single nucleotide polymorphism (SNP) discrimination selectivity

    PubMed Central

    Qin, Wei Jie; Yung, Lin Yue Lanry

    2007-01-01

    Sequence-specific DNA detection is important in various biomedical applications such as gene expression profiling, disease diagnosis and treatment, drug discovery and forensic analysis. Here we report a gold nanoparticle-based method that allows DNA detection and quantification and is capable of single nucleotide polymorphism (SNP) discrimination. The precise quantification of single-stranded DNA is due to the formation of defined nanoparticle-DNA conjugate groupings in the presence of target/linker DNA. Conjugate groupings were characterized and quantified by gel electrophoresis. A linear correlation between the amount of target DNA and conjugate groupings was found. For SNP detection, single base mismatch discrimination was achieved for both the end- and center-base mismatch. The method described here may be useful for the development of a simple and quantitative DNA detection assay. PMID:17720714

  2. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution.

    PubMed

    Zhao, Zhongming; Fu, Yun-Xin; Hewett-Emmett, David; Boerwinkle, Eric

    2003-07-17

    We investigated the single nucleotide polymorphism (SNP) density across the human genome and in different genic categories using two SNP databases: Celera's CgsSNP, which includes SNPs identified by comparing genomic sequences, and Celera's RefSNP, which includes SNPs from a variety of sources and is biased toward disease-associated genes. Based on CgsSNP, the average numbers of SNPs per 10 kb was 8.33, 8.44, and 8.09 in the human genome, in intergenic regions, and in genic regions, respectively. In genic regions, the SNP density in intronic, exonic and adjoining untranslated regions was 8.21, 5.28, and 7.51 SNPs per 10 kb, respectively. The pattern of SNP density based on RefSNP was different from that based on CgsSNP, emphasizing its utility for genotype-phenotype association studies but not for most population genetic studies. The number of SNPs per chromosome was correlated with chromosome length, but the density of SNPs estimated by CgsSNP was not significantly correlated with the GC content of the chromosome. Based on CgsSNP, the ratio of nonsense to missense mutations (0.027), the ratio of missense to silent mutations (1.15), and the ratio of non-synonymous to synonymous mutations (1.18) was less than half of that expected in a human protein coding sequence under the neutral mutation theory, reflecting a role for natural selection, especially purifying selection. PMID:12909357

  3. Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes.

    PubMed

    Schneider, Katharina; Kulosa, Dagmar; Soerensen, Thomas Rosleff; Möhring, Silke; Heine, Martin; Durstewitz, Gregor; Polley, Andreas; Weber, Eberhard; Jamsari; Lein, Jens; Hohmann, Uwe; Tahiro, Emma; Weisshaar, Bernd; Schulz, Britta; Koch, Georg; Jung, Christian; Ganal, Martin

    2007-09-01

    A panel of 13 sugar beet lines and one genotype each of the Beta vulgaris cultivars red beet and Swiss chard, and B. vulgaris ssp. maritima were used to identify polymorphisms in alignments of genomic DNA sequences derived from 315 EST- and 43 non-coding RFLP-derived loci. In sugar beet lines, loci of expressed genes showed an average SNP frequency of 1/72 bp, 1 in 58 bp in non-coding sequences, increasing to 1/47 bp upon the addition of the remaining genotypes. Within analysed DNA fragments, alleles at different SNP positions displayed linkage disequilibrium indicative of haplotype structures. On average 2.7 haplotypes were found in sugar beet lines, and haplotype conservation in expressed genes appeared to exceed 500 bp in length. Seven different genotyping techniques including SNP detection by MALDI-TOF mass spectrometry, pyrosequencing and fluorescence scanning of labelled nucleotides were employed to perform 712 segregation analyses for 538 markers in three F(2) populations. Functions were predicted for 492 mapped sequences. Genetic maps comprised 305 loci covering 599.8 cM in population K1, 241 loci distributed over 636.6 cM in population D2, and 166 loci over 507.1 cM in population K2, respectively. Based on 156 markers common to more than one population an integrated map was constructed with 524 loci covering 664.3 cM. For 377 loci the genome positions of the most similar sequences from A. thaliana were identified, but little evidence for previously presented ancestral genome structures was found.

  4. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2009-01-01

    Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and

  5. Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set†

    PubMed Central

    Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David

    2006-01-01

    We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065

  6. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  7. Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease

    PubMed Central

    Huijsmans, Cornelis J. J.; Poodt, Jeroen; Damen, Jan; van der Linden, Johannes C.; Savelkoul, Paul H. M.; Pruijt, Johannes F. M.; Hilbink, Mirrian; Hermans, Mirjam H. A.

    2012-01-01

    During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n = 6 25–50% and n = 6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25–50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci. PMID:22768290

  8. Both a nicotinic single nucleotide polymorphism (SNP) and a noradrenergic SNP modulate working memory performance when attention is manipulated.

    PubMed

    Greenwood, Pamela M; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J; Parasuraman, Raja

    2009-11-01

    We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues, indicating the scale of visuospatial attention has a role in forming the mental representation of the target. In one of the first studies to compare effects of two single nucleotide polymorphisms (SNPs) on the same cognitive task, we investigated the neurotransmission systems underlying interactions between attention and memory. Based on our previous report that the CHRNA4 rs#1044396 C/T nicotinic receptor SNP affected visuospatial attention, but not working memory, and the DBH rs#1108580 G/A noradrenergic enzyme SNP affected working memory, but not attention, we predicted that both SNPs would modulate performance when the two systems interacted and working memory was manipulated by attention. We found the scale of visuospatial attention deployed around a target affected memory for location of that target. Memory performance was modulated by the two SNPs. CHRNA4 C/C homozygotes and DBH G allele carriers showed the best memory performance but also the greatest benefit of visuospatial attention on memory. Overall, however, the CHRNA4 SNP exerted a stronger effect than the DBH SNP on memory performance when visuospatial attention was manipulated. This evidence of an integrated cholinergic influence on working memory performance under attentional manipulation is consistent with the view that working memory and visuospatial attention are separate systems which can interact.

  9. Linkage mapping bovine EST-based SNP

    PubMed Central

    Snelling, Warren M; Casas, Eduardo; Stone, Roger T; Keele, John W; Harhay, Gregory P; Bennett, Gary L; Smith, Timothy PL

    2005-01-01

    Background Existing linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL) to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL. Results Bovine expressed sequence tag (EST) and bacterial artificial chromosome (BAC)sequence data were used to develop 918 single nucleotide polymorphism (SNP) markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum) of 216 (366) informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum) of 55 (191) informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP. Conclusion Addition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other data to guide and

  10. Association of MDM2 SNP309 and TP53 Arg72Pro polymorphisms with risk of endometrial cancer

    PubMed Central

    YONEDA, TOMOKO; KUBOYAMA, AYUMI; KATO, KIYOKO; OHGAMI, TATSUHIRO; OKAMOTO, KANAKO; SAITO, TOSHIAKI; WAKE, NORIO

    2013-01-01

    The incidence of endometrial cancer, a common gynecological malignancy, is increasing in Japan. We have previously shown that the ER/MDM2/p53/p21 pathway plays an important role in endometrial carcinogenesis. In the present study, we investigated the effects of germline single nucleotide polymorphisms in murine double minute 2 (MDM2) SNP309, TP53 Arg72Pro, ESR1 PvuII and XbaI, and p21 codon 31 on endometrial cancer risk. We evaluated these polymorphisms in DNA samples from 125 endometrial cancer cases and 200 controls using polymerase chain reaction-based restriction fragment length polymorphism. The association of each genetic polymorphism with endometrial cancer was examined by the odds ratio and 95% confidence interval, which were obtained using logistic regression analysis. The SNP309 GG genotype non-significantly increased the risk of endometrial cancer. The 95% confidence interval for the GG genotype vs. the TT genotype of MDM2 SNP309 was 1.76 (0.93–3.30). Endometrial cancer was not associated with tested SNP genotypes for TP53, ESR1 and p21. The combination of SNP309 GG + TG and TP53 codon 72 Arg/Arg significantly increased endometrial cancer risk. The adjusted OR was 2.53 (95% confidence interval, 1.03–6.21) and P for the interaction was 0.04. This result was supported by in vitro data showing that endometrial cancer cell lines with the SNP309 G allele failed to show growth inhibition by treatment with RITA, which reduces p53-MDM2 binding. The presence of the SNP309 G allele and TP53 codon 72 Arg/Arg genotype is associated with an increased risk of endometrial cancer in Japanese women. PMID:23624782

  11. A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.).

    PubMed

    Blair, Matthew W; Cortés, Andrés J; Penmetsa, R Varma; Farmer, Andrew; Carrasquilla-Garcia, Noelia; Cook, Doug R

    2013-02-01

    Single nucleotide polymorphism (SNP) detection has become a marker system of choice, because of the high abundance of source polymorphisms and the ease with which allele calls are automated. Various technologies exist for the evaluation of SNP loci and previously we validated two medium throughput technologies. In this study, our goal was to utilize a 768 feature, Illumina GoldenGate assay for common bean (Phaseolus vulgaris L.) developed from conserved legume gene sequences and to use the new technology for (1) the evaluation of parental polymorphisms in a mini-core set of common bean accessions and (2) the analysis of genetic diversity in the crop. A total of 736 SNPs were scored on 236 diverse common bean genotypes with the GoldenGate array. Missing data and heterozygosity levels were low and 94 % of the SNPs were scorable. With the evaluation of the parental polymorphism genotypes, we estimated the utility of the SNP markers in mapping for inter-genepool and intra-genepool populations, the latter being of lower polymorphism than the former. When we performed the diversity analysis with the diverse genotypes, we found Illumina GoldenGate SNPs to provide equivalent evaluations as previous gene-based SNP markers, but less fine-distinctions than with previous microsatellite marker analysis. We did find, however, that the gene-based SNPs in the GoldenGate array had some utility in race structure analysis despite the low polymorphism. Furthermore the SNPs detected high heterozygosity in wild accessions which was probably a reflection of ascertainment bias. The Illumina SNPs were shown to be effective in distinguishing between the genepools, and therefore were most useful in saturation of inter-genepool genetic maps. The implications of these results for breeding in common bean are discussed as well as the advantages and disadvantages of the GoldenGate system for SNP detection.

  12. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    PubMed

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous.

  13. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication.

    PubMed

    Catalano, Valentina; Moreno-Sanz, Paula; Lorenzi, Silvia; Grando, Maria Stella

    2016-09-21

    The genetic varietal authentication of wine was investigated according to DNA isolation procedures reported for enological matrices and also by testing 11 commercial extraction kits and various protocol modifications. Samples were collected at different stages of the winemaking process of renowned Italian wines Brunello di Montalcino, Lambruschi Modenesi, and Trento DOC. Results demonstrated not only that grape DNA loss is produced by the fermentation process but also that clarification and stabilization operations contribute to the reduction of double-stranded DNA content on wine. Despite the presence of inhibitors, downstream PCR genotyping yielded reliable nuclear and chloroplast SSR markers for must samples, whereas no amplification or inconsistent results were obtained at later stages of the vinification. In addition, a TaqMan genotyping assay based on cultivar-specific single-nucleotide polymorphisms (SNPs) was designed, which allowed assessment of grapevine DNA mixtures. Once the wine matrix limitations are overcome, this sensitive tool may be implemented for the relative quantification of cultivars used for blend wines or frauds. PMID:27573905

  14. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication.

    PubMed

    Catalano, Valentina; Moreno-Sanz, Paula; Lorenzi, Silvia; Grando, Maria Stella

    2016-09-21

    The genetic varietal authentication of wine was investigated according to DNA isolation procedures reported for enological matrices and also by testing 11 commercial extraction kits and various protocol modifications. Samples were collected at different stages of the winemaking process of renowned Italian wines Brunello di Montalcino, Lambruschi Modenesi, and Trento DOC. Results demonstrated not only that grape DNA loss is produced by the fermentation process but also that clarification and stabilization operations contribute to the reduction of double-stranded DNA content on wine. Despite the presence of inhibitors, downstream PCR genotyping yielded reliable nuclear and chloroplast SSR markers for must samples, whereas no amplification or inconsistent results were obtained at later stages of the vinification. In addition, a TaqMan genotyping assay based on cultivar-specific single-nucleotide polymorphisms (SNPs) was designed, which allowed assessment of grapevine DNA mixtures. Once the wine matrix limitations are overcome, this sensitive tool may be implemented for the relative quantification of cultivars used for blend wines or frauds.

  15. Human Y-chromosome SNP characterization by multiplex amplified product-length polymorphism analysis.

    PubMed

    Medina, Laura Smeldy Jurado; Muzzio, Marina; Schwab, Marisol; Costantino, María Leticia Bravi; Barreto, Guillermo; Bailliet, Graciela

    2014-09-01

    We designed an allele-specific amplification protocol to optimize Y-chromosome SNP typing, which is an unavoidable step for defining the phylogenetic status of paternal lineages. It allows the simultaneous highly specific definition of up to six mutations in a single reaction by amplification fragment length polymorphism (AFLP) without the need of specialized equipment, at a considerably lower cost than that based on single-base primer extension (SNaPshot™) technology or PCR-RFLP systems, requiring as little as 0.5 ng DNA and compatible with the small fragments characteristic of low-quality DNA. By designation of two primers recognizing the derived and ancestral state for each SNP, which can be differentiated by size by the addition of a noncomplementary nucleotide tail, we could define major Y clades E, F, K, R, Q, and subhaplogroups R1, R1a, R1b, R1b1b, R1b1c, J1, J2, G1, G2, I1, Q1a3, and Q1a3a1 through amplification fragments that ranged between 60 and 158bp. PMID:24846779

  16. Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification of individual genotypes is important for cacao (Theobroma cacao L.) breeding, germplasm conservation and seed propagation. The development of single nucleotide polymorphism (SNP) markers in cacao offers an effective way to use a high-throughput genotyping system for cacao gen...

  17. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  18. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  19. Identifying Litchi (Litchi chinensis Sonn.) Cultivars and Their Genetic Relationships Using Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Liu, Wei; Xiao, Zhidan; Bao, Xiuli; Yang, Xiaoyan; Fang, Jing; Xiang, Xu

    2015-01-01

    Litchi is an important fruit tree in tropical and subtropical areas of the world. However, there is widespread confusion regarding litchi cultivar nomenclature and detailed information of genetic relationships among litchi germplasm is unclear. In the present study, the potential of single nucleotide polymorphism (SNP) for the identification of 96 representative litchi accessions and their genetic relationships in China was evaluated using 155 SNPs that were evenly spaced across litchi genome. Ninety SNPs with minor allele frequencies above 0.05 and a good genotyping success rate were used for further analysis. A relatively high level of genetic variation was observed among litchi accessions, as quantified by the expected heterozygosity (He = 0.305). The SNP based multilocus matching identified two synonymous groups, ‘Heiye’ and ‘Wuye’, and ‘Chengtuo’ and ‘Baitangli 1’. A subset of 14 SNPs was sufficient to distinguish all the non-redundant litchi genotypes, and these SNPs were proven to be highly stable by repeated analyses of a selected group of cultivars. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis divided the litchi accessions analyzed into four main groups, which corresponded to the traits of extremely early-maturing, early-maturing, middle-maturing, and late-maturing, indicating that the fruit maturation period should be considered as the primary criterion for litchi taxonomy. Two subpopulations were detected among litchi accessions by STRUCTURE analysis, and accessions with extremely early- and late-maturing traits showed membership coefficients above 0.99 for Cluster 1 and Cluster 2, respectively. Accessions with early- and middle-maturing traits were identified as admixture forms with varying levels of membership shared between the two clusters, indicating their hybrid origin during litchi domestication. The results of this study will benefit litchi germplasm conservation programs and facilitate maximum

  20. Leu/Val SNP polymorphism of CYP1B1 and risk of uterine leiomyoma in a Black population.

    PubMed

    Bideau, Virgil S; Alleyne, Angela T

    2016-03-01

    Uterine leiomyoma (UL) is the most commonly occurring benign tumor that affects women of reproductive ages. Studies strongly suggest that ULs are hormonally dependent and that genes acting in estrogen metabolism might be involved in their development. The focus of this case-control study was to determine whether the Leucine432Valine single-nucleotide polymorphism (SNP) in the gene encoding cytochrome P450 1B1 (CYP1B1) was associated with an increased risk of UL in Black Barbadian women. The investigation comprised 37 women clinically diagnosed with UL and 52 controls. The CYP1B1 Leu432Val polymorphism (Leu/Val) was analyzed using the polymerase chain reaction-restriction fragment length polymorphism method. The homozygous Valine432 variant (Val/Val) was predominant in both cases and controls for this population (89 and 83 %, respectively). The odds ratio for risk of developing the disease was 1.33, but this was not statistically significant. We discuss a possible protective function for CYP1B1 based on the high prevalence of this mutant SNP and its lack of association with UL. PMID:26482777

  1. Single nucleotide polymorphism (SNP) at the GHR gene and its associations with chicken growth and fat deposition traits.

    PubMed

    Ouyang, J H; Xie, L; Nie, Q; Luo, C; Liang, Y; Zeng, H; Zhang, X

    2008-03-01

    1. The growth hormone receptor (GHR) plays crucial roles on chicken growth and metabolism. 2. The full cDNA of the chicken GHR gene was scanned for single nucleotide polymorphisms (SNP) by means of denaturing high-performance liquid chromatography (DHPLC). Three SNP, C6540334T, C6542011T and G6631778A, were genotyped in a F(2) designed full-sib resource population to analyse their associations with chicken growth and fat deposition traits. 3. Fifty-five SNP and two other variations were identified in the 8908 bp region of the GHR gene. Among the 55 SNP, 10 were located in coding exons (6 resulted in changes of amino acids) and 45 were in non-coding regions (introns, 5'UTR and 3'UTR). The nucleotide diversity (theta), corrected for sample size of chicken GHR gene, is 1.45 x 10(-3). Fourteen PCR-RFLP markers were developed in the chicken GHR gene. 4. The G6631778A was associated with body weight at 63 d (BW63), dressed weight (DW) and subcutaneous fat thickness (SFT), BW35 and BW49 (P < 0.01) as well as hatch weight (HW) and BW42 in the male population. However, G6631778A was only associated with BW28 in the female population. G rather than A was dominant for chicken growth and fat deposition. Haplotypes based on the three SNP were associated with BW21, BW70, BW77 and SFT, BW7, BW35, BW42, BW49 and BW56 in males, and associated with BW7 and BW14 in females. For growth in males, the H2 and H6 haplotypes had positive and negative effects, respectively; meanwhile H6 was predominant for fat deposition.

  2. eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform

    PubMed Central

    Li, Jin; Wang, Limei; Jiang, Tao; Wang, Jizhe; Li, Xue; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Zhang, Ruijie; Lv, Hongchao; Guo, Maozu

    2016-01-01

    Genome-wide association studies (GWASs) have mined many common genetic variants associated with human complex traits like diseases. After that, the functional annotation and enrichment analysis of significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource for SNP functional annotation and enrichment analysis after we have got significant disease related SNPs. PMID:27470167

  3. eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform.

    PubMed

    Li, Jin; Wang, Limei; Jiang, Tao; Wang, Jizhe; Li, Xue; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Zhang, Ruijie; Lv, Hongchao; Guo, Maozu

    2016-01-01

    Genome-wide association studies (GWASs) have mined many common genetic variants associated with human complex traits like diseases. After that, the functional annotation and enrichment analysis of significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource for SNP functional annotation and enrichment analysis after we have got significant disease related SNPs. PMID:27470167

  4. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress.

    PubMed

    Rostoks, Nils; Mudie, Sharon; Cardle, Linda; Russell, Joanne; Ramsay, Luke; Booth, Allan; Svensson, Jan T; Wanamaker, Steve I; Walia, Harkamal; Rodriguez, Edmundo M; Hedley, Peter E; Liu, Hui; Morris, Jenny; Close, Timothy J; Marshall, David F; Waugh, Robbie

    2005-12-01

    More than 2,000 genome-wide barley single nucleotide polymorphisms (SNPs) were developed by resequencing unigene fragments from eight diverse accessions. The average genome-wide SNP frequency observed in 877 unigenes was 1 SNP per 200 bp. However, SNP frequency was highly variable with the least number of SNP and SNP haplotypes observed within European cultivated germplasm reflecting effects of breeding history on genetic diversity. More than 300 SNP loci were mapped genetically in three experimental mapping populations which allowed the construction of an integrated SNP map incorporating a large number of RFLP, AFLP and SSR markers (1,237 loci in total). The genes used for SNP discovery were selected based on their transcriptional response to a variety of abiotic stresses. A set of known barley abiotic stress QTL was positioned on the linkage map, while the available sequence and gene expression information facilitated the identification of genes potentially associated with these traits. Comparison of the sequenced SNP loci to the rice genome sequence identified several regions of highly conserved gene order providing a framework for marker saturation in barley genomic regions of interest. The integration of genome-wide SNP and expression data with available genetic and phenotypic information will facilitate the identification of gene function in barley and other non-model organisms. PMID:16244872

  5. A technical platform for PCR-based SNP screening in cereals and other crops.

    PubMed

    Wang, Zining

    2014-01-01

    With the rapid development of sequencing technologies and sequenced genomes, single-nucleotide polymorphisms (SNPs) have become a common genomic tool in the study of biological diversity, genome variation, gene mapping, cloning, and marker-assisted selection. In this chapter, PCR-based SNP screening is discussed in detail. This includes preparation of solutions and buffers, designing of tetra-primers, PCR for DNA amplification, gel electrophoresis, and SNP screening. By grasping the techniques and experience from the wet laboratories, researchers can quickly use this genomic tool to tackle problems in their research.

  6. PlatinumCNV: a Bayesian Gaussian mixture model for genotyping copy number polymorphisms using SNP array signal intensity data.

    PubMed

    Kumasaka, Natsuhiko; Fujisawa, Hironori; Hosono, Naoya; Okada, Yukinori; Takahashi, Atsushi; Nakamura, Yusuke; Kubo, Michiaki; Kamatani, Naoyuki

    2011-12-01

    We present a statistical model for allele-specific patterns of copy number polymorphisms (CNPs) in commercial single nucleotide polymorphism (SNP) array data. This model is based on the observation that fluorescent signal intensities tend to cluster into clouds of similar allele-specific copy number (ASCN) genotypes at each SNP locus. To capture the tendency of this clustering to be made vague by instrumental errors, our model allows for cluster memberships to overlap each other, according to a Bayesian Gaussian mixture model (GMM). This approach is flexible, allowing for both absolute scale differences and X/Y scale imbalances of fluorescent signal intensities. The resulting model is also robust toward unobserved ASCN genotypes, which can be problematic for ordinary GMMs. We illustrated the utility of the model by applying it to commercial SNP array intensity data obtained from the Illumina HumanHap 610K platform. We retrieved more than 4,000 allele-specific CNPs, though 99% of them showed rather simple allele-specific CNP patterns with only a single aneuploid haplotype among the normal haplotypes. The genotyping accuracy was assessed by two approaches, quantitative PCR and replicated subjects. The results of both of these approaches demonstrated mean genotyping error rates of 1%. We demonstrated a preliminary genome-wide association study of three hematological traits. The result exhibited that it could form the foundation for new, more effective statistical methods for the mapping of both disease genes and quantitative trait loci with genome-wide CNPs. The methods described in this work are implemented in a software package, PlatinumCNV, available on the Internet.

  7. Use of the Illumina GoldenGate assay for single nucleotide polymorphism (SNP) genotyping in cereal crops.

    PubMed

    Chao, Shiaoman; Lawley, Cindy

    2015-01-01

    Highly parallel genotyping assays, such as the GoldenGate assay developed by Illumina, capable of interrogating up to 3,072 single nucleotide polymorphisms (SNPs) simultaneously, have greatly facilitated genome-wide studies, particularly for crops with large and complex genome structures. In this report, we provide detailed information and guidelines regarding genomic DNA preparation, SNP assay design, SNP assay protocols, and genotype calling using Illumina's GenomeStudio software. PMID:25373766

  8. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays.

    PubMed

    Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2015-03-01

    The aim of this study was to establish a DNA-based identification key to ascertain the cultivar origin of Turkish monovarietal olive oils. To reach this aim, we sequenced short fragments from five olive genes for SNP (single nucleotide polymorphism) identification and developed CAPS (cleaved amplified polymorphic DNA) assays for SNPs that alter restriction enzyme recognition motifs. When applied on the oils of 17 olive cultivars, a maximum of five CAPS assays were necessary to discriminate the varietal origin of the samples. We also tested the efficiency and limit of our approach for detecting olive oil admixtures. As a result of the analysis, we were able to detect admixing down to a limit of 20%. The SNP-based CAPS assays developed in this work can be used for testing and verification of the authenticity of Turkish monovarietal olive oils, for olive tree certification, and in germplasm characterization and preservation studies.

  9. A SNP-Based Molecular Barcode for Characterization of Common Wheat

    PubMed Central

    Gao, LiFeng; Jia, JiZeng; Kong, XiuYing

    2016-01-01

    Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP) genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program. PMID:26985664

  10. Supervised learning-based tagSNP selection for genome-wide disease classifications

    PubMed Central

    Liu, Qingzhong; Yang, Jack; Chen, Zhongxue; Yang, Mary Qu; Sung, Andrew H; Huang, Xudong

    2008-01-01

    Background Comprehensive evaluation of common genetic variations through association of single nucleotide polymorphisms (SNPs) with complex human diseases on the genome-wide scale is an active area in human genome research. One of the fundamental questions in a SNP-disease association study is to find an optimal subset of SNPs with predicting power for disease status. To find that subset while reducing study burden in terms of time and costs, one can potentially reconcile information redundancy from associations between SNP markers. Results We have developed a feature selection method named Supervised Recursive Feature Addition (SRFA). This method combines supervised learning and statistical measures for the chosen candidate features/SNPs to reconcile the redundancy information and, in doing so, improve the classification performance in association studies. Additionally, we have proposed a Support Vector based Recursive Feature Addition (SVRFA) scheme in SNP-disease association analysis. Conclusions We have proposed using SRFA with different statistical learning classifiers and SVRFA for both SNP selection and disease classification and then applying them to two complex disease data sets. In general, our approaches outperform the well-known feature selection method of Support Vector Machine Recursive Feature Elimination and logic regression-based SNP selection for disease classification in genetic association studies. Our study further indicates that both genetic and environmental variables should be taken into account when doing disease predictions and classifications for the most complex human diseases that have gene-environment interactions. PMID:18366619

  11. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip.

    PubMed

    Haynes, Gwilym D; Latch, Emily K

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the F(ST)-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present).

  12. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies. PMID:27347883

  13. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.

  14. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers

    PubMed Central

    Fang, Wan-Ping; Meinhardt, Lyndel W; Tan, Hua-Wei; Zhou, Lin; Mischke, Sue; Zhang, Dapeng

    2014-01-01

    Apart from water, tea is the world’s most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential. PMID:26504544

  15. DBDiaSNP: An Open-Source Knowledgebase of Genetic Polymorphisms and Resistance Genes Related to Diarrheal Pathogens

    PubMed Central

    Mehla, Kusum

    2015-01-01

    Abstract Diarrhea is a highly common infection among children, responsible for significant morbidity and mortality rate worldwide. After pneumonia, diarrhea remains the second leading cause of neonatal deaths. Numerous viral, bacterial, and parasitic enteric pathogens are associated with diarrhea. With increasing antibiotic resistance among enteric pathogens, there is an urgent need for global surveillance of the mutations and resistance genes primarily responsible for resistance to antibiotic treatment. Single Nucleotide Polymorphisms are important in this regard as they have a vast potential to be utilized as molecular diagnostics for gene-disease or pharmacogenomics association studies linking genotype to phenotype. DBDiaSNP is a comprehensive repository of mutations and resistance genes among various diarrheal pathogens and hosts to advance breakthroughs that will find applications from development of sequence-based diagnostic tools to drug discovery. It contains information about 946 mutations and 326 resistance genes compiled from literature and various web resources. As of March 2015, it houses various pathogen genes and the mutations responsible for antibiotic resistance. The pathogens include, for example, DEC (Diarrheagenic E.coli), Salmonella spp., Campylobacter spp., Shigella spp., Clostridium difficile, Aeromonas spp., Helicobacter pylori, Entamoeba histolytica, Vibrio cholera, and viruses. It also includes mutations from hosts (e.g., humans, pigs, others) that render them either susceptible or resistant to a certain type of diarrhea. DBDiaSNP is therefore intended as an integrated open access database for researchers and clinicians working on diarrheal diseases. Additionally, we note that the DBDiaSNP is one of the first antibiotic resistance databases for the diarrheal pathogens covering mutations and resistance genes that have clinical relevance from a broad range of pathogens and hosts. For future translational research involving integrative

  16. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley

    PubMed Central

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  17. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley.

  18. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  19. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA

    PubMed Central

    Wong, Kwong-Kwok; Tsang, Yvonne T. M.; Shen, Jianhe; Cheng, Rita S.; Chang, Yi-Mieng; Man, Tsz-Kwong; Lau, Ching C.

    2004-01-01

    Besides their use in mRNA expression profiling, oligonucleotide microarrays have also been applied to single-nucleotide polymorphism (SNP) and loss of heterozygosity (LOH) or allelic imbalance studies. In this report, we evaluate the reliability of using whole genome amplified DNA for analysis with an oligonucleotide microarray containing 11 560 SNPs to detect allelic imbalance and chromosomal copy number abnormalities. Whole genome SNP analyses were performed with DNA extracted from osteosarcoma tissues and patient-matched blood. SNP calls were then generated by Affymetrix® GeneChip® DNA Analysis Software. In two osteosarcoma cases, using unamplified DNA, we identified 793 and 1070 SNP loci with allelic imbalance, respectively. In a parallel experiment with amplified DNA, 78% and 83% of these SNP loci with allelic imbalance was detected. The average false-positive rate is 13.8%. Furthermore, using the Affymetrix® GeneChip® Chromosome Copy Number Tool to analyze the SNP array data, we were able to detect identical chromosomal regions with gain or loss in both amplified and unamplified DNA at cytoband resolution. PMID:15148342

  20. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.

    PubMed

    Raman, Harsh; Dalton-Morgan, Jessica; Diffey, Simon; Raman, Rosy; Alamery, Salman; Edwards, David; Batley, Jacqueline

    2014-09-01

    An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.

  1. MDM2 SNP309 promoter polymorphism confers risk for hereditary melanoma.

    PubMed

    Thunell, Lena K; Bivik, Cecilia; Wäster, Petra; Fredrikson, Mats; Stjernström, Annika; Synnerstad, Ingrid; Rosdahl, Inger; Enerbäck, Charlotta

    2014-06-01

    The p53 pathway regulates stress response, and variations in p53, MDM2, and MDM4 may predispose an individual to tumor development. The aim of this study was to study the impact of genetic variation on sporadic and hereditary melanoma. We have analyzed a combination of three functionally relevant variants of the p53 pathway in 258 individuals with sporadic malignant melanomas, 50 with hereditary malignant melanomas, and 799 healthy controls. Genotyping was performed by PCR-restriction fragment length polymorphism, pyrosequencing, and allelic discrimination. We found an increased risk for hereditary melanoma in MDM2 GG homozygotes, which was more pronounced among women (P=0.035). In the event of pairwise combinations of the single nucleotide polymorphisms, a risk elevation was shown for MDM2 GG homozygotes/p53 wild-type Arg in hereditary melanoma (P=0.01). Individuals with sporadic melanomas of the superficial spreading type, including melanoma in situ, showed a slightly higher frequency of the MDM2 GG genotype compared with those with nodular melanomas (P=0.04). The dysplastic nevus phenotype, present in the majority of our hereditary melanoma cases and also in some sporadic cases, further enhanced the effect of the MDM2 GG genotype on melanoma risk (P=0.005). In conclusion, the results show an association between MDM2 SNP309 and an increased risk for hereditary melanoma, especially among women. Analysis of sporadic melanoma also shows an association between MDM2 and the superficial spreading melanoma subtype, as well as an association with the presence of dysplastic nevi in sporadic melanoma. PMID:24625390

  2. BM-SNP: A Bayesian Model for SNP Calling Using High Throughput Sequencing Data.

    PubMed

    Xu, Yanxun; Zheng, Xiaofeng; Yuan, Yuan; Estecio, Marcos R; Issa, Jean-Pierre; Qiu, Peng; Ji, Yuan; Liang, Shoudan

    2014-01-01

    A single-nucleotide polymorphism (SNP) is a sole base change in the DNA sequence and is the most common polymorphism. Detection and annotation of SNPs are among the central topics in biomedical research as SNPs are believed to play important roles on the manifestation of phenotypic events, such as disease susceptibility. To take full advantage of the next-generation sequencing (NGS) technology, we propose a Bayesian approach, BM-SNP, to identify SNPs based on the posterior inference using NGS data. In particular, BM-SNP computes the posterior probability of nucleotide variation at each covered genomic position using the contents and frequency of the mapped short reads. The position with a high posterior probability of nucleotide variation is flagged as a potential SNP. We apply BM-SNP to two cell-line NGS data, and the results show a high ratio of overlap ( >95 percent) with the dbSNP database. Compared with MAQ, BM-SNP identifies more SNPs that are in dbSNP, with higher quality. The SNPs that are called only by BM-SNP but not in dbSNP may serve as new discoveries. The proposed BM-SNP method integrates information from multiple aspects of NGS data, and therefore achieves high detection power. BM-SNP is fast, capable of processing whole genome data at 20-fold average coverage in a short amount of time. PMID:26357041

  3. A nuclear single-nucleotide polymorphism (SNP) potentially useful for the separation of Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae)

    PubMed Central

    Pavan, Márcio G.; Mesquita, Rafael D.; Lawrence, Gena G.; Lazoski, Cristiano; Dotson, Ellen M.; Abubucker, Sahar; Mitreva, Makedonka; Randall-Maher, Jennifer; Monteiro, Fernando A.

    2013-01-01

    The design and application of rational strategies that rely on accurate species identification are pivotal for effective vector control. When morphological identification of the target vector species is impractical, the use of molecular markers is required. Here we describe a non-coding, single-copy nuclear DNA fragment that contains a single-nucleotide polymorphism (SNP) with the potential to distinguish the important domestic Chagas disease vector, Rhodnius prolixus, from members of the four sylvatic Rhodnius robustus cryptic species complex. A total of 96 primer pairs obtained from whole genome shotgun sequencing of the R. prolixus genome (12,626 random reads) were tested on 43 R. prolixus and R. robustus s.l. samples. One of the seven amplicons selected (AmpG) presented a SNP, potentially diagnostic for R. prolixus, on the 280th site. The diagnostic nature of this SNP was then performed on 154 R. prolixus and R. robustus s.l. samples aimed at achieving the widest possible geographic coverage. The results of a 60% majority rule Bayesian consensus tree and a median-joining network constructed based on the genetic variability observed reveal the paraphyletic nature of the R. robustus species complex, with respect to R. prolixus. AmpG region is located in the fourth intron of the Transmembrane protein 165 gene, which seems to be in the R. prolixus X chromosome. Other possible chromosomal locations of the AmpG region in the R. prolixus genome are also presented and discussed. PMID:23219914

  4. Single-cell SNP analyses and interpretations based on RNA-Seq data for colon cancer research

    PubMed Central

    Chen, Jiahuan; Zhou, Qian; Wang, Yangfan; Ning, Kang

    2016-01-01

    Single-cell sequencing is useful for illustrating the cellular heterogeneities inherent in many intricate biological systems, particularly in human cancer. However, owing to the difficulties in acquiring, amplifying and analyzing single-cell genetic material, obstacles remain for single-cell diversity assessments such as single nucleotide polymorphism (SNP) analyses, rendering biological interpretations of single-cell omics data elusive. We used RNA-Seq data from single-cell and bulk colon cancer samples to analyze the SNP profiles for both structural and functional comparisons. Colon cancer-related pathways with single-cell level SNP enrichment, including the TGF-β and p53 signaling pathways, were also investigated based on both their SNP enrichment patterns and gene expression. We also detected a certain number of fusion transcripts, which may promote tumorigenesis, at the single-cell level. Based on these results, single-cell analyses not only recapitulated the SNP analysis results from the bulk samples but also detected cell-to-cell and cell-to-bulk variations, thereby aiding in early diagnosis and in identifying the precise mechanisms underlying cancers at the single-cell level. PMID:27677461

  5. A global view of 54,001 single nucleotide polymorphisms (SNPs) on the Illumina BovineSNP50 BeadChip and their transferability to water buffalo.

    PubMed

    Michelizzi, Vanessa N; Wu, Xiaolin; Dodson, Michael V; Michal, Jennifer J; Zambrano-Varon, Jorge; McLean, Derek J; Jiang, Zhihua

    2010-01-01

    The Illumina BovineSNP50 BeadChip features 54,001 informative single nucleotide polymorphisms (SNPs) that uniformly span the entire bovine genome. Among them, 52,255 SNPs have locations assigned in the current genome assembly (Btau_4.0), including 19,294 (37%) intragenic SNPs (i.e., located within genes) and 32,961 (63%) intergenic SNPs (i.e., located between genes). While the SNPs represented on the Illumina Bovine50K BeadChip are evenly distributed along each bovine chromosome, there are over 14,000 genes that have no SNPs placed on the current BeadChip. Kernel density estimation, a non-parametric method, was used in the present study to identify SNP-poor and SNP-rich regions on each bovine chromosome. With bandwidth = 0.05 Mb, we observed that most regions have SNP densities within 2 standard deviations of the chromosome SNP density mean. The SNP density on chromosome X was the most dynamic, with more than 30 SNP-rich regions and at least 20 regions with no SNPs. Genotyping ten water buffalo using the Illumina BovineSNP50 BeadChip revealed that 41,870 of the 54,001 SNPs are fully scored on all ten water buffalo, but 6,771 SNPs are partially scored on one to nine animals. Both fully scored and partially/no scored SNPs are clearly clustered with various sizes on each chromosome. However, among 43,687 bovine SNPs that were successfully genotyped on nine and ten water buffalo, only 1,159 were polymorphic in the species. These results indicate that the SNPs sites, but not the polymorphisms, are conserved between two species. Overall, our present study provides a solid foundation to further characterize the SNP evolutionary process, thus improving understanding of within- and between-species biodiversity, phylogenetics and adaption to environmental changes.

  6. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping

    PubMed Central

    2010-01-01

    Background PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. Results The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. Conclusions The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2. PMID:20377871

  7. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  8. Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus).

    PubMed

    Kim, Jung Eun; Lee, Young Mee; Lee, Jeong-Ho; Noh, Jae Koo; Kim, Hyun Chul; Park, Choul-Ji; Park, Jong-Won; Kim, Kyung-Kil

    2014-12-01

    To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.

  9. A web-based genome browser for 'SNP-aware' assay design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...

  10. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking

    PubMed Central

    Daniels, Rachel; Volkman, Sarah K; Milner, Danny A; Mahesh, Nira; Neafsey, Daniel E; Park, Daniel J; Rosen, David; Angelino, Elaine; Sabeti, Pardis C; Wirth, Dyann F; Wiegand, Roger C

    2008-01-01

    Background Single nucleotide polymorphism (SNP) genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount of DNA. Such an assay could be used to distinguish recrudescence from re-infection in drug trials, to monitor the frequency and distribution of specific parasites in a patient population undergoing drug treatment or vaccine challenge, or for tracking samples and determining purity of isolates in the laboratory during culture adaptation and sub-cloning, as well as routine passage. Methods A panel of twenty-four SNP markers has been identified that exhibit a high minor allele frequency (average MAF > 35%), for which robust TaqMan genotyping assays were constructed. All SNPs were identified through whole genome sequencing and MAF was estimated through Affymetrix array-based genotyping of a worldwide collection of parasites. These assays create a "molecular barcode" to uniquely identify a parasite genome. Results Using 24 such markers no two parasites known to be of independent origin have yet been found to have the same allele signature. The TaqMan genotyping assays can be performed on a variety of samples including cultured parasites, frozen whole blood, or whole blood spotted onto filter paper with a success rate > 99%. Less than 5 ng of parasite DNA is needed to complete a panel of 24 markers. The ability of this SNP panel to detect and identify parasites was compared to the standard molecular methods, MSP-1 and MSP-2 typing. Conclusion This work provides a facile field-deployable genotyping tool that can be used without special skills with standard lab equipment, and at reasonable cost that will unambiguously identify and track P. falciparum parasites both from patient samples and in the laboratory. PMID:18959790

  11. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics.

    PubMed

    Lamparter, David; Marbach, Daniel; Rueedi, Rico; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries.

