Sample records for polymorphism based snp

  1. A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Analysis of population structure and genetic history of cattle breeds based on high-density SNP data

    USDA-ARS?s Scientific Manuscript database

    Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...

  3. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that

  4. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  5. Exercise improves adiponectin concentrations irrespective of the adiponectin gene polymorphisms SNP45 and the SNP276 in obese Korean women.

    PubMed

    Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A

    2013-03-10

    The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. [Comparative analysis of STR and SNP polymorphism in the populations of sockeye salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka].

    PubMed

    Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A

    2010-11-01

    Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.

  7. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  8. Association between CYP19 gene SNP rs2414096 polymorphism and polycystic ovary syndrome in Chinese women.

    PubMed

    Jin, Jia-Li; Sun, Jing; Ge, Hui-Juan; Cao, Yun-Xia; Wu, Xiao-Ke; Liang, Feng-Jing; Sun, Hai-Xiang; Ke, Lu; Yi, Long; Wu, Zhi-Wei; Wang, Yong

    2009-12-16

    Several studies have reported the association of the SNP rs2414096 in the CYP19 gene with hyperandrogenism, which is one of the clinical manifestations of polycystic ovary syndrome (PCOS). These studies suggest that SNP rs2414096 may be involved in the etiopathogenisis of PCOS. To investigate whetherthe CYP19 gene SNP rs2414096 polymorphism is associated with the susceptibility to PCOS, we designed a case-controlled association study including 684 individuals. A case-controlled association study including 684 individuals (386 PCOS patients and 298 controls) was performed to assess the association of SNP rs2414096 with PCOS. Genotyping of SNP rs2414096 was conducted by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that was performed on genomic DNA isolated from blood leucocytes. Results were analyzed in respect to clinical test results. The genotypic distributions of rs2414096 (GG, AG, AA) in the CYP19 gene (GG, AG, AA) in women with PCOS (0.363, 0.474, 0.163, respectively) were significantly different from that in controls (0.242, 0.500, 0.258, respectively) (P = 0.001). E2/T was different between the AA and GG genotypes. Age at menarche (AAM) and FSH were also significantly different among the GG, AG, and AA genotypes in women with PCOS (P = 0.0391 and 0.0118, respectively). No differences were observed in body mass index (BMI) and other serum hormone concentrations among the three genotypes, either in the PCOS patients or controls. Our data suggest that SNP rs2414096 in the CYP19 gene is associated with susceptibility to PCOS.

  9. An integrated genetic linkage map of watermelon and genetic diversity based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...

  10. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    PubMed Central

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  11. SNP ID-info: SNP ID searching and visualization platform.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei

    2008-09-01

    Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.

  12. SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations

    PubMed Central

    van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.

    2011-01-01

    To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370

  13. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    PubMed

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  14. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID

  15. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    PubMed

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR

  16. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry.

    PubMed

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin

    2012-01-01

    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  17. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  18. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers

    PubMed Central

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin

    2013-01-01

    Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of

  19. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.

  20. A Coordinated Approach to Peach SNP Discovery in RosBREED

    USDA-ARS?s Scientific Manuscript database

    In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...

  1. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification

    PubMed Central

    McClure, Matthew C.; McCarthy, John; Flynn, Paul; McClure, Jennifer C.; Dair, Emma; O'Connell, D. K.; Kearney, John F.

    2018-01-01

    A major use of genetic data is parentage verification and identification as inaccurate pedigrees negatively affect genetic gain. Since 2012 the international standard for single nucleotide polymorphism (SNP) verification in Bos taurus cattle has been the ISAG SNP panels. While these ISAG panels provide an increased level of parentage accuracy over microsatellite markers (MS), they can validate the wrong parent at ≤1% misconcordance rate levels, indicating that more SNP are needed if a more accurate pedigree is required. With rapidly increasing numbers of cattle being genotyped in Ireland that represent 61 B. taurus breeds from a wide range of farm types: beef/dairy, AI/pedigree/commercial, purebred/crossbred, and large to small herd size the Irish Cattle Breeding Federation (ICBF) analyzed different SNP densities to determine that at a minimum ≥500 SNP are needed to consistently predict only one set of parents at a ≤1% misconcordance rate. For parentage validation and prediction ICBF uses 800 SNP (ICBF800) selected based on SNP clustering quality, ISAG200 inclusion, call rate (CR), and minor allele frequency (MAF) in the Irish cattle population. Large datasets require sample and SNP quality control (QC). Most publications only deal with SNP QC via CR, MAF, parent-progeny conflicts, and Hardy-Weinberg deviation, but not sample QC. We report here parentage, SNP QC, and a genomic sample QC pipelines to deal with the unique challenges of >1 million genotypes from a national herd such as SNP genotype errors from mis-tagging of animals, lab errors, farm errors, and multiple other issues that can arise. We divide the pipeline into two parts: a Genotype QC and an Animal QC pipeline. The Genotype QC identifies samples with low call rate, missing or mixed genotype classes (no BB genotype or ABTG alleles present), and low genotype frequencies. The Animal QC handles situations where the genotype might not belong to the listed individual by identifying: >1 non

  2. Influence of TP53 Codon 72 Polymorphism Alone or in Combination with HDM2 SNP309 on Human Infertility and IVF Outcome.

    PubMed

    Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru

    2016-01-01

    To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.

  3. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    PubMed

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  4. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2009-01-01

    Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and

  5. A web-based genome browser for 'SNP-aware' assay design

    USDA-ARS?s Scientific Manuscript database

    Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...

  6. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  7. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  8. Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest.

    PubMed

    Pappas, D J; Lizee, A; Paunic, V; Beutner, K R; Motyer, A; Vukcevic, D; Leslie, S; Biesiada, J; Meller, J; Taylor, K D; Zheng, X; Zhao, L P; Gourraud, P-A; Hollenbach, J A; Mack, S J; Maiers, M

    2018-05-22

    Four single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes.

  9. Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set†

    PubMed Central

    Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David

    2006-01-01

    We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065

  10. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. DNAzyme based gap-LCR detection of single-nucleotide polymorphism.

    PubMed

    Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo

    2013-07-15

    Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  13. SNP Discovery and Linkage Map Construction in Cultivated Tomato

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2010-01-01

    Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984

  14. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    PubMed

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  16. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms.

    PubMed

    Azevedo, Ana P; Silva, Susana N; De Lima, João P; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José

    2017-06-01

    The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog ( E. coli ) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.

  17. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms

    PubMed Central

    Azevedo, Ana P.; Silva, Susana N.; De Lima, João P.; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José

    2017-01-01

    The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility. PMID:28599464

  18. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.

    PubMed

    Feltus, F Alex; Wan, Jun; Schulze, Stefan R; Estill, James C; Jiang, Ning; Paterson, Andrew H

    2004-09-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.

  19. An SNP Resource for Rice Genetics and Breeding Based on Subspecies Indica and Japonica Genome Alignments

    PubMed Central

    Feltus, F. Alex; Wan, Jun; Schulze, Stefan R.; Estill, James C.; Jiang, Ning; Paterson, Andrew H.

    2004-01-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% ± 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% ± 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp. PMID:15342564

  20. Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 2: The Incorporation of SNP into the National Health Information System of Turkey

    PubMed Central

    Beyan, Timur

    2014-01-01

    Background A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical record (EMR)s/electronic health record (EHR)s systems. Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods For the second article of this miniseries, we have analyzed the existing NHIS-T and proposed the possible extensional architectures. In light of the literature survey and characteristics of NHIS-T, we have proposed and argued opportunities and obstacles for a SNP incorporated NHIS-T. A prototype with complementary capabilities (knowledge base and end-user applications) for these architectures has been designed and developed. Results In the proposed architectures, the clinically relevant personal SNP (CR-SNP) and clinicogenomic associations are shared between central repositories and end-users via the NHIS-T infrastructure. To produce these files, we need to develop a national level clinicogenomic knowledge base. Regarding clinicogenomic decision support, we planned to complete interpretation of these associations on the end

  1. Incorporation of personal single nucleotide polymorphism (SNP) data into a national level electronic health record for disease risk assessment, part 2: the incorporation of SNP into the national health information system of Turkey.

    PubMed

    Beyan, Timur; Aydın Son, Yeşim

    2014-08-11

    A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical record (EMR)s/electronic health record (EHR)s systems. Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. For the second article of this miniseries, we have analyzed the existing NHIS-T and proposed the possible extensional architectures. In light of the literature survey and characteristics of NHIS-T, we have proposed and argued opportunities and obstacles for a SNP incorporated NHIS-T. A prototype with complementary capabilities (knowledge base and end-user applications) for these architectures has been designed and developed. In the proposed architectures, the clinically relevant personal SNP (CR-SNP) and clinicogenomic associations are shared between central repositories and end-users via the NHIS-T infrastructure. To produce these files, we need to develop a national level clinicogenomic knowledge base. Regarding clinicogenomic decision support, we planned to complete interpretation of these associations on the end-user applications. This approach gives us

  2. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  3. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  4. Association of SNP and STR polymorphisms of insulin-like growth factor 2 receptor (IGF2R) gene with milk traits in Holstein-Friesian cows.

    PubMed

    Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech

    2018-05-01

    The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.

  5. Influence of adiponectin gene polymorphism SNP276 (G/T) on adiponectin in response to exercise training.

    PubMed

    Huang, Hu; Tada Iida, Kaoruko; Murakami, Haruka; Saito, Yoko; Otsuki, Takeshi; Iemitsu, Motoyuki; Maeda, Seiji; Sone, Hirohito; Kuno, Shinya; Ajisaka, Ryuichi

    2007-12-01

    Adiponectin is an adipocytokine that is involved in insulin sensitivity. The adiponectin gene contains a single nucleotide polymorphism (SNP) at position 276 (G/T). The GG genotype of SNP276 (G/T) is associated with lower plasma adiponectin levels and a higher insulin resistance index. Therefore, we examined the influence of SNP276 (G/T) on the plasma level of adiponectin in response to exercise training. Thirty healthy Japanese (M12/F18; 56 to 79 years old) performed both resistance and endurance training, 5 times a week for 6 months. The work rate per kg of weight at double-product break-point (DPBP) was measured. Blood samples were obtained before and after the experiment. Plasma concentrations of adiponectin, HbA1c, insulin, glucose, total, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) cholesterol, and triglyceride were measured. Genotypes of SNP276 were specified. Student's t-test for paired values and unpaired values was used. After the 6-month training period, the work rate per kg of weight at DPBP and the plasma HDL-cholesterol level were significantly improved (P<0.05), while no change was observed in the total plasma adiponectin level. However, the plasma adiponectin level in those with the GT + TT genotype had significantly increased (P<0.05). Additionally, the degree of the decrease in the HOMA-R level was significantly greater in the subjects with the GT + TT genotype than those with the GG genotype (p<0.05). Our results suggest that subjects with the genotype GT + TT at SNP276 (G/T) have a greater adiponectin-related response to exercise training than those with the GG genotype.

  6. A comparison of restriction fragment length polymorphism, tetra primer amplification refractory mutation system PCR and unlabeled probe melting analysis for LTA+252 C>T SNP genotyping.

    PubMed

    Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent

    2011-02-20

    From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  8. Association of SNP3 polymorphism in the apolipoprotein A-V gene with plasma triglyceride level in Tunisian type 2 diabetes

    PubMed Central

    Chaaba, Raja; Attia, Nebil; Hammami, Sonia; Smaoui, Maha; Mahjoub, Sylvia; Hammami, Mohamed; Masmoudi, Ahmed Slaheddine

    2005-01-01

    Background Apolipoprotein A-V (Apo A-V) gene has recently been identified as a new apolipoprotein involved in triglyceride metabolism. A single nucleotide polymorphism (SNP3) located in the gene promoter (-1131) was associated with triglyceride variation in healthy subjects. In type 2 diabetes the triglyceride level increased compared to healthy subjects. Hypertriglyceridemia is a risk factor for coronary artery disease. We aimed to examine the interaction between SNP3 and lipid profile and coronary artery disease (CAD) in Tunisian type 2 diabetic patients. Results The genotype frequencies of T/T, T/C and C/C were 0.74, 0.23 and 0.03 respectively in non diabetic subjects, 0.71, 0.25 and 0.04 respectively in type 2 diabetic patients. Triglyceride level was higher in heterozygous genotype (-1131 T/C) of apo A-V (p = 0.024). Heterozygous genotype is more frequent in high triglyceride group (40.9%) than in low triglyceride group (18.8%) ; p = 0.011. Despite the relation between CAD and hypertriglyceridemia the SNP 3 was not associated with CAD. Conclusion In type 2 diabetic patients SNP3 is associated with triglyceride level, however there was no association between SNP3 and coronary artery disease. PMID:15636639

  9. A phased SNP-based classification of sickle cell anemia HBB haplotypes.

    PubMed

    Shaikho, Elmutaz M; Farrell, John J; Alsultan, Abdulrahman; Qutub, Hatem; Al-Ali, Amein K; Figueiredo, Maria Stella; Chui, David H K; Farrer, Lindsay A; Murphy, George J; Mostoslavsky, Gustavo; Sebastiani, Paola; Steinberg, Martin H

    2017-08-11

    Sickle cell anemia causes severe complications and premature death. Five common β-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the β-globin gene cluster. This is labor intensive, and error prone. We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources.

  10. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  12. SNPdbe: constructing an nsSNP functional impacts database.

    PubMed

    Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana

    2012-02-15

    Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.

  13. Development of a New Molecular Subtyping Tool for Salmonella enterica Serovar Enteritidis Based on Single Nucleotide Polymorphism Genotyping Using PCR

    PubMed Central

    Kelly, Hilary; Dupras, Andrée Ann; Belanger, Sebastien; Devenish, John

    2014-01-01

    The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks. PMID:25297333

  14. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  15. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    PubMed Central

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  16. Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene

    PubMed Central

    Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen

    2008-01-01

    Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301

  17. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  18. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    PubMed

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  19. Development and Applications of a Bovine 50,000 SNP Chip

    USDA-ARS?s Scientific Manuscript database

    To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...

  20. Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults.

    PubMed

    Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.

  1. Lack of Association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults

    PubMed Central

    Onel, KB; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, MK; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE. PMID:19074170

  2. KinSNP software for homozygosity mapping of disease genes using SNP microarrays

    PubMed Central

    2010-01-01

    Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from http://bioinfo.bgu.ac.il/bsu/software/kinSNP. PMID:20846928

  3. Following the footprints of polymorphic inversions on SNP data: from detection to association tests

    PubMed Central

    Cáceres, Alejandro; González, Juan R.

    2015-01-01

    Inversion polymorphisms have important phenotypic and evolutionary consequences in humans. Two different methodologies have been used to infer inversions from SNP dense data, enabling the use of large cohorts for their study. One approach relies on the differences in linkage disequilibrium across breakpoints; the other one captures the internal haplotype groups that tag the inversion status of chromosomes. In this article, we assessed the convergence of the two methods in the detection of 20 human inversions that have been reported in the literature. The methods converged in four inversions including inv-8p23, for which we studied its association with low-BMI in American children. Using a novel haplotype tagging method with control on inversion ancestry, we computed the frequency of inv-8p23 in two American cohorts and observed inversion haplotype admixture. Accounting for haplotype ancestry, we found that the European inverted allele in children carries a recessive risk of underweight, validated in an independent Spanish cohort (combined: OR= 2.00, P = 0.001). While the footprints of inversions on SNP data are complex, we show that systematic analyses, such as convergence of different methods and controlling for ancestry, can reveal the contribution of inversions to the ancestral composition of populations and to the heritability of human disease. PMID:25672393

  4. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis.

    PubMed

    Waterfall, C M; Cobb, B D

    2001-12-01

    Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a 'matrix-based' optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable.

  5. Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease

    PubMed Central

    Huijsmans, Cornelis J. J.; Poodt, Jeroen; Damen, Jan; van der Linden, Johannes C.; Savelkoul, Paul H. M.; Pruijt, Johannes F. M.; Hilbink, Mirrian; Hermans, Mirjam H. A.

    2012-01-01

    During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n = 6 25–50% and n = 6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25–50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci. PMID:22768290

  6. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less

  7. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes

    PubMed Central

    Ryynänen, Heikki J; Primmer, Craig R

    2006-01-01

    Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases. PMID:16872523

  8. High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  9. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis

    PubMed Central

    Waterfall, Christy M.; Cobb, Benjamin D.

    2001-01-01

    Allele-specific amplification (ASA) is a generally applicable technique for the detection of known single nucleotide polymorphisms (SNPs), deletions, insertions and other sequence variations. Conventionally, two reactions are required to determine the zygosity of DNA in a two-allele system, along with significant upstream optimisation to define the specific test conditions. Here, we combine single tube bi-directional ASA with a ‘matrix-based’ optimisation strategy, speeding up the whole process in a reduced reaction set. We use sickle cell anaemia as our model SNP system, a genetic disease that is currently screened using ASA methods. Discriminatory conditions were rapidly optimised enabling the unambiguous identification of DNA from homozygous sickle cell patients (HbS/S), heterozygous carriers (HbA/S) or normal DNA in a single tube. Simple downstream mathematical analyses based on product yield across the optimisation set allow an insight into the important aspects of priming competition and component interactions in this competitive PCR. This strategy can be applied to any polymorphism, defining specific conditions using a multifactorial approach. The inherent simplicity and low cost of this PCR-based method validates bi-directional ASA as an effective tool in future clinical screening and pharmacogenomic research where more expensive fluorescence-based approaches may not be desirable. PMID:11726702

  10. When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes

    PubMed Central

    Gardner, Shea N.; Hall, Barry G.

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125

  11. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.

    PubMed

    Gardner, Shea N; Hall, Barry G

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.

  12. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  13. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.

    PubMed

    Karchin, Rachel; Diekhans, Mark; Kelly, Libusha; Thomas, Daryl J; Pieper, Ursula; Eswar, Narayanan; Haussler, David; Sali, Andrej

    2005-06-15

    The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org http://salilab.org/LS-SNP/supp-info.pdf.

  14. Microsatellite Imputation for parental verification from SNP across multiple Bos taurus and indicus breeds

    USDA-ARS?s Scientific Manuscript database

    Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international demands fro...

  15. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  17. Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 3: An Evaluation of SNP Incorporated National Health Information System of Turkey for Prostate Cancer

    PubMed Central

    Beyan, Timur

    2014-01-01

    Background A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a three part miniseries: (1) an overview of requirements, (2) the incorporation of SNP data into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods In the third article of this miniseries, we have evaluated the proposed complementary capabilities (ie, knowledge base and end-user application) with real data. Before the evaluation phase, clinicogenomic associations about increased prostate cancer risk were extracted from knowledge sources, and published predictive genomic models assessing individual prostate cancer risk were collected. To evaluate complementary capabilities, we also gathered personal SNP data of four prostate cancer cases and fifteen controls. Using these data files, we compared various independent and model-based, prostate cancer risk assessment approaches. Results Through the extraction and selection processes of SNP-prostate cancer risk associations, we collected 209 independent associations for increased risk of prostate cancer from the studied knowledge sources. Also

  18. snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.

    PubMed

    Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M

    2012-01-01

    The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.

  19. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  20. Clinical relevance of IL-6 gene polymorphism in severely injured patients

    PubMed Central

    Jeremić, Vasilije; Alempijević, Tamara; Mijatović, Srđan; Šijački, Ana; Dragašević, Sanja; Pavlović, Sonja; Miličić, Biljana; Krstić, Slobodan

    2014-01-01

    In polytrauma, injuries that may be surgically treated under regular circumstances due to a systemic inflammatory response become life-threatening. The inflammatory response involves a complex pattern of humoral and cellular responses and the expression of related factors is thought to be governed by genetic variations. This aim of this paper is to examine the influence of interleukin (IL) 6 single nucleotide polymorphism (SNP) -174C/G and -596G/A on the treatment outcome in severely injured patients. Forty-seven severely injured patients were included in this study. Patients were assigned an Injury Severity Score. Blood samples were drawn within 24 h after admission (designated day 1) and on subsequent days (24, 48, 72 hours and 7days) of hospitalization. The IL-6 levels were determined through ELISA technique. Polymorphisms were analyzed by a method of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR). Among subjects with different outcomes, no statistically relevant difference was found with regards to the gene IL-6 SNP-174G/C polymorphism. More than a half of subjects who died had the SNP-174G/C polymorphism, while this polymorphism was represented in a slightly lower number in survivors. The incidence of subjects without polymorphism and those with heterozygous and homozygous gene IL-6 SNP-596G/A polymorphism did not present statistically significant variations between survivors and those who died. The levels of IL-6 over the observation period did not present any statistically relevant difference among subjects without the IL-6 SNP-174 or IL-6 SNP -596 gene polymorphism and those who had either a heterozygous or a homozygous polymorphism. PMID:24856384

  1. KinSNP software for homozygosity mapping of disease genes using SNP microarrays.

    PubMed

    Amir, El-Ad David; Bartal, Ofer; Morad, Efrat; Nagar, Tal; Sheynin, Jony; Parvari, Ruti; Chalifa-Caspi, Vered

    2010-08-01

    Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from.

  2. Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis

    PubMed Central

    Smith, J. Gustav; Almgren, Peter; Engström, Gunnar; Hedblad, Bo; Platonov, Pyotr G.; Newton-Cheh, Christopher; Melander, Olle

    2013-01-01

    Objectives Genome-wide association studies have recently identified genetic polymorphisms associated with common, etiologically complex diseases, for which direct-to-consumer genetic testing with provision of absolute genetic risk estimates is marketed by commercial companies. Polymorphisms associated with atrial fibrillation (AF) have shown relatively large risk estimates but the robustness of such estimates across populations and study designs has not been studied. Design A systematic literature review with meta-analysis and assessment of between-study heterogeneity was performed for single nucleotide polymorphisms (SNPs) in the six genetic regions associated with AF in genome-wide or candidate gene studies. Results Data from 18 samples of European ancestry (n=12,100 cases; 115,702 controls) were identified for the SNP on chromosome 4q25 (rs220733), 16 samples (n=12,694 cases; 132,602 controls) for the SNP on 16q22 (rs2106261) and 4 samples (n=5,272 cases; 59,725 controls) for the SNP in KCNH2 (rs1805123). Only the discovery studies were identified for SNPs on 1q21 and in GJA5 and IL6R, why no meta-analyses were performed for those SNPs. In overall random-effects meta-analyses, association with AF was observed for both SNPs from genome-wide studies on 4q25 (OR 1.67, 95% CI=1.50–1.86, p=2×10−21) and 16q22 (OR 1.21, 95% CI=1.13–1.29, p=1×10−8), but not the SNP in KCNH2 from candidate gene studies (p=0.15). There was substantial effect heterogeneity across case-control and cross-sectional studies for both polymorphisms (I2=0.50–0.78, p<0.05), but not across prospective cohort studies (I2=0.39, p=0.15). Both polymorphisms were robustly associated with AF for each study design individually (p<0.05). Conclusions In meta-analyses including up to 150,000 individuals, polymorphisms in two genetic regions were robustly associated with AF across all study designs but with substantial context-dependency of risk estimates. PMID:22690879

  3. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exploring single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes in the jellyfish (Rhopilema esculentum) by transcriptome sequencing.

    PubMed

    Li, Yunfeng; Zhou, Zunchun; Tian, Meilin; Tian, Yi; Dong, Ying; Li, Shilei; Liu, Weidong; He, Chongbo

    2017-08-01

    In this study, single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes (DEGs) in the oral parts, gonads, and umbrella parts of the jellyfish Rhopilema esculentum were analyzed by RNA-Seq technology. A total of 76.4 million raw reads and 72.1 million clean reads were generated from deep sequencing. Approximately 119,874 tentative unigenes and 149,239 transcripts were obtained. A total of 1,034,708 SNP markers were detected in the three tissues. For microsatellite mining, 5088 SSRs were identified from the unigene sequences. The most frequent repeat motifs were mononucleotide repeats, which accounted for 61.93%. Transcriptome comparison of the three tissues yielded a total of 8841 DEGs, of which 3560 were up-regulated and 5281 were down-regulated. This study represents the greatest sequencing effort carried out for a jellyfish and provides the first high-throughput transcriptomic resource for jellyfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  6. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    PubMed

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  7. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  8. Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat

    USDA-ARS?s Scientific Manuscript database

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  9. Compression and fast retrieval of SNP data.

    PubMed

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Fine Mapping of a Clubroot Resistance Gene in Chinese Cabbage Using SNP Markers Identified from Bulked Segregant RNA Sequencing

    PubMed Central

    Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun

    2017-01-01

    Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454

  11. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  12. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. SNP genotypes of Mycobacterium leprae isolates in Thailand and their combination with rpoT and TTC genotyping for analysis of leprosy distribution and transmission.

    PubMed

    Phetsuksiri, Benjawan; Srisungngam, Sopa; Rudeeaneksin, Janisara; Bunchoo, Supranee; Lukebua, Atchariya; Wongtrungkapun, Ruch; Paitoon, Soontara; Sakamuri, Rama Murthy; Brennan, Patrick J; Vissa, Varalakshmi

    2012-01-01

    Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.

  14. HRM and SNaPshot as alternative forensic SNP genotyping methods.

    PubMed

    Mehta, Bhavik; Daniel, Runa; McNevin, Dennis

    2017-09-01

    Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.

  15. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-06-09

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  16. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing.

    PubMed

    Gao, Guangtu; Nome, Torfinn; Pearse, Devon E; Moen, Thomas; Naish, Kerry A; Thorgaard, Gary H; Lien, Sigbjørn; Palti, Yniv

    2018-01-01

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout ( Oncorhynchus mykiss ), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup , followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity

  18. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  19. Forensic SNP genotyping with SNaPshot: Technical considerations for the development and optimization of multiplexed SNP assays.

    PubMed

    Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V

    2017-01-01

    This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions). Copyright © 2017 Central Police University.

  20. Large Scale Single Nucleotide Polymorphism Study of PD Susceptibility

    DTIC Science & Technology

    2006-03-01

    familial PD, the results of intensive investigations of polymorphisms in dozens of genes related to sporadic, late onset, typical PD have not shown...association between classical, sporadic PD and 2386 SNPs in 23 genes implicated in the pathogenesis of PD; (2) construct haplotypes based on the SNP...derived from this study may be applied in other complex disorders for the identification of susceptibility genes , as well as in genome-wide SNP

  1. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.