  12. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics

    PubMed Central

    Rueedi, Rico; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries. PMID:26808494

  13. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

    PubMed Central

    Conran, Carly A; Na, Rong; Chen, Haitao; Jiang, Deke; Lin, Xiaoling; Zheng, S Lilly; Brendler, Charles B; Xu, Jianfeng

    2016-01-01

    Several different approaches are available to clinicians for determining prostate cancer (PCa) risk. The clinical validity of various PCa risk assessment methods utilizing single nucleotide polymorphisms (SNPs) has been established; however, these SNP-based methods have not been compared. The objective of this study was to compare the three most commonly used SNP-based methods for PCa risk assessment. Participants were men (n = 1654) enrolled in a prospective study of PCa development. Genotypes of 59 PCa risk-associated SNPs were available in this cohort. Three methods of calculating SNP-based genetic risk scores (GRSs) were used for the evaluation of individual disease risk such as risk allele count (GRS-RAC), weighted risk allele count (GRS-wRAC), and population-standardized genetic risk score (GRS-PS). Mean GRSs were calculated, and performances were compared using area under the receiver operating characteristic curve (AUC) and positive predictive value (PPV). All SNP-based methods were found to be independently associated with PCa (all P < 0.05; hence their clinical validity). The mean GRSs in men with or without PCa using GRS-RAC were 55.15 and 53.46, respectively, using GRS-wRAC were 7.42 and 6.97, respectively, and using GRS-PS were 1.12 and 0.84, respectively (all P < 0.05 for differences between patients with or without PCa). All three SNP-based methods performed similarly in discriminating PCa from non-PCa based on AUC and in predicting PCa risk based on PPV (all P > 0.05 for comparisons between the three methods), and all three SNP-based methods had a significantly higher AUC than family history (all P < 0.05). Results from this study suggest that while the three most commonly used SNP-based methods performed similarly in discriminating PCa from non-PCa at the population level, GRS-PS is the method of choice for risk assessment at the individual level because its value (where 1.0 represents average population risk) can be easily interpreted regardless

  14. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks.

    PubMed

    Lepoittevin, C; Bodénès, C; Chancerel, E; Villate, L; Lang, T; Lesur, I; Boury, C; Ehrenmann, F; Zelenica, D; Boland, A; Besse, C; Garnier-Géré, P; Plomion, C; Kremer, A

    2015-11-01

    An Illumina Infinium SNP genotyping array was constructed for European white oaks. Six individuals of Quercus petraea and Q. robur were considered for SNP discovery using both previously obtained Sanger sequences across 676 gene regions (1371 in vitro SNPs) and Roche 454 technology sequences from 5112 contigs (6542 putative in silico SNPs). The 7913 SNPs were genotyped across the six parental individuals, full-sib progenies (one within each species and two interspecific crosses between Q. petraea and Q. robur) and three natural populations from south-western France that included two additional interfertile white oak species (Q. pubescens and Q. pyrenaica). The genotyping success rate in mapping populations was 80.4% overall and 72.4% for polymorphic SNPs. In natural populations, these figures were lower (54.8% and 51.9%, respectively). Illumina genotype clusters with compression (shift of clusters on the normalized x-axis) were detected in ~25% of the successfully genotyped SNPs and may be due to the presence of paralogues. Compressed clusters were significantly more frequent for SNPs showing a priori incorrect Illumina genotypes, suggesting that they should be considered with caution or discarded. Altogether, these results show a high experimental error rate for the Infinium array (between 15% and 20% of SNPs potentially unreliable and 10% when excluding all compressed clusters), and recommendations are proposed when applying this type of high-throughput technique. Finally, results on diversity levels and shared polymorphisms across targeted white oaks and more distant species of the Quercus genus are discussed, and perspectives for future comparative studies are proposed.

  15. Leptin receptor (LEPR) SNP polymorphisms in HELLP syndrome patients determined by quantitative real-time PCR and melting curve analysis

    PubMed Central

    2010-01-01

    Background Several studies have shown overexpression of leptin in microarray experiments in pre-eclampsia (PE) and in hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome. We decided to study four leptin receptor (LEPR) SNP polymorphisms in HELLP syndrome patients by using quantitative real-time PCR and melting curve analysis. Methods DNA was isolated from blood samples from 83 normotensive pregnant women and 75 HELLP syndrome patients. Four SNPs, LEPR c.326A>G (K109), LEPR c.668A>G (Q223R), LEPR c.1968G>C (K656N) and LEPR c.3024A>G (S1008) were determined by quantitative real-time PCR and melting curve analysis. Investigators were blinded to clinical outcomes. Results LEPR c.326A>G, LEPR c.668A>G, LEPR c.1968G>C and LEPR c.3024A>G allele, genotype and haplotype polymorphisms were not different in HELLP syndrome patients and normotensive healthy pregnants. There were strong linkage disequilibrium (LD) between loci c.326A>G and c.6687A>G (D' = 0.974), and c.668A>G and c.1968G>C (D' = 0.934), and c.326A>G and c.1968G>C (D' = 0.885), and c.1968G>C and c.3024A>G (D' = 1.0). However, linkages of c.3024A>G with c.668A>G (D' = 0.111) and c.326A>G (D' = 0.398) were weak. The Hardy-Weinberg equilibrium was observed for all polymorphisms. However the LEPR c.326A>G AG genotype was twice more frequent and the (AG AG GG AG) haplotype was three times more frequent in HELLP syndrome patients. The introduced quantitative real-time PCR combined with melting curve analysis is a fast and reliable method for the determination of LEPR SNPs. Conclusion Although certain LEPR haplotypes are more frequent in HELLP syndrome, we conclude that there is no compelling evidence that the four studied LEPR SNP polymorphisms associated with the development of HELLP syndrome. PMID:20149225

  16. SNP genotyping by heteroduplex analysis.

    PubMed

    Paniego, Norma; Fusari, Corina; Lia, Verónica; Puebla, Andrea

    2015-01-01

    Heteroduplex-based genotyping methods have proven to be technologically effective and economically efficient for low- to medium-range throughput single-nucleotide polymorphism (SNP) determination. In this chapter we describe two protocols that were successfully applied for SNP detection and haplotype analysis of candidate genes in association studies. The protocols involve (1) enzymatic mismatch cleavage with endonuclease CEL1 from celery, associated with fragment separation using capillary electrophoresis (CEL1 cleavage), and (2) differential retention of the homo/heteroduplex DNA molecules under partial denaturing conditions on ion pair reversed-phase liquid chromatography (dHPLC). Both methods are complementary since dHPLC is more versatile than CEL1 cleavage for identifying multiple SNP per target region, and the latter is easily optimized for sequences with fewer SNPs or small insertion/deletion polymorphisms. Besides, CEL1 cleavage is a powerful method to localize the position of the mutation when fragment resolution is done using capillary electrophoresis.

  17. MALDI-TOF mass spectrometry-based SNP genotyping.

    PubMed

    Pusch, Wolfgang; Wurmbach, Jan-Henner; Thiele, Herbert; Kostrzewa, Markus

    2002-07-01

    In recent years a growing demand for simple and robust SNP genotyping platforms has arisen from the widespread use of SNPs in industrial and public research. The resulting knowledge about genotype/phenotype correlations is of special interest for the identification of potential new drug targets and in the field of pharmacogenomics. However, full exploitation of the available genomic information requires vast numbers of SNP analyses, as large cohorts of patients have to be screened for a large number of markers. Only very few of the current SNP genotyping techniques can cope with the resulting demands concerning sample throughput, automation, accuracy and cost-effectiveness. MALDI-TOF mass spectrometry has the potential to develop into a 'Gold Standard' for high-throughput SNP genotyping - if it has not already done so. This review will focus on the latest developments of this technology.

  18. Murine Double Minute 2 SNP T309G Polymorphism and Urinary Tract Cancer Risk: A Meta-Analysis.

    PubMed

    Ding, Hui; Dai, Yu; Ning, Zhongyun; Fan, Ning; Wang, Zhiping; Li, Pei; Zhang, Liyuan; Tao, Yan; Wang, Hanzhang

    2016-03-01

    Urinary tract cancer is a common cause of cancer-related death. The etiology and pathogenesis of urinary tract cancer remain unclear, with genetic and epigenetic factors playing an important role. Studies of the polymorphism of murine double minute 2 (MDM2) have shown inconclusive trends in the risk of urinary tract cancer.To clarify this inconsistency, we conducted updated meta-analyses to evaluate the role of MDM2 T309G polymorphism in urinary tract cancer susceptibility.Data sources were Pubmed (1966-May 2015), Chinese biomedicine literature database (1978-May 2015), and hand searching of the reference lists of included studies:(1) research categories case-control study or a nested case-control study; (2) information evaluating the association between the MDM2 SNP309 and urinary tract cancer risk; (3) studies with sufficient data to perform a meta-analysis.It included the use of odds ratios (ORs) to assess the strength of the association, and 95% confidence intervals (CIs) give a sense of the precision of the estimate. We used I for the assessment of between-study heterogeneity, and publication bias was assessed using the funnel plot and the Egger test. Statistical analyses were performed by Review Manage, version 5.0 and Stata 11.0.A total of 18 studies met the eligibility criteria and were included in our analyses. Overall, there was no statistical association between MDM2 SNP309 and prostate cancer risk for the allele contrast, the GG genotype, the recessive genetic model, the dominant genetic model, and prostate cancer risk in all subjects (OR = 0.96, 95% CI 0.87-1.05, P = 0.36; OR = 0.93, 95% CI 0.75-1.15, P = 0.50; OR = 1.00, 95% CI 0.87-1.15, P = 0.99; OR = 0.93, 95% CI 0.80-1.07, P = 0.30), and between MDM2 SNP309 and bladder cancer risk (the allele contrast: OR = 1.06, 95% CI 0.89-1.27, P = 0.50; the GG genotype: OR = 1.12, 95% CI 0.79-1.61, P = 0.52; the dominant genetic model: OR = 1.03, 95% CI 0

  19. 1 + 1 = 3: Development and validation of a SNP-based algorithm to identify genetic contributions from three distinct inbred mouse strains.

    PubMed

    Gorham, James D; Ranson, Matthew S; Smith, Janebeth C; Gorham, Beverly J; Muirhead, Kristen-Ashley

    2012-12-01

    State-of-the-art, genome-wide assessment of mouse genetic background uses single nucleotide polymorphism (SNP) PCR. As SNP analysis can use multiplex testing, it is amenable to high-throughput analysis and is the preferred method for shared resource facilities that offer genetic background assessment of mouse genomes. However, a typical individual SNP query yields only two alleles (A vs. B), limiting the application of this methodology to distinguishing contributions from no more than two inbred mouse strains. By contrast, simple sequence length polymorphism (SSLP) analysis yields multiple alleles but is not amenable to high-throughput testing. We sought to devise a SNP-based technique to identify donor strain origins when three distinct mouse strains potentially contribute to the genetic makeup of an individual mouse. A computational approach was used to devise a three-strain analysis (3SA) algorithm that would permit identification of three genetic backgrounds while still using a binary-output SNP platform. A panel of 15 mosaic mice with contributions from BALB/c, C57Bl/6, and DBA/2 genetic backgrounds was bred and analyzed using a genome-wide SNP panel using 1449 markers. The 3SA algorithm was applied and then validated using SSLP. The 3SA algorithm assigned 85% of 1449 SNPs as informative for the C57Bl/6, BALB/c, or DBA/2 backgrounds, respectively. Testing the panel of 15 F2 mice, the 3SA algorithm predicted donor strain origins genome-wide. Donor strain origins predicted by the 3SA algorithm correlated perfectly with results from individual SSLP markers located on five different chromosomes (n=70 tests). We have established and validated an analysis algorithm based on binary SNP data that can successfully identify the donor strain origins of chromosomal regions in mice that are bred from three distinct inbred mouse strains. PMID:23204929

  20. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management.

  1. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. PMID:25429025

  2. SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing®.

    PubMed

    Busato, Florence; Tost, Jörg

    2015-01-01

    The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

  3. De novo Transcriptome Assembly and SNP Discovery in the Wing Polymorphic Salt Marsh Beetle Pogonus chalceus (Coleoptera, Carabidae)

    PubMed Central

    Van Belleghem, Steven M.; Roelofs, Dick; Van Houdt, Jeroen; Hendrickx, Frederik

    2012-01-01

    Background The salt marsh beetle Pogonus chalceus represents a unique opportunity to understand and study the origin and evolution of dispersal polymorphisms as remarkable inter-population divergence in dispersal related traits (e.g. wing development, body size and metabolism) has been shown to persist in face of strong homogenizing gene flow. Sequencing and assembling the transcriptome of P. chalceus is a first step in developing large scale genetic information that will allow us to further study the recurrent phenotypic evolution in dispersal traits in these natural populations. Methodology/Results We used the Illumina HiSeq2000 to sequence 37 Gbases of the transcriptome and performed de novo transcriptome assembly with the Trinity short read assembler. This resulted in 65,766 contigs, clustering into 39,393 unique transcripts (unigenes). A subset of 12,987 show similarity (BLAST) to known proteins in the NCBI database and 7,589 are assigned Gene Ontology (GO). Using homology searches we identified all reported genes involved in wing development, juvenile- and ecdysteroid hormone pathways in Tribolium castaneum. About half (56.7%) of the unique assembled genes are shared among three life stages (third-instar larva, pupa, and imago). We identified 38,141 single nucleotide polymorphisms (SNPs) in these unigenes. Of these SNPs, 26,823 (70.3%) were found in a predicted open reading frame (ORF) and 6,998 (18.3%) were nonsynonymous. Conclusions The assembled transcriptome and SNP data are essential genomic resources for further study of the developmental pathways, genetic mechanisms and metabolic consequences of adaptive divergence in dispersal power in natural populations. PMID:22870338

  4. A custom 148 gene-based resequencing chip and the SNP explorer software: new tools to study antibody deficiency.

    PubMed

    Wang, Hong-Ying; Gopalan, Vivek; Aksentijevich, Ivona; Yeager, Meredith; Ma, Chi Adrian; Mohamoud, Yasmin Ali; Quinones, Mariam; Matthews, Casey; Boland, Joseph; Niemela, Julie E; Torgerson, Troy R; Giliani, Silvia; Uzel, Gulbu; Orange, Jordan S; Shapiro, Ralph; Notarangelo, Luigi; Ochs, Hans D; Fleisher, Thomas; Kastner, Daniel; Chanock, Stephen J; Jain, Ashish

    2010-09-01

    Hyper-IgM syndrome and Common Variable Immunodeficiency are heterogeneous disorders characterized by a predisposition to serious infection and impaired or absent neutralizing antibody responses. Although a number of single gene defects have been associated with these immune deficiency disorders, the genetic basis of many cases is not known. To facilitate mutation screening in patients with these syndromes, we have developed a custom 300-kb resequencing array, the Hyper-IgM/CVID chip, which interrogates 1,576 coding exons and intron-exon junction regions from 148 genes implicated in B-cell development and immunoglobulin isotype switching. Genomic DNAs extracted from patients were hybridized to the array using a high-throughput protocol for target sequence amplification, pooling, and hybridization. A Web-based application, SNP Explorer, was developed to directly analyze and visualize the single nucleotide polymorphism (SNP) annotation and for quality filtering. Several mutations in known disease-susceptibility genes such as CD40LG, TNFRSF13B, IKBKG, AICDA, as well as rare nucleotide changes in other genes such as TRAF3IP2, were identified in patient DNA samples and validated by direct sequencing. We conclude that the Hyper-IgM/CVID chip combined with SNP Explorer may provide a cost-effective tool for high-throughput discovery of novel mutations among hundreds of disease-relevant genes in patients with inherited antibody deficiency.

  5. Benefit-of-doubt (BOD) scoring: a sequencing-based method for SNP candidate assessment from high to medium read number data sets.

    PubMed

    Sedlazeck, Fritz Joachim; Talloji, Prabhavathi; von Haeseler, Arndt; Bachmair, Andreas

    2013-03-01

    Identification of single nucleotide polymorphisms (SNPs) is a key element in sequence-based genetic analysis. Next generation sequencing offers a cost-effective basis to generate the necessary, large sequence data sets, and bioinformatic methods are being developed to process sequencing machine readouts. We were interested in detection of SNPs in a 350 kb region of an EMS-mutagenized Arabidopsis chromosome 3. The region was selectively analyzed using PCR-generated, overlapping fragments for Solexa sequencing. The ensuing reads provided a high coverage and were processed bioinformatically. In order to assess the SNP candidates obtained with a frequently used alignment program and SNP caller, we developed an additional method that allows the identification of high confidence SNP loci. The method can easily be applied to complete genome sequence data of sufficient coverage.

  6. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array

    PubMed Central

    Vukosavljev, Mirjana; Arens, Paul; Voorrips, Roeland E; van ‘t Westende, Wendy PC; Esselink, GD; Bourke, Peter M; Cox, Peter; van de Weg, W Eric; Visser, Richard GF; Maliepaard, Chris; Smulders, Marinus JM

    2016-01-01

    Dense genetic maps create a base for QTL analysis of important traits and future implementation of marker-assisted breeding. In tetraploid rose, the existing linkage maps include <300 markers to cover 28 linkage groups (4 homologous sets of 7 chromosomes). Here we used the 68k WagRhSNP Axiom single-nucleotide polymorphism (SNP) array for rose, in combination with SNP dosage calling at the tetraploid level, to genotype offspring from the garden rose cultivar ‘Red New Dawn’. The offspring proved to be not from a single bi-parental cross. In rose breeding, crosses with unintended parents occur regularly. We developed a strategy to separate progeny into putative populations, even while one of the parents was unknown, using principle component analysis on pairwise genetic distances based on sets of selected SNP markers that were homozygous, and therefore uninformative for one parent. One of the inferred populations was consistent with self-fertilization of ‘Red New Dawn’. Subsequently, linkage maps were generated for a bi-parental and a self-pollinated population with ‘Red New Dawn’ as the common maternal parent. The densest map, for the selfed parent, had 1929 SNP markers on 25 linkage groups, covering 1765.5 cM at an average marker distance of 0.9 cM. Synteny with the strawberry (Fragaria vesca) genome was extensive. Rose ICM1 corresponded to F. vesca pseudochromosome 7 (Fv7), ICM4 to Fv4, ICM5 to Fv3, ICM6 to Fv2 and ICM7 to Fv5. Rose ICM2 corresponded to parts of F. vesca pseudochromosomes 1 and 6, whereas ICM3 is syntenic to the remainder of Fv6.

  7. Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method

    PubMed Central

    2013-01-01

    Background In recent years, both single-nucleotide polymorphism (SNP) array and functional magnetic resonance imaging (fMRI) have been widely used for the study of schizophrenia (SCZ). In addition, a few studies have been reported integrating both SNPs data and fMRI data for comprehensive analysis. Methods In this study, a novel sparse representation based variable selection (SRVS) method has been proposed and tested on a simulation data set to demonstrate its multi-resolution properties. Then the SRVS method was applied to an integrative analysis of two different SCZ data sets, a Single-nucleotide polymorphism (SNP) data set and a functional resonance imaging (fMRI) data set, including 92 cases and 116 controls. Biomarkers for the disease were identified and validated with a multivariate classification approach followed by a leave one out (LOO) cross-validation. Then we compared the results with that of a previously reported sparse representation based feature selection method. Results Results showed that biomarkers from our proposed SRVS method gave significantly higher classification accuracy in discriminating SCZ patients from healthy controls than that of the previous reported sparse representation method. Furthermore, using biomarkers from both data sets led to better classification accuracy than using single type of biomarkers, which suggests the advantage of integrative analysis of different types of data. Conclusions The proposed SRVS algorithm is effective in identifying significant biomarkers for complicated disease as SCZ. Integrating different types of data (e.g. SNP and fMRI data) may identify complementary biomarkers benefitting the diagnosis accuracy of the disease. PMID:24565219

  8. Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard.

    PubMed

    Børsting, Claus; Rockenbauer, Eszter; Morling, Niels

    2009-12-01

    A multiplex assay with 49 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was validated for forensic genetic casework and accredited according to the ISO 17025 standard. The multiplex assay was based on the SNPforID 52plex SNP assay [J.J. Sanchez, C. Phillips, C. Børsting, K. Balogh, M. Bogus, M. Fondevila, C.D. Harrison, E. Musgrave-Brown, A. Salas, D. Syndercombe-Court, P.M. Schneider, A. Carracedo, N. Morling, A multiplex assay with 52 single nucleotide polymorphisms for human identification, Electrophoresis 27 (2006) 1713-1724], where 52 fragments were amplified in one PCR reaction. The SNPs were analysed by single base extension (SBE) and capillary electrophoresis. Twenty-three of the original SBE primers were altered to improve the overall robustness of the assay and to simplify the analysis of the SBE results. A total of 216 samples from 50 paternity cases and 33 twin cases were typed at least twice for the 49 SNPs. All electropherograms were analysed independently by two expert analysts prior to approval. Based on these results, detailed guidelines for analysis of the SBE products were developed. With these guidelines, the peak height ratio of a heterozygous allele call or the signal to noise ratio of a homozygous allele call is compared with previously obtained ratios. A laboratory protocol for analysis of SBE products was developed where allele calls with unusual ratios were highlighted to facilitate the analysis of difficult allele calls. The guidelines for allele calling proved to be highly efficient for the detection of DNA mixtures and contaminated DNA preparations. DNA from two individuals was mixed in seven different ratios ranging from 1:1 to 1:10; all mixtures were easily identified as mixtures. PMID:19948332

  9. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity

    PubMed Central

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86–58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease. PMID:26017978

  10. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    PubMed

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  11. SNP ID-info: SNP ID searching and visualization platform.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei

    2008-09-01

    Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.

  12. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L.

    PubMed

    Clarke, Wayne E; Parkin, Isobel A; Gajardo, Humberto A; Gerhardt, Daniel J; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G; Snowdon, Rod J; Federico, Maria L; Iniguez-Luy, Federico L

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci -QTL- analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.

  13. SNP analysis using a molecular beacon-based operating cooperatively (OC) sensor.

    PubMed

    Cornett, Evan M; Kolpashchikov, Dmitry M

    2013-01-01

    Analysis of single-nucleotide polymorphisms (SNPs) is important for diagnosis of infectious and genetic diseases, for environment and population studies, as well as in forensic applications. Herein is a detailed description to design an "operating cooperatively" (OC) sensor for highly specific SNP analysis. OC sensors use two unmodified DNA adaptor strands and a molecular beacon probe to detect a nucleic acid targets with exceptional specificity towards SNPs. Genotyping can be accomplished at room temperature in a homogenous assay. The approach is easily adaptable for any nucleic acid target, and has been successfully used for analysis of targets with complex secondary structures. Additionally, OC sensors are an easy-to-design and cost-effective method for SNP analysis and nucleic acid detection.

  14. IL28B Gene Polymorphism SNP rs8099917 Genotype GG Is Associated with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in HTLV-1 Carriers

    PubMed Central

    Luiz, Olinda do Carmo; Malta, Fernanda; Pinho, João Renato Rebello; Gonçalves, Fernanda de Toledo; Duarte, Alberto Jose da Silva; de Oliveira, Augusto Cesar Penalva

    2014-01-01

    Background The polymorphisms of IL28B have been described as important in the pathogenesis of infections caused by some viruses. The aim of this research was to evaluate whether IL28B gene polymorphisms (SNP rs8099917 and SNP rs12979860) are associated with HAM/TSP. Methods The study included 229 subjects, classified according to their neurological status in two groups: Group I (136 asymptomatic HTLV-1 carriers) and Group II (93 HAM/TSP patients). The proviral loads were quantified, and the rs8099917 and rs12979860 SNPs in the region of IL28B-gene were analyzed by StepOnePlus Real-time PCR System. Results A multivariate model analysis, including gender, age, and HTLV-1 DNA proviral load, showed that IL28B polymorphisms were independently associated with HAM/TSP outcome in rs12979860 genotype CT (OR = 2.03; IC95% = 0.96–4.27) and in rs8099917 genotype GG (OR = 7.61; IC95% = 1.82–31.72). Conclusion Subjects with SNP rs8099917 genotype GG and rs12979618 genotype CT may present a distinct immune response against HTLV-1 infection. So, it seems reasonable to suggest that a search for IL28B polymorphisms should be performed for all HTLV-1-infected subjects in order to monitor their risk for disease development; however, since this is the first description of such finding in the literature, we should first replicate this study with more HTLV-1-infected persons to strengthen the evidence already provided by our results. PMID:25233462

  15. Effect of ANXA2 gene single nucleotide polymorphism (SNP) on the development of osteonecrosis in Indian sickle cell patient: a PCR-RFLP approach.

    PubMed

    Pandey, Sanjay; Ranjan, Ravi; Pandey, Sweta; Mishra, Rahasya Mani; Seth, Tulika; Saxena, Renu

    2012-07-01

    Osteonecrosis is a serious complication in sickle cell patients. The common sites of the necrosis are femoral head, head of the humerus and acetabulam. Annexin A2 (ANXA2) protein mainly functions in bone formation and bone resorption. Alteration of ANXA2 gene may affect the manifestations of osteonecrosis in the patients. PCR-RFLP is a common applicable technique for the detection of known mutation/polymorphisms. Here we are presenting application of the PCR-RFLP technique for determination of the ANXA2 gene single nucleotide polymorphism frequency and their clinical association among Indian sickle cell patients. Five known SNPs of ANXA2 gene (rs7170178, rs73435133, rs73418020, rs72746635 and rs73418025) were determined using the HpyCH4V, DdeI, HpyCH4III and Sau 961 restriction enzyme respectively. Restriction enzyme DdeI was common for rs73435133 and rs72746635 SNP. Only the rs7170178 SNP was detected among patient and control and the other four SNPs were absent in the studied groups. The frequency of ANXA2 gene rs7170178 SNP (A/G, G/G) was comparatively higher in sickle cell patients than controls and it was clinically associated with sickle cell osteonecrosis. The P value of heterozygotes (A/G) and homozygotes (G/G) genotypes were <0.001 and 0.001 respectively, which were highly significant. This study established the application of PCR-RFLP in detection of ANXA2 SNPs in sickle cell patients.

  16. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID

  17. Molecular-beacon-based tricomponent probe for SNP analysis in folded nucleic acids.

    PubMed

    Nguyen, Camha; Grimes, Jeffrey; Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2011-11-11

    Hybridization probes are often inefficient in the analysis of single-stranded DNA or RNA that are folded in stable secondary structures. A molecular beacon (MB) probe is a short DNA hairpin with a fluorophore and a quencher attached to opposite sides of the oligonucleotide. The probe is widely used in real-time analysis of specific DNA and RNA sequences. This study demonstrates how a conventional MB probe can be used for the analysis of nucleic acids that form very stable (T(m) > 80 °C) hairpin structures. Here we demonstrate that the MB probe is not efficient in direct analysis of secondary structure-folded analytes, whereas a MB-based tricomponent probe is suitable for these purposes. The tricomponent probe takes advantage of two oligonucleotide adaptor strands f and m. Each adaptor strand contains a fragment complementary to the analyte and a fragment complementary to a MB probe. In the presence of a specific analyte, the two adaptor strands hybridize to the analyte and the MB probe, thus forming a quadripartite complex. DNA strand f binds to the analyte with high affinity and unwinds its secondary structure. Strand m forms a stable complex only with the fully complementary analyte. The MB probe fluorescently reports the formation of the quadripartite associate. It was demonstrated that the DNA analytes folded in hairpin structures with stems containing 5, 6, 7, 8, 9, 11, or 13 base pairs can be detected in real time with the limit of detection (LOD) lying in the nanomolar range. The stability of the stem region in the DNA analyte did not affect the LOD. Analytes containing single base substitutions in the stem or in the loop positions were discriminated from the fully complementary DNA at room temperature. The tricomponent probe promises to simplify nucleic acid analysis at ambient temperatures in such applications as in vivo RNA monitoring, detection of pathogens, and single nucleotide polymorphism (SNP) genotyping by DNA microarrays.

  18. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    SciTech Connect

    Huang, Chao-Yuan; Su, Chien-Tien; Chu, Jan-Show; Huang, Shu-Pin; Pu, Yeong-Shiau; Yang, Hsiu-Yuan; Chung, Chi-Jung; Wu, Chia-Chang; Hsueh, Yu-Mei

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  19. SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus.

    PubMed

    Durstewitz, G; Polley, A; Plieske, J; Luerssen, H; Graner, E M; Wieseke, R; Ganal, M W

    2010-11-01

    Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.

  20. Y-chromosome polymorphisms and ethnic group – a combined STR and SNP approach in a population sample from northern Italy

    PubMed Central

    Cortellini, Venusia; Verzeletti, Andrea; Cerri, Nicoletta; Marino, Alberto; De Ferrari, Francesco

    2013-01-01

    Aim To find an association between Y chromosome polymorphisms and some ethnic groups. Methods Short tandem repeats (STR) and single-nucleotide polymorphisms (SNP) on the Y chromosome were typed in 311 unrelated men from four different ethnic groups – Italians from northern Italy, Albanians, Africans from the Maghreb region, and Indo-Pakistanis, using the AmpFlSTR® Yfiler PCR Amplification Kit and the SNaPshot Multiplex Kit. Results STRs analysis found 299 different haplotypes and SNPs analysis 11 different haplogroups. Haplotypes and haplogroups were analyzed and compared between different ethnic groups. Significant differences were found among all the population groups, except between Italians and Indo-Pakistanis and between Albanians and Indo-Pakistanis. Conclusions Typing both STRs and SNPs on the Y chromosome could become useful in determining ethnic origin of a potential suspect. PMID:23771759

  1. An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...

  2. Association between STR -794 CATT5-8 and SNP -173 G/C polymorphisms in the MIF gene and Lepromatous Leprosy in Mestizo patients of western Mexico.

    PubMed

    Martinez-Guzman, M A; Alvarado-Navarro, A; Pereira-Suarez, A L; Muñoz-Valle, J F; Fafutis-Morris, M

    2016-10-01

    Lepromatous Leprosy (LL) is the most common presentation of leprosy in Mexico. LL patients are unable to activate an effective inflammatory response against Mycobacterium leprae probably due to the genetics of the host. Macrophage Migration Inhibitory Factor (MIF) is important to trigger inflammation processes. Two polymorphisms have been reported for human MIF: STR -794 CATT5-8 and SNP -173 G/C. 7-8 CATT repeats at -794 and the C allele at -173 increase the expression of MIF. We aim to determine the association between the polymorphisms in MIF gene and LL. We carried a case and controls study with 100 Mexican LL patients and 100 healthy subjects (HS). PCR was used for genotyping of STR -794 CATT5-8 polymorphism and PCR-RFLP for -173 G/C. We found that LL patients possess high -794 CATT repeats (47.1%) more often than HS (32.7%). In conclusion, a MIF polymorphism is associated with susceptibility to LL in Western Mexican population.

  3. A Coordinated Approach to Peach SNP Discovery in RosBREED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...

  4. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome projects routinely produce draft sequences for species from diverse evolutionary clades, but generally do not create single nucleotide polymorphism (SNP) resources. We present an approach for de novo SNP discovery based on short-read sequencing of reduced representation libraries (RRL) to ge...

  5. Translational Medicine and Reliability of Single-Nucleotide Polymorphism Studies: Can We Believe in SNP Reports or Not?

    PubMed Central

    Valachis, Antonis; Mauri, Davide; Neophytou, Christodoulos; Polyzos, Nikolaos P.; Tsali, Lampriani; Garras, Antonios; Papanikolau, Evangelos G.

    2011-01-01

    Background: The number of genetic association studies is increasing exponentially. Nonetheless, genetic association reports are prone to potential biases which may influence the reported outcome. Aim: We hypothesized that positive outcome for a determined polymorphism might be over-reported across genetic association studies analysing a small number of polymorphisms, when compared to studies analysing the same polymorphism together with a high number of other polymorphisms. Methods: We systematically reviewed published reports on the association of glutathione s-transferase (GST) single-nucleotide polymorphisms (SNPs) and cancer outcome. Result: We identified 79 eligible trials. Most of the studies examined the GSTM1, theGSTP1 Ile105Val mutation, and GSTT1polymorphisms (n = 54, 57 and 46, respectively). Studies analysing one to three polymorphisms (n = 39) were significantly more likely to present positive outcomes, compared to studies examining more than 3 polymorphisms (n=40) p = 0.004; this was particularly evident for studies analysing the GSTM1polymorphism (p =0.001). We found no significant associations between journal impact factor, number of citations, and probability of publishing positive studies or studies with 1-3 polymorphisms examined. Conclusions: We propose a new subtype of publication bias in genetic association studies. Positive results for genetic association studies analysing a small number of polymorphisms (n = 1-3) should be evaluated extremely cautiously, because a very large number of such studies are inconclusive and statistically under-powered. Indeed, publication of misleading reports may affect harmfully medical decision-making and use of resources, both in clinical and pharmacological development setting. PMID:21897762

  6. [Mechanism of genuineness of Glycyrrhiza uralensis based on SNP of β-Amyrin synthase gene].

    PubMed

    Zang, Yi-mei; Li, Yan-peng; Qiao, Jing; Chen, Hong-hao; Liu, Chun-sheng

    2015-07-01

    β-Amyrin synthase (β-AS) genes of Glycyrrhiza uralensis from 6 different regions were analyzed by PCR-SSCP and sequenced, then the correlationship between β-AS SNP and regions of Glycyrrhiza uralensis were determined. According to the 1 coding single nucleotide polymorphism on the first exon of β-AS gene at 94 bp site, Glycyrrhiza uralensis could be divided into 3 genotypes. In these genotypes, the percentage of 94A type in genuine regions was much higher, and it had significant differences with the percentage in non-genuine regions (P < 0.001). The results of the experiment proved that different β-AS genotypes at 94 bp site from different regions may be one of the important reasons to result in the genuineness of Glycyrrhiza uralensis. PMID:26552155

  7. Transcriptome sequencing to produce SNP-based genetic maps of onion.

    PubMed

    Duangjit, J; Bohanec, B; Chan, A P; Town, C D; Havey, M J

    2013-08-01

    We used the Roche-454 platform to sequence from normalized cDNA libraries from each of two inbred lines of onion (OH1 and 5225). From approximately 1.6 million reads from each inbred, 27,065 and 33,254 cDNA contigs were assembled from OH1 and 5225, respectively. In total, 3,364 well supported single nucleotide polymorphisms (SNPs) on 1,716 cDNA contigs were identified between these two inbreds. One SNP on each of 1,256 contigs was randomly selected for genotyping. OH1 and 5225 were crossed and 182 gynogenic haploids extracted from hybrid plants were used for SNP mapping. A total of 597 SNPs segregated in the OH1 × 5225 haploid family and a genetic map of ten linkage groups (LOD ≥8) was constructed. Three hundred and thirty-nine of the newly identified SNPs were also mapped using a previously developed segregating family from BYG15-23 × AC43, and 223 common SNPs were used to join the two maps. Because these new SNPs are in expressed regions of the genome and commonly occur among onion germplasms, they will be useful for genetic mapping, gene tagging, marker-aided selection, quality control of seed lots, and fingerprinting of cultivars.

  8. A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Hong, Sun Pyo; Ji, Seung Il; Rhee, Hwanseok; Shin, Soo Kyeong; Hwang, Sun Young; Lee, Seung Hwan; Lee, Soong Deok; Oh, Heung-Bum; Yoo, Wangdon; Kim, Soo-Ok

    2008-01-01

    Background We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS. Results The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing. Conclusion The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories. PMID:18538037

  9. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  10. Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT

    PubMed Central

    Neigenfind, Jost; Gyetvai, Gabor; Basekow, Rico; Diehl, Svenja; Achenbach, Ute; Gebhardt, Christiane; Selbig, Joachim; Kersten, Birgit

    2008-01-01

    Background Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous. Results Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given haplotype inference. The program is evaluated with simulated and experimental SNP data generated for heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype inference reported by the program, we can significantly improve the quality of the final result by applying additional methods that include scoring of the alternative haplotype inferences and genotype optimisation. For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons. Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes. Conclusion Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is freeware and is distributed as

  11. A SNP Based High-Density Linkage Map of Apis cerana Reveals a High Recombination Rate Similar to Apis mellifera

    PubMed Central

    Huang, Zachary Y.; Wu, Xiao Bo; Zhu, Yong Qiang; Zheng, Hua Jun; Zeng, Zhi Jiang

    2013-01-01

    Background The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. Results F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. Conclusion We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera. PMID:24130775

  12. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles

    PubMed Central

    XIE, YINGJUN; PEI, XIAOJUAN; DONG, YU; WU, HUIQUN; WU, JIANZHU; SHI, HUIJUAN; ZHUANG, XUYING; SUN, XIAOFANG; HE, JIALING

    2016-01-01

    In clinical diagnostics, single nucleotide polymorphism (SNP)-based microarray analysis enables the detection of copy number variations (CNVs), as well as copy number neutral regions, that are absent of heterozygosity throughout the genome. The aim of the present study was to evaluate the effectiveness and sensitivity of SNP-based microarray analysis in the diagnosis of hydatidiform mole (HM). By using whole-genome SNP microarray analysis, villous genotypes were detected, and the ploidy of villous tissue was determined to identify HMs. A total of 66 villous tissues and two twin tissues were assessed in the present study. Among these samples, 11 were triploid, one was tetraploid, 23 were abnormal aneuploidy, three were complete genome homozygosity, and the remaining ones were normal ploidy. The most noteworthy finding of the present study was the identification of six partial HMs and three complete HMs from those samples that were not identified as being HMs on the basis of the initial diagnosis of experienced obstetricians. This study has demonstrated that the application of an SNP-based microarray analysis was able to increase the sensitivity of diagnosis for HMs with partial and complete HMs, which makes the identification of these diseases at an early gestational age possible. PMID:27151252

  13. SNP-VISTA

    SciTech Connect

    Shah, Nameeta; Teplitsky, Michael; Minovitsky, Simon; Dubchak, Inna

    2005-11-07

    SNP-VISTA aids in analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) Mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNPs data.

  14. Clinical implications of family history of prostate cancer and genetic risk single nucleotide polymorphism (SNP) profiles in an active surveillance cohort

    PubMed Central

    Goh, Chee L.; Saunders, Edward J.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Thomas, Karen; Selvadurai, Elizabeth D.; Woode-Amissah, Ruth; Dadaev, Tokhir; Mahmud, Nadiya; Castro, Elena; Olmos, David; Guy, Michelle; Govindasami, Koveela; O’Brien, Lynne T.; Hall, Amanda L.; Wilkinson, Rosemary A.; Sawyer, Emma J.; Olama, Ali Amin Al; Easton, Douglas F.; Kote-Jarai, Zsofia; Parker, Chris C.; Eeles, Rosalind A.

    2012-01-01

    Objectives To explore the potential prognostic role of family history (FH) of prostate cancer and prostate cancer risk single nucleotide polymorphisms (SNPs) in patients undergoing active surveillance (AS) for prostate cancer. This is the first study to date, which has investigated the potential prognostic role of SNP profiles in an AS cohort Patients and methods FH data were collected from patients in the Royal Marsden Hospital AS study. In all, 39 prostate cancer-risk SNPs identified from published genome wide association studies (GWAS) were genotyped using the Sequenom Platform and TaqMan™ assays from available DNA. The cumulative genetic-risk scores for each patient were then calculated using the weighted effect estimated from previous GWAS (log-additive model). FH status and the genetic-risk scores were assessed against adverse outcomes in AS, time to treatment and adverse histology on repeat biopsy, using univariable and multivariable Cox regression models to address time to treatment; and binary logistic regression to address biopsy upgrade. Results Of 471 patients, 55 (13.6%) had adverse histology on repeat biopsies and 145 (30.8%) had deferred treatment. On univariate analysis, there was no significant relationship between FH of prostate cancer in any degree of relation, and adverse histology or time to treatment. For risk score analyses, 386 patients’ DNA was studied; and there was also no relationship found between the calculated genetic risk scores and adverse histology or time to treatment (P = 0.573 and P = 0.965, respectively). The retrospective study design and the few events was the main limitation of the study. Conclusions There is currently insufficient data to support the use of FH status or prostate cancer SNP profile-risk scores as prognostic factors in AS and these should not be used to influence management decisions. As more genetic variants are discovered this may change and should be reassessed in multicentre AS cohorts. PMID:23320731

  15. Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures.

    PubMed

    Abi, Alireza; Ferapontova, Elena E

    2013-04-01

    Genetic analysis of infectious and genetic diseases and cancer diagnostics require the development of efficient tools for fast and reliable analysis of single-nucleotide polymorphism (SNP) in targeted DNA and RNA sequences often responsible for signalling disease onset. Here, we highlight the main trends in the development of electrochemical genosensors for sensitive and selective detection of SNP that are based on hairpin DNA architectures exhibiting better SNP recognition properties compared with linear DNA probes. SNP detection by electrochemical hairpin DNA beacons is discussed, and comparative analysis of the existing SNP sensing strategies based on enzymatic and nanoparticle signal amplification schemes is presented.

  16. Ancestry informative marker panels for African Americans based on subsets of commercially available SNP arrays.

    PubMed

    Tandon, Arti; Patterson, Nick; Reich, David

    2011-01-01

    Admixture mapping is a widely used method for localizing disease genes in African Americans. Most current methods for inferring ancestry at each locus in the genome use a few thousand single nucleotide polymorphisms (SNPs) that are very different in frequency between West Africans and European Americans, and that are required to not be in linkage disequilibrium in the ancestral populations. Modern SNP arrays provide data on hundreds of thousands of SNPs per sample, and to use these to infer ancestry, using many of the standard methods, it is necessary to choose subsets of the SNPs for analysis. Here we present panels of about 4,300 ancestry informative markers (AIMs) that are subsets respectively of SNPs on the Illumina 1 M, Illumina 650, Illumina 610, Affymetrix 6.0 and Affymetrix 5.0 arrays. To validate the usefulness of these panels, we applied them to samples that are different from the ones used to select the SNPs. The panels provide about 80% of the maximum information about African or European ancestry, even with up to 10% missing data.

  17. The Genetic Architecture of Arsenic Metabolism Efficiency:A SNP-Based Heritability Study of Bangladeshi Adults

    PubMed Central

    Gao, Jianjun; Tong, Lin; Argos, Maria; Bryan, Molly Scannell; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Kibriya, Muhammad G.; Jasmine, Farzana; Slavkovich, Vesna; Graziano, Joseph H.

    2015-01-01

    Background Consumption of arsenic-contaminated drinking water adversely affects health. There is interindividual variation in arsenic metabolism efficiency, partially due to genetic variation in the arsenic methyltransferase (AS3MT) gene region. Objectives The goal of this study was to assess the overall contribution of genetic factors to variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethylarsinic acid (DMA%) in urine. Methods Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based approaches for heritability estimation and polygenic modeling. Results Using data on all participants, the percent variance explained (PVE) for DMA% by all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, p = 4.4 × 10–10), but revealed no additional regions. We observed a moderate association between a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs reported in prior candidate gene studies of arsenic metabolism. Conclusions Our results suggest that there are common variants outside of the AS3MT region that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are very weak compared with variants near AS3MT. The high heritability estimates observed using family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured environmental factors. Citation Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A, Rakibuz-Zaman M, Kibriya MG

  18. Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach

    PubMed Central

    Hennings, Johannes M.; Kohli, Martin A.; Czamara, Darina; Giese, Maria; Eckert, Anne; Wolf, Christiane; Heck, Angela; Domschke, Katharina; Arolt, Volker; Baune, Bernhard T.; Horstmann, Sonja; Brückl, Tanja; Klengel, Torsten; Menke, Andreas; Müller-Myhsok, Bertram; Ising, Marcus; Uhr, Manfred; Lucae, Susanne

    2013-01-01

    Background Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment. Methods We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples. Results In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects (Pcorr = .018, Pcorr = .015 and Pcorr = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients. Conclusions/Limitations Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies. PMID:23750220

  19. Different methods to calculate genomic predictions--comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP).

    PubMed

    Koivula, M; Strandén, I; Su, G; Mäntysaari, E A

    2012-07-01

    Several strategies to use genomic data in predictions have been proposed. The aim of this study was to compare different genomic prediction methods. The response variables used in the genomic predictions were deregressed proofs, which were derived from 2 estimated breeding value (EBV) data sets. The full EBV data set from March 2010 included the EBV for production and mastitis traits for all Nordic red bulls. The reduced data set included the same animals as the full data set, but the EBV were predicted from a data set that excluded the last 5 yr of observations. Genomic predictions were obtained using different BLUP models: BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP). For the selection candidate bulls, the SNP-BLUP and G-BLUP models gave the same direct genomic breeding values (e.g., correlation of direct genomic breeding values between SNP-BLUP and G-BLUP for protein was 0.99), but slightly different from genomic EBV obtained from H-BLUP (correlations of SNP-BLUP or G-BLUP with H-BLUP were about 0.96). For all traits, SNP-BLUP and G-BLUP gave the same validation reliability, whereas H-BLUP led to slightly higher reliability. Therefore, the results support a slight advantage of using H-BLUP for genomic evaluation.

  20. SNP marker diversity in common bean (Phaseolus vulgaris L.).

    PubMed

    Cortés, Andrés J; Chavarro, Martha C; Blair, Matthew W

    2011-09-01

    Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.

  1. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  2. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH

    PubMed Central

    Treff, Nathan R.; Levy, Brynn; Su, Jing; Northrop, Lesley E.; Tao, Xin; Scott, Richard T.

    2010-01-01

    Many studies estimate that chromosomal mosaicism within the cleavage-stage human embryo is high. However, comparison of two unique methods of aneuploidy screening of blastomeres within the same embryo has not been conducted and may indicate whether mosaicism has been overestimated due to technical inconsistency rather than the biological phenomena. The present study investigates the prevalence of chromosomal abnormality and mosaicism found with two different single cell aneuploidy screening techniques. Thirteen arrested cleavage-stage embryos were studied. Each was biopsied into individual cells (n = 160). The cells from each embryo were randomized into two groups. Those destined for FISH-based aneuploidy screening (n = 75) were fixed, one cell per slide. Cells for SNP microarray-based aneuploidy screening (n = 85) were put into individual tubes. Microarray was significantly more reliable (96%) than FISH (83%) for providing an interpretable result (P = 0.004). Markedly different results were obtained when comparing microarray and FISH results from individual embryos. Mosaicism was significantly less commonly observed by microarray (31%) than by FISH (100%) (P = 0.0005). Although FISH evaluated fewer chromosomes per cell and fewer cells per embryo, FISH still displayed significantly more unique genetic diagnoses per embryo (3.2 ± 0.2) than microarray (1.3 ± 0.2) (P < 0.0001). This is the first prospective, randomized, blinded and paired comparison between microarray and FISH-based aneuploidy screening. SNP microarray-based 24 chromosome aneuploidy screening provides more complete and consistent results than FISH. These results also suggest that FISH technology may overestimate the contribution of mitotic error to the origin of aneuploidy at the cleavage stage of human embryogenesis. PMID:20484246

  3. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling

    PubMed Central

    Norman, Anita J; Spong, Göran

    2015-01-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km2 in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon’s rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  4. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  5. Genome-wide single-nucleotide polymorphism array-based karyotyping in myelodysplastic syndrome and chronic myelomonocytic leukemia and its impact on treatment outcomes following decitabine treatment.

    PubMed

    Yi, Jun Ho; Huh, Jungwon; Kim, Hee-Jin; Kim, Sun-Hee; Kim, Sung Hyun; Kim, Kyoung Ha; Do, Young Rok; Mun, Yeung-Chul; Kim, Hawk; Kim, Min Kyoung; Kim, Hyeoung-Joon; Kim, TaeHyung; Kim, Dennis Dong Hwan

    2013-04-01

    Decitabine is a hypomethylating agent with proven clinical efficacy in myelodysplastic syndrome (MDS). The current study analyzed the role of single nucleotide polymorphism array (SNP-A)-based karyotyping in prediction of clinical outcome in MDS or chronic myelomonocytic leukemia (CMML) patients following decitabine therapy. A total of 61 MDS/CMML patients treated with decitabine were evaluated with Genome-Wide Human SNP 6.0 Array using DNAs derived from marrow samples. The primary endpoint was the best response rate including complete (CR) and partial response (PR) with overall (OS) and event-free survival (EFS) as secondary endpoints. Best response was noted in 14 patients (26.4 %) out of 53 evaluated patients including 12 CR and two PR with median follow-up of 21.6 months. A total of 81 abnormal SNP lesions were found in 25 out of 61 patients (41.0 %). The patients carrying abnormal SNP lesions showed an inferior CR/PR rate (p = 0.002) and showed a trend of worse OS (p = 0.02 in univariate, p = 0.09 in multivariate) compared to those without SNP lesions, but not were associated with inferior EFS. The presence of abnormal SNP lesions in MDS was associated with adverse outcomes following decitabine therapy. Further study is strongly warranted to establish the role of SNP-A karyotyping in MDS. PMID:23262795

  6. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  7. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils.

    PubMed

    Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis

    2016-07-01

    Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. PMID:26864388

  8. A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples.

    PubMed

    Kraus, Robert H S; vonHoldt, Bridgett; Cocchiararo, Berardino; Harms, Verena; Bayerl, Helmut; Kühn, Ralph; Förster, Daniel W; Fickel, Jörns; Roos, Christian; Nowak, Carsten

    2015-03-01

    Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single-nucleotide polymorphism (SNP)-based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost-effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.

  9. Personalized Medicine Through SNP Testing for Breast Cancer Risk: Clinical Implementation.

    PubMed

    Howe, Rebecca; Miron-Shatz, Talya; Hanoch, Yaniv; Omer, Zehra B; O'Donoghue, Cristina; Ozanne, Elissa M

    2015-10-01

    Single nucleotide polymorphisms (SNPs) have the potential to improve personalized medicine in breast cancer care. As new SNPs are discovered, further enhancing risk classification, SNP testing may serve to complement family history and phenotypic risk factors when assessed in a clinical setting. SNP analysis is particularly relevant to high-risk women who may seek out such information to guide their decision-making around risk-reduction. However, little is known about how high-risk women may respond to SNP testing with regard to clinical decision-making. We examined high-risk women's interest in SNP testing for breast cancer risk through an online survey of hypothetical testing scenarios. Women stated their preferences for sharing test results and selected the most likely follow-up action they would pursue in each of the test result scenarios (above average and below average risk for breast cancer). Four hundred seventy-eight women participated. Most women (89 %) did not know what a SNP was prior to the study. Once SNP testing was described, 75 % were interested in SNP testing. Participants stated an interest in lifestyle interventions for risk-reduction and wanted to discuss their testing results with their doctor or a genetic counselor. Women are interested in SNP testing and are prepared to make lifestyle changes based on testing results. Women's preference for discussing testing results with a healthcare provider aligns with the current trend towards SNP testing in a clinical setting.

  10. [Study of association of the SNP19 polymorphism of calpain 10 gene with type 2 diabetes in ethnic sub-groups of the Tunisian population: gene-environment interaction].

    PubMed

    Ouederni, T Baroudi; Sanchez-Corona, J; Skhiri, H Aounallah; Maiz, H Ben; Abid, H Kammoun; Benammar-Elgaaied, A

    2009-01-01

    Calpaïn 10 (CAPN10) is the first diabetes gene to be identified through a genome scan followed by positional cloning, encoding the cysteine protease, the calpaïn 10 encodes for a ubiquitously expressed protease implicated in the two fundamental pathophysiological aspects of T2DM insulinoresistance and insulinosecretion. Many investigators, but not all, have subsequently found association between calpaïn 10 polymorphism and type 2 diabetes (T2DM) as well as insulin action and insulin secretion. The aim of this study was to determine whether there is an association between specific polymorphism SNP19 in CAPN10 gene and T2DM in two ethnic groups from Djerba Island. Overall, 162 patients with type 2 of diabetes and 110 healthy volunteers who served as controls for genetic characterization with no family history of diabetes were included in the present study. They consisted of 159 women and 113 men. Their mean +/- SD age was 56,47 +/- 11,86 years. All subjects were genotyped according to SNP 19 polymorphism in CAPN10 gene with PCR method to perform case-control study. After adjusting for gender and age, we found an association with a high risk of T2DM in Djerba Island only in Arab sub-group.

  11. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  12. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Leão, Célia; Goldstone, Robert J; Bryant, Josephine; McLuckie, Joyce; Inácio, João; Smith, David G E; Stevenson, Karen

    2016-03-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit-variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates.

  13. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    PubMed Central

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  14. SNP-VISTA

    2005-11-07

    SNP-VISTA aids in analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) Mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering,more » based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNPs data.« less

  15. Dynamic programming for single nucleotide polymorphism ID identification in systematic association studies.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Hsueh-Wei

    2009-04-01

    Single nucleotide polymorphisms (SNPs) play an important role in personalized medicine. However, the SNP data reported in many association studies provide only the SNP nucleotide/amino acid position, without providing the SNP ID recorded in National Center for Biotechnology Information databases. A tool with the ability to provide SNP ID identification, with a user-friendly interface, is needed. In this paper, a dynamic programming algorithm was used to compare homologs when the processed input sequence is aligned with the SNP FASTA database. Our novel system provides a web-based tool that uses the National Center for Biotechnology Information dbSNP database, which provides SNP sequence identification and SNP FASTA formats. Freely selectable sequence formats for alignment can be used, including general sequence formats (ACGT, [dNTP1/dNTP2] or IUPAC formats) and orientation with bidirectional sequence matching. In contrast to the National Center for Biotechnology Information SNP-BLAST, the proposed system always provides the correct targeted SNP ID (SNP hit), as well as nearby SNPs (flanking hits), arranged in their chromosomal order and contig positions. The system also solves problems inherent in SNP-BLAST, which cannot always provide the correct SNP ID for a given input sequence. Therefore, this system constitutes a novel application which uses dynamic programming to identify SNP IDs from the literature and keyed-in sequences for systematic association studies. It is freely available at http://bio.kuas.edu.tw/SNPosition/.

  16. pfSNP: An integrated potentially functional SNP resource that facilitates hypotheses generation through knowledge syntheses.

    PubMed

    Wang, Jingbo; Ronaghi, Mostafa; Chong, Samuel S; Lee, Caroline G L

    2011-01-01

    Currently, >14,000,000 single nucleotide polymorphisms (SNPs) are reported. Identifying phenotype-affecting SNPs among these many SNPs pose significant challenges. Although several Web resources are available that can inform about the functionality of SNPs, these resources are mainly annotation databases and are not very comprehensive. In this article, we present a comprehensive, well-annotated, integrated pfSNP (potentially functional SNPs) Web resource (http://pfs.nus.edu.sg/), which is aimed to facilitate better hypothesis generation through knowledge syntheses mediated by better data integration and a user-friendly Web interface. pfSNP integrates >40 different algorithms/resources to interrogate >14,000,000 SNPs from the dbSNP database for SNPs of potential functional significance based on previous published reports, inferred potential functionality from genetic approaches as well as predicted potential functionality from sequence motifs. Its query interface has the user-friendly "auto-complete, prompt-as-you-type" feature and is highly customizable, facilitating different combination of queries using Boolean-logic. Additionally, to facilitate better understanding of the results and aid in hypotheses generation, gene/pathway-level information with text clouds highlighting enriched tissues/pathways as well as detailed-related information are also provided on the results page. Hence, the pfSNP resource will be of great interest to scientists focusing on association studies as well as those interested to experimentally address the functionality of SNPs.

  17. Detection of homologous horizontal gene transfer in SNP data

    2012-07-23

    We study the detection of mutations, sequencing errors, and homologous horizontal gene transfers (HGT) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNP's) and break the genomes into blocks to handle the rearrangement problem. Then we apply a synamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HGT.

  18. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls

  19. Genetic diversity and relatedness of sweet cherry (prunus avium L.) cultivars based on single nucleotide polymorphic markers.

    PubMed

    Fernandez I Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font I Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3' untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3' UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, "Stella" was separated from "Compact Stella." This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3' UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry.

  20. An automatic high-throughput single nucleotide polymorphism genotyping approach based on universal tagged arrays and magnetic nanoparticles.

    PubMed

    Li, Song; Liu, Hongna; Jia, Yingying; Mou, Xianbo; Deng, Yan; Lin, Lin; Liu, Bin; He, Nongyue

    2013-04-01

    Recent developments in highly parallel genome-wide studies are transforming the association of human health and diseases. In these studies, multiple SNP loci from large amount of samples need to be investigated to obtain a result with a high degree of confidence. Herein, we describe a novel, cost-effective and automated method for high-throughput single nucleotide polymorphisms (SNPs) genotyping based on universal tagged array and magnetic separation. By using two kinds of functionalized magnetic nanoparticles, the whole operation procedure including genome DNA extraction and SNP genotyping can be automatically performed by JANUS automated workstation (Perkin Elmer Inc.). Four different SNPs loci from 80 samples were scored using only one pair of universal dual-color probes, the phase of numerous SNPs can be automated assessed simultaneously. The results demonstrated that the expected scores and good discrimination were obtained between the two alleles from these four SNP loci. Due to adequately taking the advantages of high parallel read-out and intrinsically scalable properties of microarray, and the automated magnetic separation handling technology is highly adaptable fro multiplexing sample preparation and automated SNP analysis, also avoid the complex procedure including purification and concentration, the new strategy is high-throughput, simple, flexible, cost-effective, and will be very suitable for large-scale genotyping.

  1. Atomic Force Microscopy for DNA SNP Identification

    NASA Astrophysics Data System (ADS)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  2. The first genetic linkage map of Primulina eburnea (Gesneriaceae) based on EST-derived SNP markers.

    PubMed

    Feng, Chen; Feng, Chao; Kang, Ming

    2016-06-01

    Primulina eburnea is a promising candidate for domestication and floriculture, since it is easy to culture and has beautiful flowers. An F₂ population of 189 individuals was established for the construction of first-generation linkage maps based on expressed sequence tags-derived single-nucleotide polymorphism markers using the massARRAY genotyping platform. Of the 232 screened markers, 215 were assigned to 18 LG according to the haploid number of chromosomes in the species. The linkage map spanned a total of 3774.7 cM with an average distance of 17.6 cM between adjacent markers. This linkage map provides a framework for identification of important genes in breeding programmes. PMID:27350682

  3. WRN Cys1367Arg polymorphism is not associated with skull base chordoma

    PubMed Central

    WANG, KE; WANG, LIANG; FENG, JIE; HAO, SHUYU; TIAN, KAIBING; WU, ZHEN; ZHANG, LIWEI; JIA, GUIJUN; WAN, HONG; ZHANG, JUNTING

    2014-01-01

    Skull base chordoma is a rare tumor with unknown risk factors. Werner syndrome, which is caused by a mutation in the WRN gene, is a disease of progeria, resembling the pathological process of aging. The present study aimed to provide data on the possible association between skull base chordoma and the single-nucleotide polymorphism (SNP) rs1346044 of the WRN gene. Between July, 2010 and September, 2012, a total of 65 patients with pathologically confirmed skull base chordoma and 65 control subjects were enrolled in this case-control study. The clinical data of the skull base chordoma patients were documented and the rs1346044 site in all the enrolled subjects was analyzed by sequencing and statistically compared using SPSS software. The A allele was the dominant allele of the rs1346044. The comparisons of genotype distributions and allele frequencies did not reveal any significant difference between the groups [P=0.383, 95% confidence interval (CI): 0.346–1.505]. The clinicopathological factors were assessed and no statistically significant difference was observed. In conclusion, the present study suggested that there is no association between rs1346044 SNP and skull base chordomas, at least in the population analyzed. PMID:24944800

  4. Approaches for identifying multiple-SNP haplotype blocks for use in human identification.

    PubMed

    Hiroaki, Nakahara; Koji, Fujii; Tetsushi, Kitayama; Kazumasa, Sekiguchi; Hiroaki, Nakanishi; Kazuyuki, Saito

    2015-09-01

    Single nucleotide polymorphism (SNP) discrimination effectiveness is low due to the bi-allelic nature of SNPs, and large numbers of loci must be analyzed for human identification in forensic casework. To resolve these issues, the authors support the use of multiple SNP haplotypes that will generate many haplotypes based on the combination of SNP alleles. First, 27 regions were selected from the JSNP database (http://snp.ims.u-tokyo.ac.jp) according to the following criteria: (1) 3 or more SNP loci within 100bp; (2) on-intron or out-of-gene location; and (3) frequency of more than 40% for each SNP allele. PCR amplification and high-resolution melting curve (HRM) analysis were then carried out for all selected regions to determine variation in the haplotypes of each. HRM analysis indicated that 7 regions (1q25, 1q42.2, 3p24, 10p13, 11p15.1, 14q12-q13, and 20q12) containing 3 SNP loci had more than 2 haplotypes. The frequencies of the haplotypes for each region were observed via direct sequencing of more than 100 individuals. Not only haplotyping increases the effectiveness of individual identification but also the analysis region is shorter than in common short tandem repeat analysis, representing a further advantage for fragmented DNA samples in SNP typing.

  5. SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dramatic decreases in the cost of DNA sequencing have enabled the development of very large numbers of markers based on single nucleotide polymorphism (SNP) for phylogenetic studies, population genetics, linkage mapping, marker-assisted breeding and other applications. Using Illumina next-generatio...

  6. RNA-Seq-Mediated Transcriptome Analysis of a Fiberless Mutant Cotton and Its Possible Origin Based on SNP Markers.

    PubMed

    Ma, Qifeng; Wu, Man; Pei, Wenfeng; Wang, Xiaoyan; Zhai, Honghong; Wang, Wenkui; Li, Xingli; Zhang, Jinfa; Yu, Jiwen; Yu, Shuxun

    2016-01-01

    As the longest known single-celled trichomes, cotton (Gossypium L.) fibers constitute a classic model system to investigate cell initiation and elongation. In this study, we used a high-throughput transcriptome sequencing technology to identify fiber-initiation-related single nucleotide polymorphism (SNP) markers and differentially expressed genes (DEGs) between the wild-type (WT) Upland cotton (G. hirsutum) Xuzhou 142 and its natural fuzzless-lintless mutant Xuzhou 142 fl. Approximately 700 million high-quality cDNA reads representing over 58 Gb of sequences were obtained, resulting in the identification of 28,610 SNPs--of which 17,479 were novel--from 13,960 expressed genes. Of these SNPs, 50% of SNPs in fl were identical to those of G. barbadense, which suggests the likely origin of the fl mutant from an interspecific hybridization between Xuzhou 142 and an unknown G. barbadense genotype. Of all detected SNPs, 15,555, 12,750, and 305 were classified as non-synonymous, synonymous, and pre-terminated ones, respectively. Moreover, 1,352 insertion/deletion polymorphisms (InDels) were also detected. A total of 865 DEGs were identified between the WT and fl in ovules at -3 and 0 days post-anthesis, with 302 candidate SNPs selected from these DEGs for validation by a high-resolution melting analysis and Sanger sequencing in seven cotton genotypes. The number of genotypic pairwise polymorphisms varied from 43 to 302, indicating that the identified SNPs are reliable. These SNPs should serve as good resources for breeding and genetic studies in cotton. PMID:26990639

  7. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses.

    PubMed

    Orr, N; Back, W; Gu, J; Leegwater, P; Govindarajan, P; Conroy, J; Ducro, B; Van Arendonk, J A M; MacHugh, D E; Ennis, S; Hill, E W; Brama, P A J

    2010-12-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results.

  8. DoGSD: the dog and wolf genome SNP database

    PubMed Central

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M.; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. PMID:25404132

  9. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. PMID:25404132

  10. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies.

  11. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits.

    PubMed

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-12-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.

  12. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  13. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing.

    PubMed

    Campbell, Nathan R; Harmon, Stephanie A; Narum, Shawn R

    2015-07-01

    Genotyping-in-Thousands by sequencing (GT-seq) is a method that uses next-generation sequencing of multiplexed PCR products to generate genotypes from relatively small panels (50-500) of targeted single-nucleotide polymorphisms (SNPs) for thousands of individuals in a single Illumina HiSeq lane. This method uses only unlabelled oligos and PCR master mix in two thermal cycling steps for amplification of targeted SNP loci. During this process, sequencing adapters and dual barcode sequence tags are incorporated into the amplicons enabling thousands of individuals to be pooled into a single sequencing library. Post sequencing, reads from individual samples are split into individual files using their unique combination of barcode sequences. Genotyping is performed with a simple perl script which counts amplicon-specific sequences for each allele, and allele ratios are used to determine the genotypes. We demonstrate this technique by genotyping 2068 individual steelhead trout (Oncorhynchus mykiss) samples with a set of 192 SNP markers in a single library sequenced in a single Illumina HiSeq lane. Genotype data were 99.9% concordant to previously collected TaqMan(™) genotypes at the same 192 loci, but call rates were slightly lower with GT-seq (96.4%) relative to Taqman (99.0%). Of the 192 SNPs, 187 were genotyped in ≥90% of the individual samples and only 3 SNPs were genotyped in <70% of samples. This study demonstrates amplicon sequencing with GT-seq greatly reduces the cost of genotyping hundreds of targeted SNPs relative to existing methods by utilizing a simple library preparation method and massive efficiency of scale.

  14. Regression Modeling and Meta-Analysis of Diagnostic Accuracy of SNP-Based Pathogenicity Detection Tools for UGT1A1 Gene Mutation

    PubMed Central

    Rahim, Fakher; Galehdari, Hamid; Mohammadi-asl, Javad; Saki, Najmaldin

    2013-01-01

    Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38–82.69). The highest MCC and ACC belonged to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%). The AUC analysis showed a significance overall performance of our suggested model compared to the selected SNP-based pathogenicity detection tool (P = 0.046). Conclusion. Our suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of the molecular basis of mutation pathogenesis. PMID:23997956

  15. Associations between polymorphisms of the gene and milk production traits in water buffaloes.

    PubMed

    Deng, T X; Pang, C Y; Lu, X R; Zhu, P; Duan, A Q; Liang, X W

    2016-03-01

    Signal transducer and activator of transcription 1 () is an important regulator of mammary gland differentiation and cell survival that has been regarded as a candidate gene affecting milk production traits in mammals. Therefore, this study was conducted to evaluate significant associations between SNP of the gene and milk production traits in buffaloes. Here, 18 SNP were identified in the buffalo gene, including 15 intronic mutations and 3 exon mutations. All the identified SNP were then genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry methods from 192 buffaloes. All the SNP were in Hardy-Weinberg equilibrium, and 2 haplotype blocks were successfully constructed based on these SNP data, which formed 5 and 3 major haplotypes in the population (>5%), respectively. The results of association analysis showed that only SNP13 located in exon 10 was significantly associated with the milk production traits in the population ( < 0.05). Single nucleotide polymorphism 2, SNP5, SNP8, and SNP9 were associated with protein percentage, and SNP4 and SNP10 were associated with 305-d milk yield ( < 0.05). Our results provide evidence that polymorphisms of the buffalo gene are associated with milk production traits and can be used as a candidate gene for marker-assisted selection in buffalo breeding.

  16. Associations between polymorphisms of the gene and milk production traits in water buffaloes.

    PubMed

    Deng, T X; Pang, C Y; Lu, X R; Zhu, P; Duan, A Q; Liang, X W

    2016-03-01

    Signal transducer and activator of transcription 1 () is an important regulator of mammary gland differentiation and cell survival that has been regarded as a candidate gene affecting milk production traits in mammals. Therefore, this study was conducted to evaluate significant associations between SNP of the gene and milk production traits in buffaloes. Here, 18 SNP were identified in the buffalo gene, including 15 intronic mutations and 3 exon mutations. All the identified SNP were then genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry methods from 192 buffaloes. All the SNP were in Hardy-Weinberg equilibrium, and 2 haplotype blocks were successfully constructed based on these SNP data, which formed 5 and 3 major haplotypes in the population (>5%), respectively. The results of association analysis showed that only SNP13 located in exon 10 was significantly associated with the milk production traits in the population ( < 0.05). Single nucleotide polymorphism 2, SNP5, SNP8, and SNP9 were associated with protein percentage, and SNP4 and SNP10 were associated with 305-d milk yield ( < 0.05). Our results provide evidence that polymorphisms of the buffalo gene are associated with milk production traits and can be used as a candidate gene for marker-assisted selection in buffalo breeding. PMID:27065255

  17. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations

    PubMed Central

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 – 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 – 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures. PMID:23875061

  18. SNP marker detection and genotyping in tilapia.

    PubMed

    Van Bers, N E M; Crooijmans, R P M A; Groenen, M A M; Dibbits, B W; Komen, J

    2012-09-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288-305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei's genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization. PMID:22524158

  19. SNP marker detection and genotyping in tilapia.

    PubMed

    Van Bers, N E M; Crooijmans, R P M A; Groenen, M A M; Dibbits, B W; Komen, J

    2012-09-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288-305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei's genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.

  20. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. PMID:26566831

  1. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  2. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  3. High-throughput SNP discovery in the rabbit (Oryctolagus cuniculus) genome by next-generation semiconductor-based sequencing.

    PubMed

    Bertolini, F; Schiavo, G; Scotti, E; Ribani, A; Martelli, P L; Casadio, R; Fontanesi, L

    2014-04-01

    The European rabbit (Oryctolagus cuniculus) is a domesticated species with one of the broadest ranges of economic and scientific applications and fields of investigation. Rabbit genome information and assembly are available (oryCun2.0), but so far few studies have investigated its variability, and massive discovery of polymorphisms has not been published yet for this species. Here, we sequenced two reduced representation libraries (RRLs) to identify single nucleotide polymorphisms (SNPs) in the rabbit genome. Genomic DNA of 10 rabbits belonging to different breeds was pooled and digested with two restriction enzymes (HaeIII and RsaI) to create two RRLs which were sequenced using the Ion Torrent Personal Genome Machine. The two RRLs produced 2 917 879 and 4 046 871 reads, for a total of 280.51 Mb (248.49 Mb with quality >20) and 417.28 Mb (360.89 Mb with quality >20) respectively of sequenced DNA. About 90% and 91% respectively of the obtained reads were mapped on the rabbit genome, covering a total of 15.82% of the oryCun2.0 genome version. The mapping and ad hoc filtering procedures allowed to reliably call 62 491 SNPs. SNPs in a few genomic regions were validated by Sanger sequencing. The Variant Effect Predictor Web tool was used to map SNPs on the current version of the rabbit genome. The obtained results will be useful for many applied and basic research programs for this species and will contribute to the development of cost-effective solutions for high-throughput SNP genotyping in the rabbit. PMID:24444082

  4. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    PubMed

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  5. Development of a cassava core collection based on single nucleotide polymorphism markers.

    PubMed

    Oliveira, E J; Ferreira, C F; Santos, V S; Oliveira, G A F

    2014-08-25

    Single nucleotide polymorphism (SNP) markers were used in the largest cassava (Manihot esculenta Crantz) germplasm collection from Brazil to develop core collections based on the maximization strategy. Subsets with 61, 64, 84, 128, 256, and 384 cassava accessions were selected and named PoHEU, MST64, PoRAN, MST128, MST256, and MST384, respectively. All the 798 alleles identified by 402 SNP markers in the entire collection were captured in all core collections. Only small alterations in the diversity parameters were observed for the different core collections compared with the complete collection. Because of the optimal adjustment of the validation parameters representative of the complete collection, the absence of genotypes with high genetic similarity and the maximization of the genetic distances between accessions of the PoHEU core collection, which contained 4.7% of the accessions of the complete collection, maximized the genetic conservation of this important cassava collection. Furthermore, the development of this core collection will allow concentrated efforts toward future characterization and agronomic evaluation of accessions to maximize the diversity and genetic gains in cassava breeding programs.

  6. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different

  7. Detecting Susceptibility to Breast Cancer with SNP-SNP Interaction Using BPSOHS and Emotional Neural Networks.

    PubMed

    Wang, Xiao; Peng, Qinke; Fan, Yue

    2016-01-01

    Studies for the association between diseases and informative single nucleotide polymorphisms (SNPs) have received great attention. However, most of them just use the whole set of useful SNPs and fail to consider the SNP-SNP interactions, while these interactions have already been proven in biology experiments. In this paper, we use a binary particle swarm optimization with hierarchical structure (BPSOHS) algorithm to improve the effective of PSO for the identification of the SNP-SNP interactions. Furthermore, in order to use these SNP interactions in the susceptibility analysis, we propose an emotional neural network (ENN) to treat SNP interactions as emotional tendency. Different from the normal architecture, just as the emotional brain, this architecture provides a specific path to treat the emotional value, by which the SNP interactions can be considered more quickly and directly. The ENN helps us use the prior knowledge about the SNP interactions and other influence factors together. Finally, the experimental results prove that the proposed BPSOHS_ENN algorithm can detect the informative SNP-SNP interaction and predict the breast cancer risk with a much higher accuracy than existing methods. PMID:27294121

  8. Detecting Susceptibility to Breast Cancer with SNP-SNP Interaction Using BPSOHS and Emotional Neural Networks

    PubMed Central

    Wang, Xiao; Fan, Yue

    2016-01-01

    Studies for the association between diseases and informative single nucleotide polymorphisms (SNPs) have received great attention. However, most of them just use the whole set of useful SNPs and fail to consider the SNP-SNP interactions, while these interactions have already been proven in biology experiments. In this paper, we use a binary particle swarm optimization with hierarchical structure (BPSOHS) algorithm to improve the effective of PSO for the identification of the SNP-SNP interactions. Furthermore, in order to use these SNP interactions in the susceptibility analysis, we propose an emotional neural network (ENN) to treat SNP interactions as emotional tendency. Different from the normal architecture, just as the emotional brain, this architecture provides a specific path to treat the emotional value, by which the SNP interactions can be considered more quickly and directly. The ENN helps us use the prior knowledge about the SNP interactions and other influence factors together. Finally, the experimental results prove that the proposed BPSOHS_ENN algorithm can detect the informative SNP-SNP interaction and predict the breast cancer risk with a much higher accuracy than existing methods. PMID:27294121

  9. Ascertainment Biases in SNP Chips Affect Measures of Population Divergence

    PubMed Central

    Albrechtsen, Anders; Nielsen, Finn Cilius; Nielsen, Rasmus

    2010-01-01

    Chip-based high-throughput genotyping has facilitated genome-wide studies of genetic diversity. Many studies have utilized these large data sets to make inferences about the demographic history of human populations using measures of genetic differentiation such as FST or principal component analyses. However, the single nucleotide polymorphism (SNP) chip data suffer from ascertainment biases caused by the SNP discovery process in which a small number of individuals from selected populations are used as discovery panels. In this study, we investigate the effect of the ascertainment bias on inferences regarding genetic differentiation among populations in one of the common genome-wide genotyping platforms. We generate SNP genotyping data for individuals that previously have been subject to partial genome-wide Sanger sequencing and compare inferences based on genotyping data to inferences based on direct sequencing. In addition, we also analyze publicly available genome-wide data. We demonstrate that the ascertainment biases will distort measures of human diversity and possibly change conclusions drawn from these measures in some times unexpected ways. We also show that details of the genotyping calling algorithms can have a surprisingly large effect on population genetic inferences. We not only present a correction of the spectrum for the widely used Affymetrix SNP chips but also show that such corrections are difficult to generalize among studies. PMID:20558595

  10. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  11. Genomic reduction assisted single nucleotide polymorphism discovery using 454-pyrosequencing.

    PubMed

    Maughan, Peter J; Udall, Joshua A; Jellen, Eric N

    2015-01-01

    We report the development of a simple genomic reduction protocol based on 454-pyrosequencing technology that discovers large numbers of single nucleotide polymorphisms (SNP) from pooled DNA samples. The method is based on the conservation of restriction endonuclease sites across samples and biotin separation for genomic reduction and the addition of multiplex identifier (MID) barcodes to each of the pooled samples to allow for postsequencing deconvolution of the pooled DNA fragments and SNP discovery. PMID:25373757

  12. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    PubMed

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA.

  13. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    PubMed

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA. PMID:27570235

  14. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species.

    PubMed

    Xu, Pei; Wu, Xiaohua; Wang, Baogen; Liu, Yonghua; Ehlers, Jeffery D; Close, Timothy J; Roberts, Philip A; Diop, Ndeye-Ndack; Qin, Dehui; Hu, Tingting; Lu, Zhongfu; Li, Guojing

    2011-01-06

    Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as 'long beans' or 'asparagus beans'. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.

  15. Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6.

    PubMed

    Etokebe, Godfrey E; Jotanovic, Zdravko; Mihelic, Radovan; Mulac-Jericevic, Biserka; Nikolic, Tamara; Balen, Sanja; Sestan, Branko; Dembic, Zlatko

    2015-01-01

    Family with sequence similarity 46, member A (FAM46A) gene VNTR and BCL2-Associated Athanogene 6 (BAG6) gene rs3117582 polymorphisms were genotyped in a case-control study with 474 large-joint (hip and knee) osteoarthritis (OA) patients and 568 controls in Croatian population by candidate-gene approach for association with OA. We found that BAG6 rs3117582 SNP genotypes were associated with protection (major allele homozygote) and susceptibility (major-minor allele heterozygote) to OA. BAG6 rs3117582 major allele (A) was associated with reduced risk to OA while the minor allele (C) was associated with increased risk to OA. We identified 6 alleles harboring 2 to 7 repeats making 20 genotypes for FAM46A. A rare FAM46A VNTR genotype comprising VNTR alleles with four and seven repeats (c/f) was associated with increased OA risk in both genders. The genotype with four and six repeats (c/e) was also associated with increased risk to OA in males. A polymorphic FAM46A allele with six repeats (e) was associated with reduced risk to OA in females. Our results suggest association between the FAM46A gene, BAG6 gene and OA in Croatian population, respectively. This is the first study to show associations between these genetic loci and OA.

  16. Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6.

    PubMed

    Etokebe, Godfrey E; Jotanovic, Zdravko; Mihelic, Radovan; Mulac-Jericevic, Biserka; Nikolic, Tamara; Balen, Sanja; Sestan, Branko; Dembic, Zlatko

    2015-01-01

    Family with sequence similarity 46, member A (FAM46A) gene VNTR and BCL2-Associated Athanogene 6 (BAG6) gene rs3117582 polymorphisms were genotyped in a case-control study with 474 large-joint (hip and knee) osteoarthritis (OA) patients and 568 controls in Croatian population by candidate-gene approach for association with OA. We found that BAG6 rs3117582 SNP genotypes were associated with protection (major allele homozygote) and susceptibility (major-minor allele heterozygote) to OA. BAG6 rs3117582 major allele (A) was associated with reduced risk to OA while the minor allele (C) was associated with increased risk to OA. We identified 6 alleles harboring 2 to 7 repeats making 20 genotypes for FAM46A. A rare FAM46A VNTR genotype comprising VNTR alleles with four and seven repeats (c/f) was associated with increased OA risk in both genders. The genotype with four and six repeats (c/e) was also associated with increased risk to OA in males. A polymorphic FAM46A allele with six repeats (e) was associated with reduced risk to OA in females. Our results suggest association between the FAM46A gene, BAG6 gene and OA in Croatian population, respectively. This is the first study to show associations between these genetic loci and OA. PMID:25231575

  17. Large-Scale SNP Discovery through RNA Sequencing and SNP Genotyping by Targeted Enrichment Sequencing in Cassava (Manihot esculenta Crantz)

    PubMed Central

    Pootakham, Wirulda; Shearman, Jeremy R.; Ruang-areerate, Panthita; Sonthirod, Chutima; Sangsrakru, Duangjai; Jomchai, Nukoon; Yoocha, Thippawan; Triwitayakorn, Kanokporn; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10. PMID:25551642

  18. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz).

    PubMed

    Pootakham, Wirulda; Shearman, Jeremy R; Ruang-Areerate, Panthita; Sonthirod, Chutima; Sangsrakru, Duangjai; Jomchai, Nukoon; Yoocha, Thippawan; Triwitayakorn, Kanokporn; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10.

  19. Neuroantibodies (NAB) in African-American Children with Heavy Metal Exposures are Associated with Cytokine and Human Leukocyte Antigen (HLA) Polymorphisms (SNP)

    EPA Science Inventory

    Polymorphisms in cytokine and HLA genes are associated with allergies, autoimmunity and neurodegeneration (ND). Samples from 131 African-American children (71 males; 60 females) in the Mechanistic Indicators of Childhood Asthma (MICA) study were used to determine SNPs of IL-4, IL...

  20. Association of Neuroantibodies(NAB) with Glutathione-S-Tranferase(GST) Isozyme Polymorphisms(SNP) in African-American Children with Heavy Metal Exposure

    EPA Science Inventory

    Polymorphisms in GST isozymes have implications in heavy metal accumulation, neurodegeneration, and immune-mediated disease. Blood cell DNA and sera from 131 African-American children were used to determine GST Pi [rs947895 (C>A), rs17593068 (G>T), rs6591256 (A>G), rs187...

  1. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  2. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis

    PubMed Central

    Hong, Yanbin; Pandey, Manish K.; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K.; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  3. SNP marker development for linkage map construction, anchoring of the common bean whole genome sequence and genetic research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were to identify SNP DNA markers based on a diverse set of common bean cultivars via next generation sequencing technologies; to develop Illumina Infinium BeadChip assays containing SNPs with high polymorphism within and between common bean market classes, to create high density genet...