    PubMed

    Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros

    2014-06-25

    The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.

  2. Heterogeneous computing architecture for fast detection of SNP-SNP interactions

    PubMed Central

    2014-01-01

    Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802

  3. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms.

    PubMed

    Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M

    2011-01-01

    We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.

  4. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.

    PubMed

    Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron

    2017-11-01

    Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele

  5. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    PubMed Central

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  6. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    PubMed

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  7. Real-Time PCR Typing of Escherichia coli Based on Multiple Single Nucleotide Polymorphisms--a Convenient and Rapid Method.

    PubMed

    Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan

    2016-01-01

    Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.

  8. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  9. Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and Evaluation for Genetic Mapping in European Pear and Interspecific Pyrus Hybrids

    PubMed Central

    Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917

  10. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  11. Partitioned learning of deep Boltzmann machines for SNP data.

    PubMed

    Hess, Moritz; Lenz, Stefan; Blätte, Tamara J; Bullinger, Lars; Binder, Harald

    2017-10-15

    Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case-control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. A Julia package is provided at 'http://github.com/binderh/BoltzmannMachines.jl'. binderh@imbi.uni-freiburg.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general

  13. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds

    USDA-ARS?s Scientific Manuscript database

    Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP) -based assays. Despite domestic and international demands fr...

  14. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based

  15. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by

  16. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  17. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241

  18. The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.

    PubMed

    Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe

    2018-06-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Association between Single Nucleotide Polymorphism of Vitamin D Receptor Gene FokI Polymorphism and Clinical Progress of Benign Prostatic Hyperplasia

    PubMed Central

    Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de

    2015-01-01

    Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834

  20. SNP-markers in Allium species to facilitate introgression breeding in onion.

    PubMed

    Scholten, Olga E; van Kaauwen, Martijn P W; Shahin, Arwa; Hendrickx, Patrick M; Keizer, L C Paul; Burger, Karin; van Heusden, Adriaan W; van der Linden, C Gerard; Vosman, Ben

    2016-08-31

    Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding. SNP markers linked to resistance and polymorphic between these related species and onion cultivars are a valuable tool to efficiently introgress disease resistance genes. In this paper we describe the identification and validation of SNP markers valuable for onion breeding. Transcriptome sequencing resulted in 192 million RNA seq reads from the interspecific F1 hybrid between A. roylei and A. fistulosum (RF) and nine onion cultivars. After assembly, reliable SNPs were discovered in about 36 % of the contigs. For genotyping of the interspecific three-way cross population, derived from a cross between an onion cultivar and the RF (CCxRF), 1100 SNPs that are polymorphic in RF and monomorphic in the onion cultivars (RF SNPs) were selected for the development of KASP assays. A molecular linkage map based on 667 RF-SNP markers was constructed for CCxRF. In addition, KASP assays were developed for 1600 onion-SNPs (SNPs polymorphic among onion cultivars). A second linkage map was constructed for an F2 of onion x A. roylei (F2(CxR)) that consisted of 182 onion-SNPs and 119 RF-SNPs, and 76 previously mapped markers. Markers co-segregating in both the F2(CxR) and the CCxRF population were used to assign the linkage groups of RF to onion chromosomes. To validate usefulness of these SNP markers, QTL mapping was applied in the CCxRF population that segregates for resistance to Botrytis squamosa and resulted in a QTL for resistance on chromosome 6 of A. roylei. Our research has more than doubled the publicly available marker sequences of expressed onion genes and two onion-related species. It resulted in a detailed genetic map for the interspecific CCxRF population. This is the first paper that reports the detection of

  1. Development of genetic markers in abalone through construction of a SNP database.

    PubMed

    Kang, J-H; Appleyard, S A; Elliott, N G; Jee, Y-J; Lee, J B; Kang, S W; Baek, M K; Han, Y S; Choi, T-J; Lee, Y S

    2011-06-01

    In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis. © 2010 NFRDI, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  2. Single-feature polymorphism discovery in the barley transcriptome

    PubMed Central

    Rostoks, Nils; Borevitz, Justin O; Hedley, Peter E; Russell, Joanne; Mudie, Sharon; Morris, Jenny; Cardle, Linda; Marshall, David F; Waugh, Robbie

    2005-01-01

    A probe-level model for analysis of GeneChip gene-expression data is presented which identified more than 10,000 single-feature polymorphisms (SFP) between two barley genotypes. The method has good sensitivity, as 67% of known single-nucleotide polymorphisms (SNP) were called as SFPs. This method is applicable to all oligonucleotide microarray data, accounts for SNP effects in gene-expression data and represents an efficient and versatile approach for highly parallel marker identification in large genomes. PMID:15960806

  3. Summarizing techniques that combine three non-parametric scores to detect disease-associated 2-way SNP-SNP interactions.

    PubMed

    Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J

    2014-01-01

    Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.

  4. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  5. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-04-01

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  7. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  8. Toward optimal set of single nucleotide polymorphism investigation before IVF.

    PubMed

    Ivanov, A V; Dedul, A G; Fedotov, Y N; Komlichenko, E V

    2016-10-01

    At present, the patient preparation for IVF needs to undergo a series of planned tests, including the genotyping of single nucleotide polymorphism (SNP) alleles of some genes. In former USSR countries, such investigation was not included in overwhelming majority of health insurance programs and paid by patient. In common, there are prerequisites to the study of more than 50 polymorphisms. An important faced task is to determine the optimal panel for SNP genotyping in terms of price/number of SNP. During 2009-2015 in the University Hospital of St. Petersburg State University, blood samples were analyzed from 550 women with different reproductive system disorders preparing for IVF and 46 healthy women in control group. In total, 28 SNP were analyzed in the genes of thrombophilia factors, folic acid cycle, detoxification system, and the renin-angiotensin system. The method used was real-time PCR. A significant increase in the frequency of pathological alleles of some polymorphisms in patients with habitual failure of IVF was shown, compared with the control group. As a result, two options defined panels for optimal typing SNP before IVF were composed. Standard panel includes 8 SNP, 5 in thromborhilic factors, and 3 in folic acid cycle genes. They are 20210 G > A of FII gene, R506Q G > A of FV gene (mutation Leiden), -675 5G > 4G of PAI-I gene, L33P T > C of ITGB3 gene, -455 G > A of FGB gene, 667 C > T of MTHFR gene, 2756 A > G of MTR gene, and 66 A > G of MTRR gene. Extended panel of 15 SNP also includes 807 C > T of ITGA2 gene, T154M C > T of GP1BA gene, second polymorphism 1298 A > C in MTHFR gene, polymorphisms of the renin-angiotensin gene AGT M235T T > C and -1166 A > C of AGTR1 gene, polymorphisms I105V A > G and A114V C > T of detoxification system gene GSTP. The results of SNP genotyping can be adjusted for treatment tactics and IVF, and also medical support getting pregnant. The success rate of

  9. GEE-based SNP set association test for continuous and discrete traits in family-based association studies.

    PubMed

    Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong

    2013-12-01

    Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.

  10. Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.

    PubMed

    Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A

    2006-08-01

    Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.

  11. COMT and MAO-A Polymorphisms and Obsessive-Compulsive Disorder: A Family-Based Association Study

    PubMed Central

    Sampaio, Aline Santos; Hounie, Ana Gabriela; Petribú, Kátia; Cappi, Carolina; Morais, Ivanil; Vallada, Homero; do Rosário, Maria Conceição; Stewart, S. Evelyn; Fargeness, Jesen; Mathews, Carol; Arnold, Paul; Hanna, Gregory L.; Richter, Margaret; Kennedy, James; Fontenelle, Leonardo; de Bragança Pereira, Carlos Alberto; Pauls, David L.; Miguel, Eurípedes Constantino

    2015-01-01

    Objective Obsessive-compulsive disorder (OCD) is a common and debilitating psychiatric illness. Although a genetic component contributes to its etiology, no single gene or mechanism has been identified to the OCD susceptibility. The catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A) genes have been investigated in previous OCD studies, but the results are still unclear. More recently, Taylor (2013) in a comprehensive meta-analysis of genetic association studies has identified COMT and MAO-A polymorphisms involved with OCD. In an effort to clarify the role of these two genes in OCD vulnerability, a family-based association investigation was performed as an alternative strategy to the classical case-control design. Methods Transmission disequilibrium analyses were performed after genotyping 13 single-nucleotide polymorphisms (eight in COMT and five in MAO-A) in 783 OCD trios (probands and their parents). Four different OCD phenotypes (from narrow to broad OCD definitions) and a SNP x SNP epistasis were also analyzed. Results OCD, broad and narrow phenotypes,were not associated with any of the investigated COMT and MAO-A polymorphisms. In addition, the analyses of gene-gene interaction did not show significant epistatic influences on phenotype between COMT and MAO-A. Conclusions The findings do not support an association between DSM-IV OCD and the variants of COMT or MAO-A. However, results from this study cannot exclude the contribution of these genes in the manifestation of OCD. The evaluation of broader spectrum phenotypes could help to understand the role of these and other genes in the pathophysiology of OCD and its spectrum disorders. PMID:25793616

  12. Identification of SNP Haplotypes and Prospects of Association Mapping in Watermelon

    USDA-ARS?s Scientific Manuscript database

    Watermelon is the fifth most economically important vegetable crop cultivated world-wide. Implementing Single Nucleotide Polymorphism (SNP) marker technology in watermelon breeding and germplasm evaluation programs holds a key to improve horticulturally important traits. Next-generation sequencing...

  13. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    PubMed

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  14. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils.

    PubMed

    Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis

    2016-07-01

    Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay

  16. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    PubMed

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive

  17. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    PubMed

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  18. Polymorphism of MDM2 promoter 309 (rs 2279744) and the risk of PCOS.

    PubMed

    Chan, Ying; Jiang, Hongguo; Yang, Xiaoling; Li, Dongya; Ma, Lan; Luo, Ying; Tang, Wenru

    2016-01-01

    This study aimed at evaluating possible association between MDM2 SNP309 polymorphism (rs 2279744) and polycystic ovary syndrome (PCOS). One hundred and twenty-five women with PCOS and two hundred and fifty women without PCOS were collected from the department of reproductive medicine of college hospital in this case-control study. Peripheral blood samples were collected from all participants and DNA was extracted, MDM2 SNP309 polymorphism (rs 2279744) was determined from the 125 cases and 250 controls. Women were grouped into PCOS (n = 125) group and control group (n = 250). Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the association between MDM2 SNP309 polymorphism (rs 2279744) and PCOS. The distribution of T allele was significant higher in PCOS cases than controls. MDM2 SNP 309 T allele is associated with PCOS.

  19. Association between STR -794 CATT5-8 and SNP -173 G/C polymorphisms in the MIF gene and Lepromatous Leprosy in Mestizo patients of western Mexico.

    PubMed

    Martinez-Guzman, M A; Alvarado-Navarro, A; Pereira-Suarez, A L; Muñoz-Valle, J F; Fafutis-Morris, M

    2016-10-01

    Lepromatous Leprosy (LL) is the most common presentation of leprosy in Mexico. LL patients are unable to activate an effective inflammatory response against Mycobacterium leprae probably due to the genetics of the host. Macrophage Migration Inhibitory Factor (MIF) is important to trigger inflammation processes. Two polymorphisms have been reported for human MIF: STR -794 CATT5-8 and SNP -173 G/C. 7-8 CATT repeats at -794 and the C allele at -173 increase the expression of MIF. We aim to determine the association between the polymorphisms in MIF gene and LL. We carried a case and controls study with 100 Mexican LL patients and 100 healthy subjects (HS). PCR was used for genotyping of STR -794 CATT5-8 polymorphism and PCR-RFLP for -173 G/C. We found that LL patients possess high -794 CATT repeats (47.1%) more often than HS (32.7%). In conclusion, a MIF polymorphism is associated with susceptibility to LL in Western Mexican population. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  20. Discovery of 100K SNP array and its utilization in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...

  1. Linear reduction methods for tag SNP selection.

    PubMed

    He, Jingwu; Zelikovsky, Alex

    2004-01-01

    It is widely hoped that constructing a complete human haplotype map will help to associate complex diseases with certain SNP's. Unfortunately, the number of SNP's is huge and it is very costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNP's that should be sequenced to considerably small number of informative representatives, so called tag SNP's. In this paper, we propose a new linear algebra based method for selecting and using tag SNP's. Our method is purely combinatorial and can be combined with linkage disequilibrium (LD) and block based methods. We measure the quality of our tag SNP selection algorithm by comparing actual SNP's with SNP's linearly predicted from linearly chosen tag SNP's. We obtain an extremely good compression and prediction rates. For example, for long haplotypes (>25000 SNP's), knowing only 0.4% of all SNP's we predict the entire unknown haplotype with 2% accuracy while the prediction method is based on a 10% sample of the population.

  2. Association between SLC11A1 (NRAMP1) polymorphisms and susceptibility to tuberculosis in Chinese Holstein cattle.

    PubMed

    Liu, Kaihua; Zhang, Bin; Teng, Zhaochun; Wang, Youtao; Dong, Guodong; Xu, Cong; Qin, Bo; Song, Chunlian; Chai, Jun; Li, Yang; Shi, Xianwei; Shu, Xianghua; Zhang, Yifang

    2017-03-01

    We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less

  4. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  5. AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.

    PubMed

    Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y

    2018-06-07

    The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.

  6. Granzyme B gene polymorphism associated with subacute sclerosing panencephalitis.

    PubMed

    Yentur, Sibel P; Aydin, Hatice Nur; Gurses, Candan; Demirbilek, Veysi; Kuru, Umit; Uysal, Serap; Yapici, Zuhal; Baris, Safa; Yilmaz, Gülden; Cokar, Ozlem; Onal, Emel; Gokyigit, Ayşen; Saruhan-Direskeneli, Güher

    2014-10-01

     Subacute sclerosing panencephalitis (SSPE) is a late complication of measles infection. Immune dysfunction related to genetic susceptibility has been considered in disease pathogenesis. A functional single nucleotide polymorphism (SNP) of granzyme B gene (GZMB) reported in several pathologies may also be involved in susceptibility to SSPE.  An SNP (rs8192917, G → A, R→Q) was screened in 118 SSPE patients and 221 healthy controls (HC) by polymerase chain reaction-restriction fragment length polymorphism. Frequencies were compared between groups. In vitro production of GZMB was measured in controls with different genotypes.  The SNP had a minor allele (G) frequency of 0.22 in patients and 0.31 in controls. GG genotype was significantly less frequent in patients (odds ratio, 0.23). G allele carriers produced relatively higher levels of GZMB, when stimulated in vitro.  These findings implicate possible effect of this genetic polymorphism in susceptibility to SSPE which needs to be confirmed in bigger populations. Georg Thieme Verlag KG Stuttgart · New York.

  7. [Single nucleotide polymorphism and its application in allogeneic hematopoietic stem cell transplantation--review].

    PubMed

    Li, Su-Xia

    2004-12-01

    Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.

  8. Performance of the SNPforID 52 SNP-plex assay in paternity testing.

    PubMed

    Børsting, Claus; Sanchez, Juan J; Hansen, Hanna E; Hansen, Anders J; Bruun, Hanne Q; Morling, Niels

    2008-09-01

    The performance of a multiplex assay with 52 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was tested on 124 mother-child-father trios. The typical paternity indices (PIs) were 10(5)-10(6) for the trios and 10(3)-10(4) for the child-father duos. Using the SNP profiles from the randomly selected trios and 700 previously typed individuals, a total of 83,096 comparisons between mother, child and an unrelated man were performed. On average, 9-10 mismatches per comparison were detected. Four mismatches were genetic inconsistencies and 5-6 mismatches were opposite homozygosities. In only two of the 83,096 comparisons did an unrelated man match perfectly to a mother-child duo, and in both cases the PI of the true father was much higher than the PI of the unrelated man. The trios were also typed for 15 short tandem repeats (STRs) and seven variable number of tandem repeats (VNTRs). The typical PIs based on 15 STRs or seven VNTRs were 5-50 times higher than the typical PIs based on 52 SNPs. Six mutations in tandem repeats were detected among the randomly selected trios. In contrast, there was not found any mutations in the SNP loci. The results showed that the 52 SNP-plex assay is a very useful alternative to currently used methods in relationship testing. The usefulness of SNP markers with low mutation rates in paternity and immigration casework is discussed.

  9. Relationship of phosphodiesterase 4D (PDE4D) gene polymorphisms with risk of ischemic stroke: a hospital based case-control study.

    PubMed

    Kumar, Amit; Misra, Shubham; Kumar, Pradeep; Sagar, Ram; Gulati, Arti; Prasad, Kameshwar

    2017-08-01

    Stroke remains a leading cause of death and disability worldwide. Ischemic stroke (IS) accounts for around 80-85% of total stroke and is a complex polygenic multi-factorial disorder which is affected by a complex combination of vascular, environmental, and genetic factors. The study was conducted with an aim to examine the relationship of single nucleotide polymorphisms (SNPs) of PDE4D (T83C, C87T, and C45T) gene with increasing risk of IS in patients in North Indian population. In this hospital-based case-control study, 250 IS subjects and 250 age-and sex-matched control subjects were enrolled from the Neurosciences Centre, A.I.I.M.S., New Delhi, India. Deoxyribonucleic acids (DNAs) were extracted using the conventional Phenol-Chloroform isolation method. Different genotypes were determined by Polymerase chain reaction- Restriction fragment length polymorphism method. Odds ratio (OR) and 95% Confidence Interval (CI) of relationship of polymorphisms with risk of IS were calculated by conditional multivariable regression analysis. High blood pressure, low socioeconomic status, dyslipidemia, diabetes, and family history of stroke were observed to be statistically significant risk factors for IS. Multivariable adjusted analysis demonstrated a statistically significant relationship between SNP 83 of PDE4D gene polymorphism and increasing odds of IS under the dominant model of inheritance (OR, 1.59; 95% CI, 1.02 to 2.50; p value = 0.04) after adjustment of potential confounding variables. Stratified analysis on the basis of TOAST classification demonstrated a statistically significant association for increasing 2.73 times odds for developing large vessel disease stroke as compared to controls (OR, 2.73; 95% CI, 1.16 to 0.02; p value = 0.02). We did not find any significant association of SNPs (C87T and C45T) of the PDE4D gene with the risk of IS. SNP 83 of PDE4D gene may increase the risk for developing IS whereas SNP 87 and SNP45 of PDE4D may not be associated with

  10. An innovative SNP genotyping method adapting to multiple platforms and throughputs

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are highly abundant, distributed throughout the genome in various species, and therefore they are widely used as genetic markers. However, the usefulness of this genetic tool relies heavily on the availability of user-friendly SNP genotyping methods. We have d...

  11. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  12. Case-control study of eczema associated with IL13 genetic polymorphisms in Japanese children.

    PubMed

    Miyake, Yoshihiro; Kiyohara, Chikako; Koyanagi, Midori; Fujimoto, Takahiro; Shirasawa, Senji; Tanaka, Keiko; Sasaki, Satoshi; Hirota, Yoshio

    2011-01-01

    Several association studies have investigated the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, with inconsistent results. We conducted a case-control study of the relationship between the polymorphisms of rs1800925 and rs20541 and the risk of eczema in Japanese children aged 3 years. Included were the 209 cases identified based on criteria of the International Study of Asthma and Allergies in Childhood (ISAAC). Controls were 451 children without eczema based on ISAAC questions who had not been diagnosed by a physician as having asthma or atopic eczema. The minor TT genotype of the rs1800925 SNP and the minor AA genotype of the rs20541 SNP were significantly related to an increased risk of eczema: adjusted odds ratio for the TT genotype was 2.78 (95% confidence interval 1.22-6.30) and that for the AA genotype was 2.38 (95% confidence interval 1.35-4.18). Haplotype analyses showed a protective association between the CG haplotype and eczema, whereas the TA haplotype was positively related to the risk of eczema. Perinatal smoking exposure did not interact with genotypes of the IL13 gene in the etiology of eczema. The significant association of the rs20541 SNP with eczema essentially disappeared after additional adjustment for the rs1800925 SNP, whereas a relationship with the rs1800925 SNP remained significant. A common genetic variation in the IL13 gene at the levels of both single SNPs and haplotypes was associated with eczema. However, the significant association with the rs20541 SNP might be ascribed to the rs1800925 SNP. Copyright © 2010 S. Karger AG, Basel.

  13. Polymorphism in ovine ANXA9 gene and physic-chemical properties and the fraction of protein in milk.

    PubMed

    Pecka-Kiełb, Ewa; Czerniawska-Piątkowska, Ewa; Kowalewska-Łuczak, Inga; Vasil, Milan

    2018-04-16

    Annexin A9 (ANXA9) is a specific fatty acid transport protein. ANXA9 gene is expressed in various tissues, including secretory tissue and mammary glands. The association between three SNPs of the ANXA9 gene and sheep's milk compositions was assessed. Genotype analysis was performed with the use of PCR-RFLP method. The studied ANXA9 polymorphisms had the following MAF (Major Allele Frequency): SNP1: allele G 0,66; SNP2: allele G 0,54; SNP3: allele C 0,57. The study found the most desired profile of protein fractions, namely an increased kappa-casein fractions and a decreased level of whey protein in sheep's milk for SNP1 and SNP3 polymorphisms. Sheep with the SNP1 GA genotype had the highest (P <0.05) content of fat and dry matter in milk. AXNA9 gene polymorphism did not influence the levels of protein, lactose or urea in sheep's milk. The information contained in this study may be useful for determining the impact of the ANXA9 gene on sheep's milk. The ANXA9 SNP1 and SNP3 polymorphisms results could be included in the breeding programs to select the sheep with the genotypes ensuring the highest kappa-casein levels in milk. However, it is worth conducting further research on ANXA9 and milk composition in larger herds of animals and various breeds of sheep. This article is protected by copyright. All rights reserved.

  14. SEAN: SNP prediction and display program utilizing EST sequence clusters.

    PubMed

    Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek

    2006-02-15

    SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.

  15. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls

  16. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    PubMed

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to

  17. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation

  18. Dynamic variable selection in SNP genotype autocalling from APEX microarray data.

    PubMed

    Podder, Mohua; Welch, William J; Zamar, Ruben H; Tebbutt, Scott J

    2006-11-30

    Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide--adenine (A), thymine (T), cytosine (C) or guanine (G)--is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA) using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU) of St. Paul's Hospital (plus one negative PCR control sample). Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our model-based genotype calling algorithm captures the

  19. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data

    PubMed Central

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201

  20. HapMap-based study on the association between MPO and GSTP1 gene polymorphisms and lung cancer susceptibility in Chinese Han population

    PubMed Central

    Gu, Jun-dong; Hua, Feng; Mei, Chao-rong; Zheng, De-jie; Wang, Guo-fan; Zhou, Qing-hua

    2014-01-01

    Aim: Myeloperoxidase (MPO) and glutathione S-transferase pi 1 (GSTP1) are important carcinogen-metabolizing enzymes. The aim of this study was to investigate the association between the common polymorphisms of MPO and GSTP1 genes and lung cancer risk in Chinese Han population. Methods: A total of 266 subjects with lung cancer and 307 controls without personal history of the disease were recruited in this case control study. The tagSNPs approach was used to assess the common polymorphisms of MOP and GSTP1 genes and lung cancer risk according to the disequilibrium information from the HapMap project. The tagSNP rs7208693 was selected as the polymorphism site for MPO, while the haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174 were selected as the polymorphism sites for GSTP1. The gene polymorphisms were confirmed using real-time PCR, cloning and sequencing. Results: The four GSTP1 haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174, but not the MPO tagSNP rs7208693, exhibited an association with lung cancer susceptibility in smokers in the overall population and in the studied subgroups. When Phase 2 software was used to reconstruct the haplotype for GSTP1, the haplotype CACA (rs749174+rs1695 + rs762803+rs4891) exhibited an increased risk of lung cancer among smokers (adjust odds ratio 1.53; 95%CI 1.04–2.25, P=0.033). Furthermore, diplotype analyses demonstrated that the significant association between the risk haplotype and lung cancer. The risk haplotypes co-segregated with one or more biologically functional polymorphisms and corresponded to a recessive inheritance model. Conclusion: The common polymorphisms of the GSTP1 gene may be the candidates for SNP markers for lung cancer susceptibility in Chinese Han population. PMID:24786234

  1. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    PubMed

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  3. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  4. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform.

    PubMed

    Trembizki, Ella; Smith, Helen; Lahra, Monica M; Chen, Marcus; Donovan, Basil; Fairley, Christopher K; Guy, Rebecca; Kaldor, John; Regan, David; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M

    2014-06-01

    Neisseria gonorrhoeae antimicrobial resistance (AMR) is a global problem heightened by emerging resistance to ceftriaxone. Appropriate molecular typing methods are important for understanding the emergence and spread of N. gonorrhoeae AMR. We report on the development, validation and testing of a Sequenom MassARRAY iPLEX method for multilocus sequence typing (MLST)-style genotyping of N. gonorrhoeae isolates. An iPLEX MassARRAY method (iPLEX14SNP) was developed targeting 14 informative gonococcal single nucleotide polymorphisms (SNPs) previously shown to predict MLST types. The method was initially validated using 24 N. gonorrhoeae control isolates and was then applied to 397 test isolates collected throughout Queensland, Australia in the first half of 2012. The iPLEX14SNP method provided 100% accuracy for the control isolates, correctly identifying all 14 SNPs for all 24 isolates (336/336). For the 397 test isolates, the iPLEX14SNP assigned results for 5461 of the possible 5558 SNPs (SNP call rate 98.25%), with complete 14 SNP profiles obtained for 364 isolates. Based on the complete SNP profile data, there were 49 different sequence types identified in Queensland, with 11 of the 49 SNP profiles accounting for the majority (n = 280; 77%) of isolates. AMR was dominated by several geographically clustered sequence types. Using the iPLEX14SNP method, up to 384 isolates could be tested within 1 working day for less than Aus$10 per isolate. The iPLEX14SNP offers an accurate and high-throughput method for the MLST-style genotyping of N. gonorrhoeae and may prove particularly useful for large-scale studies investigating the emergence and spread of gonococcal AMR. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Detection of virulent Escherichia coli O157 strains using multiplex PCR and single base sequencing for SNP characterization.