  4. Family-Based Multi-SNP X Chromosome Analysis Using Parent Information.

    PubMed

    Wise, Alison S; Shi, Min; Weinberg, Clarice R

    2016-01-01

    We propose a method for association analysis of haplotypes on the X chromosome that offers both improved power and robustness to population stratification in studies of affected offspring and their parents if all three have been genotyped. The method makes use of assumed parental haplotype exchangeability (PHE), a weaker assumption than Hardy-Weinberg equilibrium (HWE). PHE requires that in the source population, of the three X chromosome haplotypes carried by the two parents, each is equally likely to be carried by the father. We propose a pseudo-sibling approach that exploits that exchangeability assumption. Our method extends the single-SNP PIX-LRT method to multiple SNPs in a high linkage block. We describe methods for testing the PHE assumption and also for determining how apparent violations can be distinguished from true fetal effects or maternally-mediated effects. We show results of simulations that demonstrate nominal type I error rate and good power. The methods are then applied to dbGaP data on the birth defect oral cleft, using both Asian and Caucasian families with cleft. PMID:26941777

  5. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population identified QTL for seed Isoflavone contents in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is one of the most important crops worldwide for its protein, oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense SNP-Based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population and quantitative t...

  6. Genetic Diversity and Relatedness of Sweet Cherry (Prunus Avium L.) Cultivars Based on Single Nucleotide Polymorphic Markers

    PubMed Central

    Fernandez i Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font i Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3′ untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3′ UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, “Stella” was separated from “Compact Stella.” This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3′ UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry. PMID:22737155

  7. Identification of lung cancer oncogenes based on the mRNA expression and single nucleotide polymorphism profile data.

    PubMed

    Wang, Y; Mei, Q; Ai, Y Q; Li, R Q; Chang, L; Li, Y F; Xia, Y X; Li, W H; Chen, Y

    2015-01-01

    This study aimed to identify the oncogenes associated with lung cancer based on the mRNA and single nucleotide polymorphism (SNP) profile data. The mRNA expression profile data of GSE43458 (80 cancer and 30 normal samples) and SNP profile data of GSE33355 (61 pairs of lung cancer samples and control samples) were downloaded from Gene Expression Omnibus database. Common genes between the mRNA profile and SNP profile were identified as the lung cancer oncogenes. Risk subpathways of the selected oncogenes with the SNP locus were analyzed using the iSubpathwayMiner package in R. Moreover, protein-protein interaction (PPI) network of the oncogenes was constructed using the HPRD database and then visualized using the Cytoscape. Totally, 3004 DEGs (1105 up-regulated and 1899 down-regulated) and 125 significant SNPs closely related to 174 genes in the lung cancer samples were identified. Also, 39 common genes, like PFKP (phosphofructokinase, platelet) and DGKH-rs11616202 (diacylglycerol kinase, eta) that enriched in sub-pathways such as galactose metabolism, fructose and mannose metabolism, and pentose phosphate pathway, were identified as the lung cancer oncogenes. Besides, PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1), RORA (RAR-related orphan receptor A), MAGI3 (membrane associated guanylate kinase, WW and PDZ domain containing 3), PTPRM (protein tyrosine phosphatase, receptor type, M), and BMP6 (bone morphogenetic protein 6) were the hub genes in PPI network. Our study suggested that PFKP and DGKH that enriched in galactose metabolism, fructose and mannose metabolism pathway, as well as PIK3R1, RORA, and MAGI3, may be the lung cancer oncogenes.

  8. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    PubMed Central

    Muktar, Meki S.; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2015-01-01

    Late blight of potato (Solanum tuberosum L.) caused by the oomycete Phytophthora infestans (Mont.) de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i) the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii) the discovery of diagnostic single nucleotide polymorphism (SNP) markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression) in groups of plants with contrasting levels of maturity corrected resistance (MCR). Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28 to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111) identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification, and in the response to pathogen elicitors. PMID:26442110

  9. Effects of the MDM2 promoter SNP285 and SNP309 on Sp1 transcription factor binding and cancer risk.

    PubMed

    Knappskog, Stian; Lønning, Per E

    2011-01-01

    The proto-oncogene MDM2 inhibits p53 and plays a key role in cell growth control and apoptosis. Identification of two antagonizing MDM2 polymorphisms, SNP285 and SNP309, affecting cancer risk through modulation of Sp1 transcription factor binding, shed new light on the biological activity and phylogeny of this gene.

  10. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized.

  11. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241

  12. BAC-end sequence-based SNP mining in Allotetraploid Cotton (Gossypium) utilizing re-sequencing data, phylogenetic inferences and perspectives for genetic mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bacterial artificial chromosome (BAC) library and BAC-end sequences for Gossypium hirsutum L. have recently been developed. Here we report on genomic-based genome-wide SNP mining utilizing re-sequencing data with a BAC-end sequence reference for twelve G. hirsutum L. lines, one G. barbadense L. li...

  13. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping.

    PubMed

    Pu, Dan; Mao, Chengguang; Cui, Lunbiao; Shi, Zhiyang; Xiao, Pengfeng

    2016-05-01

    We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings.

  14. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping.

    PubMed

    Pu, Dan; Mao, Chengguang; Cui, Lunbiao; Shi, Zhiyang; Xiao, Pengfeng

    2016-05-01

    We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings. PMID:26935928

  15. COMT and MAO-A Polymorphisms and Obsessive-Compulsive Disorder: A Family-Based Association Study

    PubMed Central

    Sampaio, Aline Santos; Hounie, Ana Gabriela; Petribú, Kátia; Cappi, Carolina; Morais, Ivanil; Vallada, Homero; do Rosário, Maria Conceição; Stewart, S. Evelyn; Fargeness, Jesen; Mathews, Carol; Arnold, Paul; Hanna, Gregory L.; Richter, Margaret; Kennedy, James; Fontenelle, Leonardo; de Bragança Pereira, Carlos Alberto; Pauls, David L.; Miguel, Eurípedes Constantino

    2015-01-01

    Objective Obsessive-compulsive disorder (OCD) is a common and debilitating psychiatric illness. Although a genetic component contributes to its etiology, no single gene or mechanism has been identified to the OCD susceptibility. The catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A) genes have been investigated in previous OCD studies, but the results are still unclear. More recently, Taylor (2013) in a comprehensive meta-analysis of genetic association studies has identified COMT and MAO-A polymorphisms involved with OCD. In an effort to clarify the role of these two genes in OCD vulnerability, a family-based association investigation was performed as an alternative strategy to the classical case-control design. Methods Transmission disequilibrium analyses were performed after genotyping 13 single-nucleotide polymorphisms (eight in COMT and five in MAO-A) in 783 OCD trios (probands and their parents). Four different OCD phenotypes (from narrow to broad OCD definitions) and a SNP x SNP epistasis were also analyzed. Results OCD, broad and narrow phenotypes,were not associated with any of the investigated COMT and MAO-A polymorphisms. In addition, the analyses of gene-gene interaction did not show significant epistatic influences on phenotype between COMT and MAO-A. Conclusions The findings do not support an association between DSM-IV OCD and the variants of COMT or MAO-A. However, results from this study cannot exclude the contribution of these genes in the manifestation of OCD. The evaluation of broader spectrum phenotypes could help to understand the role of these and other genes in the pathophysiology of OCD and its spectrum disorders. PMID:25793616

  16. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  17. Model-based verification of hypotheses on the origin of modern Japanese revisited by Bayesian inference based on genome-wide SNP data.

    PubMed

    Nakagome, Shigeki; Sato, Takehiro; Ishida, Hajime; Hanihara, Tsunehiko; Yamaguchi, Tetsutaro; Kimura, Ryosuke; Mano, Shuhei; Oota, Hiroki

    2015-06-01

    Various hypotheses for the peopling of the Japanese archipelago have been proposed, which can be classified into three models: transformation, replacement, and hybridization. In recent years, one of the hybridization models ("dual-structure model") has been widely accepted. According to this model, Neolithic hunter-gatherers known as Jomon, who are assumed to have originated in southeast Asia and lived in the Japanese archipelago greater than 10,000 years ago, admixed with an agricultural people known as Yayoi, whom were migrants from the East Asian continent 2,000-3,000 years ago. Meanwhile, some anthropologists propose that rather, morphological differences between the Jomon and Yayoi people can be explained by microevolution following the lifestyle change. To resolve this controversy, we compared three demographic models by approximate Bayesian computation using genome-wide single nucleotide polymorphism (gwSNP) data from the Ainu people who are thought to be direct descendants of indigenous Jomon. If we assume Chinese people sampled in Beijing from HapMap have the same ancestry as Yayoi, then the hybridization model is predicted to be between 29 and 63 times more likely than the replacement and transformation models, respectively. Furthermore, our data provide strong support for a model in which the Jomon lineages had population structure diversified in local areas before the admixture event. Initial divergence between the Jomon and Yayoi ancestries was dated to late Pleistocene, followed by the divergence of Jomon lineages at early Holocene. These results suggest gwSNP data provides a detailed picture of the complex hybridization model for Japanese population history.

  18. SNP Discovery and Development of a High-Density Genotyping Array for Sunflower

    PubMed Central

    Bachlava, Eleni; Taylor, Christopher A.; Tang, Shunxue; Bowers, John E.; Mandel, Jennifer R.; Burke, John M.; Knapp, Steven J.

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible. PMID:22238659

  19. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  20. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  1. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  2. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet.

    PubMed

    Ulloa, Pilar E; Rincón, Gonzalo; Islas-Trejo, Alma; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2015-06-01

    The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.

  3. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.

    PubMed

    Welter, Danielle; MacArthur, Jacqueline; Morales, Joannella; Burdett, Tony; Hall, Peggy; Junkins, Heather; Klemm, Alan; Flicek, Paul; Manolio, Teri; Hindorff, Lucia; Parkinson, Helen

    2014-01-01

    The National Human Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association Studies (GWAS) Catalog provides a publicly available manually curated collection of published GWAS assaying at least 100,000 single-nucleotide polymorphisms (SNPs) and all SNP-trait associations with P <1 × 10(-5). The Catalog includes 1751 curated publications of 11 912 SNPs. In addition to the SNP-trait association data, the Catalog also publishes a quarterly diagram of all SNP-trait associations mapped to the SNPs' chromosomal locations. The Catalog can be accessed via a tabular web interface, via a dynamic visualization on the human karyotype, as a downloadable tab-delimited file and as an OWL knowledge base. This article presents a number of recent improvements to the Catalog, including novel ways for users to interact with the Catalog and changes to the curation infrastructure.

  4. Single nucleotide polymorphism (SNP) analysis demonstrates a significant association of tumour necrosis factor-alpha (TNFA) with primary immune thrombocytopenia among Caucasian adults.

    PubMed

    Sarpatwari, Ameet; Bussel, James B; Ahmed, Momin; Erqou, Sebhat; Semple, John W; Newland, Adrian C; Bennett, Dimitri; Pharoah, Paul; Provan, Drew

    2011-07-01

    T-helper 1 polarization in patients with primary immune thrombocytopenia (ITP) is well documented. However, the genetic contribution to this imbalance remains unclear. To address this question, we selected six candidate single nucleotide polymorphisms within cytokine or cytokine receptor genes for association testing among Caucasian adults. Patients from the United Kingdom Adult ITP Registry were gender-matched (1:3) with healthy controls from the Wellcome Trust Case Control Consortium. Variants IL10 -819 c>t, TNFA -308 g>a, TGFB1 -509 c>t, IL1A -889 c>t, IL10 -592 c>t, and IL4R q576r were measured in cases and retrieved for controls from the European Genome-phenome Archive. Associations were evaluated using logistic regression models. In total, 206 patients with primary ITP were matched with 618 controls. A significant per allele odds ratio of 1·34 (95% confidence interval, 1·03-1·75; P = 0·03) was observed for TNFA -308 g>a, implicating an increased disease susceptibility among Caucasian carriers of the rare allele.

  5. Genotyping for cytokine polymorphisms in a Northern Ivory Coast population reveals a high frequency of the heterozygote genotypes for the TNF-α-308G/A SNP.

    PubMed

    Santovito, A; Cervella, P; Schleicherova, D; Delpero, M

    2012-08-01

    Cytokine polymorphisms influence the outcomes of parasitic diseases and vary among populations because of their different evolutionary histories and selective pressures imposed by host-pathogen interactions. In this frame, we investigated the frequencies of TNF-α (-308G/A), TGF-β(1) (codon 10C/T, codon 25C/G) and IL-10 (-1082A/G) SNPs in 133 individuals from Ouangolodougou, a rural village in Northern Ivory Coast, where malaria and other parasitic diseases are endemic. The SNPs alleles were determined by ARMS-PCR methodology. Allele frequencies of the SNPs investigated were as follows: IL 10 -1082G = 0.741 and -1082A = 0.259; TGF-β(1) Codon 10 C = 0.835 and T = 0.165; TGF-β(1) Codon 25 G = 0.782 and C = 0.218. For the TNF-α gene, we found high frequencies of the -308A allele (0.305) and heterozygote genotypes (0.594), with a consequent deviation from the Hardy-Weinberg equilibrium. The high heterozygosity at the TNF-α locus suggests a possible selective advantage of the heterozygote genomes, associated with intermediate levels of TNF-α expression, against the infectious agents endemic in Western Africa.

  6. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  7. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria

    PubMed Central

    Eiben, B.; Krapp, M.; Borth, H.; Kutur, N.; Kreiselmaier, P.; Glaubitz, R.; Deutinger, J.; Merz, E.

    2015-01-01

    Background & Patient: Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented. Method: The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies. Result: In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases. Conclusion: SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening. PMID:27689149

  8. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria

    PubMed Central

    Eiben, B.; Krapp, M.; Borth, H.; Kutur, N.; Kreiselmaier, P.; Glaubitz, R.; Deutinger, J.; Merz, E.

    2015-01-01

    Background & Patient: Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented. Method: The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies. Result: In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases. Conclusion: SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening.

  9. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  10. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  11. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  12. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array

    PubMed Central

    2012-01-01

    Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and

  13. SNP annotation-based whole genomic prediction and selection: an application to feed efficiency and its component traits in pigs.

    PubMed

    Do, D N; Janss, L L G; Jensen, J; Kadarmideen, H N

    2015-05-01

    The study investigated genetic architecture and predictive ability using genomic annotation of residual feed intake (RFI) and its component traits (daily feed intake [DFI], ADG, and back fat [BF]). A total of 1,272 Duroc pigs had both genotypic and phenotypic records, and the records were split into a training (968 pigs) and a validation dataset (304 pigs) by assigning records as before and after January 1, 2012, respectively. SNP were annotated by 14 different classes using Ensembl variant effect prediction. Predictive accuracy and prediction bias were calculated using Bayesian Power LASSO, Bayesian A, B, and Cπ, and genomic BLUP (GBLUP) methods. Predictive accuracy ranged from 0.508 to 0.531, 0.506 to 0.532, 0.276 to 0.357, and 0.308 to 0.362 for DFI, RFI, ADG, and BF, respectively. BayesCπ100.1 increased accuracy slightly compared to the GBLUP model and other methods. The contribution per SNP to total genomic variance was similar among annotated classes across different traits. Predictive performance of SNP classes did not significantly differ from randomized SNP groups. Genomic prediction has accuracy comparable to observed phenotype, and use of genomic prediction can be cost effective by replacing feed intake measurement. Genomic annotation had less impact on predictive accuracy traits considered here but may be different for other traits. It is the first study to provide useful insights into biological classes of SNP driving the whole genomic prediction for complex traits in pigs.

  14. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival

    PubMed Central

    Jamshidi, Maral; Fagerholm, Rainer; Khan, Sofia; Aittomäki, Kristiina; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Andrulis, Irene L.; Chang-Claude, Jenny; Devilee, Peter; Fasching, Peter A.; Michailidou, Kyriaki; Bolla, Manjeet K.; Dennis, Joe; Wang, Qin; Guo, Qi; Rhenius, Valerie; Cornelissen, Sten; Rudolph, Anja; Knight, Julia A.; Loehberg, Christian R.; Burwinkel, Barbara; Marme, Frederik; Hopper, John L.; Southey, Melissa C.; Bojesen, Stig E.; Flyger, Henrik; Brenner, Hermann; Holleczek, Bernd; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Dyck, Laurien Van; Nevelsteen, Ines; Couch, Fergus J.; Olson, Janet E.; Giles, Graham G.; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Winqvist, Robert; Pylkäs, Katri; Tollenaar, Rob A.E.M.; García-Closas, Montserrat; Figueroa, Jonine; Hooning, Maartje J.; Martens, John W.M.; Cox, Angela; Cross, Simon S.; Simard, Jacques; Dunning, Alison M.; Easton, Douglas F.; Pharoah, Paul D.P.; Hall, Per; Blomqvist, Carl; Schmidt, Marjanka K.; Nevanlinna, Heli

    2015-01-01

    In breast cancer, constitutive activation of NF-κB has been reported, however, the impact of genetic variation of the pathway on patient prognosis has been little studied. Furthermore, a combination of genetic variants, rather than single polymorphisms, may affect disease prognosis. Here, in an extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-κB pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox’ regression models of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P = 1.42E-07), and patients carrying at least one rare allele for rs17243893 and rs57890595 had better survival (HRinteraction 0.51, 95% CI=0.3-0.6, P = 2.19E-05). Based on in silico functional analyses and literature, we speculate that the rs5996080 and rs7973914 loci may affect the BAFFR and TNFR1/TNFR3 receptors and breast cancer survival, possibly by disturbing both the canonical and non-canonical NF-κB pathways or their dynamics, whereas, rs17243893-rs57890595 interaction on survival may be mediated through TRAF2-TRAIL-R4 interplay. These results warrant further validation and functional analyses. PMID:26317411

  15. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    PubMed Central

    Saad, Mohamed N.; Mabrouk, Mai S.; Eldeib, Ayman M.; Shaker, Olfat G.

    2015-01-01

    Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA) is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP) approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field. PMID:26843965

  16. SNP-SNP Interaction Analysis on Soybean Oil Content under Multi-Environments

    PubMed Central

    Yin, Zhengong; Leng, Yue; Yu, Hongxiao; Jia, Huiying; Jiang, Shanshan; Ni, Zhongqiu; Jiang, Hongwei; Han, Xue; Liu, Chunyan; Hu, Zhenbang; Wu, Xiaoxia; Hu, Guohua; Xin, Dawei; Qi, Zhaoming

    2016-01-01

    Soybean oil content is one of main quality traits. In this study, we used the multifactor dimensionality reduction (MDR) method and a soybean high-density genetic map including 5,308 markers to identify stable single nucleotide polymorphism (SNP)—SNP interactions controlling oil content in soybean across 23 environments. In total, 36,442,756 SNP-SNP interaction pairs were detected, 1865 of all interaction pairs associated with soybean oil content were identified under multiple environments by the Bonferroni correction with p <3.55×10−11. Two and 1863 SNP-SNP interaction pairs detected stable across 12 and 11 environments, respectively, which account around 50% of total environments. Epistasis values and contribution rates of stable interaction (the SNP interaction pairs were detected in more than 2 environments) pairs were detected by the two way ANOVA test, the available interaction pairs were ranged 0.01 to 0.89 and from 0.01 to 0.85, respectively. Some of one side of the interaction pairs were identified with previously research as a major QTL without epistasis effects. The results of this study provide insights into the genetic architecture of soybean oil content and can serve as a basis for marker-assisted selection breeding. PMID:27668866

  17. Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid Gossypium hirsutum L.

    PubMed Central

    Zhu, Qian-Hao; Spriggs, Andrew; Taylor, Jennifer M.; Llewellyn, Danny; Wilson, Iain

    2014-01-01

    Varietal single nucleotide polymorphisms (SNPs) are the differences within one of the two subgenomes between different tetraploid cotton varieties and have not been practically used in cotton genetics and breeding because they are difficult to identify due to low genetic diversity and very high sequence identity between homeologous genes in cotton. We have used transcriptome and restriction site−associated DNA sequencing to identify varietal SNPs among 18 G. hirsutum varieties based on the rationale that varietal SNPs can be more confidently called when flanked by subgenome-specific SNPs. Using transcriptome data, we successfully identified 37,413 varietal SNPs and, of these, 22,121 did not have an additional varietal SNP within their 20-bp flanking regions so can be used in most SNP genotyping assays. From restriction site−associated DNA sequencing data, we identified an additional 3090 varietal SNPs between two of the varieties. Of the 1583 successful SNP assays achieved using different genotyping platforms, 1363 were verified. Many of the SNPs behaved as dominant markers because of coamplification from homeologous loci, but the number of SNPs acting as codominant markers increased when one or more subgenome-specific SNP(s) were incorporated in their assay primers, giving them greater utility for breeding applications. A G. hirsutum genetic map with 1244 SNP markers was constructed covering 5557.42 centiMorgan and used to map qualitative and quantitative traits. This collection of G. hirsutum varietal SNPs complements existing intra-specific SNPs and provides the cotton community with a valuable marker resource applicable to genetic analyses and breeding programs. PMID:25106949

  18. [A comparative study on genetic polymorphism and genetic relationship of 13 SNPs in three Chinese populations].

    PubMed

    Wang, Rui-Heng; Liu, Li-Min; Zhao, Jin-Ling

    2009-03-01

    Using the fluorescence labeled capillary electrophoresis of multi-PCR technique, the single nucleotide polymorphism (SNP) typing system of fragment length discrepant allele specific fluorescence labeled multi-PCR technique is established based on the principle of allele-specific PCR. The typing of the 13 SNP loci can be completed simultaneously according to the length of PCR products and the number of product peaks. It appears a single product peak when the SNP is homozygous, and two product peaks with 4 bp differences will appear when it is heterozygous. By using this system, we conducted population census about allele frequencies for 13 autosomal SNP loci in Southern Liaoning Han samples, Mongolian samples in Inner Mongolia and Zhuang samples in Guangxi area, and got the allele frequencies of the 13 SNP loci in the three populations, then preliminarily discussed their genetic relationship by comparing their differences in allelic polymorphism. The results indicate that the allelic distributions of the 13 SNP loci in the three populations are polymorphic, and the difference is significant in some SNP loci (P< or =0.01). The sampling survey shows that the result is consistent with Hardy-Weinberg equilibrium, and Han population in southern Liaoning has relatively closer relationship with Mongolian in Inner Mongolia than with Zhuang population in Guangxi by origin. PMID:19273440

  19. Development Of Interspecific Cssls In Rice Using SNP-Based Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six libraries of chromosome segment substitution lines (CSSLs) are being developed based on crosses between three diverse accessions of O. rufipogon (from China, Laos and Indonesia) and two O. sativa recurrent parents, IR64, an indica variety (from the Philippines), and Cybonnet, a tropical japonica...

  20. The CYP2C19 Intron 2 Branch Point SNP is the Ancestral Polymorphism Contributing to the Poor Metabolizer Phenotype in Livers with CYP2C19*35 and CYP2C19*2 Alleles

    PubMed Central

    Chaudhry, Amarjit S.; Prasad, Bhagwat; Shirasaka, Yoshiyuki; Fohner, Alison; Finkelstein, David; Fan, Yiping; Wang, Shuoguo; Wu, Gang; Aklillu, Eleni; Sim, Sarah C.; Thummel, Kenneth E.

    2015-01-01

    CYP2C19 rs12769205 alters an intron 2 branch point adenine leading to an alternative mRNA in human liver with complete inclusion of intron 2 (exon 2B). rs12769205 changes the mRNA reading frame, introduces 87 amino acids, and leads to a premature stop codon. The 1000 Genomes project (http://browser.1000genomes.org/index.html) indicated rs12769205 is in linkage disequilibrium with rs4244285 on CYP2C19*2, but found alone on CYP2C19*35 in Blacks. Minigenes containing rs12769205 transfected into HepG2 cells demonstrated this single nucleotide polymorphism (SNP) alone leads to exon 2B and decreases CYP2C19 canonical mRNA. A residual amount of CYP2C19 protein was detectable by quantitative proteomics with tandem mass spectrometry in CYP2C19*2/*2 and *1/*35 liver microsomes with an exon 2 probe. However, an exon 4 probe, downstream from rs12769205, but upstream of rs4244285, failed to detect CYP2C19 protein in livers homozygous for rs12769205, demonstrating rs12769205 alone can lead to complete loss of CYP2C19 protein. CYP2C19 genotypes and mephenytoin phenotype were compared in 104 Ethiopians. Poor metabolism of mephenytoin was seen in persons homozygous for both rs12769205 and rs4244285 (CYP2C19*2/*2), but with little effect on mephenytoin disposition of CYP2C19*1/*2, CYP2C19*1/*3, or CYP2C19*1/*35 heterozygous alleles. Extended haplotype homozygosity tests of the HapMap Yorubans (YRI) showed both haplotypes carrying rs12769205 (CYP2C19*35 and CYP2C19*2) are under significant natural selection, with CYP2C19*35 having a higher relative extended haplotype homozygosity score. The phylogenetic tree of the YRI CYP2C19 haplotypes revealed rs12769205 arose first on CYP2C19*35 and that rs4244285 was added later, creating CYP2C19*2. In conclusion, rs12769205 is the ancestral polymorphism leading to aberrant splicing of CYP2C19*35 and CYP2C19*2 alleles in liver. PMID:26021325

  1. Development of an automated SNP analysis method using a paramagnetic beads handling robot.

    PubMed

    Hagiwara, Hiroko; Sawakami-Kobayashi, Kazumi; Yamamoto, Midori; Iwasaki, Shoji; Sugiura, Mika; Abe, Hatsumi; Kunihiro-Ohashi, Sumiko; Takase, Kumiko; Yamane, Noriko; Kato, Kaoru; Son, Renkon; Nakamura, Michihiro; Segawa, Osamu; Yoshida, Mamiko; Yohda, Masafumi; Tajima, Hideji; Kobori, Masato; Takahama, Yousuke; Itakura, Mitsuo; Machida, Masayuki

    2007-10-01

    Biological and medical importance of the single nucleotide polymorphism (SNP) has led to development of a wide variety of methods for SNP typing. Aiming for establishing highly reliable and fully automated SNP typing, we have developed the adapter ligation method in combination with the paramagnetic beads handling technology, Magtration(R). The method utilizes sequence specific ligation between the fluorescently labeled adapter and the sample DNAs at the cohesive end produced by a type IIS restriction enzyme. Evaluation of the method using human genomic DNA showed clear discrimination of the three genotypes without ambiguity using the same reaction condition for any SNPs examined. The operations following PCR amplification were automatically performed by the Magtration(R)-based robot that we have previously developed. Multiplex typing of two SNPs in a single reaction by using four fluorescent dyes was successfully preformed at the almost same sensitivity and reliability as the single typing. These results demonstrate that the automated paramagnetic beads handling technology, Magtration(R), is highly adaptable to the automated SNP analysis and that our method best fits to an automated in-house SNP typing for laboratory and medical uses.

  2. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  3. Dopaminergic Genetic Polymorphisms Predict Rule-Based Category Learning

    PubMed Central

    Byrne, Kaileigh A.; Davis, Tyler; Worthy, Darrell A.

    2016-01-01

    Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, while the Val158Met single nucleotide polymorphism of the COMT gene moderates dopamine availability in the prefrontal cortex. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task-type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, while prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes while cortical genes mediate the ability to update complex rule-representations. PMID:26918585

  4. Evaluation of a Susceptibility Gene for Schizophrenia: Genotype Based Meta-Analysis of RGS4 Polymorphisms from Thirteen Independent Samples

    PubMed Central

    Talkowski, Michael E.; Seltman, Howard; Bassett, Anne S.; Brzustowicz, Linda M.; Chen, Xiangning; Chowdari, Kodavali V.; Collier, David A.; Cordeiro, Quirino; Corvin, Aiden P.; Deshpande, Smita N.; Egan, Michael F.; Gill, Michael; Kendler, Kenneth S.; Kirov, George; Heston, Leonard L.; Levitt, Pat; Lewis, David A.; Li, Tao; Mirnics, Karoly; Morris, Derek W.; Norton, Nadine; O’Donovan, Michael C.; Owen, Michael J.; Richard, Christian; Semwal, Prachi; Sobell, Janet L.; Clair, David St; Straub, Richard E.; Thelma, B.K.; Vallada, Homero; Weinberger, Daniel R.; Williams, Nigel M.; Wood, Joel; Zhang, Feng; Devlin, Bernie; Nimgaonkar, Vishwajit L.

    2011-01-01

    Background Associations between schizophrenia (SCZ) and polymorphisms at the regulator of G-protein signaling 4 (RGS4) gene have been reported (single nucleotide polymorphisms [SNPs] 1, 4, 7, and 18). Yet, similar to other SCZ candidate genes, studies have been inconsistent with respect to the associated alleles. Methods In an effort to resolve the role for RGS4 in SCZ susceptibility, we undertook a genotype-based meta-analysis using both published and unpublished family-based and case-control samples (total n = 13,807). Results The family-based dataset consisted of 10 samples (2160 families). Significant associations with individual SNPs/haplotypes were not observed. In contrast, global analysis revealed significant transmission distortion (p = .0009). Specifically, analyses suggested overtransmission of two common haplotypes that account for the vast majority of all haplotypes. Separate analyses of 3486 cases and 3755 control samples (eight samples) detected a significant association with SNP 4 (p = .01). Individual haplotype analyses were not significant, but evaluation of test statistics from individual samples suggested significant associations. Conclusions Our collaborative meta-analysis represents one of the largest SCZ association studies to date. No individual risk factor arose from our analyses, but interpretation of these results is not straightforward. Our analyses suggest risk due to at least two common haplotypes in the presence of heterogeneity. Similar analysis for other putative susceptibility genes is warranted. PMID:16631129

  5. A Dense Single-Nucleotide Polymorphism-Based Genetic Linkage Map of Grapevine (Vitis vinifera L.) Anchoring Pinot Noir Bacterial Artificial Chromosome Contigs

    PubMed Central

    Troggio, Michela; Malacarne, Giulia; Coppola, Giuseppina; Segala, Cinzia; Cartwright, Dustin A.; Pindo, Massimo; Stefanini, Marco; Mank, Rolf; Moroldo, Marco; Morgante, Michele; Grando, M. Stella; Velasco, Riccardo

    2007-01-01

    The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F1 individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement. PMID:17603124

  6. Allele frequencies for 40 autosomal SNP loci typed for US population samples using electrospray ionization mass spectrometry

    PubMed Central

    Kiesler, Kevin M.; Vallone, Peter M.

    2013-01-01

    Aim To type a set of 194 US African American, Caucasian, and Hispanic samples (self-declared ancestry) for 40 autosomal single nucleotide polymorphism (SNP) markers intended for human identification purposes. Methods Genotyping was performed on an automated commercial electrospray ionization time-of-flight mass spectrometer, the PLEX-ID. The 40 SNP markers were amplified in eight unique 5plex PCRs, desalted, and resolved based on amplicon mass. For each of the three US sample groups statistical analyses were performed on the resulting genotypes. Results The assay was found to be robust and capable of genotyping the 40 SNP markers consuming approximately 4 nanograms of template per sample. The combined random match probabilities for the 40 SNP assay ranged from 10−16 to 10−21. Conclusion The multiplex PLEX-ID SNP-40 assay is the first fully automated genotyping method capable of typing a panel of 40 forensically relevant autosomal SNP markers on a mass spectrometry platform. The data produced provided the first allele frequencies estimates for these 40 SNPs in a National Institute of Standards and Technology US population sample set. No population bias was detected although one locus deviated from its expected level of heterozygosity. PMID:23771752

  7. Multi objective SNP selection using pareto optimality.

    PubMed

    Gumus, Ergun; Gormez, Zeliha; Kursun, Olcay

    2013-04-01

    Biomarker discovery is a challenging task of bioinformatics especially when targeting high dimensional problems such as SNP (single nucleotide polymorphism) datasets. Various types of feature selection methods can be applied to accomplish this task. Typically, using features versus class labels of samples in the training dataset, these methods aim at selecting feature subsets with maximal classification accuracies. Although finding such class-discriminative features is crucial, selection of relevant SNPs for maximizing other properties that exist in the nature of population genetics such as the correlation between genetic diversity and geographical distance of ethnic groups can also be equally important. In this work, a methodology using a multi objective optimization technique called Pareto Optimal is utilized for selecting SNP subsets offering both high classification accuracy and correlation between genomic and geographical distances. In this method, discriminatory power of an SNP is determined using mutual information and its contribution to the genomic-geographical correlation is estimated using its loadings on principal components. Combining these objectives, the proposed method identifies SNP subsets that can better discriminate ethnic groups than those obtained with sole mutual information and yield higher correlation than those obtained with sole principal components on the Human Genome Diversity Project (HGDP) SNP dataset.

  8. A Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly From Urine Specimens

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Billig, Mariya; Chattopadhyay, Sujay; Aprikian, Pavel; Chan, Diana; Pseunova, Julietta; Rechkina, Elena; Riddell, Kim; Scholes, Delia; Fang, Ferric C.; Johnson, James R.; Sokurenko, Evgeni V.

    2016-01-01

    Background. Escherichia coli is a highly clonal pathogen. Extraintestinal isolates belong to a limited number of genetically related groups, which often exhibit characteristic antimicrobial resistance profiles. Methods. We developed a rapid clonotyping method for extraintestinal E coli based on detection of the presence or absence of 7 single nucleotide polymorphisms (SNPs) within 2 genes (fumC and fimH). A reference set of 2559 E coli isolates, primarily of urinary origin, was used to predict the resolving power of the 7-SNP-based typing method, and 582 representative strains from this set were used to evaluate test robustness. Results. Fifty-four unique SNP combinations (“septatypes”) were identified in the reference strains. These septatypes yielded a clonal group resolution power on par with that of traditional multilocus sequence typing. In 72% of isolates, septatype identity predicted sequence type identity with at least 90% (mean, 97%) accuracy. Most septatypes exhibited highly distinctive antimicrobial susceptibility profiles. The 7-SNP-based test could be performed with high specificity and sensitivity using single or multiplex conventional polymerase chain reaction (PCR) and quantitative PCR. In the latter format, E coli presence and septatype identity were determined directly in urine specimens within 45 minutes with bacterial loads as low as 102 colony-forming units/mL and, at clinically significant bacterial loads, with 100% sensitivity and specificity. Conclusions. 7-SNP-based typing of E coli can be used for both epidemiological studies and clinical diagnostics, which could greatly improve the empirical selection of antimicrobial therapy. PMID:26925427

  9. New Lesions Detected by Single Nucleotide Polymorphism Array–Based Chromosomal Analysis Have Important Clinical Impact in Acute Myeloid Leukemia

    PubMed Central

    Tiu, Ramon V.; Gondek, Lukasz P.; O'Keefe, Christine L.; Huh, Jungwon; Sekeres, Mikkael A.; Elson, Paul; McDevitt, Michael A.; Wang, Xiao Fei; Levis, Mark J.; Karp, Judith E.; Advani, Anjali S.; Maciejewski, Jaroslaw P.

    2009-01-01

    Purpose Cytogenetics is the primary outcome predictor in acute myeloid leukemia (AML). Metaphase cytogenetics (MC) detects an abnormal karyotype in only half of patients with AML, however. Single nucleotide polymorphism arrays (SNP-A) can detect acquired somatic uniparental disomy (UPD) and other cryptic defects, even in samples deemed normal by MC. We hypothesized that SNP-A will improve detection of chromosomal defects in AML and that this would enhance the prognostic value of MC. Patients and Methods We performed 250K and 6.0 SNP-A analyses on 140 patients with primary (p) and secondary (s) AML and correlated the results with clinical outcomes and Flt-3/nucleophosmin (NPM-1) status. Results SNP-A is more sensitive than MC in detecting unbalanced lesions (pAML, 65% v 39%, P = .002; and sAML, 78% v 51%, P = .003). Acquired somatic UPD, not detectable by MC, was common in our AML cohort (29% in pAML and 35% in sAML). Patients with SNP-A lesions including acquired somatic UPD exhibited worse overall survival (OS) and event-free survival (EFS) in pAML with normal MC and in pAML/sAML with abnormal MC. SNP-A improved the predictive value of Flt-3 internal tandem duplication/NPM-1 status, with inferior survival seen in patients with additional SNP-A defects. Multivariate analyses confirmed the independent predictive value of SNP-A defects for OS (hazard ratio [HR] = 2.52; 95% CI, 1.29 to 5.22; P = .006) and EFS (HR = 1.72; 95% CI, 1.12 to 3.48; P = .04). Conclusion SNP-A analysis allows enhanced detection of chromosomal abnormalities and provides important prognostic impact in AML. PMID:19770377

  10. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing

    PubMed Central

    Yu, ShiGang; Chu, WeiWei; Zhang, LiFan; Han, HouMing; Zhao, RongXue; Wu, Wei; Zhu, JiangNing; Dodson, Michael V.; Wei, Wei; Liu, HongLin; Chen, Jie

    2015-01-01

    Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying

  11. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  12. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  13. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    PubMed

    Yu, ShiGang; Chu, WeiWei; Zhang, LiFan; Han, HouMing; Zhao, RongXue; Wu, Wei; Zhu, JiangNing; Dodson, Michael V; Wei, Wei; Liu, HongLin; Chen, Jie

    2015-01-01

    Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying

  14. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    PubMed

    Yu, ShiGang; Chu, WeiWei; Zhang, LiFan; Han, HouMing; Zhao, RongXue; Wu, Wei; Zhu, JiangNing; Dodson, Michael V; Wei, Wei; Liu, HongLin; Chen, Jie

    2015-01-01

    Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying

  15. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    SciTech Connect

    2014-11-18

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.

  16. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    2014-11-18

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny inmore » minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less

  17. Characterization of single nucleotide polymorphism markers for eelgrass (Zostera marina).

    PubMed

    Ferber, Steven; Reusch, Thorsten B H; Stam, Wytze T; Olsen, Jeanine L

    2008-11-01

    We characterized 37 single nucleotide polymorphism (SNP) makers for eelgrass Zostera marina. SNP markers were developed using existing EST (expressed sequence tag)-libraries to locate polymorphic loci and develop primers from the functional expressed genes that are deposited in The ZOSTERA database (V1.2.1). SNP loci were genotyped using a single-base-extension approach which facilitated high-throughput genotyping with minimal optimization time. These markers show a wide range of variability among 25 eelgrass populations and will be useful for population genetic studies including evaluation of population structure, historical demography, and phylogeography. Potential applications include haplotype inference of physically linked SNPs and identification of genes under selection for temperature and desiccation stress.

  18. Relative frequency of 4 major strain types of Mycobacterium avium ssp. paratuberculosis in Canadian dairy herds using a novel single nucleotide polymorphism-based polymerase chain reaction.

    PubMed

    Ahlstrom, Christina; Barkema, Herman W; De Buck, Jeroen

    2016-10-01

    Johne's disease is a worldwide concern, as it causes huge economic losses. The etiological agent, Mycobacterium avium ssp. paratuberculosis (MAP), has limited genetic diversity, impeding efforts to understand transmission and distribution of strain types. Whole-genome sequencing was previously performed on a representative set of MAP isolates from Canadian dairy herds and 9 divergent clades were identified. Four clades were of particular interest, as they were either MAP types rarely reported in North America, or they represented a substantial proportion of isolates recovered from dairy farms in Canada. One clade included type I/III isolates, whereas the remaining clades included type II isolates. Variant sites in the MAP genome are often separated by thousands of base pairs, limiting use of single nucleotide polymorphism (SNP)-based genotyping on a single genomic region. Therefore, a SNP-PCR assay was developed to facilitate interrogation of 5 SNP in 2 distant regions of the genome, linking them together in a single PCR reaction for subsequent Sanger sequencing. This high-throughput assay enabled discrimination of 602 MAP isolates from 264 herds (from all 10 provinces). More than 1 isolate was cultured from 133 herds, 14 of which included multiple subtypes. A previously identified dominant type included 87% of isolates, whereas the Bison type was more widespread than previously reported. The latter type and isolates from a second clade of interest were overrepresented in Québec and Saskatchewan, respectively. In conclusion, the distribution and relative frequency of MAP subtypes within Canadian dairy herds were assessed using a novel SNP-based typing assay. These findings will contribute to understanding the clinical relevance and transmission dynamics of MAP in this population and elsewhere. PMID:27497900

  19. Current research status, databases and application of single nucleotide polymorphism.

    PubMed

    Javed, R; Mukesh

    2010-07-01

    Single Nucleotide Polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. SNPs are genetic markers which are bi-allelic in nature and grow at a very fast rate. Current genomic databases contain information on several million SNPs. More than 6 million SNPs have been identified and the information is publicly available through the efforts of the SNP Consortium and others data bases. The NCBI plays a major role in facillating the identification and cataloging of SNPs through creation and maintenance of the public SNP database (dbSNP) by the biomedical community worldwide and stimulate many areas of biological research including the identification of the genetic components of disease. In this review article, we are compiling the existing SNP databases, research status and their application. PMID:21717869

  20. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general

  1. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most

  2. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data.

    PubMed

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package "MAFsnp" implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/.