    PubMed

    Haugum, K; Brandal, L T; Løbersli, I; Kapperud, G; Lindstedt, B-A

    2011-06-01

    To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1-3 and 8). We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over-representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic-uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2(EDL933) or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993-2008. We observed that the tir-255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. The detection of virulence clade-specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage.

    PubMed

    Lee, Jonghoon; Izzah, Nur Kholilatul; Jayakodi, Murukarthick; Perumal, Sampath; Joh, Ho Jun; Lee, Hyeon Ju; Lee, Sang-Choon; Park, Jee Young; Yang, Ki-Woung; Nou, Il-Sup; Seo, Joodeok; Yoo, Jaeheung; Suh, Youngdeok; Ahn, Kyounggu; Lee, Ji Hyun; Choi, Gyung Ja; Yu, Yeisoo; Kim, Heebal; Yang, Tae-Jin

    2015-02-03

    Black rot is a destructive bacterial disease causing large yield and quality losses in Brassica oleracea. To detect quantitative trait loci (QTL) for black rot resistance, we performed whole-genome resequencing of two cabbage parental lines and genome-wide SNP identification using the recently published B. oleracea genome sequences as reference. Approximately 11.5 Gb of sequencing data was produced from each parental line. Reference genome-guided mapping and SNP calling revealed 674,521 SNPs between the two cabbage lines, with an average of one SNP per 662.5 bp. Among 167 dCAPS markers derived from candidate SNPs, 117 (70.1%) were validated as bona fide SNPs showing polymorphism between the parental lines. We then improved the resolution of a previous genetic map by adding 103 markers including 87 SNP-based dCAPS markers. The new map composed of 368 markers and covers 1467.3 cM with an average interval of 3.88 cM between adjacent markers. We evaluated black rot resistance in the mapping population in three independent inoculation tests using F2:3 progenies and identified one major QTL and three minor QTLs. We report successful utilization of whole-genome resequencing for large-scale SNP identification and development of molecular markers for genetic map construction. In addition, we identified novel QTLs for black rot resistance. The high-density genetic map will promote QTL analysis for other important agricultural traits and marker-assisted breeding of B. oleracea.

  7. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.

    PubMed

    Wang, Yi-Ting; Sung, Pei-Yuan; Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua

    2015-05-15

    Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set. We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value=2.5×10(-6)). Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.

  8. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene.

    PubMed

    Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M

    2016-07-01

    It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  9. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most

  10. Polymorphisms in the bovine CIDEC gene are associated with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Mei, C G; Gui, L S; Fu, C Z; Wang, H C; Wang, J L; Cheng, G; Zan, L S

    2015-08-07

    Previous studies have shown that the cell death-inducing DFF45-like effector-C (CIDEC) gene is involved in lipid storage and energy metabolism, suggesting that it is a potential candidate gene that affects body measurement traits (BMTs) and meat quality traits (MQTs). The aim of this study was to identify polymorphisms of the bovine CIDEC gene and analyze their possible associations with BMTs and MQTs in 531 randomly selected Qinchuan cattle aged between 18 and 24 months. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism were employed to detect CIDEC single nucleotide polymorphisms (SNPs). We found five SNPs: two in exon 5 (SNP1, g.9815G>A and SNP2, g.9924C>T) and three in the 3'-untranslated region (SNP3, g.13281C>T; SNP4, g.13297A>G; and SNP5, g.13307G>A). SNP1 was a missense mutation that resulted in an arginine to glutamine amino acid change, and exhibited two genotypes (GG and AG). SNP2 was a synonymous mutation that exhibited three genotypes (CC, CT, and TT). SNP3, 4, and 5 were completely linked, and only exhibited two genotypes (CC-AA-GG and CT-AG-GA). We found significant associations between these polymorphisms and BMTs and MQTs (P < 0.05); GG, CT, and CT-AG-GA appeared to be the most beneficial genotypes. Therefore, CIDEC may affect BMTs and MQTs in Qinchuan cattle, and could be used in marker-assisted selection.

  11. Polymorphic genetic variation in immune system genes: a study of two populations of Espirito Santo, Brazil.

    PubMed

    Dettogni, Raquel Spinassé; Sá, Ricardo Tristão; Tovar, Thaís Tristão; Louro, Iúri Drumond

    2013-08-01

    Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP genotype frequencies were in Hardy-Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.

  12. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array.

    PubMed

    van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul

    2017-08-07

    Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.

  13. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  14. SNP by SNP by environment interaction network of alcoholism.

    PubMed

    Zollanvari, Amin; Alterovitz, Gil

    2017-03-14

    Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50-80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP [Formula: see text]SNP[Formula: see text]E network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.

  15. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication

    PubMed Central

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  16. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    PubMed

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis ) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F 1 families, namely GE0711/1009 (MN1264 × MN1214; N  = 147) and GE1025 (MN1264 × MN1246; N  = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  17. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (Cyprinus carpio).

    PubMed

    Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior

    2010-08-01

    Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.

  18. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  19. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes

    PubMed Central

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel

    2009-01-01

    Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481

  20. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.

    PubMed

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel

    2009-03-19

    Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.

  1. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  2. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).

    PubMed

    Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair

    2014-02-06

    Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture

  3. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    PubMed Central

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  4. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays

    USGS Publications Warehouse

    Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon

    2012-01-01

    Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.

  5. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  6. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  7. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  8. Evidence for association between Disrupted-in-schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study

    PubMed Central

    2011-01-01

    Background Disrupted-in-Schizophrenia 1 (DISC1) gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. Methods We genotyped seven tag single nucleotide polymorphisms (SNPs) in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents) including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT) and Haploview software. Results We found three SNPs showed significant associations with autism (rs4366301: G > C, Z = 2.872, p = 0.004; rs11585959: T > C, Z = 2.199, p = 0.028; rs6668845: A > G, Z = 2.326, p = 0.02). After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism. PMID:21569632

  9. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    USDA-ARS?s Scientific Manuscript database

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  10. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array.

    PubMed

    Hinze, Lori L; Hulse-Kemp, Amanda M; Wilson, Iain W; Zhu, Qian-Hao; Llewellyn, Danny J; Taylor, Jen M; Spriggs, Andrew; Fang, David D; Ulloa, Mauricio; Burke, John J; Giband, Marc; Lacape, Jean-Marc; Van Deynze, Allen; Udall, Joshua A; Scheffler, Jodi A; Hague, Steve; Wendel, Jonathan F; Pepper, Alan E; Frelichowski, James; Lawley, Cindy T; Jones, Don C; Percy, Richard G; Stelly, David M

    2017-02-03

    Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at

  11. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes

  12. Comparison of SSR and SNP Markers in Estimation of Genetic Diversity and Population Structure of Indian Rice Varieties

    PubMed Central

    Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635

  13. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.

    PubMed

    Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan

    2009-09-01

    Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.

  14. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs

    PubMed Central

    Pavy, Nathalie; Parsons, Lee S; Paule, Charles; MacKay, John; Bousquet, Jean

    2006-01-01

    Background High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. Results A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (PSNP), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either PSNP ≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using PSNP ≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. Conclusion We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate

  15. Calpain-10 gene polymorphism in type 2 diabetes mellitus patients in the Gaza Strip.

    PubMed

    Zaharna, Mazen M; Abed, Abdalla A; Sharif, Fadel A

    2010-01-01

    To examine the role of calpain-10 SNP-44, -43, -63 and del/ins-19 in genetic susceptibility to type 2 diabetes mellitus (T2DM) and associations with triglycerides and total cholesterol in a group of subjects residing in the Gaza Strip. Ninety-six individuals were examined: 48 T2DM patients and 48 controls. The groups were genotyped for calpain-10 SNP-44, -43, -63, and del/ins-19. Mutagenically separated polymerase chain reaction was used to examine SNP-44; del/ins-19 was examined by electrophoresis of the PCR product on agarose gel, while the restriction fragment length polymorphism method was used for SNP-43 and -63. There was evidence that the C allele at SNP-44 played a possible role in susceptibility to T2DM (p = 0.01). T2DM patients with G/A genotype were found to have higher levels of total cholesterol in comparison to those homozygous for allele 1 (G/G) in SNP-43. Total cholesterol levels increased in T2DM patients who are homozygous for del/ins-19 allele 2, in T2DM patients with the 121/221 haplotype combination, and in control subjects with the haplotype combination 111/121. SNP-44 polymorphism of the calpain-10 gene has a significant association with T2DM patients in the Gaza strip. Certain polymorphisms of calpain-10 also have associations with the levels of total cholesterol in both T2DM patients and controls. Copyright © 2010 S. Karger AG, Basel.

  16. Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid Gossypium hirsutum L.

    PubMed Central

    Zhu, Qian-Hao; Spriggs, Andrew; Taylor, Jennifer M.; Llewellyn, Danny; Wilson, Iain

    2014-01-01

    Varietal single nucleotide polymorphisms (SNPs) are the differences within one of the two subgenomes between different tetraploid cotton varieties and have not been practically used in cotton genetics and breeding because they are difficult to identify due to low genetic diversity and very high sequence identity between homeologous genes in cotton. We have used transcriptome and restriction site−associated DNA sequencing to identify varietal SNPs among 18 G. hirsutum varieties based on the rationale that varietal SNPs can be more confidently called when flanked by subgenome-specific SNPs. Using transcriptome data, we successfully identified 37,413 varietal SNPs and, of these, 22,121 did not have an additional varietal SNP within their 20-bp flanking regions so can be used in most SNP genotyping assays. From restriction site−associated DNA sequencing data, we identified an additional 3090 varietal SNPs between two of the varieties. Of the 1583 successful SNP assays achieved using different genotyping platforms, 1363 were verified. Many of the SNPs behaved as dominant markers because of coamplification from homeologous loci, but the number of SNPs acting as codominant markers increased when one or more subgenome-specific SNP(s) were incorporated in their assay primers, giving them greater utility for breeding applications. A G. hirsutum genetic map with 1244 SNP markers was constructed covering 5557.42 centiMorgan and used to map qualitative and quantitative traits. This collection of G. hirsutum varietal SNPs complements existing intra-specific SNPs and provides the cotton community with a valuable marker resource applicable to genetic analyses and breeding programs. PMID:25106949

  17. Interest in genomic SNP testing for prostate cancer risk: a pilot survey.

    PubMed

    Hall, Michael J; Ruth, Karen J; Chen, David Yt; Gross, Laura M; Giri, Veda N

    2015-01-01

    Advancements in genomic testing have led to the identification of single nucleotide polymorphisms (SNPs) associated with prostate cancer. The clinical utility of SNP tests to evaluate prostate cancer risk is unclear. Studies have not examined predictors of interest in novel genomic SNP tests for prostate cancer risk in a diverse population. Consecutive participants in the Fox Chase Prostate Cancer Risk Assessment Program (PRAP) (n = 40) and unselected men from surgical urology clinics (n = 40) completed a one-time survey. Items examined interest in genomic SNP testing for prostate cancer risk, knowledge, impact of unsolicited findings, and psychosocial factors including health literacy. Knowledge of genomic SNP tests was low in both groups, but interest was higher among PRAP men (p < 0.001). The prospect of receiving unsolicited results about ancestral genomic markers increased interest in testing in both groups. Multivariable modeling identified several predictors of higher interest in a genomic SNP test including higher perceived risk (p = 0.025), indicating zero reasons for not wanting testing (vs ≥1 reason) (p = 0.013), and higher health literacy (p = 0.016). Knowledge of genomic SNP testing was low in this sample, but higher among high-risk men. High-risk status may increase interest in novel genomic tests, while low literacy may lessen interest.

  18. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different

  19. SNP discovery by high-throughput sequencing in soybean

    PubMed Central

    2010-01-01

    Background With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology. Results A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp. Conclusions We have demonstrated how to quickly

  20. Typing SNP based on the near-infrared spectroscopy and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ren, Li; Wang, Wei-Peng; Gao, Yu-Zhen; Yu, Xiao-Wei; Xie, Hong-Ping

    2009-07-01

    Based on the near-infrared spectra (NIRS) of the measured samples as the discriminant variables of their genotypes, the genotype discriminant model of SNP has been established by using back-propagation artificial neural network (BP-ANN). Taking a SNP (857G > A) of N-acetyltransferase 2 (NAT2) as an example, DNA fragments containing the SNP site were amplified by the PCR method based on a pair of primers to obtain the three-genotype (GG, AA, and GA) modeling samples. The NIRS-s of the amplified samples were directly measured in transmission by using quartz cell. Based on the sample spectra measured, the two BP-ANN-s were combined to obtain the stronger ability of the three-genotype classification. One of them was established to compress the measured NIRS variables by using the resilient back-propagation algorithm, and another network established by Levenberg-Marquardt algorithm according to the compressed NIRS-s was used as the discriminant model of the three-genotype classification. For the established model, the root mean square error for the training and the prediction sample sets were 0.0135 and 0.0132, respectively. Certainly, this model could rightly predict the three genotypes (i.e. the accuracy of prediction samples was up to100%) and had a good robust for the prediction of unknown samples. Since the three genotypes of SNP could be directly determined by using the NIRS-s without any preprocessing for the analyzed samples after PCR, this method is simple, rapid and low-cost.

  1. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing

  2. A Polymorphic p53 Response Element in KIT Ligand Influences Cancer Risk and Has Undergone Natural Selection

    PubMed Central

    Zeron-Medina, Jorge; Wang, Xuting; Repapi, Emmanouela; Campbell, Michelle R.; Su, Dan; Castro-Giner, Francesc; Davies, Benjamin; Peterse, Elisabeth F.P.; Sacilotto, Natalia; Walker, Graeme J.; Terzian, Tamara; Tomlinson, Ian P.; Box, Neil F.; Meinshausen, Nicolai; De Val, Sarah; Bell, Douglas A.; Bond, Gareth L.

    2014-01-01

    SUMMARY The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans. PMID:24120139

  3. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples.

    PubMed

    Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra

    2018-05-01

    DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1

  4. Association of Interleukin-1 Gene cluster polymorphisms with coronary slow flow phenomenon

    PubMed Central

    Mutluer, Ferit Onur; Ural, Dilek; Güngör, Barış; Bolca, Osman; Aksu, Tolga

    2018-01-01

    Objective: Coronary slow flow phenomenon (CSFP) is characterized by the decreased rate of contrast progression in epicardial coronary arte-ries in the absence of significant coronary stenosis. Mounting evidence has showed a significant association between inflammation and CSFP severity. This study aimed to evaluate possible associations between interleukin-1 receptor antagonist (IL-1ra) gene variable number tandem repeat (VNTR), IL-1β -511 single nucleotide (SNP), and IL-1β+3954 SNP mutations with CSFP. Methods: Forty-eight patients with CSFP and 62 controls with angiographically normal coronary arteries were prospectively enrolled in the study. Genotypes were assessed using the polymerase chain reaction (PCR)-based restriction fragment length polymorphism (PCR-RFLP) technique. Results: Homozygote genotype for allele 2 of+3954 C>T 2/2 genotype was significantly more frequent in patients with CSFP than in the control group, whereas 1/2 genotype was more frequent in the control group (35.4% versus 14.5% for 2/2 genotype and 25% versus 35.5% for 1/2 genotype in CSFP and control groups, respectively, X2=6.6; p=0.04). The allelic frequency of allele 2 of this polymorphism was significantly higher in the CSFP group than in the control group (47.9% versus 28.6% in the control group, X2=5.6; p=0.02). However, there was no significant difference with regard to genotype or allelic frequencies of IL-1ra VNTR or IL-1β -511 SNP polymorphisms between patients with CSFP and controls. Conclusion: IL-1β+3954 SNP mutations are significantly more common in patients with CSFP. It may suggest that the tendency for inflammation may contribute to the presence of this phenomenon. PMID:29339698

  5. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    PubMed

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  6. Report on the development of putative functional SSR and SNP markers in passion fruits.

    PubMed

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  7. Polymorphisms in the ghrelin gene and their associations with milk yield and quality in water buffaloes.

    PubMed

    Gil, F M M; de Camargo, G M F; Pablos de Souza, F R; Cardoso, D F; Fonseca, P D S; Zetouni, L; Braz, C U; Aspilcueta-Borquis, R R; Tonhati, H

    2013-05-01

    Ghrelin is a gastrointestinal hormone that acts in releasing growth hormone and influences the body general metabolism. It has been proposed as a candidate gene for traits such as growth, carcass quality, and milk production of livestock because it influences feed intake. In this context, the aim of this study was to verify the existence of polymorphisms in the ghrelin gene and their associations with milk, fat and protein yield, and percentage in water buffaloes (Bubalus bubalis). A group of 240 animals was studied. Five primer pairs were used and 11 single nucleotide polymorphisms (SNP) were found in the ghrelin gene by sequencing. The animals were genotyped for 8 SNP by PCR-RFLP. The SNP g.960G>A and g.778C>T were associated with fat yield and the SNP g.905T>C was associated with fat yield and percentage and protein percentage. These SNP are located in intronic regions of DNA and may be in noncoding RNA sites or affect transcriptional efciency. The ghrelin gene in buffaloes influences milk fat and protein synthesis. The polymorphisms observed can be used as molecular markers to assist selection. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. [SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico].

    PubMed

    Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo

    2014-09-28

    Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. Evaluation of copy number variation detection for a SNP array platform

    PubMed Central

    2014-01-01

    Background Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform. We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package. Results Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest. Conclusion We found that PennCNV outperformed the

  10. Polymorphisms in TS, MTHFR and ERCC1 genes as predictive markers in first-line platinum and pemetrexed therapy in NSCLC patients.

    PubMed

    Krawczyk, Paweł; Kucharczyk, Tomasz; Kowalski, Dariusz M; Powrózek, Tomasz; Ramlau, Rodryg; Kalinka-Warzocha, Ewa; Winiarczyk, Kinga; Knetki-Wróblewska, Magdalena; Wojas-Krawczyk, Kamila; Kałakucka, Katarzyna; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz

    2014-12-01

    We presented retrospective analysis of up to five polymorphisms in TS, MTHFR and ERCC1 genes as molecular predictive markers for homogeneous Caucasian, non-squamous NSCLC patients treated with pemetrexed and platinum front-line chemotherapy. The following polymorphisms in DNA isolated from 115 patients were analyzed: various number of 28-bp tandem repeats in 5'-UTR region of TS gene, single nucleotide polymorphism (SNP) within the second tandem repeat of TS gene (G>C); 6-bp deletion in 3'-UTR region of the TS (1494del6); 677C>T SNP in MTHFR; 19007C>T SNP in ERCC1. Molecular examinations' results were correlated with disease control rate, progression-free survival (PFS) and overall survival. Polymorphic tandem repeat sequence (2R, 3R) in the enhancer region of TS gene and G>C SNP within the second repeat of 3R allele seem to be important for the effectiveness of platinum and pemetrexed in first-line chemotherapy. The insignificant shortening of PFS in 3R/3R homozygotes as compared to 2R/2R and 2R/3R genotypes were observed, while it was significantly shorter in patients carrying synchronous 3R allele and G nucleotide. The combined analysis of TS VNTR and MTHFR 677C>T SNP revealed shortening of PFS in synchronous carriers of 3R allele in TS and two C alleles in MTHFR. The strongest factors increased the risk of progression were poor PS, weight loss, anemia and synchronous presence of 3R allele and G nucleotide in the second repeat of 3R allele in TS. Moreover, lack of application of second-line chemotherapy, weight loss and poor performance status and above-mentioned genotype of TS gene increased risk of early mortality. The examined polymorphisms should be accounted as molecular predictor factors for pemetrexed- and platinum-based front-line chemotherapy in non-squamous NSCLC patients.

  11. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.

  12. Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern.

    PubMed

    Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai

    2017-07-07

    As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  13. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project.

    PubMed

    Cross, Deanna S; Ivacic, Lynn C; Stefanski, Elisha L; McCarty, Catherine A

    2010-06-17

    There is a lack of knowledge regarding the frequency of disease associated polymorphisms in populations and population attributable risk for many populations remains unknown. Factors that could affect the association of the allele with disease, either positively or negatively, such as race, ethnicity, and gender, may not be possible to determine without population based allele frequencies.Here we used a panel of 51 polymorphisms previously associated with at least one disease and determined the allele frequencies within the entire Personalized Medicine Research Project population based cohort. We compared these allele frequencies to those in dbSNP and other data sources stratified by race. Differences in allele frequencies between self reported race, region of origin, and sex were determined. There were 19544 individuals who self reported a single racial category, 19027 or (97.4%) self reported white Caucasian, and 11205 (57.3%) individuals were female. Of the 11,208 (57%) individuals with an identifiable region of origin 8337 or (74.4%) were German.41 polymorphisms were significantly different between self reported race at the 0.05 level. Stratification of our Caucasian population by self reported region of origin revealed 19 polymorphisms that were significantly different (p = 0.05) between individuals of different origins. Further stratification of the population by gender revealed few significant differences in allele frequencies between the genders. This represents one of the largest population based allele frequency studies to date. Stratification by self reported race and region of origin revealed wide differences in allele frequencies not only by race but also by region of origin within a single racial group. We report allele frequencies for our Asian/Hmong and American Indian populations; these two minority groups are not typically selected for population allele frequency detection. Population wide allele frequencies are important for the design and

  14. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  15. SNP-based genotyping in lentil: linking sequence information with phenotypes

    USDA-ARS?s Scientific Manuscript database

    Lentil (Lens culinaris) has been late to enter the world of high throughput molecular analysis due to a general lack of genomic resources. Using a 454 sequencing-based approach, SNPs have been identified in genes across the lentil genome. Several hundred have been turned into single SNP KASP assay...

  16. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    PubMed

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  17. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation.

    PubMed

    Henning, John A; Coggins, Jamie; Peterson, Matthew

    2015-10-06

    Hop is an economically important crop for the Pacific Northwest USA as well as other regions of the world. It is a perennial crop with rhizomatous or clonal propagation system for varietal distribution. A big concern for growers as well as brewers is variety purity and questions are regularly posed to public agencies concerning the availability of genotype testing. Current means for genotyping are based upon 25 microsatellites that provides relatively accurate genotyping but cannot always differentiate sister-lines. In addition, numerous PCR runs (25) are required to complete this process and only a few laboratories exist that perform this service. A genotyping protocol based upon SNPs would enable rapid accurate genotyping that can be assayed at any laboratory facility set up for SNP-based genotyping. The results of this study arose from a larger project designed for whole genome association studies upon the USDA-ARS hop germplasm collection consisting of approximately 116 distinct hop varieties and germplasm (female lines) from around the world. The original dataset that arose from partial sequencing of 121 genotypes resulted in the identification of 374,829 SNPs using TASSEL-UNEAK pipeline. After filtering out genotypes with more than 50% missing data (5 genotypes) and SNP markers with more than 20% missing data, 32,206 highly filtered SNP markers across 116 genotypes were identified and considered for this study. Minor allele frequency (MAF) was calculated for each SNP and ranked according to the most informative to least informative. Only those markers without missing data across genotypes as well as 60% or less heterozygous gamete calls were considered for further analysis. Genetic distances among individuals in the study were calculated using the marker with the highest MAF value, then by using a combination of the two markers with highest MAF values and so on. This process was reiterated until a set of markers was identified that allowed for all genotypes

  18. SNP Discovery in the Transcriptome of White Pacific Shrimp Litopenaeus vannamei by Next Generation Sequencing

    PubMed Central

    Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies. PMID:24498047

  19. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    PubMed

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies. © 2015 John Wiley & Sons Ltd.

  20. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift

    PubMed Central

    Cingolani, Pablo; Patel, Viral M.; Coon, Melissa; Nguyen, Tung; Land, Susan J.; Ruden, Douglas M.; Lu, Xiangyi

    2012-01-01

    This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals

  1. Genetic associations of the INSIG2 rs7566605 polymorphism with obesity-related metabolic traits in Malaysian Malays.

    PubMed

    Apalasamy, Y D; Moy, F M; Rampal, S; Bulgiba, A; Mohamed, Z

    2014-07-04

    A genome-wide association study showed that the tagging single nucleotide polymorphism (SNP) rs7566605 in the insulin-induced gene 2 (INSIG2) was associated with obesity. Attempts to replicate this result in different populations have produced inconsistent findings. We aimed to study the association between the rs7566605 SNP with obesity and other metabolic parameters in Malaysian Malays. Anthropometric and obesity-related metabolic parameters and DNA samples were collected. We genotyped the rs7566605 polymorphism in 672 subjects using real-time polymerase chain reaction. No significant associations were found between the rs7566605 tagging SNP of INSIG2 with obesity or other metabolic parameters in the Malaysian Malay population. The INSIG2 rs7566605 SNP may not play a role in the development of obesity-related metabolic traits in Malaysian Malays.