  3. Oligonucleotide array outperforms SNP array on formalin-fixed paraffin-embedded clinical samples.

    PubMed

    Nasri, Soroush; Anjomshoaa, Ahmad; Song, Sarah; Guilford, Parry; McNoe, Les; Black, Michael; Phillips, Vicky; Reeve, Anthony; Humar, Bostjan

    2010-04-01

    Compromised quality of formalin-fixed paraffin-embedded (FFPE)-derived DNA has compounded the use of archival specimens for array-based genomic studies. Recent technological advances have led to first successes in this field; however, there is currently no general agreement on the most suitable platform for the array-based analysis of FFPE DNA. In this study, FFPE and matched fresh-frozen (FF) specimens were separately analyzed with Affymetrix single nucleotide polymorphism (SNP) 6.0 and Agilent 4x44K oligonucleotide arrays to compare the genomic profiles from the two tissue sources and to assess the relative performance of the two platforms on FFPE material. Genomic DNA was extracted from matched FFPE-FF pairs of normal intestinal epithelium from four patients and were applied to the SNP and oligonucleotide platforms according to the manufacturer-recommended protocols. On the Affymetrix platform, a substantial increase in apparent copy number alterations was observed in all FFPE tissues relative to their matched FF counterparts. In contrast, FFPE and matched FF genomic profiles obtained via the Agilent platform were very similar. Both the SNP and the oligonucleotide platform performed comparably on FF material. This study demonstrates that Agilent oligonucleotide array comparative genomic hybridization generates reliable results from FFPE extracted DNA, whereas the Affymetrix SNP-based array seems less suitable for the analysis of FFPE material.

  4. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle.

  5. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. PMID:27112659

  6. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays.

    PubMed

    Popova, Tatiana; Manié, Elodie; Stoppa-Lyonnet, Dominique; Rigaill, Guillem; Barillot, Emmanuel; Stern, Marc Henri

    2009-01-01

    We describe a method for automatic detection of absolute segmental copy numbers and genotype status in complex cancer genome profiles measured with single-nucleotide polymorphism (SNP) arrays. The method is based on pattern recognition of segmented and smoothed copy number and allelic imbalance profiles. Assignments were verified by DNA indexes of primary tumors and karyotypes of cell lines. The method performs well even for poor-quality data, low tumor content, and highly rearranged tumor genomes.

  7. Amerindians show association to obesity with adiponectin gene SNP45 and SNP276: population genetics of a food intake control and "thrifty" gene.

    PubMed

    Arnaiz-Villena, Antonio; Fernández-Honrado, Mercedes; Rey, Diego; Enríquez-de-Salamanca, Mercedes; Abd-El-Fatah-Khalil, Sedeka; Arribas, Ignacio; Coca, Carmen; Algora, Manuel; Areces, Cristina

    2013-02-01

    Adiponectin gene polymorphisms SNP45 and SNP276 have been related to metabolic syndrome (MS) and related pathologies, including obesity. However results of associations are contradictory depending on which population is studied. In the present study, these adiponectin SNPs are for the first time studied in Amerindians. Allele frequencies are obtained and comparison with obesity and other MS related parameters are performed. Amerindians were also defined by characteristic HLA genes. Our main results are: (1) SNP276 T is associated to low diastolic blood pressure in Amerindians, (2) SNP45 G allele is correlated with obesity in female but not in male Amerindians, (3) SNP45/SNP276 T/G haplotype in total obese/non-obese subjects tends to show a linkage with non-obese Amerindians, (4) SNP45/SNP276 T/T haplotype is linked to obese Amerindian males. Also, a world population study is carried out finding that SNP45 T and SNP276 T alleles are the most frequent in African Blacks and are found significantly in lower frequencies in Europeans and Asians. This together with the fact that there is a linkage of this haplotype to obese Amerindian males suggest that evolutionary forces related to famine (or population density in relation with available food) may have shaped world population adiponectin polymorphism frequencies. PMID:23108996

  8. A whole-genome SNP array (RICE6K) for genomic breeding in rice.

    PubMed

    Yu, Huihui; Xie, Weibo; Li, Jing; Zhou, Fasong; Zhang, Qifa

    2014-01-01

    The advances in genotyping technology provide an opportunity to use genomic tools in crop breeding. As compared to field selections performed in conventional breeding programmes, genomics-based genotype screen can potentially reduce number of breeding cycles and more precisely integrate target genes for particular traits into an ideal genetic background. We developed a whole-genome single nucleotide polymorphism (SNP) array, RICE6K, based on Infinium technology, using representative SNPs selected from more than four million SNPs identified from resequencing data of more than 500 rice landraces. RICE6K contains 5102 SNP and insertion-deletion (InDel) markers, about 4500 of which were of high quality in the tested rice lines producing highly repeatable results. Forty-five functional markers that are located inside 28 characterized genes of important traits can be detected using RICE6K. The SNP markers are evenly distributed on the 12 chromosomes of rice with the average density of 12 SNPs per 1 Mb and can provide information for polymorphisms between indica and japonica subspecies as well as varieties within indica and japonica groups. Application tests of RICE6K showed that the array is suitable for rice germplasm fingerprinting, genotyping bulked segregating pools, seed authenticity check and genetic background selection. These results suggest that RICE6K provides an efficient and reliable genotyping tool for rice genomic breeding.

  9. SNPConvert: SNP Array Standardization and Integration in Livestock Species

    PubMed Central

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-01-01

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  10. SNPConvert: SNP Array Standardization and Integration in Livestock Species

    PubMed Central

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-01-01

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git. PMID:27600083

  11. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-01-01

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git. PMID:27600083

  12. Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data.

    PubMed

    Braun, Rosemary; Buetow, Kenneth

    2011-06-01

    Genome-wide association studies (GWAS) have become increasingly common due to advances in technology and have permitted the identification of differences in single nucleotide polymorphism (SNP) alleles that are associated with diseases. However, while typical GWAS analysis techniques treat markers individually, complex diseases (cancers, diabetes, and Alzheimers, amongst others) are unlikely to have a single causative gene. Thus, there is a pressing need for multi-SNP analysis methods that can reveal system-level differences in cases and controls. Here, we present a novel multi-SNP GWAS analysis method called Pathways of Distinction Analysis (PoDA). The method uses GWAS data and known pathway-gene and gene-SNP associations to identify pathways that permit, ideally, the distinction of cases from controls. The technique is based upon the hypothesis that, if a pathway is related to disease risk, cases will appear more similar to other cases than to controls (or vice versa) for the SNPs associated with that pathway. By systematically applying the method to all pathways of potential interest, we can identify those for which the hypothesis holds true, i.e., pathways containing SNPs for which the samples exhibit greater within-class similarity than across classes. Importantly, PoDA improves on existing single-SNP and SNP-set enrichment analyses, in that it does not require the SNPs in a pathway to exhibit independent main effects. This permits PoDA to reveal pathways in which epistatic interactions drive risk. In this paper, we detail the PoDA method and apply it to two GWAS: one of breast cancer and the other of liver cancer. The results obtained strongly suggest that there exist pathway-wide genomic differences that contribute to disease susceptibility. PoDA thus provides an analytical tool that is complementary to existing techniques and has the power to enrich our understanding of disease genomics at the systems-level.

  13. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.

    PubMed

    Bekele, Wubishet A; Wieckhorst, Silke; Friedt, Wolfgang; Snowdon, Rod J

    2013-12-01

    With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics-based breeding approaches. Here, we describe the development and testing of a robust single-nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome-wide and trait-linked polymorphisms in genetically diverse S. bicolor populations. Whole-genome sequences with 6× to 12× coverage from five genetically diverse S. bicolor genotypes, including three sweet sorghums and two grain sorghums, were aligned to the sorghum reference genome. From over 1 million high-quality SNPs, we selected 2124 Infinium Type II SNPs that were informative in all six source genomes, gave an optimal Assay Design Tool (ADT) score, had allele frequencies of 50% in the six genotypes and were evenly spaced throughout the S. bicolor genome. Furthermore, by phenotype-based pool sequencing, we selected an additional 876 SNPs with a phenotypic association to early-stage chilling tolerance, a key trait for European sorghum breeding. The 3000 attempted bead types were used to populate half of a dual-species Illumina iSelect SNP array. The array was tested using 564 Sorghum spp. genotypes, including offspring from four unrelated recombinant inbred line (RIL) and F2 populations and a genetic diversity collection. A high call rate of over 80% enabled validation of 2620 robust and polymorphic sorghum SNPs, underlining the efficiency of the array development scheme for whole-genome SNP selection and screening, with diverse applications including genetic mapping, genome-wide association studies and genomic selection.

  14. SNP Array in Hematopoietic Neoplasms: A Review

    PubMed Central

    Song, Jinming; Shao, Haipeng

    2015-01-01

    Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants. PMID:27600067

  15. SNP Array in Hematopoietic Neoplasms: A Review

    PubMed Central

    Song, Jinming; Shao, Haipeng

    2015-01-01

    Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants.

  16. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  17. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch

    PubMed Central

    Bielenberg, Douglas Gary; Rauh, Bradley; Fan, Shenghua; Gasic, Ksenija; Abbott, Albert Glenn; Reighard, Gregory Lynn; Okie, William R.; Wells, Christina Elizabeth

    2015-01-01

    Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many ‘specialty crops’ such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between ‘Hakuho’ (high CR) and ‘UFGold’ (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR. PMID:26430886

  18. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Stoffel, Kevin; Zheng, Xiuting; Saski, Christopher A; Scheffler, Brian E; Fang, David D; Chen, Z Jeffrey; Van Deynze, Allen; Stelly, David M

    2015-04-09

    A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies.

  19. Exploring the genetic characteristics of 93-11 and Nipponbare recombination inbred lines based on the GoldenGate SNP assay.

    PubMed

    Yu, Renbo; Yan, Wei; Liang, Manzhong; Dai, Xiaojun; Chen, Haodong; Sun, Yunong; Deng, Xing Wang; Chen, Xiangding; He, Hang; Chen, Liangbi

    2016-07-01

    Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorphic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted markers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quantitative trait loci (QTLs) with phenotypic variation explained (PVE) values≥5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterility-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construction and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of inter-subspecies hybrid sterility and correlations with important agronomic traits in rice. PMID:27311455

  20. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch].

    PubMed

    Bielenberg, Douglas Gary; Rauh, Bradley; Fan, Shenghua; Gasic, Ksenija; Abbott, Albert Glenn; Reighard, Gregory Lynn; Okie, William R; Wells, Christina Elizabeth

    2015-01-01

    Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR) and 'UFGold' (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR. PMID:26430886

  1. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch].

    PubMed

    Bielenberg, Douglas Gary; Rauh, Bradley; Fan, Shenghua; Gasic, Ksenija; Abbott, Albert Glenn; Reighard, Gregory Lynn; Okie, William R; Wells, Christina Elizabeth

    2015-01-01

    Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR) and 'UFGold' (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR.

  2. BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (Gossypium) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping

    PubMed Central

    Hulse-Kemp, Amanda M.; Ashrafi, Hamid; Stoffel, Kevin; Zheng, Xiuting; Saski, Christopher A.; Scheffler, Brian E.; Fang, David D.; Chen, Z. Jeffrey; Van Deynze, Allen; Stelly, David M.

    2015-01-01

    A bacterial artificial chromosome library and BAC-end sequences for cultivated cotton (Gossypium hirsutum L.) have recently been developed. This report presents genome-wide single nucleotide polymorphism (SNP) mining utilizing resequencing data with BAC-end sequences as a reference by alignment of 12 G. hirsutum L. lines, one G. barbadense L. line, and one G. longicalyx Hutch and Lee line. A total of 132,262 intraspecific SNPs have been developed for G. hirsutum, whereas 223,138 and 470,631 interspecific SNPs have been developed for G. barbadense and G. longicalyx, respectively. Using a set of interspecific SNPs, 11 randomly selected and 77 SNPs that are putatively associated with the homeologous chromosome pair 12 and 26, we mapped 77 SNPs into two linkage groups representing these chromosomes, spanning a total of 236.2 cM in an interspecific F2 population (G. barbadense 3-79 × G. hirsutum TM-1). The mapping results validated the approach for reliably producing large numbers of both intraspecific and interspecific SNPs aligned to BAC-ends. This will allow for future construction of high-density integrated physical and genetic maps for cotton and other complex polyploid genomes. The methods developed will allow for future Gossypium resequencing data to be automatically genotyped for identified SNPs along the BAC-end sequence reference for anchoring sequence assemblies and comparative studies. PMID:25858960

  3. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases

    PubMed Central

    Murk, William; DeWan, Andrew T.

    2016-01-01

    The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA) study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10−12). Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized. PMID:27185397

  4. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases.

    PubMed

    Murk, William; DeWan, Andrew T

    2016-01-01

    The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA) study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10(-12)). Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized.

  5. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases.

    PubMed

    Murk, William; DeWan, Andrew T

    2016-01-01

    The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA) study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10(-12)). Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized. PMID:27185397

  6. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    PubMed

    Chagné, David; Crowhurst, Ross N; Troggio, Michela; Davey, Mark W; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.

  7. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A. I.; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection. PMID:26110423

  8. Development and Applications of a Bovine 50,000 SNP Chip

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...

  9. Single nucleotide polymorphism discovery in barley using autoSNPdb.

    PubMed

    Duran, Chris; Appleby, Nikki; Vardy, Megan; Imelfort, Michael; Edwards, David; Batley, Jacqueline

    2009-05-01

    Molecular markers are used to provide the link between genotype and phenotype, for the production of molecular genetic maps and to assess genetic diversity within and between related species. Single nucleotide polymorphisms (SNPs) are the most abundant molecular genetic marker. SNPs can be identified in silico, but care must be taken to ensure that the identified SNPs reflect true genetic variation and are not a result of errors associated with DNA sequencing. The SNP detection method autoSNP has been developed to identify SNPs from sequence data for any species. Confidence in the predicted SNPs is based on sequence redundancy, and haplotype co-segregation scores are calculated for a further independent measure of confidence. We have extended the autoSNP method to produce autoSNPdb, which integrates SNP and gene annotation information with a graphical viewer. We have applied this software to public barley expressed sequences, and the resulting database is available over the Internet. SNPs can be viewed and searched by sequence, functional annotation or predicted synteny with a reference genome, in this case rice. The correlation between SNPs and barley cultivar, expressed tissue type and development stage has been collated for ease of exploration. An average of one SNP per 240 bp was identified, with SNPs more prevalent in the 5' regions and simple sequence repeat (SSR) flanking sequences. Overall, autoSNPdb can provide a wealth of genetic polymorphism information for any species for which sequence data are available. PMID:19386041

  10. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.

    PubMed

    Lu, Zhao-Hua; Zhu, Hongtu; Knickmeyer, Rebecca C; Sullivan, Patrick F; Williams, Stephanie N; Zou, Fei

    2015-12-01

    The power of genome-wide association studies (GWAS) for mapping complex traits with single-SNP analysis (where SNP is single-nucleotide polymorphism) may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP sets and complex traits. Compared with single SNP set analysis, such joint association mapping not only accounts for the correlation among SNP sets but also is capable of detecting causal SNP sets that are marginally uncorrelated with traits. The spike-and-slab prior assigned to the effects of SNP sets can greatly reduce the dimension of effective SNP sets, while speeding up computation. An efficient Markov chain Monte Carlo algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios. PMID:26515609

  11. Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™.

    PubMed

    Eduardoff, M; Santos, C; de la Puente, M; Gross, T E; Fondevila, M; Strobl, C; Sobrino, B; Ballard, D; Schneider, P M; Carracedo, Á; Lareu, M V; Parson, W; Phillips, C

    2015-07-01

    Next generation sequencing (NGS) offers the opportunity to analyse forensic DNA samples and obtain massively parallel coverage of targeted short sequences with the variants they carry. We evaluated the levels of sequence coverage, genotyping precision, sensitivity and mixed DNA patterns of a prototype version of the first commercial forensic NGS kit: the HID-Ion AmpliSeq™ Identity Panel with 169-markers designed for the Ion PGM™ system. Evaluations were made between three laboratories following closely matched Ion PGM™ protocols and a simple validation framework of shared DNA controls. The sequence coverage obtained was extensive for the bulk of SNPs targeted by the HID-Ion AmpliSeq™ Identity Panel. Sensitivity studies showed 90-95% of SNP genotypes could be obtained from 25 to 100pg of input DNA. Genotyping concordance tests included Coriell cell-line control DNA analyses checked against whole-genome sequencing data from 1000 Genomes and Complete Genomics, indicating a very high concordance rate of 99.8%. Discordant genotypes detected in rs1979255, rs1004357, rs938283, rs2032597 and rs2399332 indicate these loci should be excluded from the panel. Therefore, the HID-Ion AmpliSeq™ Identity Panel and Ion PGM™ system provide a sensitive and accurate forensic SNP genotyping assay. However, low-level DNA produced much more varied sequence coverage and in forensic use the Ion PGM™ system will require careful calibration of the total samples loaded per chip to preserve the genotyping reliability seen in routine forensic DNA. Furthermore, assessments of mixed DNA indicate the user's control of sequence analysis parameter settings is necessary to ensure mixtures are detected robustly. Given the sensitivity of Ion PGM™, this aspect of forensic genotyping requires further optimisation before massively parallel sequencing is applied to routine casework.

  12. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  13. Methicillin-resistant Staphylococcus aureus genotyping using a small set of polymorphisms.

    PubMed

    Stephens, Alex J; Huygens, Flavia; Inman-Bamber, John; Price, Erin P; Nimmo, Graeme R; Schooneveldt, Jacqueline; Munckhof, Wendy; Giffard, Philip M

    2006-01-01

    The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleotide polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S. aureus. Here, it is shown that these seven SNPs efficiently resolve the major MRSA lineages and define 27 genotypes. The SNP-based genotypes are consistent with the MRSA population structure as defined by eBURST analysis. The capacity of binary markers to improve resolution was tested using 107 diverse MRSA isolates of Australian origin that encompass nine SNP-based genotypes. The addition of the virulence-associated genes cna, pvl and bbp/sdrE, and the integrated plasmids pT181, pI258 and pUB110, resolved the nine SNP-based genotypes into 21 combinatorial genotypes. Subtyping of the SCCmec locus revealed new SCCmec types and increased the number of combinatorial genotypes to 24. It was concluded that these polymorphisms provide a facile means of assigning MRSA isolates into well-recognized lineages.

  14. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  15. Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats.

    PubMed

    Cardoso, Sara D; Gonçalves, David; Robalo, Joana I; Almada, Vitor C; Canário, Adelino V M; Oliveira, Rui F

    2013-09-01

    Transcriptome data are a good resource to develop microsatellites due to their potential in targeting candidate genes. However, developing microsatellites can be a time-consuming enterprise due to the numerous primer pairs to be tested. Therefore, the use of methodologies that make it efficient to identify polymorphic microsatellites is desirable. Here we used a 62,038 contigs transcriptome assembly, obtained from pyrosequencing a peacock blenny (Salaria pavo) multi-tissue cDNA library, to mine for microsatellites and in silico evaluation of their polymorphism. A total of 4190 microsatellites were identified in 3670 unique unigenes, and from these microsatellites, in silico polymorphism was detected in 733. We selected microsatellites based either on their in silico polymorphism and annotation results or based only on their number of repeats. Using these two approaches, 28 microsatellites were successfully amplified in twenty-six individuals, and all but 2 were found to be polymorphic, being the first genetic markers for this species. Our results showed that the strategy of selection based on number of repeats is more efficient in obtaining polymorphic microsatellites than the strategy of in silico polymorphism (allelic richness was 8.2±3.85 and 4.56±2.45 respectively). This study demonstrates that combining the knowledge of number of repeats with other predictors of variability, for example in silico microsatellite polymorphism, improves the rates of polymorphism, yielding microsatellites with higher allelic richness, and decreases the number of monomorphic microsatellites obtained. PMID:23665344

  16. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  17. Epistatic effects on abdominal fat content in chickens: results from a genome-wide SNP-SNP interaction analysis.

    PubMed

    Li, Fangge; Hu, Guo; Zhang, Hui; Wang, Shouzhi; Wang, Zhipeng; Li, Hui

    2013-01-01

    We performed a pairwise epistatic interaction test using the chicken 60 K single nucleotide polymorphism (SNP) chip for the 11(th) generation of the Northeast Agricultural University broiler lines divergently selected for abdominal fat content. A linear mixed model was used to test two dimensions of SNP interactions affecting abdominal fat weight. With a threshold of P<1.2×10(-11) by a Bonferroni 5% correction, 52 pairs of SNPs were detected, comprising 45 pairs showing an Additive×Additive and seven pairs showing an Additive×Dominance epistatic effect. The contribution rates of significant epistatic interactive SNPs ranged from 0.62% to 1.54%, with 47 pairs contributing more than 1%. The SNP-SNP network affecting abdominal fat weight constructed using the significant SNP pairs was analyzed, estimated and annotated. On the basis of the network's features, SNPs Gga_rs14303341 and Gga_rs14988623 at the center of the subnet should be important nodes, and an interaction between GGAZ and GGA8 was suggested. Twenty-two quantitative trait loci, 97 genes (including nine non-coding genes), and 50 pathways were annotated on the epistatic interactive SNP-SNP network. The results of the present study provide insights into the genetic architecture underlying broiler chicken abdominal fat weight.

  18. Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans

    PubMed Central

    Lu, Yaping; Liu, Yemao; Niu, Xiaohui; Yang, Qingyong; Hu, Xuehai; Zhang, Hong-Yu; Xia, Jingbo

    2015-01-01

    In the post-GWAS (Genome-Wide Association Scan) era, the interpretation of GWAS results is crucial to screen for highly relevant phenotype-genotype association pairs. Based on the single genotype-phenotype association test and a pathway enrichment analysis, we propose a Metabolite-pathway-based Phenome-Wide Association Scan (M-PheWAS) to analyze the key metabolite-SNP pairs in rice and determine the regulatory relationship by assessing similarities in the changes of enzymes and downstream products in a pathway. Two SNPs, sf0315305925 and sf0315308337, were selected using this approach, and their molecular function and regulatory relationship with Enzyme EC:5.5.1.6 and with flavonoids, a significant downstream regulatory metabolite product, were demonstrated. Moreover, a total of 105 crucial SNPs were screened using M-PheWAS, which may be important for metabolite associations. PMID:26640468

  19. Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans.

    PubMed

    Lu, Yaping; Liu, Yemao; Niu, Xiaohui; Yang, Qingyong; Hu, Xuehai; Zhang, Hong-Yu; Xia, Jingbo

    2015-01-01

    In the post-GWAS (Genome-Wide Association Scan) era, the interpretation of GWAS results is crucial to screen for highly relevant phenotype-genotype association pairs. Based on the single genotype-phenotype association test and a pathway enrichment analysis, we propose a Metabolite-pathway-based Phenome-Wide Association Scan (M-PheWAS) to analyze the key metabolite-SNP pairs in rice and determine the regulatory relationship by assessing similarities in the changes of enzymes and downstream products in a pathway. Two SNPs, sf0315305925 and sf0315308337, were selected using this approach, and their molecular function and regulatory relationship with Enzyme EC:5.5.1.6 and with flavonoids, a significant downstream regulatory metabolite product, were demonstrated. Moreover, a total of 105 crucial SNPs were screened using M-PheWAS, which may be important for metabolite associations.

  20. [Allele polymorphism analysis in coagulation factors F2, F5 and folate metabolism gene MTHFR by using microchip-based multiplex real time PCR].

    PubMed

    Bogdanov, K V; Nikitin, M M; Slyadnev, M N

    2015-01-01

    Single nucleotide polymorphism (SNP) genotyping methods are widely used for the detection of hereditary thrombophilias caused by genetic defects in the coagulation system. The hereditary thrombophilias are frequently associated with higher incidences of point mutations in hemostasis (F2 20210G>A, F5 1691G>A) and folate metabolism (MTHFR 677C>Т, MTHFR 1298A>C) genes. Moreover, the combination of gene abnormalities in F2 or/and MTHFR with F5 Leiden mutation leads to increased risk of developing thrombosis. Thus, simultaneous detection of the multiple gene mutations in a sample has important clinical relevance. The microchip-based multiplex real time PCR for estimation of allele specific polymorphism in hemostatic and folate metabolism genes presented here has a high efficiency and may be used for laboratory diagnosis. The optimized protocol for estimation of 4 different types of genetic polymorphisms allowed PCR to be performed with minimal quantity of DNA template and PCR reagents including Taq polymerase and a short-term thermocycling. PMID:26215413

  1. [Allele polymorphism analysis in coagulation factors F2, F5 and folate metabolism gene MTHFR by using microchip-based multiplex real time PCR].

    PubMed

    Bogdanov, K V; Nikitin, M M; Slyadnev, M N

    2015-01-01

    Single nucleotide polymorphism (SNP) genotyping methods are widely used for the detection of hereditary thrombophilias caused by genetic defects in the coagulation system. The hereditary thrombophilias are frequently associated with higher incidences of point mutations in hemostasis (F2 20210G>A, F5 1691G>A) and folate metabolism (MTHFR 677C>Т, MTHFR 1298A>C) genes. Moreover, the combination of gene abnormalities in F2 or/and MTHFR with F5 Leiden mutation leads to increased risk of developing thrombosis. Thus, simultaneous detection of the multiple gene mutations in a sample has important clinical relevance. The microchip-based multiplex real time PCR for estimation of allele specific polymorphism in hemostatic and folate metabolism genes presented here has a high efficiency and may be used for laboratory diagnosis. The optimized protocol for estimation of 4 different types of genetic polymorphisms allowed PCR to be performed with minimal quantity of DNA template and PCR reagents including Taq polymerase and a short-term thermocycling.

  2. The case-only independence assumption: associations between genetic polymorphisms and smoking among controls in two population-based studies.

    PubMed

    Hodgson, M Elizabeth; Olshan, Andrew F; North, Kari E; Poole, Charles L; Zeng, Donglin; Tse, Chiu-Kit; Keku, Tope O; Galanko, Joseph; Sandler, Robert; Millikan, Robert C

    2012-01-01

    The independence assumption for a case-only analysis of statistical interaction, i. e. that genetic (G) and environmental exposures (E) are not associated in the source population, is often checked in surrogate populations. Few studies have examined G-E association in empirical data, particularly in controls from population-based studies, the type of controls expected to provide the most valid surrogate estimates of G-E association. We used controls from two population-based case-control studies to evaluate G-E independence for 43 selected genetic polymorphisms and smoking behavior. The odds ratio (OR(z)) was used to estimate G-E association and, therefore, the magnitude of bias introduced into the case-only odds ratio (COR). Odds ratios of moderate magnitude [mmOR(z)], defined as OR(z)≤0.7 or OR(z)≥1.4, were found at least one of the six smoking measures (ever, former, current, cig/day, years smoked, pack-years) for 45% and 59% of the SNPs examined in the control groups of two independently conducted North Carolina studies, respectively. Consequently, case-only estimates of G-E interaction in the context of a multiplicative benchmark would be biased for these SNPs and smoking measures. MmOR(z)s were found more often for smoking amount than smoking status. We recommend that a stand-alone case-only study should only be conducted when G-E independence can be verified for each polymorphism and exposure metric with population-specific data. Our results suggest that OR(z) is specific to each underlying population rather than an estimate of a 'universal' OR(z) for that SNP and smoking measure. Further, misspecification of smoking is likely to introduce bias into the COR.

  3. The case-only independence assumption: associations between genetic polymorphisms and smoking among controls in two population-based studies

    PubMed Central

    Hodgson, M Elizabeth; Olshan, Andrew F; North, Kari E; Poole, Charles L; Zeng, Donglin; Tse, Chiu-Kit; Keku, Tope O; Galanko, Joseph; Sandler, Robert; Millikan, Robert C

    2012-01-01

    The independence assumption for a case-only analysis of statistical interaction, i. e. that genetic (G) and environmental exposures (E) are not associated in the source population, is often checked in surrogate populations. Few studies have examined G-E association in empirical data, particularly in controls from population-based studies, the type of controls expected to provide the most valid surrogate estimates of G-E association. We used controls from two population-based case-control studies to evaluate G-E independence for 43 selected genetic polymorphisms and smoking behavior. The odds ratio (ORz) was used to estimate G-E association and, therefore, the magnitude of bias introduced into the case-only odds ratio (COR). Odds ratios of moderate magnitude [mmORz], defined as ORz≤0.7 or ORz≥1.4, were found at least one of the six smoking measures (ever, former, current, cig/day, years smoked, pack-years) for 45% and 59% of the SNPs examined in the control groups of two independently conducted North Carolina studies, respectively. Consequently, case-only estimates of G-E interaction in the context of a multiplicative benchmark would be biased for these SNPs and smoking measures. MmORzs were found more often for smoking amount than smoking status. We recommend that a stand-alone case-only study should only be conducted when G-E independence can be verified for each polymorphism and exposure metric with population-specific data. Our results suggest that ORz is specific to each underlying population rather than an estimate of a ‘universal’ ORz for that SNP and smoking measure. Further, misspecification of smoking is likely to introduce bias into the COR. PMID:23205185

  4. Development of genetic markers in abalone through construction of a SNP database.

    PubMed

    Kang, J-H; Appleyard, S A; Elliott, N G; Jee, Y-J; Lee, J B; Kang, S W; Baek, M K; Han, Y S; Choi, T-J; Lee, Y S

    2011-06-01

    In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis.

  5. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms.

    PubMed

    Kim, Ji-Yeon; Kang, Sung-Il; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Erdenebaataar, Janchivdorj; Vanaabaatar, Batbaatar; Jung, Suk Chan; Park, Yong Ho; Yoo, Han-Sang; Her, Moon

    2016-05-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy.

  6. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms

    PubMed Central

    KIM, Ji-Yeon; KANG, Sung-Il; LEE, Jin Ju; LEE, Kichan; SUNG, So-Ra; ERDENEBAATAAR, Janchivdorj; VANAABAATAR, Batbaatar; JUNG, Suk Chan; PARK, Yong Ho; YOO, Han-Sang; HER, Moon

    2015-01-01

    To diagnose brucellosis effectively, many genus- and species-specific detection methods based on PCR have been developed. With conventional PCR assays, real-time PCR techniques have been developed as rapid diagnostic tools. Among them, real-time PCR using hybridization probe (hybprobe) has been recommended for bacteria with high DNA homology among species, with which it is possible to make an accurate diagnosis by means of an amplification curve and melting peak analysis. A hybprobe for B. abortus was designed from a specific single-nucleotide polymorphism (SNP) on the fbaA gene. This probe only showed specific amplification of B. abortus from approximately the 14th cycle, given a melting peak at 69°C. The sensitivity of real-time PCR was revealed to be 20 fg/µl by 10-fold DNA dilution, and the detection limit was 4 CFU in clinical samples. This real-time PCR showed greater sensitivity than that of conventional PCR and previous real-time PCR based on Taqman probe. Therefore, this new real-time PCR assay could be helpful for differentiating B. abortus infection with rapidity and accuracy. PMID:26666176

  7. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    PubMed Central

    Faruqi, A Fawad; Hosono, Seiyu; Driscoll, Mark D; Dean, Frank B; Alsmadi, Osama; Bandaru, Rajanikanta; Kumar, Gyanendra; Grimwade, Brian; Zong, Qiuling; Sun, Zhenyu; Du, Yuefen; Kingsmore, Stephen; Knott, Tim; Lasken, Roger S

    2001-01-01

    Background Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring. PMID:11511324

  8. High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex- and growth-related regions detection.

    PubMed

    Wang, Weiji; Hu, Yulong; Ma, Yu; Xu, Liyong; Guan, Jiantao; Kong, Jie

    2015-01-01

    This paper describes the development of a high density consensus genetic linkage map of a turbot (Scophthalmus maximus L.) family composed of 149 mapping individuals using Single Nucleotide Polymorphisms (SNP) developed using the restriction-site associated DNA (RAD) sequencing technique with the restriction enzyme, PstI. A total of 6,647 SNPs were assigned to 22 linkage groups, which is equal to the number of chromosome pairs in turbot. For the first time, the average marker interval reached 0.3958 cM, which is equal to approximately 0.1203 Mb of the turbot genome. The observed 99.34% genome coverage indicates that the linkage map was genome-wide. A total of 220 Quantitative Traits Locus (QTLs) associated with two body length traits, two body weight traits in different growth periods and sex determination were detected with an LOD > 5.0 in 12 linkage groups (LGs), which explained the corresponding phenotypic variance (R2), ranging from 14.4-100%. Among them, 175 overlapped with linked SNPs, and the remaining 45 were located in regions between contiguous SNPs. According to the QTLs related to growth trait distribution and the changing of LGs during different growth periods, the growth traits are likely controlled by multi-SNPs distributed on several LGs; the effect of these SNPs changed during different growth periods. Most sex-related QTLs were detected at LG 21 with a linkage span of 70.882 cM. Additionally, a small number of QTLs with high feasibility and a narrow R2 distribution were also observed on LG7 and LG14, suggesting that multi LGs or chromosomes might be involved in sex determination. High homology was recorded between LG21 in Cynoglossus semilaevis and turbot. This high-saturated turbot RAD-Seq linkage map is undoubtedly a promising platform for marker assisted selection (MAS) and flatfish genomics research.

  9. SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status.

    PubMed

    López-Corral, L; Sarasquete, M E; Beà, S; García-Sanz, R; Mateos, M V; Corchete, L A; Sayagués, J M; García, E M; Bladé, J; Oriol, A; Hernández-García, M T; Giraldo, P; Hernández, J; González, M; Hernández-Rivas, J M; San Miguel, J F; Gutiérrez, N C

    2012-12-01

    Genetic events mediating transformation from premalignant monoclonal gammopathies (MG) to multiple myeloma (MM) are unknown. To obtain a comprehensive genomic profile of MG from the early to late stages, we performed high-resolution analysis of purified plasma cells from 20 MGUS, 20 smoldering MM (SMM) and 34 MM by high-density 6.0 SNP array. A progressive increase in the incidence of copy number abnormalities (CNA) from MGUS to SMM and to MM (median 5, 7.5 and 12 per case, respectively) was observed (P=0.006). Gains on 1q, 3p, 6p, 9p, 11q, 19p, 19q and 21q along with 1p, 16q and 22q deletions were significantly less frequent in MGUS than in MM. Although 11q and 21q gains together with 16q and 22q deletions were apparently exclusive of MM status, we observed that these abnormalities were also present in minor subclones in MGUS. Overall, a total of 65 copy number-neutral LOH (CNN-LOH) were detected. Their frequency was higher in active MM than in the asymptomatic entities (P=0.047). A strong association between genetic lesions and fragile sites was also detected. In summary, our study shows an increasing genomic complexity from MGUS to MM and identifies new chromosomal regions involved in CNA and CNN-LOH. PMID:22565645

  10. OTG-snpcaller: An Optimized Pipeline Based on TMAP and GATK for SNP Calling from Ion Torrent Data

    PubMed Central

    Huang, Wenpan; Xi, Feng; Lin, Lin; Zhi, Qihuan; Zhang, Wenwei; Tang, Y. Tom; Geng, Chunyu; Lu, Zhiyuan; Xu, Xun

    2014-01-01

    Because the new Proton platform from Life Technologies produced markedly different data from those of the Illumina platform, the conventional Illumina data analysis pipeline could not be used directly. We developed an optimized SNP calling method using TMAP and GATK (OTG-snpcaller). This method combined our own optimized processes, Remove Duplicates According to AS Tag (RDAST) and Alignment Optimize Structure (AOS), together with TMAP and GATK, to call SNPs from Proton data. We sequenced four sets of exomes captured by Agilent SureSelect and NimbleGen SeqCap EZ Kit, using Life Technology’s Ion Proton sequencer. Then we applied OTG-snpcaller and compared our results with the results from Torrent Variants Caller. The results indicated that OTG-snpcaller can reduce both false positive and false negative rates. Moreover, we compared our results with Illumina results generated by GATK best practices, and we found that the results of these two platforms were comparable. The good performance in variant calling using GATK best practices can be primarily attributed to the high quality of the Illumina sequences. PMID:24824529

  11. PCR amplification of SNP loci from crude DNA for large-scale genotyping of oomycetes.

    PubMed

    Hu, Jian; Lyon, Rebecca; Zhou, Yuxin; Lamour, Kurt

    2014-01-01

    Similar to other eukaryotes, single nucleotide polymorphism (SNP) markers are abundant in many oomycete plant pathogen genomes. High resolution DNA melting analysis (HR-DMA) is a cost-effective method for SNP genotyping, but like many SNP marker technologies, is limited by the amount and quality of template DNA. We describe PCR preamplification of Phytophthora and Peronospora SNP loci from crude DNA extracted from a small amount of mycelium and/or infected plant tissue to produce sufficient template to genotype at least 10 000 SNPs. The approach is fast, inexpensive, requires minimal biological material and should be useful for many organisms in a variety of contexts. PMID:24871597

  12. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing.

    PubMed

    Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies.

  13. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  14. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  15. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  16. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

    PubMed Central

    Li, Gang; Hillier, LaDeana W.; Grahn, Robert A.; Zimin, Aleksey V.; David, Victor A.; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O’Brien, Stephen J.; Minx, Pat; Wilson, Richard K.; Lyons, Leslie A.; Warren, Wesley C.; Murphy, William J.

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  17. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy.

    PubMed

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc'h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques.

  18. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy

    PubMed Central

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc’h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques. PMID:27379109

  19. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms

    NASA Astrophysics Data System (ADS)

    Hui, Wenli; Zhang, Sinong; Zhang, Chao; Wan, Yinsheng; Zhu, Juanli; Zhao, Gang; Wu, Songdi; Xi, Dujuan; Zhang, Qinlu; Li, Ningning; Cui, Yali

    2016-02-01

    Current techniques for single nucleotide polymorphism (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticle (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amounts from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1721 individuals for the C677T genotypes. The concordance rate of the genotyping results detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven to be rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes.

  20. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection

    PubMed Central

    Lappi, Victoria; Wolfgang, William J.; Lapierre, Pascal; Palumbo, Michael J.; Medus, Carlota; Boxrud, David

    2015-01-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. PMID:26269623

  1. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. PMID:26269623

  2. From Single Nucleotide Polymorphism to Transcriptional Mechanism

    PubMed Central

    Martini, Sebastian; Nair, Viji; Patel, Sanjeevkumar R.; Eichinger, Felix; Nelson, Robert G.; Weil, E. Jennifer; Pezzolesi, Marcus G.; Krolewski, Andrzej S.; Randolph, Ann; Keller, Benjamin J.; Werner, Thomas; Kretzler, Matthias

    2013-01-01

    Genome-wide association studies have proven to be highly effective at defining relationships between single nucleotide polymorphisms (SNPs) and clinical phenotypes in complex diseases. Establishing a mechanistic link between a noncoding SNP and the clinical outcome is a significant hurdle in translating associations into biological insight. We demonstrate an approach to assess the functional context of a diabetic nephropathy (DN)-associated SNP located in the promoter region of the gene FRMD3. The approach integrates pathway analyses with transcriptional regulatory pattern-based promoter modeling and allows the identification of a transcriptional framework affected by the DN-associated SNP in the FRMD3 promoter. This framework provides a testable hypothesis for mechanisms of genomic variation and transcriptional regulation in the context of DN. Our model proposes a possible transcriptional link through which the polymorphism in the FRMD3 promoter could influence transcriptional regulation within the bone morphogenetic protein (BMP)-signaling pathway. These findings provide the rationale to interrogate the biological link between FRMD3 and the BMP pathway and serve as an example of functional genomics-based hypothesis generation. PMID:23434934

  3. A Bayesian Framework for SNP Identification

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Havre, Susan L.; Payne, Deborah A.

    2005-07-01

    Current proteomics techniques, such as mass spectrometry, focus on protein identification, usually ignoring most types of modifications beyond post-translational modifications, with the assumption that only a small number of peptides have to be matched to a protein for a positive identification. However, not all proteins are being identified with current techniques and improved methods to locate points of mutation are becoming a necessity. In the case when single-nucleotide polymorphisms (SNPs) are observed, brute force is the most common method to locate them, quickly becoming computationally unattractive as the size of the database associated with the model organism grows. We have developed a Bayesian model for SNPs, BSNP, incorporating evolutionary information at both the nucleotide and amino acid levels. Formulating SNPs as a Bayesian inference problem allows probabilities of interest to be easily obtained, for example the probability of a specific SNP or specific type of mutation over a gene or entire genome. Three SNP databases were observed in the evaluation of the BSNP model; the first SNP database is a disease specific gene in human, hemoglobin, the second is also a disease specific gene in human, p53, and the third is a more general SNP database for multiple genes in mouse. We validate that the BSNP model assigns higher posterior probabilities to the SNPs defined in all three separate databases than can be attributed to chance under specific evolutionary information, for example the amino acid model described by Majewski and Ott in conjunction with either the four-parameter nucleotide model by Bulmer or seven-parameter nucleotide model by Majewski and Ott.