  2. IL-10 -1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas.

    PubMed

    Ramkumar, Hema L; Shen, De Fen; Tuo, Jingsheng; Braziel, Rita M; Coupland, Sarah E; Smith, Justine R; Chan, Chi-Chao

    2012-10-01

    Most primary central nervous system lymphomas (PCNSLs) and primary vitreoretinal lymphomas (PVRLs) are B-cell lymphomas that produce high levels of interleukin (IL)-10, which is linked to rapid disease progression. The IL-10 (-1082) G → A polymorphism (IL-10 SNP) is associated with improved survival in certain non-CNS lymphoma patients. PDCD4 is a tumor suppressor gene and upstream regulator of IL-10. This study examined the correlation between the IL-10 SNP, PDCD4 mRNA expression, and IL-10 expression (at transcript and protein levels) in these lymphoma cells. Single-nucleotide polymorphism (SNP)-typing at IL-10 (-1082) was performed after microdissecting cytospun PVRL cells from 26 specimens. Vitreal IL-10 and IL-6 levels were measured by ELISA. PCNSL cells from 52 paraffin-embedded sections were microdissected and SNP typed on genomic DNA. RT-PCR was performed to analyze expression of IL-10 and PDCD4 mRNA. IL-10 (-1082) SNP typing was performed on blood samples of 96 healthy controls. We measured IL-10 (-1082) SNP expression in 26 PVRLs and 52 PCNSLs and examined its relationship with IL-10 protein and gene expression, respectively. More PVRL patients expressed one copy of the IL-10 ( -1082 )  G → A SNP with the GA genotype compared to controls. The frequencies of the three genotypes (AA, AG, GG) significantly differed in PVRL versus controls and in PCNSL versus controls. In PVRLs, the vitreal IL-10/IL-6 ratio was higher in IL-10 (-1082) AG and IL-10 (-1082) AA patients, compared to IL-10 (-1082) GG patients. IL-10 mRNA expression was higher in IL-10 (-1082) AG and IL-10 (-1082) AA PCNSLs, compared to IL-10 (-1082) GG PCNSLs. No correlation was found between IL-10 and PDCD4 expression levels in 37 PCNSL samples. PVRL and PCNSL patients had similar IL-10 (-1082) A allele frequencies, but genotype distributions differed from healthy controls. The findings suggest that the IL-10 (-1082) A allele is a risk factor for higher IL-10 levels in PVRLs and

  3. IL-10 -1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas

    PubMed Central

    Ramkumar, Hema L.; Shen, De Fen; Tuo, Jingsheng; Braziel, Rita M.; Coupland, Sarah E.; Smith, Justine R.

    2012-01-01

    Objectives Most primary central nervous system lymphomas (PCNSLs) and primary vitreoretinal lymphomas (PVRLs) are B-cell lymphomas that produce high levels of interleukin (IL)-10, which is linked to rapid disease progression. The IL-10-1082G→A polymorphism (IL-10 SNP) is associated with improved survival in certain non-CNS lymphoma patients. PDCD4 is a tumor suppressor gene and upstream regulator of IL-10. This study examined the correlation between the IL-10 SNP, PDCD4 mRNA expression, and IL-10 expression (at transcript and protein levels) in these lymphoma cells. Materials and methods Single-nucleotide polymorphism (SNP)-typing at IL-10-1082 was performed after micro-dissecting cytospun PVRL cells from 26 specimens. Vitreal IL-10 and IL-6 levels were measured by ELISA. PCNSL cells from 52 paraffin-embedded sections were microdissected and SNP typed on genomic DNA. RT-PCR was performed to analyze expression of IL-10 and PDCD4 mRNA. IL-10-1082 SNP typing was performed on blood samples of 96 healthy controls. We measured IL-10-1082 SNP expression in 26 PVRLs and 52 PCNSLs and examined its relationship with IL-10 protein and gene expression, respectively. Results More PVRL patients expressed one copy of the IL-10-1082G→A SNP with the GA genotype compared to controls. The frequencies of the three genotypes (AA, AG, GG) significantly differed in PVRL versus controls and in PCNSL versus controls. In PVRLs, the vitreal IL-10/IL-6 ratio was higher in IL-10-1082 AG and IL-10-1082 AA patients, compared to IL-10-1082 GG patients. IL-10 mRNA expression was higher in IL-10-1082 AG and IL-10-1082 AA PCNSLs, compared to IL-10-1082 GG PCNSLs. No correlation was found between IL-10 and PDCD4 expression levels in 37 PCNSL samples. Conclusions PVRL and PCNSL patients had similar IL-10-1082 A allele frequencies, but genotype distributions differed from healthy controls. The findings suggest that the IL-10-1082 A allele is a risk factor for higher IL-10 levels in PVRLs and PCNSLs

  4. Diversity in 113 cowpea [Vigna unguiculata (L) Walp] accessions assessed with 458 SNP markers.

    PubMed

    Egbadzor, Kenneth F; Ofori, Kwadwo; Yeboah, Martin; Aboagye, Lawrence M; Opoku-Agyeman, Michael O; Danquah, Eric Y; Offei, Samuel K

    2014-01-01

    Single Nucleotide Polymorphism (SNP) markers were used in characterization of 113 cowpea accessions comprising of 108 from Ghana and 5 from abroad. Leaf tissues from plants cultivated at the University of Ghana were genotyped at KBioscience in the United Kingdom. Data was generated for 477 SNPs, out of which 458 revealed polymorphism. The results were used to analyze genetic dissimilarity among the accessions using Darwin 5 software. The markers discriminated among all of the cowpea accessions and the dissimilarity values which ranged from 0.006 to 0.63 were used for factorial plot. Unexpected high levels of heterozygosity were observed on some of the accessions. Accessions known to be closely related clustered together in a dendrogram drawn with WPGMA method. A maximum length sub-tree which comprised of 48 core accessions was constructed. The software package structure was used to separate accessions into three groups, and the programme correctly identified varieties that were known hybrids. The hybrids were those accessions with numerous heterozygous loci. The structure plot showed closely related accessions with similar genome patterns. The SNP markers were more efficient in discriminating among the cowpea germplasm than morphological, seed protein polymorphism and simple sequence repeat studies reported earlier on the same collection.

  5. Effect of P450 Oxidoreductase Polymorphisms on the Metabolic Activities of Ten Cytochrome P450s Varied by Polymorphic CYP Genotypes in Human Liver Microsomes.

    PubMed

    Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling

    2018-06-27

    Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. SNP-SNP Interaction between TLR4 and MyD88 in Susceptibility to Coronary Artery Disease in the Chinese Han Population.

    PubMed

    Sun, Dandan; Sun, Liping; Xu, Qian; Gong, Yuehua; Wang, Honghu; Yang, Jun; Yuan, Yuan

    2016-03-04

    The toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-dependent signaling pathway plays a role in the initiation and progression of coronary artery disease (CAD). We investigated SNP-SNP interactions between the TLR4 and MyD88 genes in CAD susceptibility and assessed whether the effects of such interactions were modified by confounding risk factors (hyperglycemia, hyperlipidemia and Helicobacter pylori (H. pylori) infection). Participants with CAD (n = 424) and controls (n = 424) without CAD were enrolled. Polymerase chain restriction-restriction fragment length polymorphism was performed on genomic DNA to detect polymorphisms in TLR4 (rs10116253, rs10983755, and rs11536889) and MyD88 (rs7744). H. pylori infections were evaluated by enzyme-linked immunosorbent assays, and the cardiovascular risk factors for each subject were evaluated clinically. The significant interaction between TLR4 rs11536889 and MyD88 rs7744 was associated with an increased CAD risk (p value for interaction = 0.024). In conditions of hyperglycemia, the interaction effect was strengthened between TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.004). In hyperlipidemic participants, the interaction strength was also enhanced for TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.006). Thus, the novel interaction between TLR4 rs11536889 and MyD88 rs7744 was related with an increased risk of CAD, that could be strengthened by the presence of hyperglycemia or hyperlipidemia.

  7. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  8. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers.

    PubMed

    Van Inghelandt, Delphine; Melchinger, Albrecht E; Lebreton, Claude; Stich, Benjamin

    2010-05-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger's distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.

  9. CD44 Gene Polymorphisms in Breast Cancer Risk and Prognosis: A Study in North Indian Population

    PubMed Central

    Tulsyan, Sonam; Agarwal, Gaurav; Lal, Punita; Agrawal, Sushma; Mittal, Rama Devi; Mittal, Balraj

    2013-01-01

    Background Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. Materials & Methods A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. Results No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. Conclusions These findings suggest that CD44 rs353639 genetic variants may have

  10. Association analysis of the SOX10 polymorphism with Hirschsprung disease in the Han Chinese population.

    PubMed

    Pan, Zhi-Wen; Lou, Jintu; Luo, Chunfen; Yu, Linjun; Li, Ji-Cheng

    2011-10-01

    Hirschsprung disease (HSCR, Online Mendelian Inheritance in Man 142623) is a typical developmental disorder of the enteric nervous system in which ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. SOX10 gene is involved in the normal development of the enteric nervous system. Heterozygous SOX10 mutations have been identified in patients with syndromic HSCR. However, no mutations have been reported to date to be associated to isolated HSCR patient. We thus sought to investigate whether mutations in the SOX10 are associated with isolated HSCR in the Chinese population. Polymerase chain reaction amplification and direct sequencing were used to screen 4 exons of the SOX10 gene for mutations and polymorphisms in 104 patients with sporadic HSCR and 96 ethnically matched controls in Han Chinese populations. In this study, 4 single nucleotide polymorphisms (SNPs) were identified: SNP1: c.18C>T (GAC→GAT) in exon 2; SNP2: c.122G>T (GGC→GTC) in exon 2; SNP3: IVS2+10 (C→G) in intron 2; and SNP4: c.927T>C (CAT→CAC) in exon 4. SNP1 and SNP2 were novel described polymorphisms in the Chinese population. No SOX10 mutations were found in Han Chinese with isolated HSCR. Our results revealed that there was no association between the 4 SNPs of the SOX10 gene and HSCR. This study showed that the SOX10 gene is unlikely to be a major HSCR gene in the Chinese Han population. Copyright © 2011. Published by Elsevier Inc.

  11. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    PubMed Central

    Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.

    2009-01-01

    Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876

  12. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains

    PubMed Central

    Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith

    2011-01-01

    Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363

  13. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  14. Japanese Alzheimer's Disease and Other Complex Disorders Diagnosis Based on Mitochondrial SNP Haplogroups

    PubMed Central

    Takasaki, Shigeru

    2012-01-01

    This paper first explains how the relations between Japanese Alzheimer's disease (AD) patients and their mitochondrial SNP frequencies at individual mtDNA positions examined using the radial basis function (RBF) network and a method based on RBF network predictions and that Japanese AD patients are associated with the haplogroups G2a and N9b1. It then describes a method for the initial diagnosis of Alzheimer's disease that is based on the mtSNP haplogroups of the AD patients. The method examines the relations between someone's mtDNA mutations and the mtSNPs of AD patients. As the mtSNP haplogroups thus obtained indicate which nucleotides of mtDNA loci are changed in the Alzheimer's patients, a person's probability of becoming an AD patient can be predicted by comparing those mtDNA mutations with that person's mtDNA mutations. The proposed method can also be used to diagnose diseases such as Parkinson's disease and type 2 diabetes and to identify people likely to become centenarians. PMID:22848858

  15. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  16. Calpain-10 gene polymorphisms and risk of type 2 diabetes mellitus in Mexican mestizos.

    PubMed

    Picos-Cárdenas, V J; Sáinz-González, E; Miliar-García, A; Romero-Zazueta, A; Quintero-Osuna, R; Leal-Ugarte, E; Peralta-Leal, V; Meza-Espinoza, J P

    2015-03-27

    The calpain-10 gene is expressed primarily in tissues important in glucose metabolism; thus, some of its polymorphisms have been associated with type 2 diabetes. In this study, we examined the association between the calpain-10 single-nucleotide polymorphism (SNP)-43, SNP-19, and SNP-63 and type 2 diabetes in Mexican mestizos. We included 211 patients and 152 non-diabetic subjects. Polymerase chain reaction was used to identify alleles. We compared allele, genotype, haplotype, and diplotype frequencies between both groups and used the chi-square test to calculate the risk. The allele frequency of SNP-43 allele 1 was 70% in controls and 72% in patients; the GG, GA, and AA genotype frequencies were 48.7, 42.8, and 8.5% in controls and 51.2, 41.7, and 7.1% in patients, respectively. For SNP- 19, the prevalence of allele 1 (2R) was 32% in controls and 39% in patients. In controls, homozygosity (2R/2R) was 10.5%, heterozygosity was 42.8%, and 3R/3R was 46.7%; in cases, these values were 13.3, 50.7, and 36.0%, respectively. For SNP-63, the frequency of allele 1 was 87% in controls and 83% in patients; genotype frequencies in controls were 75.7% (CC), 23% (CT), and 1.3% (TT), and were 69.7, 27.5, and 2.8%, respectively for the cases. Genotype distributions were consistent with Hardy-Weinberg equilibrium. No significant intergroup differences for allele, genotype, haplotype, or diplotype frequencies were observed. We found no association between these polymorphisms and diabetes. However, our sample size was small, so the role of calpain-10 risk alleles should be further examined.

  17. SNP discovery and High Resolution Melting Analysis from massive transcriptome sequencing in the California red abalone Haliotis rufescens.

    PubMed

    Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian

    2013-06-01

    The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    PubMed Central

    McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin

    2012-01-01

    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606

  19. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  20. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

    PubMed Central

    Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang

    2008-01-01

    Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146

  1. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    PubMed

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  2. RExPrimer: an integrated primer designing tool increases PCR effectiveness by avoiding 3' SNP-in-primer and mis-priming from structural variation

    PubMed Central

    2009-01-01

    Background Polymerase chain reaction (PCR) is very useful in many areas of molecular biology research. It is commonly observed that PCR success is critically dependent on design of an effective primer pair. Current tools for primer design do not adequately address the problem of PCR failure due to mis-priming on target-related sequences and structural variations in the genome. Methods We have developed an integrated graphical web-based application for primer design, called RExPrimer, which was written in Python language. The software uses Primer3 as the primer designing core algorithm. Locally stored sequence information and genomic variant information were hosted on MySQLv5.0 and were incorporated into RExPrimer. Results RExPrimer provides many functionalities for improved PCR primer design. Several databases, namely annotated human SNP databases, insertion/deletion (indel) polymorphisms database, pseudogene database, and structural genomic variation databases were integrated into RExPrimer, enabling an effective without-leaving-the-website validation of the resulting primers. By incorporating these databases, the primers reported by RExPrimer avoid mis-priming to related sequences (e.g. pseudogene, segmental duplication) as well as possible PCR failure because of structural polymorphisms (SNP, indel, and copy number variation (CNV)). To prevent mismatching caused by unexpected SNPs in the designed primers, in particular the 3' end (SNP-in-Primer), several SNP databases covering the broad range of population-specific SNP information are utilized to report SNPs present in the primer sequences. Population-specific SNP information also helps customize primer design for a specific population. Furthermore, RExPrimer offers a graphical user-friendly interface through the use of scalable vector graphic image that intuitively presents resulting primers along with the corresponding gene structure. In this study, we demonstrated the program effectiveness in successfully

  3. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  4. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  5. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification.

    PubMed

    Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek

    2005-02-01

    Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.

  6. Application of virtual phase-shifting speckle-interferometry for detection of polymorphism in the Chlamydia trachomatis omp1 gene

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.

    2018-04-01

    Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.

  7. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  8. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  9. Calving traits of crossbred Brahman Cows are Associated with Heat Shock Protein 70 Genetic Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...

  10. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  11. Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder.

    PubMed

    Inkster, Becky; Nichols, Thomas E; Saemann, Philipp G; Auer, Dorothee P; Holsboer, Florian; Muglia, Pierandrea; Matthews, Paul M

    2009-07-01

    Indirect evidence suggests that the glycogen synthase kinase-3beta (GSK3beta) gene might be implicated in major depressive disorder (MDD). We evaluated 15 GSK3beta single-nucleotide polymorphisms (SNPs) to test for associations with regional gray matter (GM) volume differences in patients with recurrent MDD. We then used the defined regions of interest based on significant associations to test for MDD x genotype interactions by including a matched control group without any psychiatric disorder, including MDD. General linear model with nonstationary cluster-based inference. Munich, Germany. Patients with recurrent MDD (n = 134) and age-, sex-, and ethnicity-matched healthy controls (n = 143). Associations between GSK3beta polymorphisms and regional GM volume differences. Variation in GM volume was associated with GSK3beta polymorphisms; the most significant associations were found for rs6438552, a putative functional intronic SNP that showed 3 significant GM clusters in the right and left superior temporal gyri and the right hippocampus (P < .001, P = .02, and P = .02, respectively, corrected for multiple comparisons across the whole brain). Similar results were obtained with rs12630592, an SNP in high linkage disequilibrium. A significant SNP x MDD status interaction was observed for the effect on GM volumes in the right hippocampus and superior temporal gyri (P < .001 and P = .01, corrected, respectively). The GSK3beta gene may have a role in determining regional GM volume differences of the right hippocampus and bilateral superior temporal gyri. The association between genotype and brain structure was specific to the patients with MDD, suggesting that GSK3beta genotypes might interact with MDD status. We speculate that this is a consequence of regional neocortical, glial, or neuronal growth or survival. In considering core cognitive features of MDD, the association of GSK3beta polymorphisms with structural variation in the temporal lobe and hippocampus is of

  12. Haplotype-Based Genotyping in Polyploids.

    PubMed

    Clevenger, Josh P; Korani, Walid; Ozias-Akins, Peggy; Jackson, Scott

    2018-01-01

    Accurate identification of polymorphisms from sequence data is crucial to unlocking the potential of high throughput sequencing for genomics. Single nucleotide polymorphisms (SNPs) are difficult to accurately identify in polyploid crops due to the duplicative nature of polyploid genomes leading to low confidence in the true alignment of short reads. Implementing a haplotype-based method in contrasting subgenome-specific sequences leads to higher accuracy of SNP identification in polyploids. To test this method, a large-scale 48K SNP array (Axiom Arachis2) was developed for Arachis hypogaea (peanut), an allotetraploid, in which 1,674 haplotype-based SNPs were included. Results of the array show that 74% of the haplotype-based SNP markers could be validated, which is considerably higher than previous methods used for peanut. The haplotype method has been implemented in a standalone program, HAPLOSWEEP, which takes as input bam files and a vcf file and identifies haplotype-based markers. Haplotype discovery can be made within single reads or span paired reads, and can leverage long read technology by targeting any length of haplotype. Haplotype-based genotyping is applicable in all allopolyploid genomes and provides confidence in marker identification and in silico-based genotyping for polyploid genomics.

  13. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing

    PubMed Central

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279

  14. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India.

    PubMed

    Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U

    2013-11-01

    Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  15. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    PubMed

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  16. DNA sequences of Pima (Gossypium barbadense L.) cotton leaf for examining transcriptome diversity and SNP biomarker discovery

    USDA-ARS?s Scientific Manuscript database

    As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...

  17. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients.

    PubMed

    Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, Adriaan J C

    2011-08-01

    Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p = 0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.

  18. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients.

    PubMed

    Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, A J C

    2010-01-01

    Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'-untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p=0.05).In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.

  19. TS Gene Polymorphisms Are Not Good Markers of Response to 5-FU Therapy in Stage III Colon Cancer Patients

    PubMed Central

    Fariña-Sarasqueta, A.; Gosens, M. J. E. M.; Moerland, E.; van Lijnschoten, I.; Lemmens, V. E. P. P.; Slooter, G. D.; Rutten, H. J. T.; van den Brule, A. J. C.

    2010-01-01

    Aim: Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. Patients and Methods: 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5′-untranslated region of the TS gene were genotyped. Results: There was a positive association between tumor T stage and the VNTR genotypes (p=0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. Conclusion: We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival. PMID:20966539

  20. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  1. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio).

    PubMed

    Xu, Jian; Zhao, Zixia; Zhang, Xiaofeng; Zheng, Xianhu; Li, Jiongtang; Jiang, Yanliang; Kuang, Youyi; Zhang, Yan; Feng, Jianxin; Li, Chuangju; Yu, Juhua; Li, Qiang; Zhu, Yuanyuan; Liu, Yuanyuan; Xu, Peng; Sun, Xiaowen

    2014-04-24

    A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.

  2. Identification and characterization of single nucleotide polymorphisms in 6 growth-correlated genes in porcine by denaturing high performance liquid chromatography.

    PubMed

    Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan

    2007-06-01

    The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.

  3. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

    PubMed Central

    Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838

  4. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  5. [Influence of interleukin-1 beta gene polymorphism and childhood maltreatment on antidepressant treatment].

    PubMed

    Chen, Ying; Zhang, Zhijun; Xu, Zhi; Pu, Mengjia; Geng, Leiyu

    2015-12-01

    To explore the influence of interleukin-1 beta (IL1B) gene polymorphism and childhood maltreatment on antidepressant treatment. Two hundred and four patients with major depressive disorder (MDD) have received treatment with single antidepressant drugs and were followed up for 8 weeks. Hamilton depression scale-17 (HAMD-17) was used to evaluate the severity of depressive symptoms and therapeutic effect. Childhood maltreatment was assessed using Childhood Trauma Questionnaire, a 28-item Short Form (CTQ-SF). Single nucleotide polymorphism (SNP) of the IL1B gene was determined using a SNaPshot method. Correlation of rs16944 gene polymorphism with response to treatment was analyzed using Unphased 3.0.13 software. The main and interactive effects of SNP and childhood maltreatment on the antidepressant treatment were analyzed using Logistic regression analysis. No significant difference of gender, age, year of education, family history, episode time, and antidepressant agents was detected between the remitters and non-remitters. Association analysis has found that the SNP rs16944 in the IL1B AA genotype carriers antidepressant response was poorer (χ2=3.931, P=0.047). No significant difference was detected in the CTQ scores between the two groups. Genetic and environmental interaction analysis has demonstrated a significant correlation between rs16944 AA genotype and childhood maltreatment and poorer response to antidepressant treatment. The SNP rs16944 in the IL1B gene and its interaction with childhood maltreatment may influence the effect of antidepressant treatment for patients with MDD.

  6. Association of a novel SNP in exon 10 of the IGF2 gene with growth traits in Egyptian water buffalo (Bubalus bubalis).

    PubMed

    Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A

    2014-08-01

    Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.

  7. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  8. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes

    PubMed Central

    Hein, David W; Doll, Mark A

    2012-01-01

    Aim Humans exhibit genetic polymorphism in NAT2 resulting in rapid, intermediate and slow acetylator phenotypes. Over 65 NAT2 variants possessing one or more SNPs in the 870-bp NAT2 coding region have been reported. The seven most frequent SNPs are rs1801279 (191G>A), rs1041983 (282C>T), rs1801280 (341T>C), rs1799929 (481C>T), rs1799930 (590G>A), rs1208 (803A>G) and rs1799931 (857G>A). The majority of studies investigate the NAT2 genotype assay for three SNPs: 481C>T, 590G>A and 857G>A. A tag-SNP (rs1495741) recently identified in a genome-wide association study has also been proposed as a biomarker for the NAT2 phenotype. Materials & methods Sulfamethazine N-acetyltransferase catalytic activities were measured in cryopreserved human hepatocytes from a convenience sample of individuals in the USA with an ethnic frequency similar to the 2010 US population census. These activities were segregated by the tag-SNP rs1495741 and each of the seven SNPs described above. We assessed the accuracy of the tag-SNP and various two-, three-, four- and seven-SNP genotyping panels for their ability to accurately infer NAT2 phenotype. Results The accuracy of the various NAT2 SNP genotype panels to infer NAT2 phenotype were as follows: seven-SNP: 98.4%; tag-SNP: 77.7%; two-SNP: 96.1%; three-SNP: 92.2%; and four-SNP: 98.4%. Conclusion A NAT2 four-SNP genotype panel of rs1801279 (191G>A), rs1801280 (341T>C), rs1799930 (590G>A) and rs1799931 (857G>A) infers NAT2 acetylator phenotype with high accuracy, and is recommended over the tag-, two-, three- and (for economy of scale) the seven-SNP genotyping panels, particularly in populations of non-European ancestry. PMID:22092036

  9. miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell Lines

    PubMed Central

    Zhang, Wensheng; Edwards, Andrea; Zhu, Dongxiao; Flemington, Erik K.; Deininger, Prescott; Zhang, Kun

    2012-01-01

    In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3′ UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3′ UTRs of genes can affect the base-pairing between miRNAs and mRNAs, and hence disrupt existing target sites (in the reference sequence) or create novel target sites, suggesting a possible mechanism for cis regulation of gene expression. Moreover, because the alleles of different SNPs within a DNA sequence of limited length tend to be in strong linkage disequilibrium (LD), we hypothesize the variants of miRNA target sites caused by SNPs potentially function as bridges linking the documented cis-SNP markers to the expression of the associated genes. A large-scale analysis was herein performed to test this hypothesis. By systematically integrating multiple latest information sources, we found 21 significant gene-level SNP-involved miRNA-mediated post-transcriptional regulation modules (SNP-MPRMs) in the form of SNP-miRNA-mRNA triplets in lymphocyte cell lines for the CEU and YRI populations. Among the cognate genes, six including ALG8, DGKE, GNA12, KLF11, LRPAP1, and MMAB are related to multiple genetic diseases such as depressive disorder and Type-II diabetes. Furthermore, we found that ∼35% of the documented transcript intensity-related cis-SNPs (∼950) in a recent publication are identical to, or in significant linkage disequilibrium (LD) (p<0.01) with, one or multiple SNPs located in miRNA target sites. Based on these associations (or identities), 69 significant exon-level SNP-MPRMs and 12 disease genes were further determined for two populations. These results provide concrete in silico evidence for the proposed hypothesis. The discovered modules warrant additional follow-up in independent laboratory studies. PMID:22348086

  10. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle.