  4. Sniper: improved SNP discovery by multiply mapping deep sequenced reads.

    PubMed

    Simola, Daniel F; Kim, Junhyong

    2011-06-20

    SNP (single nucleotide polymorphism) discovery using next-generation sequencing data remains difficult primarily because of redundant genomic regions, such as interspersed repetitive elements and paralogous genes, present in all eukaryotic genomes. To address this problem, we developed Sniper, a novel multi-locus Bayesian probabilistic model and a computationally efficient algorithm that explicitly incorporates sequence reads that map to multiple genomic loci. Our model fully accounts for sequencing error, template bias, and multi-locus SNP combinations, maintaining high sensitivity and specificity under a broad range of conditions. An implementation of Sniper is freely available at http://kim.bio.upenn.edu/software/sniper.shtml.

  5. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny

    PubMed Central

    Cuenca, José; Aleza, Pablo; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. Scope This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. Conclusions Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan−1 (y/x) and y′ = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis

  6. Genotyping of PCR-based polymorphisms and linkage-disequilibrium analysis at the NF1 locus

    SciTech Connect

    Purandare, S.M.; Viskochil, D.H.; Cawthon, R.

    1996-07-01

    Six polymorphism across the NF1 gene have been adapted for genotyping through application of PCR-based assays. Three exon-based polymorphisms - at positions 702, 2034, and 10647 in the NF1 cDNA - were genotyped by mutagenically separated PCR (MS-PCR). A fourth polymorphism, DV1.9, is an L1 insertion element in intron 30, and the other two polymorphisms, GXAlu and EVI-20, are short tandem repeats in intron 27b. All the polymorphisms were evaluated in a cohort of 110 CEPH individuals who previously had been analyzed by use of eight RFLPs at the NF1 locus. Pairwise linkage-disequilibrium analyses with the six PCR-based polymorphisms and their flanking markers demonstrated disequilibrium between all tested loci. Genotypes of the four diallelic polymorphisms (702, 2034, 10647, and DV1.9) were also evaluated in cohorts from the CEPH, African, and Japanese populations. The CEPH and Japanese cohorts showed similar heterozygosities and linkage-disequilibrium coefficients. The African cohort showed a higher degree of heterozygosity and lower linkage-disequilibrium values, compared with the CEPH and Japanese cohorts. 36 refs., 2 figs., 3 tabs.

  7. Rapid and Efficient Identification of Caenorhabditis elegans Legacy Mutations Using Hawaiian SNP-Based Mapping and Whole-Genome Sequencing.

    PubMed

    Jaramillo-Lambert, Aimee; Fuchsman, Abigail S; Fabritius, Amy S; Smith, Harold E; Golden, Andy

    2015-03-04

    The production of viable embryos requires the coordination of many cellular processes, including protein synthesis, cytoskeletal reorganization, establishment of polarity, cell migration, cell division, and in Caenorhabditis elegans, eggshell formation. Defects in any of these processes can lead to embryonic lethality. We examined six temperature-sensitive mutants as well as one nonconditional mutant that were previously identified in genetic screens as either embryonic lethal (maternal-effect or zygotic lethal) or eggshell defective. The responsible molecular lesion for each had never been determined. After confirmation of temperature sensitivity and lethality, we performed whole-genome sequencing using a single-nucleotide polymorphism mapping strategy to pinpoint the molecular lesions. Gene candidates were confirmed by RNA interference phenocopy and/or complementation tests and one mutant was further validated by CRISPR (Clustered Regularly Interspaced Short Palidromic Repeats)/Cas9 gene editing. This approach identified new alleles of several genes that had only been previously studied by RNA interference depletion. Our identification of temperature-sensitive alleles for all of these essential genes provides an extremely useful tool for further investigation for the C. elegans community, such as the ability to address mutant phenotypes at various developmental stages and the ability to carry out suppressor/enhancer screens to identify other genes that function in a specific cellular process.

  8. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes

    PubMed Central

    Krueger, Felix; Andrews, Simon R.

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  9. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    PubMed

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  10. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data.

    PubMed

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package "MAFsnp" implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201

  11. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer.

    PubMed

    Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping

    2015-12-15

    Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis.

  12. PEAS V1.0: a package for elementary analysis of SNP data.

    PubMed

    Xu, Shuhua; Gupta, Sanchit; Jin, Li

    2010-11-01

    We have developed a software package named PEAS to facilitate analyses of large data sets of single nucleotide polymorphisms (SNPs) for population genetics and molecular phylogenetics studies. PEAS reads SNP data in various formats as input and is versatile in data formatting; using PEAS, it is easy to create input files for many popular packages, such as STRUCTURE, frappe, Arlequin, Haploview, LDhat, PLINK, EIGENSOFT, PHASE, fastPHASE, MEGA and PHYLIP. In addition, PEAS fills up several analysis gaps in currently available computer programs in population genetics and molecular phylogenetics. Notably, (i) It calculates genetic distance matrices with bootstrapping for both individuals and populations from genome-wide high-density SNP data, and the output can be streamlined to MEGA and PHYLIP programs for further processing; (ii) It calculates genetic distances from STRUCTURE output and generates MEGA file to reconstruct component trees; (iii) It provides tools to conduct haplotype sharing analysis for phylogenetic studies based on high-density SNP data. To our knowledge, these analyses are not available in any other computer program. PEAS for Windows is freely available for academic users from http://www.picb.ac.cn/~xushua/index.files/Download_PEAS.htm. PMID:21565121

  13. Whole genome SNP scanning of snow sheep (Ovis nivicola).

    PubMed

    Deniskova, T E; Okhlopkov, I M; Sermyagin, A A; Gladyr', E A; Bagirov, V A; Sölkner, J; Mamaev, N V; Brem, G; Zinov'eva, N A

    2016-07-01

    This is the first report performing the whole genome SNP scanning of snow sheep (Ovis nivicola). Samples of snow sheep (n = 18) collected in six different regions of the Republic of Sakha (Yakutia) from 64° to 71° N. For SNP genotyping, we applied Ovine 50K SNP BeadChip (Illumina, United States), designed for domestic sheep. The total number of genotyped SNPs (call rate 90%) was 47796 (88.1% of total SNPs), wherein 1006 SNPs were polymorphic (2.1%). Principal component analysis (PCA) showed the clear differentiation within the species O. nivicola: studied individuals were distributed among five distinct arrays corresponding to the geographical locations of sampling points. Our results demonstrate that the DNA chip designed for domestic sheep can be successfully used to study the allele pool and the genetic structure of snow sheep populations. PMID:27599514

  14. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data.

    PubMed

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R; Wang, Xiaolu

    2016-03-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496

  15. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data

    PubMed Central

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu

    2016-01-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496

  16. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data.

    PubMed

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R; Wang, Xiaolu

    2016-03-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon.

  17. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  18. Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype.

    PubMed

    Selinski, Silvia; Blaszkewicz, Meinolf; Lehmann, Marie-Louise; Ovsiannikov, Daniel; Moormann, Oliver; Guballa, Christoph; Kress, Alexander; Truss, Michael C; Gerullis, Holger; Otto, Thomas; Barski, Dimitri; Niegisch, Günter; Albers, Peter; Frees, Sebastian; Brenner, Walburgis; Thüroff, Joachim W; Angeli-Greaves, Miriam; Seidel, Thilo; Roth, Gerhard; Dietrich, Holger; Ebbinghaus, Rainer; Prager, Hans M; Bolt, Hermann M; Falkenstein, Michael; Zimmermann, Anna; Klein, Torsten; Reckwitz, Thomas; Roemer, Hermann C; Löhlein, Dietrich; Weistenhöfer, Wobbeke; Schöps, Wolfgang; Hassan Rizvi, Syed Adibul; Aslam, Muhammad; Bánfi, Gergely; Romics, Imre; Steffens, Michael; Ekici, Arif B; Winterpacht, Andreas; Ickstadt, Katja; Schwender, Holger; Hengstler, Jan G; Golka, Klaus

    2011-10-01

    Genotyping N-acetyltransferase 2 (NAT2) is of high relevance for individualized dosing of antituberculosis drugs and bladder cancer epidemiology. In this study we compared a recently published tagging single nucleotide polymorphism (SNP) (rs1495741) to the conventional 7-SNP genotype (G191A, C282T, T341C, C481T, G590A, A803G and G857A haplotype pairs) and systematically analysed if novel SNP combinations outperform the latter. For this purpose, we studied 3177 individuals by PCR and phenotyped 344 individuals by the caffeine test. Although the tagSNP and the 7-SNP genotype showed a high degree of correlation (R=0.933, P<0.0001) the 7-SNP genotype nevertheless outperformed the tagging SNP with respect to specificity (1.0 vs. 0.9444, P=0.0065). Considering all possible SNP combinations in a receiver operating characteristic analysis we identified a 2-SNP genotype (C282T, T341C) that outperformed the tagging SNP and was equivalent to the 7-SNP genotype. The 2-SNP genotype predicted the correct phenotype with a sensitivity of 0.8643 and a specificity of 1.0. In addition, it predicted the 7-SNP genotype with sensitivity and specificity of 0.9993 and 0.9880, respectively. The prediction of the NAT2 genotype by the 2-SNP genotype performed similar in populations of Caucasian, Venezuelan and Pakistani background. A 2-SNP genotype predicts NAT2 phenotypes with similar sensitivity and specificity as the conventional 7-SNP genotype. This procedure represents a facilitation in individualized dosing of NAT2 substrates without losing sensitivity or specificity.

  19. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses

    PubMed Central

    Treff, Nathan R.; Su, Jing; Tao, Xin; Northrop, Lesley E.; Scott, Richard T.

    2011-01-01

    Methods of comprehensive microarray-based aneuploidy screening in single cells are rapidly emerging. Whole-genome amplification (WGA) remains a critical component for these methods to be successful. A number of commercially available WGA kits have been independently utilized in previous single-cell microarray studies. However, direct comparison of their performance on single cells has not been conducted. The present study demonstrates that among previously published methods, a single-cell GenomePlex WGA protocol provides the best combination of speed and accuracy for single nucleotide polymorphism microarray-based copy number (CN) analysis when compared with a REPLI-g- or GenomiPhi-based protocol. Alternatively, for applications that do not have constraints on turnaround time and that are directed at accurate genotyping rather than CN assignments, a REPLI-g-based protocol may provide the best solution. PMID:21177337

  20. Role of the 5-HTTLPR and SNP Promoter Polymorphisms on Serotonin Transporter Gene Expression: a Closer Look at Genetic Architecture and In Vitro Functional Studies of Common and Uncommon Allelic Variants.

    PubMed

    Iurescia, Sandra; Seripa, Davide; Rinaldi, Monica

    2016-10-01

    The serotonin (5-hydroxytriptamine (5-HT)) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is a variable number tandem repeats (VNTR) located in the promoter region of the human 5-HTT-encoding gene SLC6A4. This length polymorphism gives rise to different promoter variants, variously influencing SLC6A4 expression. Over the years, an extensive literature has investigated the relationships between these promoter variants and SLC6A4 gene expression, since these variants have been variously associated to complex neuropsychiatric conditions and traits. In this review, we detail the genetic architecture of the 5-HTTLPR allelic variants reported so far, with a closer look at the two single nucleotide polymorphisms (SNPs) rs25531 and rs25532 that lies in the VNTR and thus increase genetic variability of the SLC6A4 promoter. We summarize the hypothesized molecular mechanisms underlying this variation. We also provide an update on common and uncommon 5-HTTLPR allelic variants reviewing the available data on functional in vitro analysis of their regulatory effect on SLC6A4 gene transcription. Controversial findings are highlighted and critically discussed. A deeper knowledge of the "5-HTTLPR universe" will be useful to better understand the molecular basis of serotonin homeostasis and the pathological basis underlying serotonin-related neuropsychiatric conditions and traits.

  1. SNP discovery using Next Generation Transcriptomic Sequencing in Atlantic herring (Clupea harengus).

    PubMed

    Helyar, Sarah J; Limborg, Morten T; Bekkevold, Dorte; Babbucci, Massimiliano; van Houdt, Jeroen; Maes, Gregory E; Bargelloni, Luca; Nielsen, Rasmus O; Taylor, Martin I; Ogden, Rob; Cariani, Alessia; Carvalho, Gary R; Panitz, Frank

    2012-01-01

    The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population

  2. SNP Discovery Using Next Generation Transcriptomic Sequencing in Atlantic Herring (Clupea harengus)

    PubMed Central

    Bekkevold, Dorte; Babbucci, Massimiliano; van Houdt, Jeroen; Maes, Gregory E.; Bargelloni, Luca; Nielsen, Rasmus O.; Taylor, Martin I.; Ogden, Rob; Cariani, Alessia; Carvalho, Gary R.; Consortium, FishPopTrace; Panitz, Frank

    2012-01-01

    The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population

  3. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    PubMed

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments.

  4. Fine tuning genomic evaluations in dairy cattle through SNP pre-selection with the Elastic-Net algorithm.

    PubMed

    Croiseau, Pascal; Legarra, Andrés; Guillaume, François; Fritz, Sébastien; Baur, Aurélia; Colombani, Carine; Robert-Granié, Christèle; Boichard, Didier; Ducrocq, Vincent

    2011-12-01

    For genomic selection methods, the statistical challenge is to estimate the effect of each of the available single-nucleotide polymorphism (SNP). In a context where the number of SNPs (p) is much higher than the number of bulls (n), this task may lead to a poor estimation of these SNP effects if, as for genomic BLUP (gBLUP), all SNPs have a non-null effect. An alternative is to use approaches that have been developed specifically to solve the 'p > n' problem. This is the case of variable selection methods and among them, we focus on the Elastic-Net (EN) algorithm that is a penalized regression approach. Performances of EN, gBLUP and pedigree-based BLUP were compared with data from three French dairy cattle breeds, giving very encouraging results for EN. We tried to push further the idea of improving SNP effect estimates by considering fewer of them. This variable selection strategy was considered both in the case of gBLUP and EN by adding an SNP pre-selection step based on quantitative trait locus (QTL) detection. Similar results were observed with or without a pre-selection step, in terms of correlations between direct genomic value (DGV) and observed daughter yield deviation in a validation data set. However, when applied to the EN algorithm, this strategy led to a substantial reduction of the number of SNPs included in the prediction equation. In a context where the number of genotyped animals and the number of SNPs gets larger and larger, SNP pre-selection strongly alleviates computing requirements and ensures that national evaluations can be completed within a reasonable time frame.

  5. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication

    PubMed Central

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  6. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  7. Single-nucleotide-polymorphism-based association mapping of dog stereotypes.

    PubMed

    Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A; Lark, Karl G

    2008-06-01

    Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865

  8. Network-based SNP meta-analysis identifies joint and disjoint genetic features across common human diseases

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) have provided a large set of genetic loci influencing the risk for many common diseases. Association studies typically analyze one specific trait in single populations in an isolated fashion without taking into account the potential phenotypic and genetic correlation between traits. However, GWA data can be efficiently used to identify overlapping loci with analogous or contrasting effects on different diseases. Results Here, we describe a new approach to systematically prioritize and interpret available GWA data. We focus on the analysis of joint and disjoint genetic determinants across diseases. Using network analysis, we show that variant-based approaches are superior to locus-based analyses. In addition, we provide a prioritization of disease loci based on network properties and discuss the roles of hub loci across several diseases. We demonstrate that, in general, agonistic associations appear to reflect current disease classifications, and present the potential use of effect sizes in refining and revising these agonistic signals. We further identify potential branching points in disease etiologies based on antagonistic variants and describe plausible small-scale models of the underlying molecular switches. Conclusions The observation that a surprisingly high fraction (>15%) of the SNPs considered in our study are associated both agonistically and antagonistically with related as well as unrelated disorders indicates that the molecular mechanisms influencing causes and progress of human diseases are in part interrelated. Genetic overlaps between two diseases also suggest the importance of the affected entities in the specific pathogenic pathways and should be investigated further. PMID:22988944

  9. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated.

  10. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated. PMID:22655005

  11. Genome-wide single nucleotide polymorphism-based assay for high-resolution epidemiological analysis of the methicillin-resistant Staphylococcus aureus hospital clone EMRSA-15.

    PubMed

    Holmes, A; McAllister, G; McAdam, P R; Hsien Choi, S; Girvan, K; Robb, A; Edwards, G; Templeton, K; Fitzgerald, J R

    2014-02-01

    The EMRSA-15 clone is a major cause of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK and elsewhere but existing typing methodologies have limited capacity to discriminate closely related strains, and are often poorly reproducible between laboratories. Here, we report the design, development and validation of a genome-wide single nucleotide polymorphism (SNP) typing method and compare it to established methods for typing of EMRSA-15. In order to identify discriminatory SNPs, the genomes of 17 EMRSA-15 strains, selected to represent the breadth of genotypic and phenotypic diversity of EMRSA-15 isolates in Scotland, were determined and phylogenetic reconstruction was carried out. In addition to 17 phylogenetically informative SNPs, five binary markers were included to form the basis of an EMRSA-15 genotyping assay. The SNP-based typing assay was as discriminatory as pulsed-field gel electrophoresis, and significantly more discriminatory than staphylococcal protein A (spa) typing for typing of a representative panel of diverse EMRSA-15 strains, isolates from two EMRSA-15 hospital outbreak investigations, and a panel of bacteraemia isolates obtained in healthcare facilities in the east of Scotland during a 12-month period. The assay is a rapid, and reproducible approach for epidemiological analysis of EMRSA-15 clinical isolates in Scotland. Unlike established methods the DNA sequence-based method is ideally suited for inter-laboratory comparison of identified genotypes, and its flexibility lends itself to supplementation with additional SNPs or markers for the identification of novel S. aureus strains in other regions of the world.

  12. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  13. Cross-Species Application of SNP Chips is Not Suitable for Identifying Runs of Homozygosity.

    PubMed

    Shafer, Aaron B A; Miller, Joshua M; Kardos, Marty

    2016-03-01

    Cross-species application of single-nucleotide polymorphism (SNP) chips is a valid, relatively cost-effective alternative to the high-throughput sequencing methods generally required to obtain a genome-wide sampling of polymorphisms. Kharzinova et al. (2015) examined the applicability of SNP chips developed in domestic bovids (cattle and sheep) to a semi-wild cervid (reindeer). The ancestors of bovids and cervids diverged between 20 and 30 million years ago (Hassanin and Douzery 2003; Bibi et al. 2013). Empirical work has shown that for a SNP chip developed in a bovid and applied to a cervid species, approximately 50% genotype success with 1% of the loci being polymorphic is expected (Miller et al. 2012). The genotyping of Kharzinova et al. (2015) follows this pattern; however, these data are not appropriate for identifying runs of homozygosity (ROH) and can be problematic for estimating linkage disequilibrium (LD) and we caution readers in this regard.

  14. Cross-Species Application of SNP Chips is Not Suitable for Identifying Runs of Homozygosity.

    PubMed

    Shafer, Aaron B A; Miller, Joshua M; Kardos, Marty

    2016-03-01

    Cross-species application of single-nucleotide polymorphism (SNP) chips is a valid, relatively cost-effective alternative to the high-throughput sequencing methods generally required to obtain a genome-wide sampling of polymorphisms. Kharzinova et al. (2015) examined the applicability of SNP chips developed in domestic bovids (cattle and sheep) to a semi-wild cervid (reindeer). The ancestors of bovids and cervids diverged between 20 and 30 million years ago (Hassanin and Douzery 2003; Bibi et al. 2013). Empirical work has shown that for a SNP chip developed in a bovid and applied to a cervid species, approximately 50% genotype success with 1% of the loci being polymorphic is expected (Miller et al. 2012). The genotyping of Kharzinova et al. (2015) follows this pattern; however, these data are not appropriate for identifying runs of homozygosity (ROH) and can be problematic for estimating linkage disequilibrium (LD) and we caution readers in this regard. PMID:26774056

  15. High-Throughput DNA Array for SNP Detection of KRAS Gene Using a Centrifugal Microfluidic Device.

    PubMed

    Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    Here, we describe detection of single nucleotide polymorphism (SNP) in genomic DNA samples using a NanoBioArray (NBA) chip. Fast DNA hybridization is achieved in the chip when target DNAs are introduced to the surface-arrayed probes using centrifugal force. Gold nanoparticles (AuNPs) are used to assist SNP detection at room temperature. The parallel setting of sample introduction in the spiral channels of the NBA chip enables multiple analyses on many samples, resulting in a technique appropriate for high-throughput SNP detection. The experimental procedure, including chip fabrication, probe array printing, DNA amplification, hybridization, signal detection, and data analysis, is described in detail.

  16. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure.

  17. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP.

    PubMed

    Nadimi, Motahareh; Rahgozar, Soheila; Moafi, Alireza; Tavassoli, Manoochehr; Mesrian Tanha, Hamzeh

    2016-01-01

    Acute leukemia is the most common cancer in children and involves several factors that contribute to the development of multidrug resistance and treatment failure. According to our recent studies, the BAALC gene is identified to have high mRNA expression levels in childhood acute lymphoblastic leukemia (ALL) and those with multidrug resistance. Several polymorphisms are associated with the expression of this gene. To date, there has been no study on the rs62527607 [GT] single nucleotide polymorphism (SNP) of BAALC gene and its link with childhood acute lymphoblastic and myeloid leukemia (AML). The purpose of this study is to evaluate the prevalence of this polymorphism in pediatric acute leukemia, as well as its relationship with prognosis. DNA samples were extracted from bone marrow slides of 129 children with ALL and 16 children with AML. The rs62527607 [GT] SNP was evaluated using mismatch polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based analysis. The association between the SNP alleles and patient disease-free survival was then assessed. The prevalence of the T-allele of rs62527607 [GT] SNP in childhood T-ALL and pre-B-ALL was 28.3% and 11.2%, respectively. In the pre-B-ALL patients, 3 year disease free survival was associated with the GG genotype. Results showed a robust association between the rs62527607 SNP and the risk of relapse in ALL, but not AML, patients. T-ALL patients with the GT genotype had an 8.75 fold higher risk of relapse. The current study demonstrates a significant association between the genotype GT and the polymorphic allele G424T, and introduces this SNP as a negative prognostic factor in children with ALL.

  18. Assessing host-specificity of Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide polymorphisms in intergenic regions.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F

    2015-11-01

    Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates

  19. Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems

    PubMed Central

    Li, Xianran; Scanlon, Michael J.; Yu, Jianming

    2015-01-01

    DNA base composition is a fundamental genome feature. However, the evolutionary pattern of base composition and its potential causes have not been well understood. Here, we report findings from comparative analysis of base composition at the whole-genome level across 2210 species, the polymorphic-site level across eight population comparison sets, and the mutation-site level in 12 mutation-tracking experiments. We first demonstrate that base composition follows the individual-strand base equality rule at the genome, chromosome and polymorphic-site levels. More intriguingly, clear separation of base-composition values calculated across polymorphic sites was consistently observed between basal and derived groups, suggesting common underlying mechanisms. Individuals in the derived groups show an A&T-increase/G&C-decrease pattern compared with the basal groups. Spontaneous and induced mutation experiments indicated these patterns of base composition change can emerge across mutation sites. With base-composition across polymorphic sites as a genome phenotype, genome scans with human 1000 Genomes and HapMap3 data identified a set of significant genomic regions enriched with Gene Ontology terms for DNA repair. For three DNA repair genes (BRIP1, PMS2P3 and TTDN), ENCODE data provided evidence for interaction between genomic regions containing these genes and regions containing the significant SNPs. Our findings provide insights into the mechanisms of genome evolution. PMID:25765652

  20. Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs)

    NASA Astrophysics Data System (ADS)

    Batta-Lona, Paola G.; Bucklin, Ann; Wiebe, Peter H.; Patarnello, Tomaso; Copley, Nancy J.

    2011-07-01

    The Southern Ocean krill, Euphausia superba, is one of the best-studied marine zooplankton species in terms of population genetic diversity and structure; with few exceptions, previous studies have shown the species to be genetically homogeneous at larger spatial scales. The goals of this study are to examine sub-regional scale population genetic diversity and structure of E. superba using molecular characters selected with this goal in mind, and to thereby examine hypotheses of the source(s) of recruitment for krill populations of the Western Antarctic Peninsula (WAP). Collections were made throughout the WAP region during US GLOBEC cruises in austral fall, 2001 and 2002. A total of 585 E. superba (including all 6 furcilia larval stages, juveniles, and adults) was analyzed after confirmation of species identification using a competitive multiplexed species-specific PCR (SS-PCR) reaction based on mitochondrial cytochrome oxidase I (mtCOI) sequences. The molecular markers used were allele frequencies at single nucleotide polymorphism (SNP) sites in the gene encoding mitochondrial Cytochrome b (cyt b). Four SNP sites that showed desirable patterns of allelic variation were selected; alleles were detected using a multiplexed single-base extension PCR protocol. A total of 22 SNP haplotypes (i.e., strings of polymorphisms at the four SNP sites) was observed; haplotype diversity (Hd)=0.811 (s.d.=0.008). Analysis of molecular variation within and among samples, areas (i.e., Marguerite Bay, Crystal Sound, shelf, and offshore) and collection years revealed no difference between 2001 and 2002 collections overall, although differences between 2001 and 2002 collections from Marguerite Bay explained 7.4% of the variance ( FST=0.072; p=0.002±0.001). Most of the variation (96.3%) occurred within samples each year, with no significant differentiation among areas. There was small, but significant differentiation among samples within areas in 2001 (4.6%; FST=0.045; p=0.015±0

  1. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding.

    PubMed

    Maccaferri, Marco; Ricci, Andrea; Salvi, Silvio; Milner, Sara Giulia; Noli, Enrico; Martelli, Pier Luigi; Casadio, Rita; Akhunov, Eduard; Scalabrin, Simone; Vendramin, Vera; Ammar, Karim; Blanco, Antonio; Desiderio, Francesca; Distelfeld, Assaf; Dubcovsky, Jorge; Fahima, Tzion; Faris, Justin; Korol, Abraham; Massi, Andrea; Mastrangelo, Anna Maria; Morgante, Michele; Pozniak, Curtis; N'Diaye, Amidou; Xu, Steven; Tuberosa, Roberto

    2015-06-01

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes. PMID:25424506

  2. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding.

    PubMed

    Maccaferri, Marco; Ricci, Andrea; Salvi, Silvio; Milner, Sara Giulia; Noli, Enrico; Martelli, Pier Luigi; Casadio, Rita; Akhunov, Eduard; Scalabrin, Simone; Vendramin, Vera; Ammar, Karim; Blanco, Antonio; Desiderio, Francesca; Distelfeld, Assaf; Dubcovsky, Jorge; Fahima, Tzion; Faris, Justin; Korol, Abraham; Massi, Andrea; Mastrangelo, Anna Maria; Morgante, Michele; Pozniak, Curtis; N'Diaye, Amidou; Xu, Steven; Tuberosa, Roberto

    2015-06-01

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.

  3. Introgression browser: high-throughput whole-genome SNP visualization.

    PubMed

    Aflitos, Saulo Alves; Sanchez-Perez, Gabino; de Ridder, Dick; Fransz, Paul; Schranz, Michael E; de Jong, Hans; Peters, Sander A

    2015-04-01

    Breeding by introgressive hybridization is a pivotal strategy to broaden the genetic basis of crops. Usually, the desired traits are monitored in consecutive crossing generations by marker-assisted selection, but their analyses fail in chromosome regions where crossover recombinants are rare or not viable. Here, we present the Introgression Browser (iBrowser), a bioinformatics tool aimed at visualizing introgressions at nucleotide or SNP (Single Nucleotide Polymorphisms) accuracy. The software selects homozygous SNPs from Variant Call Format (VCF) information and filters out heterozygous SNPs, multi-nucleotide polymorphisms (MNPs) and insertion-deletions (InDels). For data analysis iBrowser makes use of sliding windows, but if needed it can generate any desired fragmentation pattern through General Feature Format (GFF) information. In an example of tomato (Solanum lycopersicum) accessions we visualize SNP patterns and elucidate both position and boundaries of the introgressions. We also show that our tool is capable of identifying alien DNA in a panel of the closely related S. pimpinellifolium by examining phylogenetic relationships of the introgressed segments in tomato. In a third example, we demonstrate the power of the iBrowser in a panel of 597 Arabidopsis accessions, detecting the boundaries of a SNP-free region around a polymorphic 1.17 Mbp inverted segment on the short arm of chromosome 4. The architecture and functionality of iBrowser makes the software appropriate for a broad set of analyses including SNP mining, genome structure analysis, and pedigree analysis. Its functionality, together with the capability to process large data sets and efficient visualization of sequence variation, makes iBrowser a valuable breeding tool.

  4. Association of dietary and supplemental folate intake and polymorphisms in three FOCM pathway genes with colorectal cancer in a population-based case-control study.

    PubMed

    Ashmore, Joseph H; Lesko, Samuel M; Muscat, Joshua E; Gallagher, Carla J; Berg, Arthur S; Miller, Paige E; Hartman, Terryl J; Lazarus, Philip

    2013-10-01

    Previous research has shown that greater intakes of dietary folate are associated with reduced risk for colorectal cancer (CRC) and that single nucleotide polymorphisms (SNPs) in genes involved in folate-mediated one-carbon metabolism (FOCM) also may be involved in altering CRC risk. The objective of this study was to evaluate the role of folate intake (and intakes of related dietary components such as methionine), 35 SNPs in three FOCM pathway genes (MTHFD1, MTHFR, and TYMS), and their interactions on CRC risk in a population-based case-control study in Pennsylvania (686 cases, 740 controls). Diet and supplement use was assessed for the year before diagnosis or interview for cases and controls, respectively, with a modified Diet History Questionnaire from the National Cancer Institute. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regression. Using a dominant model for the variant allele, several SNPs were significantly associated with CRC including MTHFD1 rs8003379 (OR = 1.65; 95% CI = 1.00-2.73) and rs17824591 (OR = 1.98; 95% CI = 1.14-3.41) and the TYMS rs2853533 SNP (OR = 1.38; 95% CI = 1.05-1.80). Using a nondominant model, the AA genotype for MTHFR rs1476413 exhibited a marginally significant (OR = 1.56; 95% CI = 1.00-2.44) association with CRC. Two TYMS SNPs (rs16948305 and rs495139) exhibited significant (P = 0.024 and P = 0.040, respectively) gene-diet interactions with folate intake. One MTHFD1 (P = 0.019) and one MTHFR (P = 0.042) SNP exhibited gene-diet interactions with methionine intake. These findings suggest that allelic variants in genes involved in FOCM interact with dietary factors including folate and methionine to modify risk for CRC.

  5. The role of WWOX polymorphisms on COPD susceptibility and pulmonary function traits in Chinese: a case-control study and family-based analysis

    PubMed Central

    Xie, Chenli; Chen, Xiaoliang; Qiu, Fuman; Zhang, Lisha; Wu, Di; Chen, Jiansong; Yang, Lei; Lu, Jiachun

    2016-01-01

    Single nucleotide polymorphisms (SNPs) in the WW domain containing oxidoreductase (WWOX) gene were recently identified to be quantitative trait loci for lung function and thus likely to be susceptible biomarkers for COPD. However, the associations between WWOX SNPs and COPD risk are still unclear. Here, by conducting a two-center case-control study including 1511 COPD cases and 1677 controls and a family-based analysis comprising 95 nuclear pedigrees, we tested the associations between five SNPs that are rs10220974C >T, rs3764340C >G, rs12918952G >A, rs383362G >T, rs12828G >A of WWOX and COPD risk as well as the hereditary inclination of these loci among COPD families. We found that the SNP rs383362G >T was significantly associated with an increased risk of COPD in a T allele-number dependent-manner (OR = 1.30, 95%CI = 1.11 - 1.52). The T allele was more prone to over transmit to sick children and sibs than the G allele (Z = 2.900, P = 0.004). Moreover, the forced expiratory volume in one second/forced vital capacity (FEV1/FVC), FEV1/predicted-FEV1 and annual FEV1 also significantly decreased in the rs383362T carriers compared to the rs383362GG carriers. For other SNPs, no significant association was observed for COPD and pulmonary function. Taken together, our data demonstrated that the SNP rs383362G >T of WWOX plays a role in COPD inheritance. PMID:26902998

  6. STAT3 polymorphisms may predict an unfavorable response to first-line platinum-based therapy for women with advanced serous epithelial ovarian cancer.

    PubMed

    Permuth-Wey, Jennifer; Fulp, William J; Reid, Brett M; Chen, Zhihua; Georgeades, Christina; Cheng, Jin Q; Magliocco, Anthony; Chen, Dung-Tsa; Lancaster, Johnathan M

    2016-02-01

    Cancer stem cells (CSC) contribute to epithelial ovarian cancer (EOC) progression and therapeutic response. We hypothesized that germline single nucleotide polymorphisms (SNPs) in CSC-related genes may predict an initial therapeutic response for women newly diagnosed with EOC. A nested case-control design was used to study 361 women with advanced-stage serous EOC treated with surgery followed by first-line platinum-based combination therapy at Moffitt Cancer Center or as part of The Cancer Genome Atlas Study. "Cases" included 102 incomplete responders (IRs) and "controls" included 259 complete clinical responders (CRs) to therapy. Using Illumina genotyping arrays and imputation, DNA samples were evaluated for 5,509 SNPs in 24 ovarian CSC-related genes. We also evaluated the overall significance of each CSC gene using the admixture maximum likelihood (AML) test, and correlated genotype with EOC tumor tissue expression. The strongest SNP-level associations with an IR to therapy were identified for correlated (r(2) > 0.80) SNPs within signal transducer and activator of transcription 3 (STAT3) [odds ratio (OR), 2.24; 95% confidence interval (CI), 1.32-3.78; p = 0.0027], after adjustment for age, population stratification, grade and residual disease. At the gene level, STAT3 was significantly associated with an IR to therapy (pAML = 0.006). rs1053004, a STAT3 SNP in a putative miRNA-binding site, was associated with STAT3 expression (p = 0.057). This is the first study to identify germline STAT3 variants as independent predictors of an unfavorable therapeutic response for EOC patients. Findings suggest that STAT3 genotype may identify high-risk women likely to respond more favorably to novel therapeutic combinations that include STAT3 inhibitors. PMID:26264211

  7. A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII.

    PubMed

    Liu, Xi-Peng; Hou, Jing-Li; Liu, Jian-Hua

    2010-03-01

    Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation. SNPs are important markers that link sequence variations to phenotypic changes. Because of the importance of SNPs in the life and medical sciences, a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. In this article, we describe a novel method for SNP genotyping based on differential fluorescence emission due to cleavage by Thermus thermophilus RNase HII (TthRNase HII) of DNA heteroduplexes containing an SNP site-specific chimeric DNA-rN(1)-DNA molecular beacon (cMB). We constructed a loop sequence for a cMB that contains a single SNP-specific ribonucleotide at the central site. When the cMB probe is hybridized to a target double-stranded DNA (dsDNA), a perfect match of the cMB/DNA duplex permits efficient cleavage with TthRNase HII, whereas a mismatch in the duplex due to an SNP greatly reduces efficiency. Cleavage efficiency is measured by the incremental difference of fluorescence emission of the beacon. We show that the genotypes of 10 individuals at 12 SNP sites across a series of human leukocyte antigen (HLA) can be determined correctly with respect to conventional DNA sequencing. This novel TthRNase HII-based method offers a platform for easy and accurate SNP analysis.

  8. Rapid Diagnosis of Imprinting Disorders Involving Copy Number Variation and Uniparental Disomy Using Genome-Wide SNP Microarrays.

    PubMed

    Liu, Weiqiang; Zhang, Rui; Wei, Jun; Zhang, Huimin; Yu, Guojiu; Li, Zhihua; Chen, Min; Sun, Xiaofang

    2015-01-01

    Imprinting disorders, such as Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS) and Angelman syndrome (AS), can be detected via methylation analysis, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), or other methods. In this study, we applied single nucleotide polymorphism (SNP)-based chromosomal microarray analysis to detect copy number variations (CNVs) and uniparental disomy (UPD) events in patients with suspected imprinting disorders. Of 4 patients, 2 had a 5.25-Mb microdeletion in the 15q11.2q13.2 region, 1 had a 38.4-Mb mosaic UPD in the 11p15.4 region, and 1 had a 60-Mb detectable UPD between regions 14q13.2 and 14q32.13. Although the 14q32.2 region was classified as normal by SNP array for the 14q13 UPD patient, it turned out to be a heterodisomic UPD by short tandem repeat marker analysis. MS-MLPA analysis was performed to validate the variations. In conclusion, SNP-based microarray is an efficient alternative method for quickly and precisely diagnosing PWS, AS, BWS, and other imprinted gene-associated disorders when considering aberrations due to CNVs and most types of UPD. PMID:26184742

  9. Cluster-localized sparse logistic regression for SNP data.

    PubMed

    Binder, Harald; Müller, Tina; Schwender, Holger; Golka, Klaus; Steffens, Michael; Hengstler, Jan G; Ickstadt, Katja; Schumacher, Martin

    2012-08-14

    The task of analyzing high-dimensional single nucleotide polymorphism (SNP) data in a case-control design using multivariable techniques has only recently been tackled. While many available approaches investigate only main effects in a high-dimensional setting, we propose a more flexible technique, cluster-localized regression (CLR), based on localized logistic regression models, that allows different SNPs to have an effect for different groups of individuals. Separate multivariable regression models are fitted for the different groups of individuals by incorporating weights into componentwise boosting, which provides simultaneous variable selection, hence sparse fits. For model fitting, these groups of individuals are identified using a clustering approach, where each group may be defined via different SNPs. This allows for representing complex interaction patterns, such as compositional epistasis, that might not be detected by a single main effects model. In a simulation study, the CLR approach results in improved prediction performance, compared to the main effects approach, and identification of important SNPs in several scenarios. Improved prediction performance is also obtained for an application example considering urinary bladder cancer. Some of the identified SNPs are predictive for all individuals, while others are only relevant for a specific group. Together with the sets of SNPs that define the groups, potential interaction patterns are uncovered.

  10. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    PubMed Central

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, Robin FA

    2003-01-01

    The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees. PMID:12729553

  11. A Web-Based Genetic Polymorphism Learning Approach for High School Students and Science Teachers

    ERIC Educational Resources Information Center

    Amenkhienan, Ehichoya; Smith, Edward J.

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using…

  12. Software solutions for the livestock genomics SNP array revolution.

    PubMed

    Nicolazzi, E L; Biffani, S; Biscarini, F; Orozco Ter Wengel, P; Caprera, A; Nazzicari, N; Stella, A

    2015-08-01

    Since the beginning of the genomic era, the number of available single nucleotide polymorphism (SNP) arrays has grown considerably. In the bovine species alone, 11 SNP chips not completely covered by intellectual property are currently available, and the number is growing. Genomic/genotype data are not standardized, and this hampers its exchange and integration. In addition, software used for the analyses of these data usually requires not standard (i.e. case specific) input files which, considering the large amount of data to be handled, require at least some programming skills in their production. In this work, we describe a software toolkit for SNP array data management, imputation, genome-wide association studies, population genetics and genomic selection. However, this toolkit does not solve the critical need for standardization of the genotypic data and software input files. It only highlights the chaotic situation each researcher has to face on a daily basis and gives some helpful advice on the currently available tools in order to navigate the SNP array data complexity. PMID:25907889

  13. Software solutions for the livestock genomics SNP array revolution.

    PubMed

    Nicolazzi, E L; Biffani, S; Biscarini, F; Orozco Ter Wengel, P; Caprera, A; Nazzicari, N; Stella, A

    2015-08-01

    Since the beginning of the genomic era, the number of available single nucleotide polymorphism (SNP) arrays has grown considerably. In the bovine species alone, 11 SNP chips not completely covered by intellectual property are currently available, and the number is growing. Genomic/genotype data are not standardized, and this hampers its exchange and integration. In addition, software used for the analyses of these data usually requires not standard (i.e. case specific) input files which, considering the large amount of data to be handled, require at least some programming skills in their production. In this work, we describe a software toolkit for SNP array data management, imputation, genome-wide association studies, population genetics and genomic selection. However, this toolkit does not solve the critical need for standardization of the genotypic data and software input files. It only highlights the chaotic situation each researcher has to face on a daily basis and gives some helpful advice on the currently available tools in order to navigate the SNP array data complexity.

  14. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    PubMed

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies. PMID:26358548

  15. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    PubMed

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.