    PubMed

    Xu, Qing; Mei, Gui; Sun, Dongxiao; Zhang, Qin; Zhang, Yuan; Yin, Cengceng; Chen, Huiyong; Ding, Xiangdong; Liu, Jianfeng

    2012-11-02

    We previously localized a quantitative trait locus (QTL) on bovine chromosome 6 affecting milk production traits to a 1.5-Mb region between BMS483 and MNB-209 via genome scanning followed by fine mapping. Totally 15 genes were mapped within such linkage region through bioinformatic analysis of the cattle-human comparative map and bovine genome assembly. Of them, the UDP-glucose dehydrogenase (UGDH) was suggested as a potential positional candidate gene for milk production traits based on its corresponding physiological and biochemical functions and genetic effects. By sequencing all the coding exons and the untranslated regions in UGDH with pooled DNA of 8 sires represented the separated families detected in our previous studies, a total of ten SNPs were identified and genotyped in 1417 Holstein cows of 8 separation families. Individual SNP-based association analysis revealed 4 significant associations of SNP Ex1-1, SNP Int3-1, SNP Int5-1, and SNP Ex12-3 with milk yield (P < 0.05), and 2 significant associations of SNP Ex1-1 and SNP Ex12-3 with protein yield (P < 0.05). Furthermore, our haplotype-based association analyses indicated that haplotypes G-C-C, formed by SNP Ex12-2-SNP Int11-1-SNP Ex11-1, T-G, formed by SNP Int9-3-SNP Int9-2, and C-C, formed by SNP Int5-1-SNP Int3-1, are significantly associated with protein percentage (F=4.15; P=0.0418) and fat percentage (F=5.18~7.25; P=0.0072~0.0231). Finally, by using an in vitro expression assay, we demonstrated that the A allele of SNP Ex1-1 and T allele of SNP Ex11-1of UGDH significantly decreases the expression of UGDH by 68.0% at the RNA, and 50.1% at the protein level, suggesting that SNP Ex1-1 and Ex11-1 represent two functional polymorphisms affecting expression of UGDH and may partly contributed to the observed association of the gene with milk production traits in our samples. Taken together, our findings strongly indicate that UGDH gene could be involved in genetic variation underlying the QTL for milk

  11. Toll-like receptors genes polymorphisms and the occurrence of HCMV infection among pregnant women.

    PubMed

    Wujcicka, Wioletta; Paradowska, Edyta; Studzińska, Mirosława; Wilczyński, Jan; Nowakowska, Dorota

    2017-03-24

    Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Particularly, TLR2, TLR4 and TLR9 have been shown to be involved in antiviral immunity. Evaluation of the role of single nucleotide polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus (HCMV) infection in pregnant women and their fetuses and neonates, was performed. The study was performed for 131 pregnant women, including 66 patients infected with HCMV during pregnancy, and 65 age-matched control pregnant individuals. The patients were selected to the study, based on serological status of anti-HCMV IgG and IgM antibodies and on the presence of viral DNA in their body fluids. Genotypes in TLR2 2258 A > G, TLR4 896 G > A and 1196 C > T and TLR9 2848 G > A SNPs were determined by self-designed nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in TLR SNPs, were confirmed by sequencing. A relationship between the genotypes, alleles, haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women and their offsprings, was determined, using a logistic regression model. Genotypes in all the analyzed polymorphisms preserved the Hardy-Weinberg equilibrium in pregnant women, both infected and uninfected with HCMV (P > 0.050). GG homozygotic and GA heterozygotic status in TLR9 2848 G > A SNP decreased significantly the occurrence of HCMV infection (OR 0.44 95% CI 0.21-0.94 in the dominant model, P ≤ 0.050). The G allele in TLR9 SNP was significantly more frequent among the uninfected pregnant women than among the infected ones (χ 2  = 4.14, P ≤ 0.050). Considering other polymorphisms, similar frequencies of distinct genotypes, haplotypes and multiple-SNP variants were observed between the

  12. Evaluation of ERα and VDR gene polymorphisms in relation to bone mineral density in Turkish postmenopausal women.

    PubMed

    Kurt, Ozlem; Yilmaz-Aydogan, Hulya; Uyar, Mehmet; Isbir, Turgay; Seyhan, Mehmet Fatih; Can, Ayse

    2012-06-01

    It has been suggested that the estrogen receptor alpha (ERα) and vitamin D receptor (VDR) genes as possibly implicated in reduced bone mineral density (BMD) in osteoporosis. The present study investigated the relation of ERα PvuII/XbaI polymorphisms and VDR FokI/TaqI polymorphisms with BMD in Turkish postmenopausal women. Eighty-one osteoporotic and 122 osteopenic postmenopausal women were recruited. For detection of the polymorphisms, polymerase chain reaction-restriction fragment lenght polymorphism techniques have been used. BMD was measured at the lumbar spine and hip by dual-energy X-ray absorptiometry. Distributions of ERα (PvuII dbSNP: rs2234693, XbaI dbSNP: rs9340799) and VDR genotypes (FokI dbSNP rs10735810, TaqI dbSNP: rs731236) were similar in study population. Although overall prevalence of osteoporosis had no association with these genotypes, the prevalence of decreased femoral neck BMD values were higher in the subjects with ERα PvuII "PP" and ERα XbaI "XX" genotypes than in those with "Pp/pp" genotypes and "xx" genotype, respectively (P < 0.05). Furthermore, subjects with VDR FokI "FF" genotype had lower BMD values of femoral neck and total hip compared to those with "Ff" genotype (P < 0.05). In the logistic regression analysis, we confirmed the presence of relationships between the VDR FokI "FF" genotypes, BMI ≤ 27.5, age ≥ 55 and the increased risk of femoral neck BMD below 0.8 value in postmenopausal women. The present data suggests that the ERα PvuII/XbaI and VDR FokI polymorphisms may contribute to the determination of bone mineral density in Turkish postmenopausal women.

  13. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species.

    PubMed

    Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma Jj; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco Cam; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric

    2016-01-01

    Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple ( Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

  14. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species

    PubMed Central

    Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma JJ; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco CAM; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric

    2016-01-01

    Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species. PMID:27917289

  15. SNP-based association analysis for seedling traits in durum wheat (Triticum turgidum L. durum (Desf.)).

    PubMed

    Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2017-03-01

    In the present study, 150 accessions of worldwide originated durum wheat germplasm ( Triticum turgidum spp. durum ) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13 th , 20 th , 27 th and 34 th day-after germination. Biomass traits were measured at the 34 th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.

  16. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array

    PubMed Central

    Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun

    2017-01-01

    A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be

  17. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    PubMed

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  18. The relationship between methylenetetrahydrofolate reductase polymorphism and hematological malignancy.

    PubMed

    Jiang, Ni; Zhu, Xishan; Zhang, Hongmei; Wang, Xiaoli; Zhou, Xinna; Gu, Jiezhun; Chen, Baoan; Ren, Jun

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme for folate metabolism. Previous studies suggest a relationship between its single nucleotide polymorphisms (SNP) of C677T and A1298C with a variety of tumor susceptibility including hematological malignancy. SNP frequency distribution in different ethnic populations might lead to differences in disease susceptibility. There has been little research in Chinese people on the MTHFR SNP with the susceptibility of the hematological malignancy. Therefore, this study investigated the relationship between MTHFR SNPs and hematological malignancy in Jiangsu province in China. Gene microarray was used to detect MTHFR C677T and A1298C single nucleotide polymorphism loci on 157 healthy controls and 127 patients from Jiangsu province with hematological malignancies (30 with multiple myeloma, 28 with non-Hodgkin's lymphoma, 22 with acute lymphoblastic leukemia, 40 with acute myeloid leukemia, and seven with chronic myeloid leukemia). The allele frequency of 677T was 41.3% in patients and 33.1% in controls, showed significant difference (chi2 = 4.08, p = 0.043); 677TT genotype with a high susceptibility to hematological malignancy (OR 1.96, 95% CI 1.01 - 4.45, p = 0.041). In subgroup analyses, the genotypes 677TT and 1298CC were associated with significantly increased multiple myeloma risk (TT vs. CC: OR 8.92, 95% CI 1.06 - 75.24, p = 0.006; CC vs. AA: OR = 4.80, 95% CI 1.56 - 14.73, p = 0.044). No associations were found between polymorphisms and susceptibilities to acute lymphoblastic leukemia, acute myeloid leukemia, or non-Hodgkin's lymphoma. MTHFRC677T polymorphisms influence the risk of hematological malignancy among the population in Jiangsu province. Both MTHFR 677TT and MTHFR 1298CC genotypes increase susceptibility to myeloid leukemia.

  19. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  20. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  1. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology

    PubMed Central

    Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M

    2007-01-01

    Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the

  2. Polymorphisms of interleukin 6 in Down syndrome individuals: a case-control study.

    PubMed

    Mattos, M F; Uback, L; Biselli-Chicote, P M; Biselli, J M; Goloni-Bertollo, E M; Pavarino, E C

    2017-08-17

    Down syndrome (DS) individuals present impaired adaptive immune system. However, the etiology of the immunological deficiency in these individuals is not completely understood. This study investigated the frequency of interleukin 6 polymorphisms (rs1800795, rs1800796, and rs1800797) in individuals with DS and individuals without the syndrome. The study included 282 individuals, 94 with DS attended at the General Genetics Outpatient Service of Hospital de Base, São José do Rio Preto, SP, Brazil, and 188 individuals without DS attended at the Pediatric Service of Hospital de Base de São José do Rio Preto, SP, Brazil. Genotyping was performed by allelic discrimination technique by real-time polymerase chain reaction using TaqMan SNP Genotyping Assays (Applied Biosystems). There was no difference in the genotype frequency between individuals with and without DS for the evaluated polymorphisms (P > 0.05). The frequency of interleukin 6 polymorphisms did not differ significantly between individuals with and without DS in the casuistic analyzed.

  3. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers

    PubMed Central

    Van Inghelandt, Delphine; Melchinger, Albrecht E.; Lebreton, Claude

    2010-01-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity. Electronic supplementary material The online version of this article (doi:10.1007/s00122-009-1256-2) contains supplementary material, which is available to authorized users. PMID:20063144

  4. Genome-Wide SNP Genotyping to Infer the Effects on Gene Functions in Tomato

    PubMed Central

    Hirakawa, Hideki; Shirasawa, Kenta; Ohyama, Akio; Fukuoka, Hiroyuki; Aoki, Koh; Rothan, Christophe; Sato, Shusei; Isobe, Sachiko; Tabata, Satoshi

    2013-01-01

    The genotype data of 7054 single nucleotide polymorphism (SNP) loci in 40 tomato lines, including inbred lines, F1 hybrids, and wild relatives, were collected using Illumina's Infinium and GoldenGate assay platforms, the latter of which was utilized in our previous study. The dendrogram based on the genotype data corresponded well to the breeding types of tomato and wild relatives. The SNPs were classified into six categories according to their positions in the genes predicted on the tomato genome sequence. The genes with SNPs were annotated by homology searches against the nucleotide and protein databases, as well as by domain searches, and they were classified into the functional categories defined by the NCBI's eukaryotic orthologous groups (KOG). To infer the SNPs' effects on the gene functions, the three-dimensional structures of the 843 proteins that were encoded by the genes with SNPs causing missense mutations were constructed by homology modelling, and 200 of these proteins were considered to carry non-synonymous amino acid substitutions in the predicted functional sites. The SNP information obtained in this study is available at the Kazusa Tomato Genomics Database (http://plant1.kazusa.or.jp/tomato/). PMID:23482505

  5. [C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].

    PubMed

    Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto

    2017-01-01

    Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.

  6. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  7. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  8. High-Performance Multiplex SNP Analysis of Three Hemochromatosis-Related Mutations With Capillary Array Electrophoresis Microplates

    PubMed Central

    Medintz, Igor; Wong, Wendy W.; Berti, Lorenzo; Shiow, Lawrence; Tom, Jennifer; Scherer, James; Sensabaugh, George; Mathies, Richard A.

    2001-01-01

    An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population. PMID:11230165

  9. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  10. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  11. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    PubMed Central

    2010-01-01

    Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups) of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs) reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome. PMID:20497546

  12. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  13. UBXN1 polymorphism and its expression in porcine M. longissimus dorsi are associated with water holding capacity.

    PubMed

    Loan, Huynh Thi Phuong; Muráni, Eduard; Maak, Steffen; Ponsuksili, Siriluck; Wimmers, Klaus

    2014-03-01

    The UBX domain containing protein 1-like gene (UBXN1) promotes the protein degradation that affects meat quality, in particular traits related to water holding capacity. The aim of our study was to identify UBXN1 polymorphisms and to analyse their association with meat quality traits. Moreover, the relationship of UBXN1 polymorphisms and its transcript abundance as well as the link between UBXN1 expression and water holding capacity were addressed. Pigs of the breed German landrace (GL) and the commercial crossbreed of Pietrain × [German large white × GL] (PiF1) were used for this study. In GL, the novel SNP c.355 C > T showed significant association with conductivity and drip loss (P ≤ 0.05). Another SNP at nt 674 of the coding sequence [SNP c.674C>T (p.Thr225Ile)] was associated with drip loss (P ≤ 0.05) and pH1 (P ≤ 0.1). In PiF1, the SNP UBXN1 c.674C>T was associated with conductivity (P ≤ 0.01). Moreover, the haplotype combinations showed effects on conductivity within both commercial populations at P ≤ 0.1. In both populations, high expression of UBXN1 tended to decrease water holding capacity in the early post mortem period. The analysis of triangular relationship of UBXN1 polymorphism, transcript abundance, and water holding capacity evidences the existence of a causal polymorphism in cis-regulatory regions of UBXN1 that influences its expression.

  14. ARTS: a web-based tool for the set-up of high-throughput genome-wide mapping panels for the SNP genotyping of mouse mutants.

    PubMed

    Klaften, Matthias; Hrabé de Angelis, Martin

    2005-07-01

    Genome-wide mapping in the identification of novel candidate genes has always been the standard method in genetics and genomics to correlate a clinically interesting phenotypic trait with a genotype. However, the performance of a mapping experiment using classical microsatellite approaches can be very time consuming. The high-throughput analysis of single-nucleotide polymorphisms (SNPs) has the potential of being the successor of microsatellite analysis routinely used for these mapping approaches, where one of the major obstacles is the design of the appropriate SNP marker set itself. Here we report on ARTS, an advanced retrieval tool for SNPs, which allows researchers to comb freely the public mouse dbSNP database for multiple reference and test strains. Several filters can be applied in order to improve the sensitivity and the specificity of the search results. By employing the panel generator function of this program, it is possible to abbreviate the extraction of reliable sequence data for a large marker panel including several different mouse strains from days to minutes. The concept of ARTS is easily adaptable to other species for which SNP databases are available, making it a versatile tool for the use of SNPs as markers for genotyping. The web interface is accessible at http://andromeda.gsf.de/arts.

  15. Single Nucleotide Polymorphism Array Analysis of Bone Marrow Failure Patients Reveals Characteristic Patterns of Genetic Changes

    PubMed Central

    Babushok, Daria V.; Xie, Hongbo M.; Roth, Jacquelyn J.; Perdigones, Nieves; Olson, Timothy S.; Cockroft, Joshua D.; Gai, Xiaowu; Perin, Juan C.; Li, Yimei; Paessler, Michele E.; Hakonarson, Hakon; Podsakoff, Gregory M.; Mason, Philip J.; Biegel, Jaclyn A.; Bessler, Monica

    2013-01-01

    Summary The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12.2, p<0.01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. PMID:24116929

  16. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes.

    PubMed

    Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica

    2014-01-01

    The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.

  17. Associations between single nucleotide polymorphisms in multiple candidate genes and body weight in rabbits

    PubMed Central

    El-Sabrout, Karim; Aggag, Sarah A.

    2017-01-01

    Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458

  18. SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.

    PubMed

    Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi

    2017-09-14

    The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    PubMed

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are

  20. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy.

    PubMed

    Yang, Zhe; Zhou, Lin; Wu, Li-Ming; Xie, Hai-Yang; Zhang, Feng; Zheng, Shu-Sen

    2010-12-01

    Histone deacetylases (HDACs) have been reported to be poor prognostic indicators in patients with cancer. However, no data are available for the role of single nucleotide polymorphism (SNP) of class I HDAC in hepato-cellular carcinoma (HCC). Therefore, we investigated the association of class I HDAC isoforms genomic polymorphisms with risk of HCC and tumor recurrence following liver transplantation (LT). One hundred and ninety-six Chinese subjects consisting of 97 HCC patients and 99 controls were enrolled in this study. Nine polymorphisms of the HDAC1, HDAC2, and HDAC3 gene (rs2530223, rs1741981, rs2547547, rs13204445, rs6568819, rs10499080, rs11741808, rs2475631, rs11391) were examined using Applied Biosystems SNaP-Shot and TaqMan technology. We found no significant difference in genotype frequencies between the HCC cases and controls. In terms of tumor recurrence following LT, patients carrying the T allele of HDAC1 SNP rs1741981 showed a favorable outcome for recurrence free survival when compared with patients homozygous for CC. In addition, the same significant trend was observed in HDAC3 SNP rs2547547. Kaplan-Meier analysis showed that the combination of the T variant allele (CT+TT) of HDAC1 SNP rs1741981 and the homozygous TT variant allele of HDAC3 SNP rs2547547 was the most favorable prognostic factor. The risk for postoperative tumor recurrence was about 2.2-fold lower for patients with this genotype combination compared with carriers of the HDAC1 SNP rs1741981 CC and HDAC3 SNP rs2547547 CT genotype combination (hazard ratio: 2.235, p=0.003). Our data suggest that combined analysis of HDAC1 SNP rs1741981 and HDAC3 SNP rs2547547 may be a potential genetic marker for HCC recurrence in LT patients.

  2. Modeling gene-environment interactions in oral cavity and esophageal cancers demonstrates a role for the p53 R72P polymorphism in modulating susceptibility.

    PubMed

    Sarkar, Jayanta; Dominguez, Emily; Li, Guojun; Kusewitt, Donna F; Johnson, David G

    2014-08-01

    A large number of epidemiological studies have linked a common single-nucleotide polymorphism (SNP) in the human p53 gene to risk for developing a variety of cancers. This SNP encodes either an arginine or proline at position 72 (R72P) of the p53 protein, which can alter the apoptotic activity of p53 via transcriptional and non-transcriptional mechanisms. This SNP has also been reported to modulate the development of human papilloma virus (HPV)-driven cancers through differential targeting of the p53 variant proteins by the E6 viral oncoprotein. Mouse models for the p53 R72P polymorphism have recently been developed but a role for this SNP in modifying cancer risk in response to viral and chemical carcinogens has yet to be established experimentally. Here, we demonstrate that the p53 R72P polymorphism modulates the hyperprolferative, apoptotic and inflammatory phenotypes caused by expression of the HPV16 E6 and E7 oncoproteins. Moreover, the R72P SNP also modifies the carcinogenic response to the chemical carcinogen 4NQO, in the presence and absence of the HPV16 transgene. Our findings confirm several human epidemiological studies associating the codon 72 proline variant with increased risk for certain cancers but also suggest that there are tissue-specific differences in how the R72P polymorphism influences the response to environmental carcinogens. © 2013 Wiley Periodicals, Inc.

  3. New tools and methods for direct programmatic access to the dbSNP relational database.

    PubMed

    Saccone, Scott F; Quan, Jiaxi; Mehta, Gaurang; Bolze, Raphael; Thomas, Prasanth; Deelman, Ewa; Tischfield, Jay A; Rice, John P

    2011-01-01

    Genome-wide association studies often incorporate information from public biological databases in order to provide a biological reference for interpreting the results. The dbSNP database is an extensive source of information on single nucleotide polymorphisms (SNPs) for many different organisms, including humans. We have developed free software that will download and install a local MySQL implementation of the dbSNP relational database for a specified organism. We have also designed a system for classifying dbSNP tables in terms of common tasks we wish to accomplish using the database. For each task we have designed a small set of custom tables that facilitate task-related queries and provide entity-relationship diagrams for each task composed from the relevant dbSNP tables. In order to expose these concepts and methods to a wider audience we have developed web tools for querying the database and browsing documentation on the tables and columns to clarify the relevant relational structure. All web tools and software are freely available to the public at http://cgsmd.isi.edu/dbsnpq. Resources such as these for programmatically querying biological databases are essential for viably integrating biological information into genetic association experiments on a genome-wide scale.

  4. New tools and methods for direct programmatic access to the dbSNP relational database

    PubMed Central

    Saccone, Scott F.; Quan, Jiaxi; Mehta, Gaurang; Bolze, Raphael; Thomas, Prasanth; Deelman, Ewa; Tischfield, Jay A.; Rice, John P.

    2011-01-01

    Genome-wide association studies often incorporate information from public biological databases in order to provide a biological reference for interpreting the results. The dbSNP database is an extensive source of information on single nucleotide polymorphisms (SNPs) for many different organisms, including humans. We have developed free software that will download and install a local MySQL implementation of the dbSNP relational database for a specified organism. We have also designed a system for classifying dbSNP tables in terms of common tasks we wish to accomplish using the database. For each task we have designed a small set of custom tables that facilitate task-related queries and provide entity-relationship diagrams for each task composed from the relevant dbSNP tables. In order to expose these concepts and methods to a wider audience we have developed web tools for querying the database and browsing documentation on the tables and columns to clarify the relevant relational structure. All web tools and software are freely available to the public at http://cgsmd.isi.edu/dbsnpq. Resources such as these for programmatically querying biological databases are essential for viably integrating biological information into genetic association experiments on a genome-wide scale. PMID:21037260

  5. Association of BSG genetic polymorphisms with atherosclerotic cerebral infarction in the Han Chinese population.

    PubMed

    Zhou, Juan; Song, Bingxin; Duan, Xiaomei; Long, Yuming; Lu, Jinfeng; Li, Zhibin; Zeng, Sian; Zhan, Qiong; Yuan, Mei; Yang, Qidong; Xia, Jian

    2014-10-01

    The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.

  6. SNPHunter: a bioinformatic software for single nucleotide polymorphism data acquisition and management.

    PubMed

    Wang, Lin; Liu, Simin; Niu, Tianhua; Xu, Xin

    2005-03-18

    Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at http://www.hsph.harvard.edu/ppg/software.htm

  7. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species

    USDA-ARS?s Scientific Manuscript database

    For the first time in many years a comprehensive genome map for cultivated oat has been constructed using a combination of single nucleotide polymorphism (SNP) markers and validated with a collection of cytogenetically defined germplasm lines. The markers were able to help distinguish the three geno...

  8. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  9. Association of Interleukin 23 Receptor Polymorphisms with Anti-Topoisomerase-I Positivity and Pulmonary Hypertension in Systemic Sclerosis

    PubMed Central

    AGARWAL, SANDEEP K.; GOURH, PRAVITT; SHETE, SANJAY; PAZ, GENE; DIVECHA, DIPAL; REVEILLE, JOHN D.; ASSASSI, SHERVIN; TAN, FILEMON K.; MAYES, MAUREEN D.; ARNETT, FRANK C.

    2010-01-01

    Objective IL23R has been identified as a susceptibility gene for development of multiple autoimmune diseases. We investigated the possible association of IL23R with systemic sclerosis (SSc), an autoimmune disease that leads to the development of cutaneous and visceral fibrosis. Methods We tested 9 single-nucleotide polymorphisms (SNP) in IL23R for association with SSc in a cohort of 1402 SSc cases and 1038 controls. IL23R SNP tested were previously identified as SNP showing associations with inflammatory bowel disease. Results Case-control comparisons revealed no statistically significant differences between patients and healthy controls with any of the IL23R polymorphisms. Analyses of subsets of SSc patients showed that rs11209026 (Arg381Gln variant) was associated with anti-topoisomerase I antibody (ATA)-positive SSc (p = 0.001)) and rs11465804 SNP was associated with diffuse and ATA-positive SSc (p = 0.0001, p = 0.0026, respectively). These associations remained significant after accounting for multiple comparisons using the false discovery rate method. Wild-type genotype at both rs11209026 and rs11465804 showed significant protection against the presence of pulmonary hypertension (PHT). (p = 3×10−5, p = 1×10−5, respectively). Conclusion Polymorphisms in IL23R are associated with susceptibility to ATA-positive SSc and protective against development of PHT in patients with SSc. PMID:19918037

  10. Catalog of MicroRNA Seed Polymorphisms in Vertebrates

    PubMed Central

    Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453

  11. A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data.

    PubMed

    Andrews, Kimberly R; Adams, Jennifer R; Cassirer, E Frances; Plowright, Raina K; Gardner, Colby; Dwire, Maggie; Hohenlohe, Paul A; Waits, Lisette P

    2018-06-05

    The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with >95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be

  12. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Ferchaud, Anne-Laure; Pedersen, Susanne H; Bekkevold, Dorte; Jian, Jianbo; Niu, Yongchao; Hansen, Michael M

    2014-10-06

    The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new. We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).

  13. Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA

    PubMed Central

    Watson, Claire L.; Lockwood, Diana N. J.

    2009-01-01

    Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306

  14. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses

    PubMed Central

    2010-01-01

    Background Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. Results A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [Punadj. = 6.96 × 10-6]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (Punadj. = 1.61 × 10-9; PBonf. = 6.58 × 10-5). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r2 = 0.86). Conclusions Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 × 10-10; BIEC2-417495, Punadj. = 1.61 × 10-9). Functional investigations will be required to determine whether this polymorphism affects

  15. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses.

    PubMed

    Hill, Emmeline W; McGivney, Beatrice A; Gu, Jingjing; Whiston, Ronan; Machugh, David E

    2010-10-11

    Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [P(unadj.) = 6.96 x 10⁻⁶]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (P(unadj.) = 1.61 x 10⁻⁹; P(Bonf.) = 6.58 x 10⁻⁵). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r² = 0.86). Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 x 10⁻¹⁰; BIEC2-417495, P(unadj.) = 1.61 x 10⁻⁹). Functional investigations will be required to determine whether this polymorphism affects putative

  16. Identification of single nucleotide polymorphism in ginger using expressed sequence tags

    PubMed Central

    Chandrasekar, Arumugam; Riju, Aikkal; Sithara, Kandiyl; Anoop, Sahadevan; Eapen, Santhosh J

    2009-01-01

    Ginger (Zingiber officinale Rosc) (Family: Zingiberaceae) is a herbaceous perennial, the rhizomes of which are used as a spice. Ginger is a plant which is well known for its medicinal applications. Recently EST-derived SNPs are a free by-product of the currently expanding EST (Expressed Sequence Tag) databases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion/deletion) has led to a revolution in their use as molecular markers. Available (38139) Ginger EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script AutoSNP version 1.0 which has used 31905 ESTs for detecting SNPs and Indel sites. We found 64026 SNP sites and 7034 indel polymorphisms with frequency of 0.84 SNPs / 100 bp. Among the three tissues from which the EST libraries had been generated, Rhizomes had high frequency of 1.08 SNPs/indels per 100 bp whereas the leaves had lowest frequency of 0.63 per 100 bp and root is showing relative frequency 0.82/100bp. Transitions and transversion ratio is 0.90. In overall detected SNP, transversion is high when compare to transition. These detected SNPs can be used as markers for genetic studies. Availability The results of the present study hosted in our webserver www.spices.res.in/spicesnip PMID:20198184

  17. HapMap tagSNP transferability in multiple populations: general guidelines

    PubMed Central

    Xing, Jinchuan; Witherspoon, David J.; Watkins, W. Scott; Zhang, Yuhua; Tolpinrud, Whitney; Jorde, Lynn B.