  16. A Whole-Genome Single Nucleotide Polymorphism-Based Approach To Trace and Identify Outbreaks Linked to a Common Salmonella enterica subsp. enterica Serovar Montevideo Pulsed-Field Gel Electrophoresis Type▿†

    PubMed Central

    den Bakker, Henk C.; Moreno Switt, Andrea I.; Cummings, Craig A.; Hoelzer, Karin; Degoricija, Lovorka; Rodriguez-Rivera, Lorraine D.; Wright, Emily M.; Fang, Rixun; Davis, Margaret; Root, Tim; Schoonmaker-Bopp, Dianna; Musser, Kimberlee A.; Villamil, Elizabeth; Waechter, HaeNa; Kornstein, Laura; Furtado, Manohar R.; Wiedmann, Martin

    2011-01-01

    In this study, we report a whole-genome single nucleotide polymorphism (SNP)-based evolutionary approach to study the epidemiology of a multistate outbreak of Salmonella enterica subsp. enterica serovar Montevideo. This outbreak included 272 cases that occurred in 44 states between July 2009 and April 2010. A case-control study linked the consumption of salami made with contaminated black and red pepper to the outbreak. We sequenced, on the SOLiD System, 47 isolates with XbaI PFGE pattern JIXX01.0011, a common pulsed-field gel electrophoresis (PFGE) pattern associated with isolates from the outbreak. These isolates represented 20 isolates collected from human sources during the period of the outbreak and 27 control isolates collected from human, food, animal, and environmental sources before the outbreak. Based on 253 high-confidence SNPs, we were able to reconstruct a tip-dated molecular clock phylogeny of the isolates and to assign four human isolates to the actual outbreak. We developed an SNP typing assay to rapidly discriminate between outbreak-related cases and non-outbreak-related cases and tested this assay on an extended panel of 112 isolates. These results suggest that only a very small percentage of the human isolates with the outbreak PFGE pattern and obtained during the outbreak period could be attributed to the actual pepper-related outbreak (20%), while the majority (80%) of the putative cases represented background cases. This study demonstrates that next-generation-based SNP typing provides the resolution and accuracy needed for outbreak investigations of food-borne pathogens that cannot be distinguished by currently used subtyping methods. PMID:22003026

  17. VaDE: a manually curated database of reproducible associations between various traits and human genomic polymorphisms

    PubMed Central

    Nagai, Yoko; Takahashi, Yasuko; Imanishi, Tadashi

    2015-01-01

    Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with the development of common diseases. However, it is clear that genetic risk factors of common diseases are heterogeneous among human populations. Therefore, we developed a database of genomic polymorphisms that are reproducibly associated with disease susceptibilities, drug responses and other traits for each human population: ‘VarySysDB Disease Edition’ (VaDE; http://bmi-tokai.jp/VaDE/). SNP-trait association data were obtained from the National Human Genome Research Institute GWAS (NHGRI GWAS) catalog and RAvariome, and we added detailed information of sample populations by curating original papers. In addition, we collected and curated original papers, and registered the detailed information of SNP-trait associations in VaDE. Then, we evaluated reproducibility of associations in each population by counting the number of significantly associated studies. VaDE provides literature-based SNP-trait association data and functional genomic region annotation for SNP functional research. SNP functional annotation data included experimental data of the ENCODE project, H-InvDB transcripts and the 1000 Genome Project. A user-friendly web interface was developed to assist quick search, easy download and fast swapping among viewers. We believe that our database will contribute to the future establishment of personalized medicine and increase our understanding of genetic factors underlying diseases. PMID:25361969

  18. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies.

    PubMed

    Yamaguchi-Kabata, Yumi; Nakazono, Kazuyuki; Takahashi, Atsushi; Saito, Susumu; Hosono, Naoya; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki

    2008-10-01

    Because population stratification can cause spurious associations in case-control studies, understanding the population structure is important. Here, we examined Japanese population structure by "Eigenanalysis," using the genotypes for 140,387 SNPs in 7003 Japanese individuals, along with 60 European, 60 African, and 90 East-Asian individuals, in the HapMap project. Most Japanese individuals fell into two main clusters, Hondo and Ryukyu; the Hondo cluster includes most of the individuals from the main islands in Japan, and the Ryukyu cluster includes most of the individuals from Okinawa. The SNPs with the greatest frequency differences between the Hondo and Ryukyu clusters were found in the HLA region in chromosome 6. The nonsynonymous SNPs with the greatest frequency differences between the Hondo and Ryukyu clusters were the Val/Ala polymorphism (rs3827760) in the EDAR gene, associated with hair thickness, and the Gly/Ala polymorphism (rs17822931) in the ABCC11 gene, associated with ear-wax type. Genetic differentiation was observed, even among different regions in Honshu Island, the largest island of Japan. Simulation studies showed that the inclusion of different proportions of individuals from different regions of Japan in case and control groups can lead to an inflated rate of false-positive results when the sample sizes are large.

  19. SNP Array Karyotyping Allows for the Detection of Uniparental Disomy and Cryptic Chromosomal Abnormalities in MDS/MPD-U and MPD

    PubMed Central

    Gondek, Lukasz P.; Dunbar, Andrew J.; Szpurka, Hadrian; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2007-01-01

    We applied single nucleotide polymorphism arrays (SNP-A) to study karyotypic abnormalities in patients with atypical myeloproliferative syndromes (MPD), including myeloproliferative/myelodysplastic syndrome overlap both positive and negative for the JAK2 V617F mutation and secondary acute myeloid leukemia (AML). In typical MPD cases (N = 8), which served as a control group, those with a homozygous V617F mutation showed clear uniparental disomy (UPD) of 9p using SNP-A. Consistent with possible genomic instability, in 19/30 MDS/MPD-U patients, we found additional lesions not identified by metaphase cytogenetics. In addition to UPD9p, we also have detected UPD affecting other chromosomes, including 1 (2/30), 11 (4/30), 12 (1/30) and 22 (1/30). Transformation to AML was observed in 8/30 patients. In 5 V617F+ patients who progressed to AML, we show that SNP-A can allow for the detection of two modes of transformation: leukemic blasts evolving from either a wild-type jak2 precursor carrying other acquired chromosomal defects, or from a V617F+ mutant progenitor characterized by UPD9p. SNP-A-based detection of cryptic lesions in MDS/MPD-U may help explain the clinical heterogeneity of this disorder. PMID:18030353

  20. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers

    PubMed Central

    Van Inghelandt, Delphine; Melchinger, Albrecht E.; Lebreton, Claude

    2010-01-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity. Electronic supplementary material The online version of this article (doi:10.1007/s00122-009-1256-2) contains supplementary material, which is available to authorized users. PMID:20063144

  1. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. PMID:22971731

  2. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays

    USGS Publications Warehouse

    Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon

    2012-01-01

    Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.

  3. Plastid DNA sequencing and nuclear SNP genotyping help resolve the puzzle of central American Platanus

    PubMed Central

    De Castro, Olga; Di Maio, Antonietta; Lozada García, José Armando; Piacenti, Danilo; Vázquez-Torres, Mario; De Luca, Paolo

    2013-01-01

    Background and Aims Recent research on the history of Platanus reveals that hybridization phenomena occurred in the central American species. This study has two goals: to help resolve the evolutive puzzle of central American Platanus, and to test the potential of real-time polymerase chain reaction (PCR) for detecting ancient hybridization. Methods Sequencing of a uniparental plastid DNA marker [psbA-trnH(GUG) intergenic spacer] and qualitative and quantitative single nucleotide polymorphism (SNP) genotyping of biparental nuclear ribosomal DNA (nrDNA) markers [LEAFY intron 2 (LFY-i2) and internal transcribed spacer 2 (ITS2)] were used. Key Results Based on the SNP genotyping results, several Platanus accessions show the presence of hybridization/introgression, including some accessions of P. rzedowskii and of P. mexicana var. interior and one of P. mexicana var. mexicana from Oaxaca (= P. oaxacana). Based on haplotype analyses of the psbA-trnH spacer, five haplotypes were detected. The most common of these is present in taxa belonging to P. orientalis, P. racemosa sensu lato, some accessions of P. occidentalis sensu stricto (s.s.) from Texas, P. occidentalis var. palmeri, P. mexicana s.s. and P. rzedowskii. This is highly relevant to genetic relationships with the haplotypes present in P. occidentalis s.s. and P. mexicana var. interior. Conclusions Hybridization and introgression events between lineages ancestral to modern central and eastern North American Platanus species occurred. Plastid haplotypes and qualitative and quantitative SNP genotyping provide information critical for understanding the complex history of Mexican Platanus. Compared with the usual molecular techniques of sub-cloning, sequencing and genotyping, real-time PCR assay is a quick and sensitive technique for analysing complex evolutionary patterns. PMID:23798602

  4. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers.

    PubMed

    Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P

    2008-01-01

    Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.

  5. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers.

    PubMed

    Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P

    2008-01-01

    Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop. PMID:18752192

  6. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  7. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    PubMed

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  8. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters

    PubMed Central

    2015-01-01

    Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we

  9. SNP Haplotype Mapping in a Small ALS Family

    PubMed Central

    Krueger, Katherine A. Dick; Tsuji, Shoji; Fukuda, Yoko; Takahashi, Yuji; Goto, Jun; Mitsui, Jun; Ishiura, Hiroyuki; Dalton, Joline C.; Miller, Michael B.; Day, John W.; Ranum, Laura P. W.

    2009-01-01

    The identification of genes for monogenic disorders has proven to be highly effective for understanding disease mechanisms, pathways and gene function in humans. Nevertheless, while thousands of Mendelian disorders have not yet been mapped there has been a trend away from studying single-gene disorders. In part, this is due to the fact that many of the remaining single-gene families are not large enough to map the disease locus to a single site in the genome. New tools and approaches are needed to allow researchers to effectively tap into this genetic gold-mine. Towards this goal, we have used haploid cell lines to experimentally validate the use of high-density single nucleotide polymorphism (SNP) arrays to define genome-wide haplotypes and candidate regions, using a small amyotrophic lateral sclerosis (ALS) family as a prototype. Specifically, we used haploid-cell lines to determine if high-density SNP arrays accurately predict haplotypes across entire chromosomes and show that haplotype information significantly enhances the genetic information in small families. Panels of haploid-cell lines were generated and a 5 centimorgan (cM) short tandem repeat polymorphism (STRP) genome scan was performed. Experimentally derived haplotypes for entire chromosomes were used to directly identify regions of the genome identical-by-descent in 5 affected individuals. Comparisons between experimentally determined and in silico haplotypes predicted from SNP arrays demonstrate that SNP analysis of diploid DNA accurately predicted chromosomal haplotypes. These methods precisely identified 12 candidate intervals, which are shared by all 5 affected individuals. Our study illustrates how genetic information can be maximized using readily available tools as a first step in mapping single-gene disorders in small families. PMID:19479031

  10. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere.

  11. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. PMID:26415663

  12. Single Nucleotide Polymorphism Array Genotyping is Equivalent to Metaphase Cytogenetics for Diagnosis of Turner Syndrome

    PubMed Central

    Prakash, Siddharth; Guo, Dongchuan; Maslen, Cheryl L.; Silberbach, Michael; Investigators, GenTAC; Milewicz, Dianna; Bondy, Carolyn A.

    2013-01-01

    Background Turner syndrome (TS) is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1:2500 females. We hypothesized that single nucleotide polymorphism (SNP) array genotyping can provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. Methods We genotyped 187 TS patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for TS based on karyotypes (60%) or characteristic physical features. SNP array results confirmed the diagnosis of TS in 100% of cases. Results We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present including isochromosomes (16%), rings (5%) and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that SNP array data did not detect X;autosome translocations (3 cases), but did identify 2 derivative Y chromosomes and 13 large copy number variants that were not detected by karyotyping. Conclusions Our data is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in TS. PMID:23743550

  13. Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers.

    PubMed

    Rai, Ved Prakash; Kumar, Rajesh; Kumar, Sanjay; Rai, Ashutosh; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap; Rai, Awadesh Bahadur; Paliwal, Rajneesh

    2013-10-01

    A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2-5). The average polymorphic information content (PIC) was 0.69 (range, 0.29-0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44-0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin. PMID:24431527

  14. Prioritizing sequence polymorphisms for potential association with phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The millions of SNP, insertions and deletions revealed by next generation sequencing (NGS), are certain to include polymorphisms responsible for phenotypic variation. Distinguishing causal from benign variants may allow genomic predictions that are robust across populations. While variants underly...

  15. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    PubMed

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.

  16. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    PubMed

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples. PMID:25147024

  17. PPLine: An Automated Pipeline for SNP, SAP, and Splice Variant Detection in the Context of Proteogenomics.

    PubMed

    Krasnov, George Sergeevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna; Shargunov, Alexander Valerievich; Karpov, Dmitry Sergeevich; Uroshlev, Leonid Andreevich; Melnikova, Natalya Vladimirovna; Blinov, Vladimir Mikhailovich; Poverennaya, Ekaterina Vladimirovna; Archakov, Alexander Ivanovich; Lisitsa, Andrey Valerievich; Ponomarenko, Elena Alexandrovna

    2015-09-01

    The fundamental mission of the Chromosome-Centric Human Proteome Project (C-HPP) is the research of human proteome diversity, including rare variants. Liver tissues, HepG2 cells, and plasma were selected as one of the major objects for C-HPP studies. The proteogenomic approach, a recently introduced technique, is a powerful method for predicting and validating proteoforms coming from alternative splicing, mutations, and transcript editing. We developed PPLine, a Python-based proteogenomic pipeline providing automated single-amino-acid polymorphism (SAP), indel, and alternative-spliced-variants discovery based on raw transcriptome and exome sequence data, single-nucleotide polymorphism (SNP) annotation and filtration, and the prediction of proteotypic peptides (available at https://sourceforge.net/projects/ppline). In this work, we performed deep transcriptome sequencing of HepG2 cells and liver tissues using two platforms: Illumina HiSeq and Applied Biosystems SOLiD. Using PPLine, we revealed 7756 SAP and indels for HepG2 cells and liver (including 659 variants nonannotated in dbSNP). We found 17 indels in transcripts associated with the translation of alternate reading frames (ARF) longer than 300 bp. The ARF products of two genes, SLMO1 and TMEM8A, demonstrate signatures of caspase-binding domain and Gcn5-related N-acetyltransferase. Alternative splicing analysis predicted novel proteoforms encoded by 203 (liver) and 475 (HepG2) genes according to both Illumina and SOLiD data. The results of the present work represent a basis for subsequent proteomic studies by the C-HPP consortium. PMID:26147802

  18. PPLine: An Automated Pipeline for SNP, SAP, and Splice Variant Detection in the Context of Proteogenomics.

    PubMed

    Krasnov, George Sergeevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna; Shargunov, Alexander Valerievich; Karpov, Dmitry Sergeevich; Uroshlev, Leonid Andreevich; Melnikova, Natalya Vladimirovna; Blinov, Vladimir Mikhailovich; Poverennaya, Ekaterina Vladimirovna; Archakov, Alexander Ivanovich; Lisitsa, Andrey Valerievich; Ponomarenko, Elena Alexandrovna

    2015-09-01

    The fundamental mission of the Chromosome-Centric Human Proteome Project (C-HPP) is the research of human proteome diversity, including rare variants. Liver tissues, HepG2 cells, and plasma were selected as one of the major objects for C-HPP studies. The proteogenomic approach, a recently introduced technique, is a powerful method for predicting and validating proteoforms coming from alternative splicing, mutations, and transcript editing. We developed PPLine, a Python-based proteogenomic pipeline providing automated single-amino-acid polymorphism (SAP), indel, and alternative-spliced-variants discovery based on raw transcriptome and exome sequence data, single-nucleotide polymorphism (SNP) annotation and filtration, and the prediction of proteotypic peptides (available at https://sourceforge.net/projects/ppline). In this work, we performed deep transcriptome sequencing of HepG2 cells and liver tissues using two platforms: Illumina HiSeq and Applied Biosystems SOLiD. Using PPLine, we revealed 7756 SAP and indels for HepG2 cells and liver (including 659 variants nonannotated in dbSNP). We found 17 indels in transcripts associated with the translation of alternate reading frames (ARF) longer than 300 bp. The ARF products of two genes, SLMO1 and TMEM8A, demonstrate signatures of caspase-binding domain and Gcn5-related N-acetyltransferase. Alternative splicing analysis predicted novel proteoforms encoded by 203 (liver) and 475 (HepG2) genes according to both Illumina and SOLiD data. The results of the present work represent a basis for subsequent proteomic studies by the C-HPP consortium.

  19. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  20. Association mapping of resistance to leaf rust in emmer wheat using high throughput SNP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emmer wheat (Triticum turgidum L. subsp. dicoccum) is known to be a useful source of genes for many desirable characters for improvement of modern cultivated wheat. Recently, a panel of 181 emmer wheat accessions has been genotyped with wheat 9K SNP (single nucleotide polymorphism) markers and exte...

  1. De Novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initia...

  2. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  3. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  4. HapRice, an SNP haplotype database and a web tool for rice.

    PubMed

    Yonemaru, Jun-ichi; Ebana, Kaworu; Yano, Masahiro

    2014-01-01

    Genome-wide single nucleotide polymorphism (SNP) analysis is a promising tool to examine the genetic diversity of rice populations and genetic traits of scientific and economic importance. Next-generation sequencing technology has accelerated the re-sequencing of diverse rice varieties and the discovery of genome-wide SNPs. Notably, validation of these SNPs by a high-throughput genotyping system, such as an SNP array, could provide a manageable and highly accurate SNP set. To enhance the potential utility of genome-wide SNPs for geneticists and breeders, analysis tools need to be developed. Here, we constructed an SNP haplotype database, which allows visualization of the allele frequency of all SNPs in the genome browser. We calculated the allele frequencies of 3,334 SNPs in 76 accessions from the world rice collection and 3,252 SNPs in 177 Japanese rice accessions; all these SNPs have been validated in our previous studies. The SNP haplotypes were defined by the allele frequency in each cultivar group (aus, indica, tropical japonica and temperate japonica) for the world rice accessions, and in non-irrigated and three irrigated groups (three variety registration periods) for Japanese rice accessions. We also developed web tools for finding polymorphic SNPs between any two rice accessions and for the primer design to develop cleaved amplified polymorphic sequence markers at any SNP. The 'HapRice' database and the web tools can be accessed at http://qtaro.abr.affrc.go.jp/index.html. In addition, we established a core SNP set consisting of 768 SNPs uniformly distributed in the rice genome; this set is of a practically appropriate size for use in rice genetic analysis.

  5. Association of COL2A1 Gene Polymorphism with Degenerative Lumbar Scoliosis

    PubMed Central

    Hwang, Dae Woo; Lee, Sang Hoon; Kim, Jung Youn; Kim, Dong Hwan

    2014-01-01

    Background Degenerative lumbar scoliosis (DLS) progresses with aging after 50-60 years, and the genetic association of DLS remains largely unclear. In this study, the genetic association between collagen type II alpha 1 (COL2A1) gene and DLS was investigated. Methods COL2A1 gene polymorphism was investigated in DLS subjects compared to healthy controls to investigate the possibility of its association with COL2A1 gene. Based on a single nucleotide polymorphism (SNP) database, SNP (rs2276454) in COL2A1 were selected and genotyped using direct sequencing in 51 patients with DLS and 235 healthy controls. The SNP effects were analyzed using three models of codominant, dominant, and recessive. Logistic regression models were calculated for odds ratios (ORs) with 95% confidence intervals (CIs) and corresponding p-values, controlling age and gender as co-variables. Results SNP (rs2276454) in COL2A1 was significantly associated with the degenerative lumbar scoliosis in the codominant (OR, 1.90; 95% CI, 1.17 to 3.10; p = 0.008) and dominant models (OR, 3.58; 95% CI, 1.59 to 9.29; p = 0.001). Conclusions The results suggest that COL2A1 is associated with the risk of DLS in Korean population. PMID:25436060

  6. SNP genotyping of animal and human derived isolates of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Wynne, James W; Beller, Christie; Boyd, Victoria; Francis, Barry; Gwoźdź, Jacek; Carajias, Marios; Heine, Hans G; Wagner, Josef; Kirkwood, Carl D; Michalski, Wojtek P

    2014-08-27

    Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic granulomatous enteritis that affects ruminants worldwide. While the ability of MAP to cause disease in animals is clear, the role of this bacterium in human inflammatory bowel diseases remains unresolved. Previous whole genome sequencing of MAP isolates derived from human and three animal hosts showed that human isolates were genetically similar and showed a close phylogenetic relationship to one bovine isolate. In contrast, other animal derived isolates were more genetically diverse. The present study aimed to investigate the frequency of this human strain across 52 wild-type MAP isolates, collected predominantly from Australia. A Luminex based SNP genotyping approach was utilised to genotype SNPs that had previously been shown to be specific to the human, bovine or ovine isolate types. Fourteen SNPs were initially evaluated across a reference panel of isolates with known genotypes. A subset of seven SNPs was chosen for analysis within the wild-type collection. Of the seven SNPs, three were found to be unique to paediatric human isolates. No wild-type isolates contain these SNP alleles. Interestingly, and in contrast to the paediatric isolates, three additional adult human isolates (derived from adult Crohn's disease patients) also did not contain these SNP alleles. Furthermore we identified two SNPs, which demonstrate extensive polymorphism within the animal-derived MAP isolates. One of which appears unique to ovine and a single camel isolate. From this study we suggest the existence of genetic heterogeneity between human derived MAP isolates, some of which are highly similar to those derived from bovine hosts, but others of which are more divergent.

  7. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz).

    PubMed

    Rabbi, Ismail Yusuf; Kulembeka, Heneriko Philbert; Masumba, Esther; Marri, Pradeep Reddy; Ferguson, Morag

    2012-07-01

    Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.

  8. SNP Identification by Transcriptome Sequencing and Candidate Gene-Based Association Analysis for Heat Tolerance in the Bay Scallop Argopecten irradians

    PubMed Central

    Du, Xuedi; Li, Li; Zhang, Shoudu; Meng, Fei; Zhang, Guofan

    2014-01-01

    The northern bay scallop Argopecten irradians irradians (Lamarck) and the southern bay scallop Argopecten irradians concentricus (Say) were introduced into China in the 1980s and 1990s, and are now major aquaculture molluscs in China. Here, we report the transcriptome sequencing of the two subspecies and the subsequent association analysis on candidate gene on the trait of heat tolerance. In total, RNA from six tissues of 67 and 42 individuals of northern and southern bay scallops, respectively, were used and 55.5 and 34.9 million raw reads were generated, respectively. There were 82,267 unigenes produced in total, of which 32,595 were annotated. Altogether, 32,206 and 23,312 high-quality SNPs were identified for northern and southern bay scallops, respectively. For case-control analysis, two intercrossed populations were heat stress treated, and both heat-susceptible and heat-resistant individuals were collected. According to annotation and SNP allele frequency analysis, 476 unigenes were selected, and 399 pairs of primers were designed. Genotyping was conducted using the high-resolution melting method, and Fisher’s exact test was performed for allele frequency comparison between the heat-susceptible and heat-resistant groups. SNP all-53308-760 T/C showed a significant difference in allele frequency between the heat-susceptible and heat-resistant groups. Notably, considerable difference in allele frequency at this locus was also observed between the sequenced natural populations. These results suggest that SNP all-53308-760 T/C may be related to the heat tolerance of the bay scallop. Moreover, quantitative expression analysis revealed that the expression level of all-53308 was negatively correlated with heat tolerance of the bay scallop. PMID:25121601

  9. SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats.

    PubMed

    Brooks, Ashley; Creighton, Erica K; Gandolfi, Barbara; Khan, Razib; Grahn, Robert A; Lyons, Leslie A

    2016-05-01

    Phenotypic and genotypic characteristics of the cat can be obtained from single nucleotide polymorphisms (SNPs) analyses of fur. This study developed miniplexes using SNPs with high discriminating power for random-bred domestic cats, focusing on individual and phenotypic identification. Seventy-eight SNPs were investigated using a multiplex PCR followed by a fluorescently labeled single base extension (SBE) technique (SNaPshot(®) ). The SNP miniplexes were evaluated for reliability, reproducibility, sensitivity, species specificity, detection limitations, and assignment accuracy. Six SNPplexes were developed containing 39 intergenic SNPs and 26 phenotypic SNPs, including a sex identification marker, ZFXY. The combined random match probability (cRMP) was 6.58 × 10(-19) across all Western cat populations and the likelihood ratio was 1.52 × 10(18) . These SNPplexes can distinguish individual cats and their phenotypic traits, which could provide insight into crime reconstructions. A SNP database of 237 cats from 13 worldwide populations is now available for forensic applications.

  10. Performance of different SNP panels for parentage testing in two East Asian cattle breeds.

    PubMed

    Strucken, E M; Gudex, B; Ferdosi, M H; Lee, H K; Song, K D; Gibson, J P; Kelly, M; Piper, E K; Porto-Neto, L R; Lee, S H; Gondro, C

    2014-08-01

    The International Society for Animal Genetics (ISAG) proposed a panel of single nucleotide polymorphisms (SNPs) for parentage testing in cattle (a core panel of 100 SNPs and an additional list of 100 SNPs). However, markers specific to East Asian taurine cattle breeds were not included, and no information is available as to whether the ISAG panel performs adequately for these breeds. We tested ISAG's core (100 SNP) and full (200 SNP) panels on two East Asian taurine breeds: the Korean Hanwoo and the Japanese Wagyu, the latter from the Australian herd. Even though the power of exclusion was high at 0.99 for both ISAG panels, the core panel performed poorly with 3.01% false-positive assignments in the Hanwoo population and 3.57% in the Wagyu. The full ISAG panel identified all sire-offspring relations correctly in both populations with 0.02% of relations wrongly excluded in the Hanwoo population. Based on these results, we created and tested two population-specific marker panels: one for the Wagyu population, which showed no false-positive assignments with either 100 or 200 SNPs, and a second panel for the Hanwoo, which still had some false-positive assignments with 100 SNPs but no false positives using 200 SNPs. In conclusion, for parentage assignment in East Asian cattle breeds, only the full ISAG panel is adequate for parentage testing. If fewer markers should be used, it is advisable to use population-specific markers rather than the ISAG panel.

  11. Phylogenetic relationships of the pigeonpea (Cajanus cajan) based on nuclear restriction fragment length polymorphisms.

    PubMed

    Nadimpalli, R G; Jarret, R L; Phatak, S C; Kochert, G

    1993-04-01

    Nuclear restriction fragment length polymorphisms (RFLPs) were used to determine phylogenetic relationships in the genus Cajanus using 15 random genomic probes and six restriction enzymes. Twenty-four accessions representing 12 species of four genera (Cajanus, Dunbaria, Eriosema, and Rhynchosia) were examined to determine phylogenetic relationships in the genus Cajanus. Eriosema parviflorum was selected as the out-group. Sufficient RFLP polymorphisms were detected among species to resolve in-group taxa into distinct clusters. Topologies of trees from parsimony and similarity matrix analyses were similar but not identical, and clustering patterns agreed broadly with published phylogenies based on seed protein data and, to a lesser extent, data from cytology and breeding experiments. Accessions of cultivated C. cajan shared more DNA fragments with C. scarabaeoides than with C. cajanifolia. Inconsistencies in taxonomic relationships based on data from morphology, cytology, crossability, and RFLPs are discussed.

  12. Identification of a Sex-Linked SNP Marker in the Salmon Louse (Lepeophtheirus salmonis) Using RAD Sequencing

    PubMed Central

    Taggart, John B.; Christie, Hayden R. L.; Bassett, David I.; Bron, James E.; Skuce, Philip J.; Gharbi, Karim; Skern-Mauritzen, Rasmus; Sturm, Armin

    2013-01-01

    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study’s observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies. PMID:24147087

  13. Crystallinity-based product design: Utilizing the polymorphism of isotactic PP homo- and copolymers

    NASA Astrophysics Data System (ADS)

    Gahleitner, Markus; Mileva, Daniela; Androsch, René; Gloger, Dietrich; Tranchida, Davide; Sandholzer, Martina; Doshev, Petar

    2015-12-01

    The polymorphism of isotactic polypropylene (iPP) in combination with the strong response of this polymer to nucleation can be utilized for expanding the application range of this versatile polymer. Based on three "case studies" related to β-iPP pressure pipes, ethylene-propylene (EP) random copolymers for thin-wall injection molding and sterilization resistance of cast films we demonstrate ways of combining polymer composition, nucleation and process settings to achieve the desired application performance.

  14. A Germline Polymorphism of DNA Polymerase Beta Induces Genomic Instability and Cellular Transformation

    PubMed Central

    Keh, Agnes; Sweasy, Joann B.

    2012-01-01

    Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility. PMID:23144635

  15. RNA-Seq Identifies SNP Markers for Growth Traits in Rainbow Trout

    PubMed Central

    Salem, Mohamed; Vallejo, Roger L.; Leeds, Timothy D.; Palti, Yniv; Liu, Sixin; Sabbagh, Annas; Rexroad, Caird E.; Yao, Jianbo

    2012-01-01

    Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker

  16. Extensive Variation in the Density and Distribution of DNA Polymorphism in Sorghum Genomes

    PubMed Central

    Evans, Joseph; McCormick, Ryan F.; Morishige, Daryl; Olson, Sara N.; Weers, Brock; Hilley, Josie; Klein, Patricia; Rooney, William; Mullet, John

    2013-01-01

    Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09) and dw3 (SBI-07) had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination. PMID:24265758

  17. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.

    PubMed

    Evans, Joseph; McCormick, Ryan F; Morishige, Daryl; Olson, Sara N; Weers, Brock; Hilley, Josie; Klein, Patricia; Rooney, William; Mullet, John

    2013-01-01

    Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19(th) century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09) and dw3 (SBI-07) had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination. PMID:24265758

  18. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa.

    PubMed

    Chung, Hee; Jeong, Young-Min; Mun, Jeong-Hwan; Lee, Soo-Seong; Chung, Won-Hyong; Yu, Hee-Ju

    2014-04-01

    Brassica rapa is a member of the Brassicaceae family and includes vegetables and oil crops that are cultivated worldwide. The introduction of durable resistance against turnip mosaic virus (TuMV) into agronomically important cultivars has been a significant challenge for genetic and horticultural breeding studies of B. rapa. Based on our previous genome-wide analysis of DNA polymorphisms between the TuMV-resistant doubled haploid (DH) line VC40 and the TuMV-susceptible DH line SR5, we constructed a core genetic map of the VCS-13M DH population, which is composed of 83 individuals derived from microspore cultures of a F1 cross between VC40 and SR5, by analyzing the segregation of 314 sequence-characterized genetic markers. The genetic markers correspond to 221 SNPs and 31 InDels of genes as well as 62 SSRs, covering 1,115.9 cM with an average distance of 3.6 cM between the adjacent marker loci. The alignment and orientation of the constructed map showed good agreement with the draft genome sequence of Chiifu, thus providing an efficient strategy to map genic sequences. Using the genetic map, a novel dominant TuMV resistance locus (TuMV-R) in the VCS-13M DH population was identified as a 0.34 Mb region in the short arm of chromosome A6 in which four CC-NBS-LRR resistance genes and two pathogenesis-related-1 genes reside. The genetic map developed in this study can play an important role in the genetic study of TuMV resistance and the molecular breeding of B. rapa.

  19. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa.

    PubMed

    Chung, Hee; Jeong, Young-Min; Mun, Jeong-Hwan; Lee, Soo-Seong; Chung, Won-Hyong; Yu, Hee-Ju

    2014-04-01

    Brassica rapa is a member of the Brassicaceae family and includes vegetables and oil crops that are cultivated worldwide. The introduction of durable resistance against turnip mosaic virus (TuMV) into agronomically important cultivars has been a significant challenge for genetic and horticultural breeding studies of B. rapa. Based on our previous genome-wide analysis of DNA polymorphisms between the TuMV-resistant doubled haploid (DH) line VC40 and the TuMV-susceptible DH line SR5, we constructed a core genetic map of the VCS-13M DH population, which is composed of 83 individuals derived from microspore cultures of a F1 cross between VC40 and SR5, by analyzing the segregation of 314 sequence-characterized genetic markers. The genetic markers correspond to 221 SNPs and 31 InDels of genes as well as 62 SSRs, covering 1,115.9 cM with an average distance of 3.6 cM between the adjacent marker loci. The alignment and orientation of the constructed map showed good agreement with the draft genome sequence of Chiifu, thus providing an efficient strategy to map genic sequences. Using the genetic map, a novel dominant TuMV resistance locus (TuMV-R) in the VCS-13M DH population was identified as a 0.34 Mb region in the short arm of chromosome A6 in which four CC-NBS-LRR resistance genes and two pathogenesis-related-1 genes reside. The genetic map developed in this study can play an important role in the genetic study of TuMV resistance and the molecular breeding of B. rapa. PMID:24326528

  20. The utility of high-resolution melting analysis of SNP nucleated PCR amplicons--an MLST based Staphylococcus aureus typing scheme.

    PubMed

    Lilliebridge, Rachael A; Tong, Steven Y C; Giffard, Philip M; Holt, Deborah C

    2011-01-01

    High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G↔A, G↔T, C↔A, C↔T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 "melt types" (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs.

  1. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    PubMed

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  2. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  3. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    PubMed

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  4. A web-based genetic polymorphism learning approach for high school students and science teachers*.

    PubMed

    Amenkhienan, Ehichoya; Smith, Edward J

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using freely available bioinformatics tools on the Internet to detect single nucleotide polymorphisms in genomic DNA and gene-based sequences to evaluate variation or polymorphism. Similar tools were also used to show the functional effect, if any, of the single nucleotide polymorphisms. A total of 25 science teachers and 60 students from high schools in Alabama and Virginia participated in the program that ranged from 2 to 4 weeks. Seventy percent of the teachers have now developed a web-based module to teach at least two lessons involving DNA variation and how it influences other disciplines, including evolution. Among former high school students, five are in Ph.D. programs in genetics or related subjects, and 80% are in medical school or in college in a biology or pre-med major. The exercise is simple to implement, and the cost is relatively low, requiring only a computer with an Internet connection. It also provides a foundation for introducing students to the theory of evolution, a concept that remains controversial in high school science curricula. Similar programs, if properly implemented, may result in fostering more interest in the biological sciences among prospective college students and ensure a good foundation in the pipeline for career biologists and scientists.

  5. Comparison of significant single nucleotide polymorphisms selections in GWAS for complex traits.

    PubMed

    Frąszczak, M; Szyda, J

    2016-05-01

    The goal of this study was to compare significant SNP selection approaches in the context of complex traits based on SNP estimates obtained by models: a model fitting a single SNP (M1), a model fitting a single SNP and a random polygenic effect (M2), the nonparametric CAR score (M3), a SNP-BLUP model with random effects of all SNPs fitted simultaneously (M4). There were 46,267 SNPs tested in a population of 2601 Holstein Friesian bulls, four traits (milk and fat yields, somatic cell score, non-return rate for heifers) were considered. The numbers of SNPs selected as significant differed among models. M1 selected a very large number of SNPs, except for a NRH in which no SNPs were significant. M2 and M3 both selected similar and low number of SNPs for each trait. M4 selected more SNPs than M2 and M3. Considering linkage disequilibrium between SNPs, for MY M2 and M3 selected SNPs more highly correlated with each other than in the case of M4, while for FY M3 selection contained more correlated SNPs than M2 and M4. In conclusion, if the research interest is to identify SNPs not only with strong, but also with moderate effects on a complex trait a multiple-SNP model is recommended. Such models are capable of accounting for at least a part of linkage disequilibrium between SNPs through the design matrix of SNP effects. Functional annotation of SNPs significant in M4 reveals good correspondence between selected polymorphisms and functional information as well as with QTL mapping results. PMID:26294278

  6. Melanin-based colour polymorphism responding to climate change.

    PubMed

    Roulin, Alexandre

    2014-11-01

    Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is

  7. Melanin-based colour polymorphism responding to climate change.

    PubMed

    Roulin, Alexandre

    2014-11-01

    Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is

  8. Transcriptome profiling and validation of gene based single nucleotide polymorphism (SNP) markers in sorghum genotypes with contrasting response to cold stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which seriously limits stand-establishment and seedling growth. To gain further insight on the molecular mechanism of cold tolerance in sorghum we perform...

  9. Exploring polymorphism of benzene and naphthalene with free energy based enhanced molecular dynamics.

    PubMed

    Schneider, Elia; Vogt, Leslie; Tuckerman, Mark E

    2016-08-01

    Prediction and exploration of possible polymorphism in organic crystal compounds are of great importance for industries ranging from organic electronics to pharmaceuticals to high-energy materials. Here we apply our crystal structure prediction procedure and the enhanced molecular dynamics based sampling approach called the Crystal-Adiabatic Free Energy Dynamics (Crystal-AFED) method to benzene and naphthalene. Crystal-AFED allows the free energy landscape of structures to be explored efficiently at any desired temperature and pressure. For each system, we successfully predict the most stable crystal structures at atmospheric pressure and explore the relative Gibbs free energies of predicted polymorphs at high pressures. Using Crystal-AFED sampling, we find that mixed structures, which typically cannot be discovered by standard crystal structure prediction methods, are prevalent in the solid forms of these compounds at high pressure. PMID:27484375

  10. Development of Randomly Amplified Polymorphic DNA Based SCAR Marker for Identification of Ipomoea mauritiana Jacq (Convolvulaceae)

    PubMed Central

    Devaiah, Kambiranda; Balasubramani, Subramani Paranthaman; Venkatasubramanian, Padma

    2011-01-01

    Vidari is an Ayurvedic herbal drug used as aphrodisiac, galactagogue and is also used in the preparation of Chyavanaprash. Tubers of Ipomoea mauritiana Jacq. (Convolvulaceae), Pueraria tuberosa (Roxb. ex Willd.) DC (Fabaceae), Adenia hondala (Gaertn.) de Wilde (Passifloraceae) and pith of Cycas circinalis L. (Cycadaceae) are all traded in the name of Vidari, creating issues of botanical authenticity of the Ayurvedic raw drug. DNA-based markers have been developed to distinguish I. mauritiana from the other Vidari candidates. A putative 600-bp polymorphic sequence, specific to I. mauritiana was identified using randomly amplified polymorphic DNA (RAPD) technique. Furthermore, sequence characterized amplified region (SCAR) primers (IM1F and IM1R) were designed from the unique RAPD amplicon. The SCAR primers produced a specific 323-bp amplicon in authentic I. mauritiana and not in the allied species. PMID:21738554

  11. Development of Randomly Amplified Polymorphic DNA Based SCAR Marker for Identification of Ipomoea mauritiana Jacq (Convolvulaceae).

    PubMed

    Devaiah, Kambiranda; Balasubramani, Subramani Paranthaman; Venkatasubramanian, Padma

    2011-01-01

    Vidari is an Ayurvedic herbal drug used as aphrodisiac, galactagogue and is also used in the preparation of Chyavanaprash. Tubers of Ipomoea mauritiana Jacq. (Convolvulaceae), Pueraria tuberosa (Roxb. ex Willd.) DC (Fabaceae), Adenia hondala (Gaertn.) de Wilde (Passifloraceae) and pith of Cycas circinalis L. (Cycadaceae) are all traded in the name of Vidari, creating issues of botanical authenticity of the Ayurvedic raw drug. DNA-based markers have been developed to distinguish I. mauritiana from the other Vidari candidates. A putative 600-bp polymorphic sequence, specific to I. mauritiana was identified using randomly amplified polymorphic DNA (RAPD) technique. Furthermore, sequence characterized amplified region (SCAR) primers (IM1F and IM1R) were designed from the unique RAPD amplicon. The SCAR primers produced a specific 323-bp amplicon in authentic I. mauritiana and not in the allied species.

  12. High-performance single crystal organic field-effect transistors based on two dithiophene-tetrathiafulvalene (DT-TTF) polymorphs.

    PubMed

    Pfattner, Raphael; Mas-Torrent, Marta; Bilotti, Ivano; Brillante, Aldo; Milita, Silvia; Liscio, Fabiola; Biscarini, Fabio; Marszalek, Tomasz; Ulanski, Jacek; Nosal, Andrzej; Gazicki-Lipman, Maciej; Leufgen, Michael; Schmidt, Georg; Molenkamp, Laurens W; Laukhin, Vladimir; Veciana, Jaume; Rovira, Concepció

    2010-10-01

    Solution prepared single crystal organic field-effect transistors (OFETs) combine low-cost with high performance due to structural ordering of molecules. However, in organic crystals polymorphism is a known phenomenon, which can have a crucial influence on charge transport. Here, the performance of solution-prepared single crystal OFETs based on two different polymorphs of dithiophene-tetrathiafulvalene, which were investigated by confocal Raman spectroscopy and X-ray diffraction, are reported. OFET devices prepared using different configurations show that both polymorphs exhibited excellent device performance, although the -phase revealed charge carrier mobility between two and ten times higher in accordance to the closer stacking of the molecules.

  13. RASSF1A and the rs2073498 Cancer Associated SNP

    PubMed Central

    Donninger, Howard; Barnoud, Thibaut; Nelson, Nick; Kassler, Suzanna; Clark, Jennifer; Cummins, Timothy D.; Powell, David W.; Nyante, Sarah; Millikan, Robert C.; Clark, Geoffrey J.

    2011-01-01

    RASSF1A is one of the most frequently inactivated tumor suppressors yet identified in human cancer. It is pro-apoptotic and appears to function as a scaffolding protein that interacts with a variety of other tumor suppressors to modulate their function. It can also complex with the Ras oncoprotein and may serve to integrate pro-growth and pro-death signaling pathways. A SNP has been identified that is present in approximately 29% of European populations [rs2073498, A(133)S]. Several studies have now presented evidence that this SNP is associated with an enhanced risk of developing breast cancer. We have used a proteomics based approach to identify multiple differences in the pattern of protein/protein interactions mediated by the wild type compared to the SNP variant protein. We have also identified a significant difference in biological activity between wild type and SNP variant protein. However, we have found only a very modest association of the SNP with breast cancer predisposition. PMID:22649770

  14. Genes of the RNASE5 pathway contain SNP associated with milk production traits in dairy cattle

    PubMed Central

    2013-01-01

    Background Identification of the processes and mutations responsible for the large genetic variation in milk production among dairy cattle has proved challenging. One approach is to identify a biological process potentially involved in milk production and to determine the genetic influence of all the genes included in the process or pathway. Angiogenin encoded by angiogenin, ribonuclease, RNase A family 5 (RNASE5) is relatively abundant in milk, and has been shown to regulate protein synthesis and act as a growth factor in epithelial cells in vitro. However, little is known about the role of angiogenin in the mammary gland or if the polymorphisms present in the bovine RNASE5 gene are associated with lactation and milk production traits in dairy cattle. Given the high economic value of increased protein in milk, we have tested the hypothesis that RNASE5 or genes in the RNASE5 pathway are associated with milk production traits. First, we constructed a “RNASE5 pathway” based on upstream and downstream interacting genes reported in the literature. We then tested SNP in close proximity to the genes of this pathway for association with milk production traits in a large dairy cattle dataset. Results The constructed RNASE5 pathway consisted of 11 genes. Association analysis between SNP in 1 Mb regions surrounding these genes and milk production traits revealed that more SNP than expected by chance were associated with milk protein percent (P < 0.05 significance). There was no significant association with other traits such as milk fat content or fertility. Conclusions These results support a role for the RNASE5 pathway in milk production, specifically milk protein percent, and indicate that polymorphisms in or near these genes explain a proportion of the variation for this trait. This method provides a novel way of understanding the underlying biology of lactation with implications for milk production and can be applied to any pathway or gene set to test whether

  15. ComB: SNP calling and mapping analysis for color and nucleotide space platforms.

    PubMed

    Souaiaia, Tade; Frazier, Zach; Chen, Ting

    2011-06-01

    The determination of single nucleotide polymorphisms (SNPs) has become faster and more cost effective since the advent of short read data from next generation sequencing platforms such as Roche's 454 Sequencer, Illumina's Solexa platform, and Applied Biosystems SOLiD sequencer. The SOLiD sequencing platform, which is capable of producing more than 6 GB of sequence data in a single run, uses a unique encoding scheme where color reads represent transitions between adjacent nucleotides. The determination of SNPs from color reads usually involves the translation of color alignments to likely nucleotide strings to facilitate the use of tools designed for nucleotide reads. This technique results in the loss of significant information in the color read, producing many incorrect SNP calls, especially if regions exist with dense or adjacent polymorphism. Additionally, color reads align ambiguously and incorrectly more often than nucleotide reads making integrated SNP calling a difficult challenge. We have developed ComB, a SNP calling tool which operates directly in color space, using a Bayesian model to incorporate unique and ambiguous reads to iteratively determine SNP identity. ComB is capable of accurately calling short consecutive nucleotide polymorphisms and densely clustered SNPs; both of which other SNP calling tools fail to identify. ComB, which is capable of using billions of short reads to accurately and efficiently perform whole human genome SNP calling in parallel, is also capable of using sequence data or even integrating sequence and color space data sets. We use real and simulated data to demonstrate that ComB's iterative strategy and recalibration of quality scores allow it to discover more true SNPs while calling fewer false positives than tools which use only color alignments as well as tools which translate color reads to nucleotide strings.

  16. SNP and mutation data on the web - hidden treasures for uncovering.

    PubMed

    Barnes, Michael R

    2002-01-01

    SNP data has grown exponentially over the last two years, SNP database evolution has matched this growth, as initial development of several independent SNP databases has given way to one central SNP database, dbSNP. Other SNP databases have instead evolved to complement this central database by providing gene specific focus and an increased level of curation and analysis on subsets of data, derived from the central data set. By contrast, human mutation data, which has been collected over many years, is still stored in disparate sources, although moves are afoot to move to a similar central database. These developments are timely, human mutation and polymorphism data both hold complementary keys to a better understanding of how genes function and malfunction in disease. The impending availability of a complete human genome presents us with an ideal framework to integrate both these forms of data, as our understanding of the mechanisms of disease increase, the full genomic context of variation may become increasingly significant.

  17. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  18. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears. PMID:24477675

  19. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq).

    PubMed

    Ma, Jian-Qiang; Huang, Long; Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant.

  20. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris).

    PubMed

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.

  1. Reliable In Silico Identification of Sequence Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris)

    PubMed Central

    Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Viehöver, Prisca; Schneider, Jessica; Schulz, Britta; Borchardt, Dietrich; Kraft, Thomas; Himmelbauer, Heinz; Weisshaar, Bernd

    2014-01-01

    Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers. PMID:25302600

  2. Sequencing-based typing reveals new insight in HLA-DPA1 polymorphism.

    PubMed

    Rozemuller, E H; Bouwens, A G; van Oort, E; Versluis, L F; Marsh, S G; Bodmer, J G; Tilanus, M G

    1995-01-01

    An HLA-DPA1 sequencing-based typing (SBT) system has been developed to identify DPA1 alleles. Up to now eight DPA1 alleles have been defined. Six can be discriminated based upon exon 2 polymorphism. The three subtypes of DPA1*01: DPA1*0101, DPA1*0102 and DPA1*0103, have identical exon 2 sequences but show differences in exon 4. Exon 4 sequences were known for only the three DPA1*01 subtypes and for DPA1*0201. We now present additional sequence information for exon 4 and the unknown segments at the 3' end of exon 2. Additionally with the use of this sequencing technique it is also possible to identify previously unidentified polymorphism. We have studied the exon 2 and exon 4 polymorphism of DPA1 in 40 samples which include all known DPA1 alleles. A new allele, DPA1*01 new, was identified which differs by one nucleotide in exon 2 from DPA1*0103, resulting in an aspartic acid at codon 28. The DPA1*01 subtypes DPA1*0101 and DPA1*0102 could not be confirmed in samples which previously were used to define these subtypes, and consequently they do not exist. The exon 4 sequence of DPA1*0201 is corrected based on sequence data of DAUDI, the cell line in which DPA1*0202 was originally defined. The exon 4 regions of the remaining four alleles were resolved: the exon 4 regions of the alleles DPA1*02021 and DPA1*02022 were found to be identical to the--corrected--DPA1*0201 whereas the exon 4 region of DPA1*0301 differs by one nucleotide compared to DPA1*0103. The DPA1*0401 exon 4 region differs by one nucleotide compared to the corrected DPA1*0201.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Molecular cloning and SNP association analysis of chicken PMCH gene.

    PubMed

    Sun, Guirong; Li, Ming; Li, Hong; Tian, Yadong; Chen, Qixin; Bai, Yichun; Kang, Xiangtao

    2013-08-01

    The pre-melanin-concentrating hormone (PMCH) gene is an important gene functionally concerning the regulations of body fat content, feeding behavior and energy balance. In this study, the full-length cDNA of chicken PMCH gene was amplified by SMART RACE method. The single nucleotide polymorphisms (SNPs) in the PMCH gene were screened by comparative sequence analysis. The obtained non-synonymous coding SNPs (ncSNPs) were designed for genotyping firstly. Its effects on growth, carcass characteristics and meat quality traits were investigated employing the F2 resource population of Gushi chicken crossed with Anak broiler by AluI CRS-PCR-RFLP. Our results indicated that the cDNA of chicken PMCH shared 67.25 and 66.47% homology with that of human and bovine PMCH, respectively. The deduced amino acid sequence of chicken PMCH (163 amino acids) were 52.07 and 50.89% identical to those of human and bovine PMCH, respectively. The PMCH protein sequence is predicted to have several functional domains, including pro-MCH, CSP, IL7, XPGI and some low complexity sequence. It has 8 phosphorylation sites and no signal peptide sequence. gga-miR-18a, gga-miR-18b, gga-miR-499 microRNA targeting site was predicted in the 3' untranslated region of chicken PMCH mRNA. In addition, a total of seven SNPs including an ncSNP and a synonymous coding SNP, were identified in the PMCH gene. The ncSNP c.81 A>T was found to be in moderate polymorphic state (polymorphic index=0.365), and the frequencies for genotype AA, AB and BB were 0.3648, 0.4682 and 0.1670, respectively. Significant associations between the locus and shear force of breast and leg were observed. This polymorphic site may serve as a useful target for the marker assisted selection of the growth and meat quality traits in chicken.

  4. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing.

    PubMed

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Cheung, Sau Wai; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60,000 SNP probes, referred to as Chromosomal Microarray Analysis - Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner.

  5. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing

    PubMed Central

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279

  6. Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences.

    PubMed

    Dantec, Loïck Le; Chagné, David; Pot, David; Cantin, Olivier; Garnier-Géré, Pauline; Bedon, Frank; Frigerio, Jean-Marc; Chaumeil, Philippe; Léger, Patrick; Garcia, Virginie; Laigret, Frédéric; De Daruvar, Antoine; Plomion, Christophe

    2004-02-01

    We developed an automated pipeline for the detection of single nucleotide polymorphisms (SNPs) in expressed sequence tag (EST) data sets, by combining three DNA sequence analysis programs: Phred, Phrap and PolyBayes. This application requires access to the individual electrophoregram traces. First, a reference set of 65 SNPs was obtained from the sequencing of 30 gametes in 13 maritime pine (Pinus pinaster Ait.) gene fragments (6671 bp), resulting in a frequency of 1 SNP every 102.6 bp. Second, parameters of the three programs were optimized in order to retrieve as many true SNPs, while keeping the rate of false positive as low as possible. Overall, the efficiency of detection of true SNPs was 83.1%. However, this rate varied largely as a function of the rare SNP allele frequency: down to 41% for rare SNP alleles (frequency < 10%), up to 98% for allele frequencies above 10%. Third, the detection method was applied to the 18498 assembled maritime pine (Pinus pinaster Ait.) ESTs, allowing to identify a total of 1400 candidate SNPs, in contigs containing between 4 and 20 sequence reads. These genetic resources, described for the first time in a forest tree species, were made available at http://www.pierroton.inra/genetics/Pinesnps. We also derived an analytical expression for the SNP detection probability as a function of the SNP allele frequency, the number of haploid genomes used to generate the EST sequence database, and the sample size of the contigs considered for SNP detection. The frequency of the SNP allele was shown to be the main factor influencing the probability of SNP detection.

  7. Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel

    PubMed Central

    Yang, Jing; Guo, Baocheng; Shikano, Takahito; Liu, Xiaolin; Merilä, Juha

    2016-01-01

    Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations. Using a dense panel of SNP-markers obtained by restriction site associated DNA sequencing of an F2 recombinant cross, we found 22 QTL that explained 3.5–12.9% of phenotypic variance in the traits under investigation. We detected one fairly large-effect (PVE = 9.6%) QTL for caudal peduncle length–a trait with a well-established adaptive function showing clear differentiation among marine and freshwater populations. We also identified two large-effect QTL for lateral plate numbers, which are different from the lateral plate QTL reported in earlier studies of this and related species. Hence, apart from identifying several large-effect QTL in shape traits showing adaptive differentiation in response to different environmental conditions, the results suggest intra- and interspecific heterogeneity in the genomic basis of lateral plate number variation. PMID:27226078

  8. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover

    PubMed Central

    2013-01-01

    Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for

  9. Two New Rapid SNP-Typing Methods for Classifying Mycobacterium tuberculosis Complex into the Main Phylogenetic Lineages

    PubMed Central

    Stucki, David; Malla, Bijaya; Hostettler, Simon; Huna, Thembela; Feldmann, Julia; Yeboah-Manu, Dorothy; Borrell, Sonia; Fenner, Lukas; Comas, Iñaki; Coscollà, Mireia; Gagneux, Sebastien

    2012-01-01

    There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the “Beijing” sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for

  10. Genomic and genotyping characterization of haplotype-based polymorphic microsatellites in Prunus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient utilization of microsatellites in genetic studies remains impeded largely due to the unknown status of their primer reliability, chromosomal location, and allele polymorphism. Discovery and characterization of microsatellite polymorphisms in a taxon will disclose the unknowns and gain new ...

  11. B-DNA structure is intrinsically polymorphic: even at the level of base pair positions

    SciTech Connect

    Maehigashi, Tatsuya; Hsiao, Chiaolong; Woods, Kristen Kruger; Moulaei, Tinoush; Hud, Nicholas V.; Williams, Loren Dean

    2012-10-23

    Increasingly exact measurement of single crystal X-ray diffraction data offers detailed characterization of DNA conformation, hydration and electrostatics. However, instead of providing a more clear and unambiguous image of DNA, highly accurate diffraction data reveal polymorphism of the DNA atomic positions and conformation and hydration. Here we describe an accurate X-ray structure of B-DNA, painstakingly fit to a multistate model that contains multiple competing positions of most of the backbone and of entire base pairs. Two of ten base-pairs of CCAGGCCTGG are in multiple states distinguished primarily by differences in slide. Similarly, all the surrounding ions are seen to fractionally occupy discrete competing and overlapping sites. And finally, the vast majority of water molecules show strong evidence of multiple competing sites. Conventional resolution appears to give a false sense of homogeneity in conformation and interactions of DNA. In addition, conventional resolution yields an average structure that is not accurate, in that it is different from any of the multiple discrete structures observed at high resolution. Because base pair positional heterogeneity has not always been incorporated into model-building, even some high and ultrahigh-resolution structures of DNA do not indicate the full extent of conformational polymorphism.

  12. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  13. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes.

    PubMed

    McGraw, Kathy L; Cluzeau, Thomas; Sallman, David A; Basiorka, Ashley A; Irvine, Brittany A; Zhang, Ling; Epling-Burnette, P K; Rollison, Dana E; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F

    2015-10-27

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to -2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  14. Polymorphic Regions in the Interleukin-1 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study

    PubMed Central

    Lavu, Vamsi; Venkatesan, Vettriselvi; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya; Venugopal, Priyanka; Paul, Solomon Franklin Durairaj

    2015-01-01

    Objective: The objectives of this study were to determine the association between single nucleotide polymorphisms (SNPs) in IL1B (−511, +3954), IL1A (−889, +4845), and the variable number of tandem repeats (VNTRs) polymorphism in the IL-1RN gene with chronic periodontitis susceptibility and to analyze gene–gene interactions in a hospital-based sample population from South India. Subjects and Methods: A total of 400 individuals were recruited for this study; 200 individuals with healthy gingiva and 200 chronic periodontitis patients. Genomic DNA was isolated from peripheral blood samples and genotyping was performed for the above-mentioned single nucleotide and VNTR polymorphisms by polymerase chain reaction, DNA sequencing, and agarose gel electrophoresis. Results: A higher proportion of the variant alleles were observed in the chronic periodontitis group for all the SNPs examined. The SNP at +3954 (C>T) in the IL1B gene was found to be significantly associated with chronic periodontitis (p=0.007). VNTR genotypes (χ2 value: 5.163, df=1, p=0.023) and alleles (χ2 value: 6.818, df=1, p=0.009) were found to have a significant association with chronic periodontitis susceptibility. Conclusion: In the study population examined, the SNP in the IL1B gene (+3954) and VNTR polymorphisms in the IL1RN gene were found to have a significant association with chronic periodontitis susceptibility. PMID:25710474

  15. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map.

    PubMed

    Tayeh, Nadim; Aluome, Christelle; Falque, Matthieu; Jacquin, Françoise; Klein, Anthony; Chauveau, Aurélie; Bérard, Aurélie; Houtin, Hervé; Rond, Céline; Kreplak, Jonathan; Boucherot, Karen; Martin, Chantal; Baranger, Alain; Pilet-Nayel, Marie-Laure; Warkentin, Thomas D; Brunel, Dominique; Marget, Pascal; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith

    2015-12-01

    Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.

  16. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  17. Susceptibility to paratuberculosis infection in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Koets, A; Santema, W; Mertens, H; Oostenrijk, D; Keestra, M; Overdijk, M; Labouriau, R; Franken, P; Frijters, A; Nielen, M; Rutten, V

    2010-03-01

    Paratuberculosis is a chronic intestinal infection in ruminants, caused by Mycobacterium avium subspecies paratuberculosis (Map). To study the role of host genetics in disease susceptibility, the Toll-like receptor 2 (TLR2) gene, selected based on its potential role in immunity to mycobacterial infections, was analyzed for single nucleotide polymorphisms (SNP) and their potential association with disease. For SNP discovery and to study SNP association with disease, a case-control study including 24 cows from farms with paratuberculosis was conducted. Sequence analysis of the TLR2 genes from 12 paratuberculosis-infected animals and 12 age-matched healthy herd mates revealed 21 different SNP. The TLR2-1903 T/C SNP was significantly associated with resistance to Map. This and four additional TLR2 SNP were studied in a subsequent observational field study with 553 cows from farms with paratuberculosis. The allelic distribution of the TLR2-1903 T/C SNP was confirmed to be significantly different between the infected and non-infected animals. For the TLR2-1903 T/C SNP the odds ratio was calculated, and similar to the dominance model in the association study, the CT and CC genotypes were compared to the TT genotype. Cows with the TLR2-1903 T/C mutation (i.e., the CT and CC genotypes) were at 1.7 (95% CI: 1.2, 2.8) times the odds of being Map-infected compared to cows with the TT genotype. In in vitro functional assays, monocyte-derived macrophages from animals with a TLR2-1903 TT genotype produced more IL12p40 and IL1beta when stimulated with Map compared to cells derived from TLR2-1903 CT and CC genotypes. Also, T cell proliferative responses to mycobacterial antigens were higher in animals with a TLR2-1903 TT genotype. In conclusion, we have found a significant association between SNP TLR2-1903 T/C in the bovine TLR2 gene and bovine paratuberculosis infection. This SNP and other genetic markers could be useful in marker-assisted breeding strategies as an additional tool

  18. Genotyping of clinical Mycobacterium tuberculosis isolates based on IS6110 and MIRU-VNTR polymorphisms.

    PubMed

    Żaczek, Anna; Brzostek, Anna; Wojtasik, Arkadiusz; Dziadek, Jarosław; Sajduda, Anna

    2013-01-01

    In this study, 155 clinical Mycobacterium tuberculosis isolates were subject to genotyping with fast ligation-mediated PCR (FLiP). This typing method is a modified mixed-linker PCR, a rapid approach based on the PCR amplification of HhaI restriction fragments of genomic DNA containing the 3' end of IS6110 and resolving the amplicons by polyacrylamide gel electrophoresis. The results were compared with previous data of the more commonly used methods, 15-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and, to verify combined FLiP/MIRU-VNTR clusters, the reference IS6110 restriction fragment length polymorphism (RFLP). FLiP banding patterns were highly reproducible and polymorphic. This method differentiated 119 types among the study set compared to 108 distinct MIRU-VNTR profiles. The discriminatory power of FLiP was slightly higher than that of MIRU-VNTR analysis (Hunter-Gaston Discriminatory Index = 0.991 and 0.990, resp.). Detailed comparison of the clusters defined by each of the methods revealed, however, a more apparent difference in the discriminatory abilities that favored FLiP. Clustering of strains by using combined results of these two PCR-based methods correlated well with IS6110 RFLP-defined clusters, further confirming high discriminatory potential of FLiP typing. These results indicate that FLiP could be an attractive and valuable secondary typing technique for verification of MIRU-VNTR clusters of M. tuberculosis strains. PMID:24455734

  19. Prognostic value of ERCC1 and ERCC2 gene polymorphisms in patients with gastric cancer receiving platinum-based chemotherapy

    PubMed Central

    Mo, Juanmei; Luo, Min; Cui, Jiandong; Zhou, Shaozhang

    2015-01-01

    We conducted a prospective study to analyze whether ERCC1 rs11615 and rs3212986 and ERCC2 rs13181 and rs1799793 gene polymorphisms could serve as potential biomarkers for the prognosis of gastric cancer. A total of 228 patients with pathologically proven gastric cancer and receiving platinum-based chemotherapy were recruited from our hospital between October 2009 and October 2011. The ERCC1 rs11615 and rs3212986 and ERCC2 rs13181 and rs1799793 polymorphisms were genotyped using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay. Conditional logistic regression analysis revealed that patients carrying the CA and AA genotypes of ERCC1 rs3212986 polymorphism showed a poorer response to chemotherapy compared to the CC genotype (CA vs. CC: OR = 0.28, 95% CI = 0.06-0.98, P = 0.04; AA vs. CC: OR = 0.49, 95% CI = 0.06-0.98, P = 0.01). Moreover, the CA+AA genotype of ERCC1 rs3212986 polymorphism showed a significantly poorer response to chemotherapy (CA+AA vs. CC: OR = 0.49, 95% CI = 0.27-0.90). Patients with the AA genotype of ERCC1 rs3212986 polymorphism had a longer overall survival time when compared with the CC genotype (34.91 months vs. 51.19 months, log-rank P = 0.003). The AA genotype of ERCC1 rs3212986 polymorphism in gastric cancer patients was correlated with a higher risk of death from varying causes by the Cox proportional hazards model, compared to the CC genotype (HR = 6.19, 95% CI = 1.42-30.60). In conclusion, the ERCC1 rs3212986 polymorphism was found to influence the response to chemotherapy and overall survival of gastric cancer patients. PMID:26823845

  20. Sequence and single-base polymorphisms of the bovine alpha-lactalbumin 5'-flanking region.

    PubMed

    Bleck, G T; Bremel, R D

    1993-04-30

    The alpha-lactalbumin (alpha LA)-encoding gene is a potential quantitative trait locus in dairy animals. In cattle, the production of alpha LA is tightly coupled to the onset of lactation and it serves as a regulatory subunit of the enzyme responsible for lactose synthesis. Lactose is the major osmole controlling water movement in the mammary gland. To better understand the control of bovine alpha LA expression, the 5'-flanking region of a Holstein alpha LA gene was cloned and sequenced. The sequenced clone contains 1952 bp of 5'-flanking region and 66-bp of the protein-coding region. Three single-bp polymorphisms were identified within this region. These polymorphisms occur at positions +15, +21 and +54 relative to the mRNA transcription start point (tsp). The +15 and +21 variations occur in the region encoding the 5'-untranslated region of the mRNA-coding sequence. The +54 polymorphism is a silent mutation in the SP-coding region of the gene. A polymerase chain reaction (PCR, Cetus)-based screening method has been employed to analyze the genotype of cattle at the +15 position. A total of 501 randomly selected cattle from seven breeds were screened for this allele. Of these animals, only the Holstein breed of cattle was found to contain the +15 variation and it occurs at a gene frequency of 32%. Sequence comparisons were conducted between the 5'-flanking regions of the bovine-milk-protein encoding genes, alpha LA, beta-casein and alpha S1-casein, which are coordinately expressed. Regions of similarity extending to 350 bp in length were observed between these sequences.

  1. IL10 Gene Polymorphisms Are Associated With Asthma Phenotypes in Children

    PubMed Central

    Lyon, Helen; Lange, Christoph; Lake, Stephen; Silverman, Edwin K.; Randolph, Adrienne G.; Kwiatkowski, David; Raby, Benjamin A.; Lazarus, Ross; Weiland, Katy M.; Laird, Nan; Weiss, Scott T.

    2013-01-01

    IL10 is an anti-inflammatory cytokine that has been found to have lower production in macrophages and mononuclear cells from asthmatics. Since reduced IL10 levels may influence the severity of asthma phenotypes, we examined IL10 single-nucleotide polymorphisms (SNPs) for association with asthma severity and allergy phenotypes as quantitative traits. Utilizing DNA samples from 518 Caucasian asthmatic children from the Childhood Asthma Management Program (CAMP) and their parents, we genotyped six IL10 SNPs: 3 in the promoter, 2 in introns, and one in the 3′ UTR. Using family-based association tests, each SNP was tested for association with asthma and allergy phenotypes individually. Population-based association analysis was performed with each SNP locus, the promoter haplotypes and the 6-loci haplotypes. The 3′ UTR SNP was significantly associated with FEV1 as a percent of predicted (FEV1PP) (P=0.0002) in both the family and population analyses. The promoter haplotype GCC was positively associated with IgE levels and FEV1PP (P=0.007 and 0.012, respectively). The promoter haplotype ATA was negatively associated with lnPC20 and FEV1PP (P=0.008 and 0.043, respectively). Polymorphisms in IL10 are associated with asthma phenotypes in this cohort. Further studies of variation in the IL10 gene may help elucidate the mechanism of asthma development in children. PMID:14748015

  2. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  3. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding

    PubMed Central

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.

  4. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.

  5. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance.

    PubMed

    Kaur, Sukhjiwan; Cogan, Noel O I; Stephens, Amber; Noy, Dianne; Butsch, Mirella; Forster, John W; Materne, Michael

    2014-03-01

    Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic 'orphan' crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab × ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2 years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.

  6. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding.

    PubMed

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Plieske, Joerg; Lemm, Jana; Stoffel, Kevin; Hill, Theresa; Luerssen, Hartmut; Pethiyagoda, Charit L; Lawley, Cindy T; Ganal, Martin W; Van Deynze, Allen

    2016-01-01

    The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network. PMID:27602231

  7. Rapid, economical single-nucleotide polymorphism and microsatellite discovery based on de novo assembly of a reduced representation genome in a non-model organism: a case study of Atlantic cod Gadus morhua.

    PubMed

    Carlsson, J; Gauthier, D T; Carlsson, J E L; Coughlan, J P; Dillane, E; Fitzgerald, R D; Keating, U; McGinnity, P; Mirimin, L; Cross, T F

    2013-03-01

    By combining next-generation sequencing technology (454) and reduced representation library (RRL) construction, the rapid and economical isolation of over 25 000 potential single-nucleotide polymorphisms (SNP) and >6000 putative microsatellite loci from c. 2% of the genome of the non-model teleost, Atlantic cod Gadus morhua from the Celtic Sea, south of Ireland, was demonstrated. A small-scale validation of markers indicated that 80% (11 of 14) of SNP loci and 40% (6 of 15) of the microsatellite loci could be amplified and showed variability. The results clearly show that small-scale next-generation sequencing of RRL genomes is an economical and rapid approach for simultaneous SNP and microsatellite discovery that is applicable to any species. The low cost and relatively small investment in time allows for positive exploitation of ascertainment bias to design markers applicable to specific populations and study questions.

  8. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  9. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Single Nucleotide Polymorphism Genotyping Assay Using iPLEX Gold Technology for Identification of Mycobacterium tuberculosis Complex Species and Lineages▿

    PubMed Central

    Bouakaze, C.; Keyser, C.; Gonzalez, A.; Sougakoff, W.; Veziris, N.; Dabernat, H.; Jaulhac, B.; Ludes, B.

    2011-01-01

    The major goal of the present study was to investigate the potential use of a novel single nucleotide polymorphism (SNP) genotyping technology, called iPLEX Gold (Sequenom), for the simultaneous analysis of 16 SNPs that have been previously validated as useful for identification of Mycobacterium tuberculosis complex (MTBC) species and classification of MTBC isolates into distinct genetic lineages, known as principal genetic groups (PGGs) and SNP cluster groups (SCGs). In this context, we developed a 16-plex iPLEX assay based on an allele-specific-primer single-base-extension reaction using the iPLEX Gold kit (Sequenom), followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis on the commercially available Sequenom MassARRAY platform. This assay was tested on a panel of 55 well-characterized MTBC strains that were also genotyped for the same loci using the previously reported SNaPshot assay, as well as 10 non-MTBC mycobacteria and 4 bacteria not belonging to the genus Mycobacterium. All MTBC samples were successfully analyzed with the iPLEX assay, which yielded clear allelic data for 99.9% of the SNPs (879 out of 880). No false-positive results were obtained with the negative controls. Compared to the SNaPshot assay, the newly developed 16-plex iPLEX assay produced fully concordant results that allowed reliable differentiation of MTBC species and recognition of lineages, thus demonstrating its potential value in diagnostic, epidemiological, and evolutionary applications. Compared to the SNaPshot approach, the implementation of the iPLEX technology could offer a higher throughput and could be a more flexible and cost-effective option for microbiology laboratories. PMID:21734028

  10. Single Nucleotide Polymorphism in Patients with Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion. PMID:26180609

  11. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  12. Pharmacogenetic analysis of clinically relevant genetic polymorphisms.

    PubMed

    McLeod, Howard L

    2005-11-15

    The ascertainment of the human genome sequence has generated great enthusiasm for the use of gene-based approaches to improve virtually all aspects of medical care. Particular interest has focused on the field of pharmacogenetics--for example, the use of an individual's genetic profile to optimize drug prescription. This approach takes advantage of the presence of single-nucleotide polymorphisms (SNPs) or other genetic variants in every gene in the human genome. There are currently > 9 million SNPs in the human SNP database dbSNP, with an estimated 11 million variants ultimately to be found in the human population. To date, the preponderance of interest in this field has centered on the potential of applying this approach to subacute or chronic illnesses, such as cancer, cardiovascular disease, human immunodeficiency virus infection, or rheumatologic disorders. In contrast, little attention has been devoted to the potential utility of implementing the pharmacogenomic methodology for guiding drug selection for acutely ill patients in the critical care environment. Although such an approach has theoretical appeal as a means of enhancing quality and improving outcomes in this setting, several obstacles currently exist and slow the progress toward clinical application. PMID:16237646

  13. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.).

    PubMed

    Koning-Boucoiran, Carole F S; Esselink, G Danny; Vukosavljev, Mirjana; van 't Westende, Wendy P C; Gitonga, Virginia W; Krens, Frans A; Voorrips, Roeland E; van de Weg, W Eric; Schulz, Dietmar; Debener, Thomas; Maliepaard, Chris; Arens, Paul; Smulders, Marinus J M

    2015-01-01

    In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.

  14. Genetic diversity and population structure in Harpadon nehereus based on sequence-related amplified polymorphism markers.

    PubMed

    Zhu, Z H; Li, H Y; Qin, Y; Wang, R X

    2014-01-01

    In this study, the genetic diversity among ten populations of the Bombay duck was studied on the basis of sequence-related amplified polymorphism (SRAP). The ten populations were collected from the East China Sea and South China Sea areas. A total of 98 loci were obtained from 292 individuals using eight SRAP primers. The average proportion of polymorphic loci, genetic diversity (H), and Shannon's information index were 75.20%, 0.2478, and 0.3735, respectively. Nei's genetic distance and Shannon's information index between the ten populations ranged from 0.0410 to 0.3841 and from 0.2396 to 0.4506, and the averages Nei's gene diversity index (H = 0.2478) and Shannon's information index (I = 0.3735) at the population level were high. AMOVA showed that most of the variation was within populations (71.74%), and only 28.26% of the variation was between populations. The neighbor-joining tree based on genetic distance revealed that significant genealogical structure existed throughout the examined range of the Bombay duck. The results demonstrated that SRAP marker was an effective tool for the assessment of genetic diversity in the Bombay duck. The results could be used for further protection of the germplasm resource of the Bombay duck.

  15. Family-based association study of interleukin 6 (IL6) and its receptor (IL6R) functional polymorphisms in schizophrenia in the Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Permoda-Osip, Agnieszka; Twarowska-Hauser, Joanna

    2015-08-15

    Schizophrenia is a heterogeneous disorder and its etiology remains incompletely elucidated. Among possible causes, immunological factors have been implicated in its pathogenesis and course. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. Recent studies indicate a role of excessive interleukin-6 (IL6) signaling in the pathogenesis of schizophrenia. Findings regarding changes in the circulating levels of soluble interleukin-6 receptor (sIL6R) in schizophrenia have been equivocal. The study was performed on a group of 147 trio (patients diagnosed with schizophrenia and their healthy parents). Polymorphisms of IL6 (rs1800795, rs1800797) and IL6R (rs4537545, rs4845617, rs2228145) genes were genotyped with the use of TaqMan SNP Genotyping Assays. No association of the polymorphisms from IL6 and IL6R genes with schizophrenia was found. We also investigated haplotypes in IL6 gene (consisting of rs1800795 and rs1800797) and in IL6R gene (consisting of rs4537545, rs2228145). We also found no preference in transmission of any haplotype. Our results do not support the theory that polymorphisms of IL6 and IL6R genes are involved in the pathogenesis of schizophrenia. It seems advisable to carry out further examinations of the role of these polymorphisms in schizophrenia by means of TDT method and classical (case-control) association method.

  16. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations.

  17. Estimating population size using single-nucleotide polymorphism-based pedigree data.

    PubMed

    Spitzer, Robert; Norman, Anita J; Schneider, Michael; Spong, Göran

    2016-05-01

    Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single-nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (N = 630 for CS, N = 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture-mark-recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging.

  18. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse

    PubMed Central

    Moran, Jennifer L.; Bolton, Andrew D.; Tran, Pamela V.; Brown, Alison; Dwyer, Noelle D.; Manning, Danielle K.; Bjork, Bryan C.; Li, Cheng; Montgomery, Kate; Siepka, Sandra M.; Vitaterna, Martha Hotz; Takahashi, Joseph S.; Wiltshire, Tim; Kwiatkowski, David J.; Kucherlapati, Raju; Beier, David R.

    2006-01-01

    Phenotype-driven genetics can be used to create mouse models of human disease and birth defects. However, the utility of these mutant models is limited without identification of the causal gene. To facilitate genetic mapping, we developed a fixed single nucleotide polymorphism (SNP) panel of 394 SNPs as an alternative to analyses using simple sequence length polymorphism (SSLP) marker mapping. With the SNP panel, chromosomal locations for 22 monogenic mutants were identified. The average number of affected progeny genotyped for mapped monogenic mutations is nine. Map locations for several mutants have been obtained with as few as four affected progeny. The average size of genetic intervals obtained for these mutants is 43 Mb, with a range of 17–83 Mb. Thus, our SNP panel allows for identification of moderate resolution map position with small numbers of mice in a high-throughput manner. Importantly, the panel is suitable for mapping crosses from many inbred and wild-derived inbred strain combinations. The chromosomal localizations obtained with the SNP panel allow one to quickly distinguish between potentially novel loci or remutations in known genes, and facilitates fine mapping and positional cloning. By using this approach, we identified DNA sequence changes in two ethylnitrosourea-induced mutants. PMID:16461637

  19. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the first time in many years a comprehensive genome map for cultivated oat has been constructed using a combination of single nucleotide polymorphism (SNP) markers and validated with a collection of cytogenetically defined germplasm lines. The markers were able to help distinguish the three geno...

  20. Translational genomics for abiotic stress in sorghum: transcriptional profiling and validation of SNP markers between germplasm with differential cold tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...

  1. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    PubMed

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  2. Nuclear Species-Diagnostic SNP Markers Mined from 454 Amplicon Sequencing Reveal Admixture Genomic Structure of Modern Citrus Varieties

    PubMed Central

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  3. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    PubMed

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  4. Assessment of microsatellite and SNP markers for parentage assignment in ex situ African Penguin (Spheniscus demersus) populations.

    PubMed

    Labuschagne, Christiaan; Nupen, Lisa; Kotzé, Antoinette; Grobler, Paul J; Dalton, Desiré L

    2015-10-01

    Captive management of ex situ populations of endangered species is traditionally based on pedigree information derived from studbook data. However, molecular methods could provide a powerful set of complementary tools to verify studbook records and also contribute to improving the understanding of the genetic status of captive populations. Here, we compare the utility of single nucleotide polymorphisms (SNPs) and microsatellites (MS) and two analytical methods for assigning parentage in ten families of captive African penguins held in South African facilities. We found that SNPs performed better than microsatellites under both analytical frameworks, but a combination of all markers was most informative. A subset of combined SNP (n = 14) and MS loci (n = 10) provided robust assessments of parentage. Captive or supportive breeding programs will play an important role in future African penguin conservation efforts as a source of individuals for reintroduction. Cooperation among these captive facilities is essential to facilitate this process and improve management. This study provided us with a useful set of SNP and MS markers for parentage and relatedness testing among these captive populations. Further assessment of the utility of these markers over multiple (>3) generations and the incorporation of a larger variety of relationships among individuals (e.g., half-siblings or cousins) is strongly suggested. PMID:26819703

  5. Assessment of microsatellite and SNP markers for parentage assignment in ex situ African Penguin (Spheniscus demersus) populations.

    PubMed

    Labuschagne, Christiaan; Nupen, Lisa; Kotzé, Antoinette; Grobler, Paul J; Dalton, Desiré L

    2015-10-01

    Captive management of ex situ populations of endangered species is traditionally based on pedigree information derived from studbook data. However, molecular methods could provide a powerful set of complementary tools to verify studbook records and also contribute to improving the understanding of the genetic status of captive populations. Here, we compare the utility of single nucleotide polymorphisms (SNPs) and microsatellites (MS) and two analytical methods for assigning parentage in ten families of captive African penguins held in South African facilities. We found that SNPs performed better than microsatellites under both analytical frameworks, but a combination of all markers was most informative. A subset of combined SNP (n = 14) and MS loci (n = 10) provided robust assessments of parentage. Captive or supportive breeding programs will play an important role in future African penguin conservation efforts as a source of individuals for reintroduction. Cooperation among these captive facilities is essential to facilitate this process and improve management. This study provided us with a useful set of SNP and MS markers for parentage and relatedness testing among these captive populations. Further assessment of the utility of these markers over multiple (>3) generations and the incorporation of a larger variety of relationships among individuals (e.g., half-siblings or cousins) is strongly suggested.

  6. Molecular authentication of Panax ginseng and ginseng products using robust SNP markers in ribosomal external transcribed spacer region.

    PubMed

    Wang, Hongtao; Kim, Min-Kyeoung; Kwon, Woo-Saeng; Jin, Haizhu; Liang, Zhiqi; Yang, Deok-Chun

    2011-07-15

    Panax ginseng and Panax quinquefolius are the most widely used Panax species, but they are known to have different properties and medicinal values. The aim of this study is to develop a robust and accurate DNA marker for identifying P. ginseng and the origins of ginseng products. Two single nucleotide polymorphism (SNP) sites specific to P. ginseng were exploited from nuclear ribosomal external transcribed spacer (ETS) region. Based on the SNP sites, two specific primers were designed for P. ginseng and P. quinquefolius respectively. P. ginseng can be easily discriminated from P. quinquefolius by amplifying the two specific alleles using multiplex allele-specific PCR. Favorable results can also be obtained from commercial ginseng products. The established method is highly sensitive and can detect 1% of intentional adulteration of P. quinquefolius into P. ginseng down to the 0.1ng level of total DNA. Therefore this study provides a reliable and simple DNA method for authentication of the origins and purities of ginseng products.

  7. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  8. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  9. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L.

    PubMed

    Chopra, Ratan; Burow, Gloria; Farmer, Andrew; Mudge, Joann; Simpson, Charles E; Wilkins, Thea A; Baring, Michael R; Puppala, Naveen; Chamberlin, Kelly D; Burow, Mark D

    2015-06-01

    Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.

  10. Exploring Germplasm Diversity to Understand the Domestication Process in Cicer spp. Using SNP and DArT Markers

    PubMed Central

    Roorkiwal, Manish; von Wettberg, Eric J.; Upadhyaya, Hari D.; Warschefsky, Emily; Rathore, Abhishek; Varshney, Rajeev K.

    2014-01-01

    To estimate genetic diversity within and between 10 interfertile Cicer species (94 genotypes) from the primary, secondary and tertiary gene pool, we analysed 5,257 DArT markers and 651 KASPar SNP markers. Based on successful allele calling in the tertiary gene pool, 2,763 DArT and 624 SNP markers that are polymorphic between genotypes from the gene pools were analyzed further. STRUCTURE analyses were consistent with 3 cultivated populations, representing kabuli, desi and pea-shaped seed types, with substantial admixture among these groups, while two wild populations were observed using DArT markers. AMOVA was used to partition variance among hierarchical sets of landraces and wild species at both the geographical and species level, with 61% of the variation found between species, and 39% within species. Molecular variance among the wild species was high (39%) compared to the variation present in cultivated material (10%). Observed heterozygosity was higher in wild species than the cultivated species for each linkage group. Our results support the Fertile Crescent both as the center of domestication and diversification of chickpea. The collection used in the present study covers all the three regions of historical chickpea cultivation, with the highest diversity in the Fertile Crescent region. Shared alleles between different gene pools suggest the possibility of gene flow among these species or incomplete lineage sorting and could indicate complicated patterns of divergence and fusion of wild chick