    2008-01-01

    This PDF receipt will only be used as the basis for generating PubMed Central (PMC) documents. PMC documents will be made available for review after conversion (approx. 2–3 weeks time). Any corrections that need to be made will be done at that time. No materials will be released to PMC without the approval of an author. Only the PMC documents will appear on PubMed Central -- this PDF Receipt will not appear on PubMed Central. Linkage disequilibrium (LD) has received much recent attention because of its value in localizing disease-causing genes. Due to the extensive LD between neighboring loci in the human genome, it is believed that a subset of the single nucleotide polymorphisms in a region (tagSNPs) can be selected to capture most of the remaining SNP variants. In this study, we examined LD patterns and HapMap tagSNP transferability in more than 300 individuals. A South Indian and an African Mbuti Pygmy population sample were included to evaluate the performance of HapMap tagSNPs in geographically distinct and genetically isolated populations. Our results show that HapMap tagSNPs selected with r2 >= 0.8 can capture more than 85% of the SNPs in populations that are from the same continental group. Combined tagSNPs from HapMap CEU and CHB+JPT serve as the best reference for the Indian sample. The HapMap YRI are a sufficient reference for tagSNP selection in the Pygmy sample. In addition to our findings, we reviewed over 25 recent studies of tagSNP transferability and propose a general guideline for selecting tagSNPs from HapMap populations. PMID:18482828

  18. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    PubMed Central

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-01-01

    Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806

  19. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    PubMed

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  20. A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.)

    PubMed Central

    Mandal, Paritra; Bhutani, Shefali; Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram Pratap; Chaudhary, A. K.; Yadav, Rekha; Gaikwad, K.; Sevanthi, Amitha Mithra; Datta, Subhojit; Raje, Ranjeet S.; Sharma, Tilak R.; Singh, Nagendra Kumar

    2017-01-01

    Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits. PMID:28654689

  1. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.).

    PubMed

    Koning-Boucoiran, Carole F S; Esselink, G Danny; Vukosavljev, Mirjana; van 't Westende, Wendy P C; Gitonga, Virginia W; Krens, Frans A; Voorrips, Roeland E; van de Weg, W Eric; Schulz, Dietmar; Debener, Thomas; Maliepaard, Chris; Arens, Paul; Smulders, Marinus J M

    2015-01-01

    In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.

  2. Genotyping of single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers.

    PubMed

    Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T

    2017-02-01

    To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.

  3. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor.

    PubMed

    Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv

    2018-06-05

    Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  4. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio)

    PubMed Central

    2014-01-01

    Background A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. Results The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. Conclusions The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species. PMID:24762296

  5. Thr105Ile (rs11558538) polymorphism in the histamine-1-methyl-transferase (HNMT) gene and risk for restless legs syndrome.

    PubMed

    Jiménez-Jiménez, Félix Javier; García-Martín, Elena; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A G

    2017-03-01

    A recent meta-analysis suggests an association between the rs11558538 single nucleotide polymorphism in the histamine-N-methyl-transferase (HNMT) gene and the risk for Parkinson's disease. Based on the possible relationship between PD and restless legs syndrome (RLS), we tried to establish whether rs11558538 SNP is associated with the risk for RLS. We studied the genotype and allelic variant frequencies of HNMT rs11558538 SNP 205 RLS patients and 410 healthy controls using a TaqMan assay. The frequencies of the HNMT rs11558538 genotypes allelic variants were similar between RLS patients and controls, and were not influenced by gender, family history of RLS, or RLS severity. RLS patients carrying the genotype rs11558538TT had an earlier age at onset, but this finding was based on three subjects only. These results suggest a lack of major association between HNMT rs11558538 SNP and the risk for RLS.

  6. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  7. Ghrelin gene polymorphisms in rheumatoid arthritis.

    PubMed

    Ozgen, Metin; Koca, Suleyman Serdar; Etem, Ebru Onalan; Yuce, Huseyin; Aydin, Suleyman; Isik, Ahmet

    2011-07-01

    Ghrelin, an endogenous orexigenic peptide, has anti-inflammatory effects, down-regulates pro-inflammatory cytokines, and its altered levels are reported in various inflammatory diseases. The human preproghrelin (ghrelin/obestatin) gene shows several single nucleotide polymorphisms (SNPs) including Arg51Gln, Leu72Met, Gln90Leu, and A-501C. The aim of this study was to investigate the frequency, and clinical significance, of these four SNPs in a small cohort of Turkish patients with rheumatoid arthritis (RA). The study included 103 patients with RA and 103 healthy controls. In the RA group, disease activity and disease-related damage were assessed using the Disease Activity Score-28 (DAS-28), and the modified Larsen scoring (MLS) methods. In all the participants, genomic DNA was isolated and genotyped by polymerase chain reaction and restriction fragment length polymorphism analysis. The frequencies of ghrelin gene SNPs were 82.5 and 79.6% in the RA and control groups, respectively, and there were no significant differences in terms of genotype distributions and allele frequencies for these four SNPs between the groups. However, the A-501C SNP was found to be associated with early disease onset, and Gln90Leu SNP with less frequent rheumatoid factor positivity, in the RA group. A-501C SNP is associated with earlier onset of RA suggesting that genetic variations in the ghrelin gene may have an impact on RA. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  8. Genetic variation and population structure of maize inbred lines adapted to the mid-altitude sub-humid maize agro-ecology of Ethiopia using single nucleotide polymorphic (SNP) markers.

    PubMed

    Ertiro, Berhanu Tadesse; Semagn, Kassa; Das, Biswanath; Olsen, Michael; Labuschagne, Maryke; Worku, Mosisa; Wegary, Dagne; Azmach, Girum; Ogugo, Veronica; Keno, Tolera; Abebe, Beyene; Chibsa, Temesgen; Menkir, Abebe

    2017-10-12

    Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from

  9. Reinvestigations of six unusual paternity cases by typing of autosomal single-nucleotide polymorphisms.

    PubMed

    Børsting, Claus; Morling, Niels

    2012-02-01

    In some relationship cases, the initial investigations of autosomal short tandem repeats (STRs) lead to an ambiguous conclusion and supplementary investigations become necessary. Six unusual paternity cases were previously investigated by other researchers and published as case work examples in forensic journals. Here, the cases were reinvestigated by typing the samples for 49 autosomal single-nucleotide polymorphisms (SNPs) using the SNPforID multiplex assay. Three cases were solved by the SNP investigation without the need for any additional testing. In two cases, the SNP results supported the conclusions based on STRs. In the last case, the SNP results spoke in favor of paternity, and the combined paternity index based on autosomal STRs and SNPs was 12.3 billion. Nevertheless, the alleged father was excluded by X-chromosome typing. The case work examples underline the importance of performing supplementary investigations, and they advocate for the implementation of several panels that may be used in the highly unusual cases. Panels with SNPs or other markers with low mutation probabilities are preferable as supplementary markers, because the risk of detecting (additional) mutations is very low. © 2012 American Association of Blood Banks.

  10. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle.

    PubMed

    Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J

    2013-12-01

    The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  11. Translational genomics for abiotic stress in sorghum: transcriptional profiling and validation of SNP markers between germplasm with differential cold tolerance

    USDA-ARS?s Scientific Manuscript database

    One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...

  12. Association of paraoxonase-1 gene polymorphisms with insulin resistance in South Indian population.

    PubMed

    Gomathi, Panneerselvam; Iyer, Anandi Chandramouli; Murugan, Ponniah Senthil; Sasikumar, Sundaresan; Raj, Nancy Bright Arul Joseph; Ganesan, Divya; Nallaperumal, Sivagnanam; Murugan, Maruthamuthu; Selvam, Govindan Sadasivam

    2018-04-15

    Insulin resistance plays a crucial role in the pathogenesis of type 2 diabetes and cardiovascular diseases. Recently, paraoxonase-1(PON1) is reported to have an ability to reduce insulin resistance by promoting glucose transporter-4 (GLUT-4) expression in vitro. Single nucleotide polymorphism (SNP) in PON1 is associated with variability in enzyme activity and concentration. Based on this we aimed to investigate the association of PON1 (Q192R and L55M) polymorphisms with the risk of developing insulin resistance in adult South Indian population. Two hundred and eighty seven (287) Type 2 diabetes patients and 293 healthy controls were enrolled in this study. All the study subjects were genotyped for PON1 (Q192R and L55M) missense polymorphisms using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) method. Fasting serum insulin level was measured by ELISA. The distribution of QR/RR and LM/MM genotypes were significantly higher in type 2 diabetes patients compared with healthy controls. Moreover, the R and M alleles were significantly associated with type 2 diabetes with an Odds Ratio of 1.68 (P < 0.005) and 2.24 (P < 0.005) respectively. SNP 192 Q > R genotypes were found to be significantly associated with higher BMI, cholesterol, triglycerides, LDL, fasting serum insulin and HOMA-IR. Further, the mutant allele or genotypes of PON1 L55M were associated with higher BMI, triglycerides, VLDL, fasting serum insulin and HOMA-IR among adult type 2 diabetes patients. PON1 (Q192R and L55M) polymorphisms may play a crucial role in pathogenesis and susceptibility of insulin resistance thus leads to the development of type 2 diabetes in South Indian population. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.

    PubMed

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro; Gregori, Silvia; Bacchetta, Rosa

    2014-11-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants-other than HLA class I and II-associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R(2)=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10(-8); and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.

  14. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  15. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping.

    PubMed

    Gujaria-Verma, Neha; Ramsay, Larissa; Sharpe, Andrew G; Sanderson, Lacey-Anne; Debouck, Daniel G; Tar'an, Bunyamin; Bett, Kirstin E

    2016-03-15

    Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species' ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other.

  16. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat.

    PubMed

    Brevik, Asgeir; Joshi, Amit D; Corral, Román; Onland-Moret, N Charlotte; Siegmund, Kimberly D; Le Marchand, Loïc; Baron, John A; Martinez, Maria Elena; Haile, Robert W; Ahnen, Dennis J; Sandler, Robert S; Lance, Peter; Stern, Mariana C

    2010-12-01

    A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Using a family-based study, we investigated the role of polymorphisms in 4 BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; and XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between diets high in red meat or poultry and CRC risk. We tested for gene-environment interactions using case-only analyses (n = 577) and compared statistically significant results with those obtained using case-unaffected sibling comparisons (n = 307 sibships). Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared with carriers of the Gln/Gln genotype (odds ratio (OR) = 0.15, 95% CI = 0.03-0.69, P = 0.015). The association between higher red meat intake (>3 servings per week) and CRC was modified by the PARP Val762Ala single-nucleotide polymorphisms (SNP; case-only interaction P = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction P = 0.0009). We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a diet high in red meat. ©2010 AACR.

  17. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters

    PubMed Central

    2015-01-01

    Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we

  18. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  19. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  20. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality.

    PubMed

    Ali, Shahin S; Shao, Jonathan; Strem, Mary D; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W; Bailey, Bryan A

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  1. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    PubMed Central

    Ali, Shahin S.; Shao, Jonathan; Strem, Mary D.; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri. PMID:26379633

  2. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  3. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. MicroRNAs-1614-3p gene seed region polymorphisms and association analysis with chicken production traits.

    PubMed

    Li, Hong; Sun, Gui-Rong; Tian, Ya-Dong; Han, Rui-Li; Li, Guo-Xi; Kang, Xiang-Tao

    2013-05-01

    In the present study, a total of 860 chickens from a Gushi-Anka F2 resource population were used to evaluate the genetic effect of the gga-miR-1614-3p gene. A novel, silent, single nucleotide polymorphism (SNP, +5 C>T) was detected in the gga-miR-1614-3p gene seed region through AvaII polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR products sequencing methods. Associations between the SNP and chicken growth, meat quality and carcass traits were performed by association analysis. The results showed that the SNP was significantly associated with breast muscle shear force and leg muscle water loss rate, wing weight, liver weight and heart weight (p<0.05), and highly significantly associated with the weight of the abdominal fat (p<0.01). The secondary structure of gga-miR-1614 and the free energy were altered due to the variation predicted by the M-fold program.

  5. Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration.

    PubMed

    Chen, Haoyu; Yang, Zhenglin; Gibbs, Daniel; Yang, Xian; Hau, Vincent; Zhao, Peiquan; Ma, Xiang; Zeng, Jiexi; Luo, Ling; Pearson, Erik; Constantine, Ryan; Kaminoh, Yuuki; Harmon, Jennifer; Tong, Zongzhong; Stratton, Charity A; Cameron, D Joshua; Tang, Shibo; Zhang, Kang

    2008-02-01

    Single nucleotide polymorphism (SNP), rs11200638, in the promoter of HTRA1 has recently been shown to increase the risk for AMD. In order to investigate the association of this HTRA1 polymorphism and the bilaterality of AMD, we genotyped rs11200638 in control, unilateral, and bilateral advanced AMD patients. The A allele for SNP rs11200638 in HTRA1, was significantly more prevalent in bilateral wet AMD and GA patients than in unilateral groups (p=.02 and p=.03, respectively). The homozygote odds ratios of bilateral wet AMD and GA are significantly greater than those seen in unilateral groups (twofold and threefold increase, respectively). This finding is consistent with the role of HTRA1 in AMD pathogenesis and will help aid in the clinical management and prognosis of AMD patients.

  6. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    PubMed

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  7. SNP-VISTA: An Interactive SNPs Visualization Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.

    2005-07-05

    Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmentalmore » samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.« less

  8. Identification and SNP association analysis of a novel gene in chicken.

    PubMed

    Mei, Xingxing; Kang, Xiangtao; Liu, Xiaojun; Jia, Lijuan; Li, Hong; Li, Zhuanjian; Jiang, Ruirui

    2016-02-01

    A novel gene that was predicted to encode a long noncoding RNA (lncRNA) transcript was identified in a previous study that aimed to detect candidate genes related to growth rate differences between Chinese local breed Gushi chickens and Anka broilers. To characterise the biological function of the lncRNA, we cloned and sequenced the complete open reading frame of the gene. We performed quantitative real-time polymerase chain reaction (qPCR) to analyse the expression patterns of the lncRNA in different tissues of chicken at different development stages. The qPCR data showed that the novel lncRNA gene was expressed extensively, with the highest abundance in spleen and lung and the lowest abundance in pectoralis and leg muscle. Additionally, we identified a single nucleotide polymorphism (SNP) at the 5'-end of the gene and studied the association between the SNP and chicken growth traits using data from an F2 resource population of Gushi chickens and Anka broilers. The association analysis showed that the SNP was significantly (P < 0.05) associated with leg muscle weight, chest breadth, sternal length and body weight in chickens at 1 day, 4 weeks and 6 weeks of age. We concluded that the novel lncRNA gene, which we designated pouBW1, may play an important role in regulating chicken growth. © 2015 Stichting International Foundation for Animal Genetics.

  9. Association of melanocortin-4 receptor gene polymorphisms with obesity-related parameters in Malaysian Malays.

    PubMed

    Apalasamy, Yamunah Devi; Ming, Moy Foong; Rampal, Sanjay; Bulgiba, Awang; Mohamed, Zahurin

    2013-01-01

    Melanocortin-4 receptor (MC4R) is an important regulator of body weight and energy intake. Genetic polymorphisms of the MC4R gene have been found to be linked to obesity in many recent studies across the globe. This study aimed to examine the effects of MC4R polymorphisms on obesity parameters, Linkage disequilibrium (LD) pattern and haplotypes in Malaysian Malays. The study subjects were 652 Malaysian Malays. Genomic DNA was extracted from buccal swabs. Genotyping was performed using Sequenom MassARRAY® iPLEX platform. Anthropometric and blood lipid profiles were measured. MC4R rs571312 SNP was associated with logBMI (p = 0.008) and systolic blood pressure (p = 0.005), while MC4R rs2229616 SNP was associated with total cholesterol (TC) levels (p = 0.016). The MC4R rs7227255 SNP did not show any association with obesity parameters. The strength of LD of the MC4R gene region is low and the haplotypes were not associated with obesity in Malaysian Malays.

  10. RNA-Seq identifies SNP markers for growth traits in rainbow trout.

    PubMed

    Salem, Mohamed; Vallejo, Roger L; Leeds, Timothy D; Palti, Yniv; Liu, Sixin; Sabbagh, Annas; Rexroad, Caird E; Yao, Jianbo

    2012-01-01

    Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker

  11. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

    PubMed Central

    Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.

    2015-01-01

    High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569

  12. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  13. Consistency between cross-sectional and longitudinal SNP: blood lipid associations.

    PubMed

    Costanza, Michael C; Beer-Borst, Sigrid; James, Richard W; Gaspoz, Jean-Michel; Morabia, Alfredo

    2012-02-01

    Various studies have linked different genetic single nucleotide polymorphisms (SNPs) to different blood lipids (BL), but whether these "connections" were identified using cross-sectional or longitudinal (i.e., changes over time) designs has received little attention. Cross-sectional and longitudinal assessments of BL [total, high-, low-density lipoprotein cholesterol (TC, HDL, LDL), triglycerides (TG)] and non-genetic factors (body mass index, smoking, alcohol intake) were measured for 2,002 Geneva, Switzerland, adults during 1999-2008 (two measurements, median 6 years apart), and 20 SNPs in 13 BL metabolism-related genes. Fixed and mixed effects repeated measures linear regression models, respectively, were employed to identify cross-sectional and longitudinal SNP:BL associations among the 1,516 (76%) study participants who reported not being treated for hypercholesterolemia at either measurement time. One-third more (12 vs. 9) longitudinal than cross-sectional associations were found [Bonferroni-adjusted two-tailed p < 0.00125 (=0.05/2)/20) for each of the four ensembles of 20 SNP:individual BL associations tested under the two study designs]. There was moderate consistency between the cross-sectional and longitudinal findings, with eight SNP:BL associations consistently identified across both study designs: [APOE.2 and APOE.4 (rs7412 and rs429358)]:TC; HL/LIPC (rs2070895):HDL; [APOB (rs1367117), APOE.2 and APOE.4 (rs7412 and rs429358)]:LDL; [APOA5 (rs2072560) and APOC III (rs5128)]:TG. The results suggest that cross-sectional studies, which include most genome-wide association studies (GWAS), can assess the large majority of SNP:BL associations. In the present analysis, which was much less powered than a GWAS, the cross-sectional study was around 2/3 (67%) as efficient as the longitudinal study.

  14. Genetic analysis of interleukin 18 gene polymorphisms in alopecia areata.

    PubMed

    Celik, Sumeyya Deniz; Ates, Omer

    2018-06-01

    Alopecia areata (AA), which appears as nonscarring hair shedding on any hair-bearing area, is a common organ-specific autoimmune condition. Cytokines have important roles in the development of AA. Interleukin (IL) 18 is a significant proinflammatory cytokine that was found higher in the patients with AA. We aimed to investigate whether the IL-18 (rs187238 and rs1946518) single nucleotide polymorphisms (SNPs) may be associated with AA and/or clinical outcome of patients with AA in Turkish population. Genotyping of rs187238 and rs1946518 SNPs were detected using sequence-specific primer-polymerase chain reaction (SSP-PCR) method in 200 patients with AA and 200 control subjects. The genotype distribution of rs1946518 (-607C>A) SNP was found to be statistically significantly different among patients with AA and controls (P = .0008). Distribution of CC+CA genotypes and frequency of -607/allele C of rs1946518 SNP were higher in patients with AA (P = .001, P = .001, respectively). The genotype distribution of rs187238 (-137G>C) SNP was found to be statistically significantly different among patients with AA and control subjects (P = .0014). Distribution of GG genotype and frequency of -137/allele G of rs187238 SNP were higher in patients with AA (P = .0003, P = .001, respectively). The rs1946518 (-607C>A) and rs187238 (-137G>C) polymorphisms were found associated with alopecia areata disease. The study suggests that IL-18 rs187238 and rs1946518 SNPs may be the cause of the AA susceptibility. © 2018 Wiley Periodicals, Inc.

  15. Identification of one polymorphism from the PAPP-A2 gene associated to fertility in Romosinuano beef heifers raised under a subtropical environment

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to identify single nucleotide polymorphisms (SNP) associated to fertility in female cows raised under a subtropical environment. Re-sequencing of 9 genes associated to GH-IGF endocrine pathway located in bovine chromosome 5, identified 75 SNP useful for associative ge...

  16. SNPMeta: SNP annotation and SNP metadata collection without a reference genome

    USDA-ARS?s Scientific Manuscript database

    The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a ...

  17. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle.

    PubMed

    Mullen, M P; Berry, D P; Howard, D J; Diskin, M G; Lynch, C O; Berkowicz, E W; Magee, D A; MacHugh, D E; Waters, S M

    2010-12-01

    Growth hormone, produced in the anterior pituitary gland, stimulates the release of insulin-like growth factor-I from the liver and is of critical importance in the control of nutrient utilization and partitioning for lactogenesis, fertility, growth, and development in cattle. The aim of this study was to discover novel polymorphisms in the bovine growth hormone gene (GH1) and to quantify their association with performance using estimates of genetic merit on 848 Holstein-Friesian AI (artificial insemination) dairy sires. Associations with previously reported polymorphisms in the bovine GH1 gene were also undertaken. A total of 38 novel single nucleotide polymorphisms (SNP) were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, exonic, and 3' regulatory regions, encompassing approximately 7 kb of the GH1 gene. Following multiple regression analysis on all SNP, associations were identified between 11 SNP (2 novel and 9 previously identified) and milk fat and protein yield, milk composition, somatic cell score, survival, body condition score, and body size. The G allele of a previously identified SNP in exon 5 at position 2141 of the GH1 sequence, resulting in a nonsynonymous substitution, was associated with decreased milk protein yield. The C allele of a novel SNP, GH32, was associated with inferior carcass conformation. In addition, the T allele of a previously characterized SNP, GH35, was associated with decreased survival. Both GH24 (novel) and GH35 were independently associated with somatic cell count, and 3 SNP, GH21, 2291, and GH35, were independently associated with body depth. Furthermore, 2 SNP, GH24 and GH63, were independently associated with carcass fat. Results of this study further demonstrate the multifaceted influences of GH1 on milk production, fertility, and growth-related traits in cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effect of increasing the number of single-nucleotide polymorphisms from 60,000 to 85,000 in genomic evaluation of Holsteins

    USDA-ARS?s Scientific Manuscript database

    The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...

  19. Dopamine D2 receptor gene polymorphisms and externalizing behaviors in children and adolescents.

    PubMed

    Della Torre, Osmar Henrique; Paes, Lúcia Arisaka; Henriques, Taciane Barbosa; de Mello, Maricilda Palandi; Celeri, Eloisa Helena Rubello Valler; Dalgalarrondo, Paulo; Guerra-Júnior, Gil; Santos-Júnior, Amilton Dos

    2018-05-02

    Dopamine is involved in several cerebral physiological processes, and single nucleotide polymorphisms (SNP) in the dopamine D2 receptor gene (DRD2) have been associated with numerous neurological and mental disorders, including those involving alterations in cognitive and emotional processes. The aim of this study was to evaluate the association between the SNPs c.957C > T (rs6277) and c.-585A > G (rs1799978) in the DRD2 gene and behavioral characteristics of children and adolescents based on an inventory of the Child Behavior Checklist (CBCL). Children and adolescents between 8 and 20 years old who were clinically followed-up were genotyped for the SNPs c.957C > T and c.-585A > G, and related to data of the CBCL/6-18 scale assessment performed with the help of caregivers. The chi-squared test was used to assess the differences in the frequencies of the C and T alleles in the polymorphism c.957C > T and of the A and G alleles in the polymorphism c.-585A > G with respect to the grouped CBCL scores at a significance level of 5%. Multiple logistic regression models were performed, to control whether sex and/or ethnicity could influence the results. Eighty-five patients were assessed overall, and the presence of the T allele (C/T and T/T) of DRD2 c.957C > T polymorphism was found to be significantly associated with the occurrence of defiant and oppositional problems and with attention and hyperactivity problems. There were no associations detected with polymorphism DRD2 c.-585A > G polymorphism. Both SNPs were in Hardy-Weinberg-equilibrium. Although the findings of this study are preliminary, due to its small number of participants, the presence of T allele (C/T, T/T) in c.957C > T SNP was associated with difficulty in impulse control, self-control of emotions, and conduct adjustment, which can contribute to improving the identification of mental and behavioral phenotypes associated with gene expression.

  20. [Association Between SNP rs6007897 of CELSR1 and Acute Ischemic Stroke in Western China Han Population: a Case-control Study].

    PubMed

    Qin, Feng-qin; Yu, Li-hua; Hu, Wen-ting; Guo, Jian; Chen, Ning; Guo, Jiang; Fang, Jing-huan; He, Li

    2015-07-01

    To investigate the relationship between single nucleotide polymorphism (SNP) rs6007897 of CELSR1 and acute ischemic stroke in Western China Han population. All subjects (759 acute ischemic stroke patients and 786 controls) were genotyped using ligation detection reaction (LDR). We analyzed the differences between SNP rs6007897 genotypes and allele frequencies between two groups. Two genotypes (AA, AG) of rs6007897 were found in both stroke and control group. There was no statistically significance between two groups about genotype and allele frequency. After adjusting for risk factors, we found there was no significant association between rs6007897 and ischemic stroke CP = 0.797, odds ratio (OR) = 0.886, 95% confidence interval (CI) = 0.352-2.227). SNP rs6007897 of CELSR1 was not significantly associated with ischemic stroke in Western China Han population.

  1. The reduction of Calpain-10 expression is associated with risk polymorphisms in obese children.

    PubMed

    Mendoza-Lorenzo, Patricia; Salazar, Ana Maria; Cortes-Arenas, Eladio; Saucedo, Renata; Taja-Chayeb, Lucia; Flores-Dorantes, Maria T; Pánico, Pablo; Sordo, Monserrat; Ostrosky-Wegman, Patricia

    2013-03-01

    Excessive weight gain and obesity are major public health concerns. Childhood obesity is growing at an alarming rate. Polymorphisms in the Calpain-10 gene and the reduced expression of this gene in muscle cells and adipocytes have been associated with an increased risk of type 2 diabetes mellitus in several populations. In the present study, we explored the contribution of Calpain-10 in the development of metabolic impairment in childhood. We evaluated the presence of risk polymorphisms in the CAPN10 gene (SNP-44, SNP-43, InDel-19 and SNP-63) and the associated changes in the Calpain-10 mRNA levels in a pediatric population. A total of 161 Mexican children between 4 and 18 years old were included in this study. This population was classified into three groups according to international growth references: healthy weight (HW), overweight (OW) and obese (OB). Association studies of the anthropometric data, clinical values, genotyping and expression assays showed a decrease in the Calpain-10 mRNA and protein expression in the OW and OB groups with respect to the HW group. This decrease in the Calpain-10 mRNA expression was more evident in individuals homozygous for SNP-44 (T/T) and InDel-19 (3/3), alone (p<0.001 and p=0.015, respectively) or in combination (p=0.017). These polymorphisms were also associated with elevated BMI, weight percentiles, z-scores, waist circumferences, fasting glucose levels and beta cell functions in the OW and OB groups (p<0.05). Moreover, our results indicate a statistically significant decrease in the expression of the 75-kDa Calpain-10 isoform in the OW+OB group. The presence of polymorphisms and alterations in the expression of the CAPN10 gene at early ages might result in metabolic impairment in adulthood and should be further investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High-Density SNP Genotyping to Define β-Globin Locus Haplotypes

    PubMed Central

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.

    2014-01-01

    Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352

  3. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  4. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  5. Rs219780 SNP of Claudin 14 Gene is not Related to Clinical Expression in Primary Hyperparathyroidism.

    PubMed

    Piedra, María; Berja, Ana; García-Unzueta, María Teresa; Ramos, Laura; Valero, Carmen; Amado, José Antonio

    2015-01-01

    The CLDN14 gene encodes a protein involved in the regulation of paracellular permeability or ion transport at epithelial tight junctions as in the nephron. The C allele of the rs219780 SNP (single nucleotide polymorphism) of CLDN14 has been associated with renal lithiasis, high levels of parathormone (PTH), and with low bone mineral density (BMD) in healthy women. Our aim is to study the relationship between rs219780 SNP of CLDN14 and renal lithiasis, fractures, and BMD in patients with primary hyperparathyroidism (PHPT). We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analysed anthropometric data, history of fractures or kidney stones, biochemical parameters including markers for bone remodelling, abdominal ultrasound, and BMD and genotyping for the rs219780 SNP of CLDN14. We did not find any difference in the frequency of fractures or renal lithiasis between the genotype groups in PHPT patients. Moreover, we did not find any relationship between the T or C alleles and BMD or biochemical parameters. rs219780 SNP of CLDN14 does not appear to be a risk factor for the development of PHPT nor does it seem to influence the clinical expression of PHPT.

  6. Association of polymorphisms at the ADIPOR1 regulatory region with type 2 diabetes and body mass index in a Brazilian population with European or African ancestry.

    PubMed

    Yeh, E; Kimura, L; Errera, F I V; Angeli, C B; Mingroni-Netto, R C; Silva, M E R; Canani, L H S; Passos-Bueno, M R

    2008-06-01

    Association studies between ADIPOR1 genetic variants and predisposition to type 2 diabetes (DM2) have provided contradictory results. We determined if two single nucleotide polymorphisms (SNP c.-8503G>A and SNP c.10225C>G) in regulatory regions of ADIPOR1 in 567 Brazilian individuals of European (EA; N = 443) or African (AfA; N = 124) ancestry from rural (quilombo remnants; N = 439) and urban (N = 567) areas. We detected a significant effect of ethnicity on the distribution of the allelic frequencies of both SNPs in these populations (EA: -8503A = 0.27; AfA: -8503A = 0.16; P = 0.001 and EA: 10225G = 0.35; AfA: 10225G = 0.51; P < 0.001). Neither of the polymorphisms were associated with DM2 in the case-control study in EA (SNP c.-8503G>A: DM2 group -8503A = 0.26; control group -8503A = 0.30; P = 0.14/SNP 10225C>G: DM2 group 10225G = 0.37; control group 10225G = 0.32; P = 0.40) and AfA populations (SNP c.-8503G>A: DM2 group -8503A = 0.16; control group -8503A = 0.15; P = 0.34/SNP 10225C>G: DM2 group 10225G = 0.51; control group 10225G = 0.52; P = 0.50). Similarly, none of the polymorphisms were associated with metabolic/anthropometric risk factors for DM2 in any of the three populations, except for HDL cholesterol, which was significantly higher in AfA heterozygotes (GC = 53.75 +/- 17.26 mg/dL) than in homozygotes. We conclude that ADIPOR1 polymorphisms are unlikely to be major risk factors for DM2 or for metabolic/anthropometric measurements that represent risk factors for DM2 in populations of European and African ancestries.

  7. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    PubMed

    Shi, Yuan Yuan; Sun, Liang Xian; Huang, Zachary Y; Wu, Xiao Bo; Zhu, Yong Qiang; Zheng, Hua Jun; Zeng, Zhi Jiang

    2013-01-01

    The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  8. Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels.

    PubMed

    Lau, Cia-Hin; Muniandy, Sekaran

    2011-05-01

    Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.

  9. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology

    PubMed Central

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N.; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  10. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    PubMed

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  11. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related stem cell transplantation

    PubMed Central

    Piras, Ignazio Stefano; Angius, Andrea; Andreani, Marco; Testi, Manuela; Lucarelli, Guido; Floris, Matteo; Marktel, Sarah; Ciceri, Fabio; La Nasa, Giorgio; Fleischhauer, Katharina; Roncarolo, Maria Grazia; Bulfone, Alessandro

    2014-01-01

    The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT. PMID:25111513

  12. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    PubMed

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  13. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao

    PubMed Central

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-01-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980

  14. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data

    PubMed Central

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu

    2016-01-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496

  15. Genetic Association Study of KCNQ5 Polymorphisms with High Myopia.

    PubMed

    Liao, Xuan; Yap, Maurice K H; Leung, Kim Hung; Kao, Patrick Y P; Liu, Long Qian; Yip, Shea Ping

    2017-01-01

    Identification of genetic variations related to high myopia may advance our knowledge of the etiopathogenesis of refractive error. This study investigated the role of potassium channel gene (KCNQ5) polymorphisms in high myopia. We performed a case-control study of 1563 unrelated Han Chinese subjects (809 cases of high myopia and 754 emmetropic controls). Five tag single-nucleotide polymorphisms (SNPs) of KCNQ5 were genotyped, and association testing with high myopia was conducted using logistic regression analysis adjusted for sex and age to give P asym values, and multiple comparisons were corrected by permutation test to give P emp values. All five noncoding SNPs were associated with high myopia. The SNP rs7744813, previously shown to be associated with refractive error and myopia in two GWAS, showed an odds ratio of 0.75 (95% CI 0.63-0.90; P emp = 0.0058) for the minor allele. The top SNP rs9342979 showed an odds ratio of 0.75 (95% CI 0.64-0.89; P emp = 0.0045) for the minor allele. Both SNPs are located within enhancer histone marks and DNase-hypersensitive sites. Our data support the involvement of KCNQ5 gene polymorphisms in the genetic susceptibility to high myopia and further exploration of KCNQ5 as a risk factor for high myopia.

  16. Association of FTO rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population

    PubMed Central

    Prakash, Jai; Mittal, Balraj; Srivastava, Apurva; Awasthi, Shally; Srivastava, Neena

    2016-01-01

    Objectives Obesity is a common disorder that has a significant impact on morbidity and mortality. Twin and adoption studies support the genetic influence on variation of obesity, and the estimates of the heritability of body mass index (BMI) is significantly high (30 to 70%). Variants in the fat mass and obesity-associated (FTO) gene have been associated with obesity and obesity-related phenotypes in different populations. The aim of this study was to examine the association of FTO rs9939609 with obesity and related phenotypes in North Indian subjects.   Methods Gene variants were investigated for association with obesity in 309 obese and 333 non-obese patients. Genotyping of the FTO rs9939609 single nucleotide polymorphism (SNP) was analyzed using Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments. We also measured participants fasting glucose and insulin levels, lipid profile, percentage body fat, fat mass and fat free mass.   Results Waist to hip ratio, systolic blood pressure, diastolic blood pressure, percentage body fat, fat mass, insulin concentration, and homeostasis model assessment index (HOMA-Index) showed a significant difference between the study groups. Significant associations were found for FTO rs9939609 SNP with obesity and obesity-related phenotypes. The significant associations were observed between the rs9939609 SNP and blood pressure, fat mass, insulin, and HOMA-index under a different model.   Conclusion This study presents significant association between FTO rs9939609 and obesity defined by BMI and also established the strong association with several measures of obesity in North Indian population. PMID:27168919

  17. The Distribution of Genotype and Allelic Frequency of IL28B Gene Polymorphism in Andhra Pradesh, India

    PubMed Central

    Sivaprasad, Siddapuram; Rao, Padaki Nagaraja; Gupta, Rajesh; Ashwini, Kaitha; Reddy, Duvvuru Nageshwar

    2012-01-01

    Background The single nucleotide polymorphism (SNP) of IL28B gene on chromosome 19, encoding for the interferon (IFN)-λ-3 is strongly associated with treatment response to pegylated-IFN and ribavirin in patients infected with different genotypes of hepatitis C virus (HCV). Difference between ethnicity and treatment response rates suggesting a key role of host genetics. The IL28B polymorphism (rs12979860C/T) shows a marked differential distribution between racial groups. Aim The present study is aimed to evaluate genotype and allelic frequency of IL28B gene polymorphism (rs12979860C/T) in Andhra Pradesh, India. Methods A total of 220 healthy controls were recruited for the study. The genotyping of SNP rs12979860C/T on IL28B gene was performed by polymerase chain reaction-direct sequencing method. Result The frequency of CC genotype was found to be significantly (59.09%) higher compared to CT (34.09%) and TT (6.81%) genotypes, respectively. The frequency of major allele C is 0.762 whereas minor allele T is 0.238. Conclusion The higher distribution of genotype ‘CC’ of SNP, rs12979860C/T of IL28B gene in study subjects is suggestive of better response of HCV patients to standard anti-HCV therapy. PMID:25755419

  18. JARID1A, JMY, and PTGER4 polymorphisms are related to ankylosing spondylitis in Chinese Han patients: a case-control study.

    PubMed

    Chai, Wei; Lian, Zijian; Chen, Chao; Liu, Jingyi; Shi, Lewis L; Wang, Yan

    2013-01-01

    Susceptibility to ankylosing spondylitis (AS) is largely genetically determined. JARID1A, JMY and PTGER4 have recently been found to be associated with AS in patients of western European descent. We aim to examine the influence of JARID1A, JMY, and PTGER4 polymorphisms on the susceptibility to and the severity of ankylosing spondylitis in Chinese ethnic majority Han population. This work can lead the clinical doctors to intervene earlier. Blood samples were drawn from 396 AS patients and 404 unrelated healthy controls. Both the AS patients and the controls are Han Chinese. The AS patients are classified based on the severity of the disease. Thirteen tag single nucleotide polymorphisms (tagSNPs) in JARID1A, JMY and PTGER4 are selected and genotyped. Frequencies of different genotypes and alleles are analyzed among the different severity AS patients and the controls. The rs2284336 SNP in JARID1A, the rs16876619 and rs16876657 SNPs in JMY are associated with susceptibility of AS. The rs11062357 SNP in JARID1A, the rs2607142 SNP in JMY and rs10440635 in PTGER4 are related to severity of AS. Haplotype analyses indicate PTGER4 is related to susceptibility to AS; JARID1A and JMY are related to severity of AS.

  19. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  20. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  1. MultiBLUP: improved SNP-based prediction for complex traits.

    PubMed

    Speed, Doug; Balding, David J

    2014-09-01

    BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breeding, and increasingly in human genetics. The BLUP mathematical model, which consists of a single random effect term, was adequate when kinships were measured from pedigrees. However, when genome-wide SNPs are used to measure kinships, the BLUP model implicitly assumes that all SNPs have the same effect-size distribution, which is a severe and unnecessary limitation. We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing greatly improved prediction when the random effects correspond to classes of SNPs with distinct effect-size variances. The SNP classes can be specified in advance, for example, based on SNP functional annotations, and we also provide an adaptive procedure for determining a suitable partition of SNPs. We apply MultiBLUP to genome-wide association data from the Wellcome Trust Case Control Consortium (seven diseases), and from much larger studies of celiac disease and inflammatory bowel disease, finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is computationally very efficient; for the largest data set, which includes 12,678 individuals and 1.5 M SNPs, the total analysis can be run on a single desktop PC in less than a day and can be parallelized to run even faster. Tools to perform MultiBLUP are freely available in our software LDAK. © 2014 Speed and Balding; Published by Cold Spring Harbor Laboratory Press.

  2. Familiality and SNP heritability of age at onset and episodicity in major depressive disorder.

    PubMed

    Ferentinos, P; Koukounari, A; Power, R; Rivera, M; Uher, R; Craddock, N; Owen, M J; Korszun, A; Jones, L; Jones, I; Gill, M; Rice, J P; Ising, M; Maier, W; Mors, O; Rietschel, M; Preisig, M; Binder, E B; Aitchison, K J; Mendlewicz, J; Souery, D; Hauser, J; Henigsberg, N; Breen, G; Craig, I W; Farmer, A E; Müller-Myhsok, B; McGuffin, P; Lewis, C M

    2015-07-01

    Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.

  3. Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction.

    PubMed

    Bi, Sai; Zhang, Zhipeng; Dong, Ying; Wang, Zonghua

    2015-03-15

    A novel ligation chain reaction (LCR) methodology for single-nucleotide polymorphism (SNP) detection was developed based on luminol-H2O2-horseradish peroxidase (HRP)-mimicking DNAzyme-fluorescein chemiluminescence resonance energy transfer (CRET) imaging on magnetic particles. For LCR, four unique target-complement probes (X and X(⁎), YG and Y(⁎)) for the amplification of K-ras (G12C) were designed by modifying G-quadruplex sequence at 3'-end of YG and fluorescein at 5'-end of Y(⁎). After the LCR, the resulting products of XYG/X(⁎)Y(⁎) with biotin-labeled X(⁎) were captured onto streptavidin-coated magnetic particles (SA-MPs) via specific biotin-SA interaction, which stimulated the CRET reaction from hemin/G-quadruplex-catalyzed luminol-H2O2 CL system to fluorescein. By collecting signals by a cooled low-light CCD, a CRET imaging method was proposed for visual detection and quantitative analysis of SNP. As low as 0.86fM mutant DNA was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10,000:1. This high sensitivity and specificity could be attributed to not only the exponential amplification and excellent discrimination of LCR but also the employment of SA-MPs. SA-MPs ensured the feasibility of the proposed strategy, which also simplified the operations through magnetic separation and separated the reaction and detection procedures to improve sensitivity. The proposed LCR-CRET imaging strategy extends the application of signal amplification techniques to SNP detection, providing a promising platform for effective and high-throughput genetic diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus.

    PubMed

    Demirci, F Yesim K; Manzi, Susan; Ramsey-Goldman, Rosalind; Kenney, Margaret; Shaw, Penny S; Dunlop-Thomas, Charmayne M; Kao, Amy H; Rhew, Elisa Y; Bontempo, Franklin; Kammerer, Candace; Kamboh, M Ilyas

    2007-08-01

    Toll-like receptors (TLR) play an important role in both adaptive and innate immunity. Variations in TLR genes have been shown to be associated with various infectious and inflammatory diseases. We investigated the association of TLR5 (Arg392Stop, rs5744168) and TLR9 (-1237T-->C, rs5743836) single nucleotide polymorphisms (SNP) with systemic lupus erythematosus (SLE) in Caucasian American subjects. We performed a case-control association study and genotyped 409 Caucasian women with SLE and 509 Caucasian healthy female controls using TaqMan allelic discrimination (rs5744168) or polymerase chain reaction-restriction fragment length polymorphism analysis (rs5743836). None of the 2 TLR SNP showed a statistically significant association with SLE risk in our cohort. Our results do not indicate a major influence of these putative functional TLR SNP on the susceptibility to (or protection from) SLE.

  5. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease.

    PubMed

    Martin, E R; Scott, W K; Nance, M A; Watts, R L; Hubble, J P; Koller, W C; Lyons, K; Pahwa, R; Stern, M B; Colcher, A; Hiner, B C; Jankovic, J; Ondo, W G; Allen, F H; Goetz, C G; Small, G W; Masterman, D; Mastaglia, F; Laing, N G; Stajich, J M; Ribble, R C; Booze, M W; Rogala, A; Hauser, M A; Zhang, F; Gibson, R A; Middleton, L T; Roses, A D; Haines, J L; Scott, B L; Pericak-Vance, M A; Vance, J M

    2001-11-14

    The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. To investigate whether the tau gene is involved in idiopathic PD. Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Family-based tests of association, calculated using asymptotic distributions. Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P =.03; SNP 9i, P =.04; and SNP 11, P =.04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P =.11, and SNP 9iii, P =.87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P =.009) and a negative association with another haplotype (P =.007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3, 9i, 9ii, and 11). This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD.

  6. Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease

    PubMed Central

    Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.

    2013-01-01

    Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889

  7. Investigation of inversion polymorphisms in the human genome using principal components analysis.

    PubMed

    Ma, Jianzhong; Amos, Christopher I

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct "populations" of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.

  8. Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis

    PubMed Central

    Ma, Jianzhong; Amos, Christopher I.

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct “populations” of inversion homozygotes of different orientations and their 1∶1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases. PMID:22808122

  9. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  10. SNPit: a federated data integration system for the purpose of functional SNP annotation

    PubMed Central

    Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter

    2009-01-01

    Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies. PMID:19327864

  11. SNPit: a federated data integration system for the purpose of functional SNP annotation.

    PubMed

    Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter

    2009-08-01

    Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies.

  12. A novel approach to exploring potential interactions among single-nucleotide polymorphisms of inflammation genes in gliomagenesis: an exploratory case-only study.

    PubMed

    Amirian, E Susan; Scheurer, Michael E; Liu, Yanhong; D'Amelio, Anthony M; Houlston, Richard S; Etzel, Carol J; Shete, Sanjay; Swerdlow, Anthony J; Schoemaker, Minouk J; McKinney, Patricia A; Fleming, Sarah J; Muir, Kenneth R; Lophatananon, Artitaya; Bondy, Melissa L

    2011-08-01

    Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology. ©2011 AACR.

  13. Association of MEOX2 polymorphism with nonsyndromic cleft palate only in a Vietnamese population.

    PubMed

    Tran, Duy L; Imura, Hideto; Mori, Akihiro; Suzuki, Satoshi; Niimi, Teruyuki; Ono, Maya; Sakuma, Chisato; Nakahara, Shinichi; Nguyen, Tham T H; Pham, Phuong T; Hoang, Viet; Tran, Van T T; Nguyen, Minh D; Natsume, Nagato

    2017-10-14

    To evaluate the association between the single nucleotide polymorphism (SNP) rs227493 in the MEOX2 gene and nonsyndromic cleft palate only, this research was conducted as a case-control study by comparing a nonsyndromic cleft palate only group with an independent, healthy, and unaffected control group who were both examined by specialists. Based on clinical examination and medical records, we analyzed a total of 570 DNA samples, including 277 cases and 293 controls, which were extracted from dry blood spot samples collected from both the Odonto and Maxillofacial Hospital in Ho Chi Minh City and Nguyen Dinh Chieu Hospital in Ben Tre province, respectively. The standard procedures of genotyping the specific SNP (rs2237493) for MEOX2 were performed on a StepOne Realtime PCR system with TaqMan SNP Genotyping Assays. Significant statistical differences were observed in allelic frequencies (allele T and allele G) between the non-syndromic cleft palate only and control groups in female subjects, with an allelic odds ratio of 1.455 (95% confidence interval: 1.026-2.064) and P < 0.05. These study findings suggest that nonsyndromic isolated cleft palate might be influenced by variation of MEOX2, especially SNP rs2237493 in Vietnamese females. © 2017 Japanese Teratology Society.

  14. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms.

    PubMed

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-08-19

    Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  15. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    PubMed Central

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-01-01

    Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585

  16. Effects of chronic stress and interleukin-10 gene polymorphisms on antibody response to tetanus vaccine in family caregivers of patients with Alzheimer's disease.

    PubMed

    Li, Jian; Cowden, Linda G; King, Janice D; Briles, David A; Schroeder, Harry W; Stevens, Alan B; Perry, Rodney T; Chen, Zuomin; Simmons, Micah S; Wiener, Howard W; Tiwari, Hemant K; Harrell, Lindy E; Go, Rodney C P

    2007-01-01

    To assess the effects of psychological stress on the antibody response to tetanus vaccine adjusting for cytokine gene polymorphisms and other nongenetic factors in caregivers of patients with Alzheimer's disease (AD). A family-based follow-up study was conducted in 119 spouses and offspring of community-dwelling patients with AD. Psychological stress was measured by the Perceived Stress Scale (PSS) and the Center for Epidemiologic Studies Depression (CES-D) scale at baseline and 1 month after the vaccination. Nutritional status, health behaviors, comorbidity, and stress-buffering factors were assessed by self-administered questionnaires, 10 single nucleotide polymorphisms (SNP) from six selected cytokines genotyped, and anti-tetanus toxoid immunoglobulin G (IgG) concentrations tested using enzyme-linked immunosorbent assays. The effects of stress and other potential confounders were assessed by mixed models that account for familial correlations. The baseline PSS score, the baseline CES-D score, the interleukin-10-1082 A>G SNP GG genotype, and the baseline anti-tetanus IgG were inversely associated with antibody fold increase. Both psychological stress and cytokine gene polymorphisms affected antibody fold increase. The study provided additional support for the detrimental effects of psychological stress on the antibody response to tetanus vaccine.

  17. The -913 G/A glutamine:fructose-6-phosphate aminotransferase gene polymorphism is associated with measures of obesity and intramyocellular lipid content in nondiabetic subjects.

    PubMed

    Weigert, Cora; Thamer, Claus; Brodbeck, Katrin; Guirguis, Alke; Machicao, Fausto; Machann, Jürgen; Schick, Fritz; Stumvoll, Michael; Fritsche, Andreas; Häring, Hans U; Schleicher, Erwin D

    2005-03-01

    Increases in glutamine:fructose-6-phosphate aminotransferase (GFAT) protein levels directly activate flux through the hexosamine biosynthetic pathway. This pathway has been involved as a fuel sensor in energy metabolism and development of insulin resistance. We screened the 5'-flanking region of the human GFAT gene for polymorphisms and subsequently genotyped 412 nondiabetic, metabolically characterized Caucasians for the two single-nucleotide polymorphisms (SNP) at positions -913 (G/A) and -1412 (C/G) with rare allele frequencies of 42% and 16%, respectively. The -913 G SNP was associated with significantly higher body mass index and percent body fat in men (P = 0.02 and 0.004, respectively), but not in women (P = 0.47 and 0.26, respectively). In the subgroup of individuals (n = 193) who underwent hyperinsulinemic-euglycemic clamp, an association of the -913 G SNP with insulin sensitivity independent of body mass index was not detected. Moreover, the -913 G allele in a group of 71 individuals who had undergone magnetic resonance spectroscopy was associated with higher intramyocellular lipid content (IMCL) in tibialis anterior muscle (4.21 +/- 0.31 vs. 3.36 +/- 0.35; P = 0.04) independent of percent body fat and maximal aerobic power. The -1412 SNP had no effect on percent body fat, insulin sensitivity, or IMCL. In conclusion, we identified two polymorphisms in the 5'-flanking region of GFAT, of which the -913 SNP seems to alter the risk for obesity and IMCL accumulation in male subjects.

  18. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study

    PubMed Central

    Orlow, Irene; Reiner, Anne S.; Thomas, Nancy E.; Roy, Pampa; Kanetsky, Peter A.; Luo, Li; Paine, Susan; Armstrong, Bruce K.; Kricker, Anne; Marrett, Loraine D.; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B.; Anton-Culver, Hoda; Gallagher, Richard P.; Dwyer, Terence; Busam, Klaus; Begg, Colin B.; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics. PMID:26521212

  19. Association of polymorphisms of exon 2 of the growth hormone gene with production performance in Huoyan goose.

    PubMed

    Zhang, Yang; Zhu, Zhen; Xu, Qi; Chen, Guohong

    2014-01-07

    Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.

  20. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    PubMed

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  2. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer.

    PubMed

    Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping

    2015-12-15

    Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High-Throughput SNP Discovery through Deep Resequencing of a Reduced Representation Library to Anchor and Orient Scaffolds in the Soybean Whole Genome Sequence

    USDA-ARS?s Scientific Manuscript database

    The soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy but only properly oriented 66% of the sequence scaffolds. To find additional single nucleotide polymorphism (SNP) markers for additiona...

  4. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  5. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  6. Polymorphism of the prion protein gene (PRNP) in two Chinese indigenous cattle breeds.

    PubMed

    Qin, L H; Zhao, Y M; Bao, Y H; Bai, W L; Chong, J; Zhang, G L; Zhang, J B; Zhao, Z H

    2011-08-01

    Prion protein (PRNP) gene has been located at position q17 of chromosome 13 in cattle. The polymorphisms of PRNP gene might be associated with BSE susceptibility. In the present work, we investigated the polymorphisms of PRNP gene, including SNP in exon 3, 23-bp indel in promoter region, 12-bp indel in intron 1 in 2 Chinese indigenous cattle breeds of northeast China. Eighty-six animals from Yanbian (34) and Chinese Red Steppes (52) were genotyped at PRNP locus by analyzing genomic DNA. A total of 4 single nucleotide polymorphism (SNP) sites were revealed in the PRNP gene exon 3 of the 2 cattle breeds investigated. Three of these SNPs were non-synonymous mutations that resulted in the amino acid exchanges (K119N, S154N, and M177V), and one is silent nucleotide substitutions (A234G). The two amino acid mutations of S154N and M177V were detected only in Yanbian with a very low frequency (0.0147), and they appears to be absent in Chinese Red Steppes. The average gene heterozygosity (He), effective allele numbers (Ne), Shannon's information index (I) and polymorphism information content (PIC) were 0.3088, 1.5013, 0.3814 and 0.2000 in Yanbian, respectively, being relatively higher than that of Chinese Red Steppes (0.2885, 1.4985, 0.3462 and 0.1873, respectively). In 23-bp indel and 12-bp indel loci, three different genotypes were identified in both Yanbian and Chinese Red Steppes breeds. Based 23- and 12-bp indels, four haplotypes was constructed in the 2 Chinese cattle breeds, of which the 23-bp (-)/12-bp (-) was main haplotypes accounting for more than 50% of the total in both Yanbian and Chinese Red Steppes breeds. These results might be useful in understanding the genetic characteristics of PRNP gene in Chinese indigenous cattle breeds.

  7. A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.

    PubMed

    Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang

    2008-08-01

    PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).

  8. Association of VDBP and CYP2R1 gene polymorphisms with vitamin D status in women with polycystic ovarian syndrome: a north Indian study.

    PubMed

    Haldar, Deepa; Agrawal, Nitin; Patel, Seema; Kambale, Pankaj Ramrao; Arora, Kanchan; Sharma, Aditi; Tripathi, Manish; Batra, Aruna; Kabi, Bhaskar C

    2018-03-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine abnormality among women of reproductive age and is usually associated with oligo-ovulation/anovulation, obesity, and insulin resistance. Hypovitaminosis D may also be a primary factor in the initiation and development of PCOS. However, little is known about the role of genetic variation in vitamin D metabolism in PCOS aetiology. Therefore, we studied the genetic polymorphisms of CYP2R1 and vitamin D binding protein (VDBP) in an Indian population. Serum vitamin D was measured by ELISA. Genotyping of VDBP single nucleotide polymorphisms (SNPs) rs7041 (HaeIII; G>T) and rs4588 (StyI; A>C) and CYP2R1 SNP rs2060793 (HinfI; A>G) was carried out by restriction fragment length polymorphism in 50 cases of PCOS that were compared with 50 age-matched healthy women. Vitamin D levels were found to be significantly lower in women with PCOS (p = 0.008) than in age-matched controls. There was no significant difference in genotype frequencies of all three polymorphisms (rs7041, rs4588, and rs2060793) between PCOS and control women. In women with a vitamin D deficiency (<20 ng/ml), the GT allele of the VDBP SNP rs7041 (p value =0.04), the VDBP allelic combination Gc1F/1F (T allele of rs4588 and C allele of rs7041) (p value =0.03), and the GA allele of the CYP2R1 SNP rs2060793 (p = 0.05) were associated with an increased risk of developing PCOS. The present study shows that the GT allele of VDBP SNP rs7041, the VDBP allelic combination (GC1F/1F), and GA allele of CYP2R1 SNP rs2060793 in vitamin D deficient women increase the risk of PCOS.

  9. Two single-nucleotide polymorphisms of the RELN gene and symptom-based and developmental deficits among children and adolescents with autistic spectrum disorders in the Tianjin, China.

    PubMed

    Wang, Geng-Fu; Ye, Sheng; Gao, Lei; Han, Yu; Guo, Xuan; Dong, Xiao-Peng; Su, Yuan-Yuan; Zhang, Xin

    2018-05-10

    Increasing evidence has revealed that genetic variants in Reelin (RELN) gene, especially single-nucleotide polymorphisms (SNPs), correlate with autistic spectrum disorders (ASD) risk; however, no consensus have been reached. This study aimed to provide additional evidence for the association between two SNPs of RELN (i.e., rs736707, rs2229864) and ASD risk, as well as the relationship between RELN gene and symptom-based and developmental deficits of ASD patients in Chinese Han children and adolescents. 157 ASD subjects and 256 typical development (TD) controls were genotyped by TaqMan® genotyping assay. ASD patients were assessed by Childhood Autism Rating Scale (CARS), Autism Behavior Checklist (ABC), and Early Childhood Development Questionnaire (ECDQ). We found that SNP rs2229864 was associated with the genetic predisposition of ASD, whereas a negative association between SNP rs2229864 and symptom-based and developmental features was detected. In contrast, RELN rs736707 correlated with the sensory subscale of the ABC, the relating subscale of the ABC and the total score of ABC, although we did not detect a significant association between SNP rs736707 and ASD risk. Furthermore, a significant rs736707-rs2229864 haplotype was detected. Individuals with a CC haplotype were more likely to have ASD, but individuals with a CT haplotype had more chance be TD controls. Further studies using more samples and including more gene variants in RELN are warranted to confirm our results. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

    PubMed

    Ning, Shangwei; Yue, Ming; Wang, Peng; Liu, Yue; Zhi, Hui; Zhang, Yan; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Zhou, Dianshuang; Li, Xin; Li, Xia

    2017-01-04

    We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers

    USDA-ARS?s Scientific Manuscript database

    Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...

  12. Changes in variance explained by top SNP windows over generations for three traits in broiler chicken.

    PubMed

    Fragomeni, Breno de Oliveira; Misztal, Ignacy; Lourenco, Daniela Lino; Aguilar, Ignacio; Okimoto, Ronald; Muir, William M

    2014-01-01

    The purpose of this study was to determine if the set of genomic regions inferred as accounting for the majority of genetic variation in quantitative traits remain stable over multiple generations of selection. The data set contained phenotypes for five generations of broiler chicken for body weight, breast meat, and leg score. The population consisted of 294,632 animals over five generations and also included genotypes of 41,036 single nucleotide polymorphism (SNP) for 4,866 animals, after quality control. The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP approach for generations 1-3, 2-4, 3-5, and 1-5. Variances were calculated for windows of 20 SNP. The top ten windows for each trait that explained the largest fraction of the genetic variance across generations were examined. Across generations, the top 10 windows explained more than 0.5% but less than 1% of the total variance. Also, the pattern of the windows was not consistent across generations. The windows that explained the greatest variance changed greatly among the combinations of generations, with a few exceptions. In many cases, a window identified as top for one combination, explained less than 0.1% for the other combinations. We conclude that identification of top SNP windows for a population may have little predictive power for genetic selection in the following generations for the traits here evaluated.

  13. A false single nucleotide polymorphism generated by gene duplication compromises meat traceability.

    PubMed

    Sanz, Arianne; Ordovás, Laura; Zaragoza, Pilar; Sanz, Albina; de Blas, Ignacio; Rodellar, Clementina

    2012-07-01

    Controlling meat traceability using SNPs is an effective method of ensuring food safety. We have analyzed several SNPs to create a panel for bovine genetic identification and traceability studies. One of these was the transversion g.329C>T (Genbank accession no. AJ496781) on the cytochrome P450 17A1 gene, which has been included in previously published panels. Using minisequencing reactions, we have tested 701 samples belonging to eight Spanish cattle breeds. Surprisingly, an excess of heterozygotes was detected, implying an extreme departure from Hardy-Weinberg equilibrium (P<0.001). By alignment analysis and sequencing, we detected that the g.329C>T SNP is a false positive polymorphism, which allows us to explain the inflated heterozygotic value. We recommend that this ambiguous SNP, as well as other polymorphisms located in this region, should not be used in identification, traceability or disease association studies. Annotation of these false SNPs should improve association studies and avoid misinterpretations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Genetic polymorphism of matrix metalloproteinase family and chronic obstructive pulmonary disease susceptibility: a meta-analysis.

    PubMed

    Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao

    2013-10-02

    Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.

  15. Transcript level of the porcine ME1 gene is affected by SNP in its 3'UTR, which is also associated with subcutaneous fat thickness.

    PubMed

    Bartz, M; Kociucka, B; Mankowska, M; Switonski, M; Szydlowski, M

    2014-08-01

    Pork quality depends on multiple factors, including fatty acid composition in muscle and fat tissues. The ME1 gene is a strong candidate for fat accumulation, as it encodes the malic enzyme, which is required for fatty acid synthesis. We identified seven new polymorphisms in 3'UTR of the ME1 gene and moreover confirmed the presence of 4 polymorphisms detected previously. Interestingly, the studied Duroc pigs were monomorphic at all these polymorphic sites, while in 3 other breeds (Pietrain, Polish Landrace and Polish Large White), the polymorphisms were unevenly distributed. One of the novel SNPs (c.*488A>G) was found in the Polish Large White and the Polish Landrace only, and the association studies revealed that it was significantly associated with backfat thickness and average daily weight gain in the Polish Landrace (N = 207) and the Polish Large White (N = 157). This SNP was differently associated with ME1 transcript level in muscle and backfat. The in silico analysis of another novel SNP (c.*548C>T) indicated that it is located within a binding sequence conserved among vertebrates for the miR-30 family in 3'UTR of the ME1. It was shown that in the longissimus muscle, but not in adipose tissue, CT gilts compared with CC ones had significantly lower levels of the ME1 transcript. This polymorphism, however, was not associated with production traits. Additionally, we observed that transcript level of the ME1 was significantly higher in subcutaneous fat than in the longissimus muscle, as well as both investigated tissues of the Polish Landrace when compared to the other breeds. However, no association was found between this polymorphism and fatty acid profiles. We conclude that the ME1 gene polymorphism (c.*488A>G) is a potential marker for porcine backfat thickness. © 2013 Blackwell Verlag GmbH.

  16. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  17. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak.

    PubMed

    Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J

    2018-06-02

    Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.

  18. TPH2 polymorphisms and alcohol-related suicide.

    PubMed

    Zupanc, Tomaž; Pregelj, Peter; Tomori, Martina; Komel, Radovan; Paska, Alja Videtič

    2011-02-18

    Substantial evidence from family, twin, and adoption studies corroborates implication of genetic and environmental factors, as well as their interactions, on suicidal behavior and alcoholism risk. Serotonergic disfunction seems to be involved in the pathophysiology of substance abuse, and has also an important role in suicidal behavior. Recent studies of the tryptophan hydroxylase 2 showed mild or no association with suicide and alcohol-related suicide. We performed SNP and alcohol analysis on 388 suicide victims and 227 controls. The results showed association between suicide (Pχ²=0.043) and alcohol-related suicide (Pχ²=0.021) for SNP Rs1843809. A tendency for association was determined also for polymorphism Rs1386493 (Pχ²=0.055) and alcohol-related suicide. Data acquired from psychological autopsies in a subsample of suicide victims (n=79) determined more impulsive behavior (Pχ²=0.016) and verbal aggressive behavior (Pχ²=0.025) in the subgroup with alcohol misuse or dependency. In conclusion, our results suggest implication of polymorphisms in suicide and alcohol-related suicide, but further studies are needed to clarify the interplay among serotonergic system disfunction, suicide, alcohol dependence, impulsivity and the role of TPH2 enzyme. © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. The association of ghrelin polymorphisms with coronary artery disease and ischemic chronic heart failure in an elderly Chinese population.

    PubMed

    Zhang, Qin; Huang, Wei-Dong; Lv, Xue-Ying; Yang, Yun-Mei

    2011-04-01

    To investigate the association of coronary artery disease (CAD) and ischemic heart failure (IHF) with polymorphisms of the ghrelin gene in elderly Chinese patients. Fifty-six patients with ischemic heart failure, sixty patients with coronary artery disease without heart failure, and one hundred healthy control subjects participated in the study. The polymorphisms were evaluated by polymerase chain reaction, sequencing, and fragment length polymorphism analysis. Only one single nucleotide polymorphism (SNP), Leu72Met (408C/A), was observed across all samples. Gene frequencies of CC and allele frequencies of C were significantly greater in the CAD with IHF group than those in the CAD without IHF group (p=0.025, p=0.011). There was no significant association between the Leu72Met SNP with coronary artery disease risk factors. Our results suggest that a C allele at position 408 of the ghrelin gene is associated with genetic susceptibility to ischemic heart failure in Chinese elders. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  1. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  2. Resolving incomplete single nucleotide polymorphism tagging of HLA-DQ2.2 for coeliac disease genotyping using digital droplet PCR.

    PubMed

    Hardy, M Y; Ontiveros, N; Varney, M D; Tye-Din, J A

    2018-04-01

    A hallmark of coeliac disease (CD) is the exceptionally strong genetic association with HLA-DQ2.5, DQ8, and DQ2.2. HLA typing provides information on CD risk important to both clinicians and researchers. A method that enables simple and fast detection of all CD risk genotypes is particularly desirable for the study of large populations. Single nucleotide polymorphism (SNP)-based HLA typing can detect the CD risk genotypes by detecting a combination of six SNPs but this approach can struggle to resolve HLA-DQ2.2, seen in 4% of European CD patients, because of the low resolution of one negatively predicting SNP. We sought to optimise SNP-based HLA typing by harnessing the additional resolution of digital droplet PCR to resolve HLA-DQ2.2. Here we test this two-step approach in an unselected sample of Mexican DNA and compare its accuracy to DNA typed using traditional exon detection. The addition of digital droplet PCR for samples requiring negative prediction of HLA-DQ2.2 enabled HLA-DQ2.2 to be accurately typed. This technique is a simple addition to a SNP-based typing strategy and enables comprehensive definition of all at-risk HLA genotypes in CD in a timely and cost-effective manner. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  4. Association between the TRAIL single nucleotide polymorphism rs1131580 and type 2 diabetes mellitus in a Han Chinese population.

    PubMed

    Yu, M Y; Zhao, P Q; Yan, X H; Liu, B; Zhang, Q Q; Wang, R; Ma, C H; Liang, X H; Zhu, F L; Gao, L F

    2013-09-10

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is expressed in different tissues and cells, including the pancreas and lymphocytes, and it can selectively induce apoptosis in tumor cells but not in most normal cells. TRAIL plays critical roles in type 1 diabetes mellitus, and is involved in type 2 diabetes mellitus (T2DM). We recently discovered the association of nonalcoholic fatty liver disease, a risk factor for T2DM, with a single nucleotide polymorphism (SNP) in the TRAIL (TNFSF10) gene at site 1595C/T (rs1131580), indicating the possible association of T2DM with this TRAIL polymorphism. The aim of this study was to investigate the relationship of the TRAIL SNP at site 1595C/T (rs1131580) with T2DM susceptibility and the biometabolic parameters of T2DM in a Han Chinese population. The polymerase chain reaction-restriction fragment length polymorphism method was used to genotype SNP rs1131580 in 292 patients with T2DM and 266 healthy controls. We found that the frequency of the CC genotype and that of the C allele of rs1131580 were significantly higher in T2DM patients than in the control group. Additionally, the triglyceride and serum creatinine levels of T2DM patients with the CC genotype were significantly higher than those of patients with the TT genotype. Thus, the CC genotype of the TRAIL SNP at 1595C/T (rs1131580) confers increased susceptible to T2DM in a Han Chinese population from Shandong Province. These data suggest that the CC genotype at this SNP is related to diabetic severity and it might be a candidate for the prognostic assessment of T2DM.

  5. HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration.

    PubMed

    Yoshida, Tsunehiko; DeWan, Andrew; Zhang, Hong; Sakamoto, Ryosuke; Okamoto, Haru; Minami, Masayoshi; Obazawa, Minoru; Mizota, Atsushi; Tanaka, Minoru; Saito, Yoshihiro; Takagi, Ikue; Hoh, Josephine; Iwata, Takeshi

    2007-04-04

    To study the effect of candidate single nucleotide polymorphisms (SNPs) on chromosome 10q26, recently shown to be associated with wet age-related macular degeneration (AMD) in Chinese and Caucasian cohorts, in a Japanese cohort. Using genomic DNA isolated from peripheral blood of wet AMD cases and age-matched controls, we genotyped two SNPs, rs10490924, and rs11200638, on chromosome 10q26, 6.6 kb and 512 bp upstream of the HTRA1 gene, respectively, using temperature gradient capillary electrophoresis (TGCE) and direct sequencing. Association tests were performed for individual SNPs and jointly with SNP complement factor H (CFH) Y402H. The two SNPs, rs10490924 and rs11200638, are in complete linkage disequilibrium (D'=1). Previous sequence comparisons among seventeen species revealed that the genomic region containing rs11200638 was highly conserved while the region surrounding rs10490924 was not. The allelic association test for rs11200638 yielded a p-value <10(-11). SNP rs11200638 conferred disease risk in an autosomal recessive fashion: Odds ratio was 10.1 (95% CI 4.36, 23.06), adjusted for SNP CFH 402, for those carrying two copies of the risk allele, whereas indistinguishable from unity if carrying only one risk allele. The HTRA1 promoter polymorphism, rs11200638, is a strong candidate with a functional consequence that predisposes Japanese to develop neovascular AMD.

  6. Oxytocin and Social Sensitivity: Gene Polymorphisms in Relation to Depressive Symptoms and Suicidal Ideation

    PubMed Central

    McQuaid, Robyn J.; McInnis, Opal A.; Matheson, Kimberly; Anisman, Hymie

    2016-01-01

    Although the neuropeptide oxytocin has been associated with enhanced prosocial behaviors, it has also been linked to aggression and mental health disorders. Thus, it was suggested that oxytocin might act by increasing the salience of social stimuli, irrespective of whether these are positive or negative, thus increasing vulnerability to negative mental health outcomes. The current study (N = 243), conducted among white university students, examined the relation of trauma, depressive symptoms including suicidal ideation in relation to a single nucleotide polymorphism (SNP) within the oxytocin receptor gene (OXTR), rs53576, and a SNP on the CD38 gene that controls oxytocin release, rs3796863. Individuals with the polymorphism on both alleles (AA genotype) of the CD38 SNP had previously been linked to elevated plasma oxytocin levels. Consistent with the social sensitivity perspective, however, in the current study, individuals carrying the AA genotype displayed elevated feelings of alienation from parents and peers as well as increased levels of suicidal ideation. Moreover, they tended to report elevated depressive symptoms compared to CC homozygotes. It was also observed that the CD38 genotype moderated the relation between trauma and suicidal ideation scores, such that high levels of trauma were associated with elevated suicidal ideation among all CD38 genotypes, but this relationship was stronger among individuals with the AA genotype. In contrast, there was no relationship between the OXTR SNP, rs53576, depression or suicidal ideation. These findings support a social sensitivity hypothesis of oxytocin, wherein the AA genotype of the CD38 SNP, which has been considered the “protective allele” was associated with increased sensitivity and susceptibility to disturbed social relations and suicidal ideation. PMID:27486392

  7. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  8. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    PubMed

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  9. Genetic association of polymorphism rs1333049 with gout.

    PubMed

    Wang, Binbin; Meng, Dongmei; Wang, Jing; Liu, Shiguo; Zhou, Sirui; Miao, Zhimin; Han, Lin; Chu, Nan; Zhang, Kun; Ma, Xu; Li, Changgui

    2011-09-01

    We suspect that genes or loci that contribute to coronary artery disease (CAD) may also play a role in the pathogenesis of gout, since hyperuricaemia leads to gout, and serum uric acid (SUA) levels are potential risk factors for CAD. The single nucleotide polymorphism (SNP) rs1333049 (C/G) on chromosome 9p21 has been implicated in previous studies to be associated with CAD. The aim of this study was to evaluate the relationship between this SNP and gout pathogenesis. Nine hundred Chinese Han were recruited for this study (461 gout patients and 439 gout-free individuals). The rs1333049 SNP and surrounding sequences were PCR sequenced. There was a clear link between the rs1333049 genotypic and allelic frequencies between gout cases and controls (χ(2) = 6.81, df = 2, P = 0.033 by genotype; χ(2) = 6.63, df = 1, P = 0.01 by allele). There was a significantly increased risk of gout in carriers of the CC genotype (odds ratio = 1.43, 95% CI 1.07, 1.91). To the best of our knowledge, our findings are the first to establish an association of rs1333049 with gout in a Chinese Han population. Meanwhile, this SNP is homologous to miR-519 and miR-520.

  10. SNP detection in Na/K ATP-ase gene α1 subunit of bisexual and parthenogenetic Artemia strains by RFLP screening.

    PubMed

    Manaffar, R; Zare, S; Agh, N; Abdolahzadeh, N; Soltanian, S; Sorgeloos, P; Bossier, P; Van Stappen, G

    2011-01-01

    In order to find a marker for differentiating between a bisexual and a parthenogenetic Artemia strain, Exon-7 of the Na/K ATPase α(1) subunit gene was screened by RFLP technique. The results revealed a constant synonymous SNP (single nucleotide polymorphism) in digestion by the Tru1I enzyme that was consistent with these two types of Artemia. This SNP was identified as an accurate molecular marker for discrimination between bisexual and parthenogenetic Artemia. According to the Nei's genetic distance (1973), the lowest genetic distance was found between individuals from Artemia urmiana Günther 1890 and parthenogenetic populations, making the described marker the first marker to easily distinguish between these two cooccurring species. © 2010 Blackwell Publishing Ltd.

  11. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraldes, Armando; Hannemann, Jan; Grassa, Chris

    2013-01-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. Despite the declining costs of genotyping by sequencing, for most studies, the use of large SNP genotyping arrays still offers the most cost-effective solution for large-scale targeted genotyping. Here we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species range. Due to the rapid decay of linkage disequilibrium in P. trichocarpa we adopted a candidate gene approach to the arraymore » design that resulted in the selection of 34,131 SNPs, the majority of which are located in, or within 2 kb, of 3,543 candidate genes. A subset of the SNPs (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%, indicating that high-quality data are generated with this array. We demonstrate that even among small numbers of samples (n=10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that due to ascertainment bias the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca (P. balsamifera and P. angustifolia). Finally, we provide evidence for the utility of the array for intraspecific studies of genetic differentiation and for species assignment and the detection of natural hybrids.« less

  12. Reelin gene polymorphisms in the Indian population: a possible paternal 5'UTR-CGG-repeat-allele effect on autism.

    PubMed

    Dutta, Shruti; Guhathakurta, Subhrangshu; Sinha, Swagata; Chatterjee, Anindita; Ahmed, Shabina; Ghosh, Saurabh; Gangopadhyay, Prasanta K; Singh, Manoranjan; Usha, Rajamma

    2007-01-05

    Autism is a neurodevelopmental disorder with high heritability factor and the reelin gene, which codes for an extracellular matrix protein involved with neuronal migration and lamination is being investigated as a positional and functional candidate gene for autism. It is located on chromosome 7q22 within the autism susceptible locus (AUTS1); identified in earlier genome scans and several investigations have been carried out on various ethnic groups to assess possible association and linkage of the gene with autism. However, the findings are still inconclusive. In the present study which represents the first report of such a study on the Indian population, genotyping analyses of CGG repeat polymorphism at 5'UTR, two single nucleotide polymorphisms (SNP) at exon 6 and exon 50 were performed in 73 autistic subjects, 129 parents, and 80 controls. The allelic distributions of the repeat polymorphism and exon 50 T/C SNP were quite different from earlier reports in other populations. Allelic and genotypic distribution of the markers did not show any differences between the cases and controls. While our preliminary data on family-based association studies on 58 trios showed no preferential transmission of any allele from the parents to the affected offspring, TDT and HHRR analyses revealed significant paternal transmission distortions for 10- and > or =11-repeat alleles of CGG repeat polymorphism. Thus, the present study suggests that 5'UTR of reelin gene may have a role in the susceptibility towards autism with the paternal transmission and non-transmission respectively of 10- and > or =11-repeat alleles, to the affected offspring.

  13. Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms.

    PubMed

    Chahin, Nassif; Uribe, Laura A; Debela, Ahmed M; Thorimbert, Serge; Hasenknopf, Bernold; Ortiz, Mayreli; Katakis, Ioannis; O'Sullivan, Ciara K

    2018-06-07

    Polyoxymetalates (POMs) ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ), and [SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis. Copyright © 2018. Published by Elsevier B.V.

  14. Identification of QTL and Qualitative Trait Loci for Agronomic Traits Using SNP Markers in the Adzuki Bean.

    PubMed

    Li, Yuan; Yang, Kai; Yang, Wei; Chu, Liwei; Chen, Chunhai; Zhao, Bo; Li, Yisong; Jian, Jianbo; Yin, Zhichao; Wang, Tianqi; Wan, Ping

    2017-01-01

    The adzuki bean ( Vigna angularis ) is an important grain legume. Fine mapping of quantitative trait loci (QTL) and qualitative trait genes plays an important role in gene cloning, molecular-marker-assisted selection (MAS), and trait improvement. However, the genetic control of agronomic traits in the adzuki bean remains poorly understood. Single-nucleotide polymorphisms (SNPs) are invaluable in the construction of high-density genetic maps. We mapped 26 agronomic QTLs and five qualitative trait genes related to pigmentation using 1,571 polymorphic SNP markers from the adzuki bean genome via restriction-site-associated DNA sequencing of 150 members of an F 2 population derived from a cross between cultivated and wild adzuki beans. We mapped 11 QTLs for flowering time and pod maturity on chromosomes 4, 7, and 10. Six 100-seed weight (SD100WT) QTLs were detected. Two major flowering time QTLs were located on chromosome 4, firstly VaFld4.1 (PEVs 71.3%), co-segregating with SNP marker s690-144110, and VaFld4.2 (PEVs 67.6%) at a 0.974 cM genetic distance from the SNP marker s165-116310. Three QTLs for seed number per pod ( Snp3.1, Snp3.2 , and Snp4.1 ) were mapped on chromosomes 3 and 4. One QTL VaSdt4.1 of seed thickness (SDT) and three QTLs for branch number on the main stem were detected on chromosome 4. QTLs for maximum leaf width (LFMW) and stem internode length were mapped to chromosomes 2 and 9, respectively. Trait genes controlling the color of the seed coat, pod, stem and flower were mapped to chromosomes 3 and 1. Three candidate genes, VaAGL, VaPhyE , and VaAP2 , were identified for flowering time and pod maturity. VaAGL encodes an agamous-like MADS-box protein of 379 amino acids. VaPhyE encodes a phytochrome E protein of 1,121 amino acids. Four phytochrome genes ( VaPhyA1, VaPhyA2, VaPhyB , and VaPhyE ) were identified in the adzuki bean genome. We found candidate genes VaAP2/ERF.81 and VaAP2/ERF.82 of SD100WT, VaAP2-s4 of SDT, and VaAP2/ERF.86 of LFMW. A

  15. Rice SNP-seek database update: new SNPs, indels, and queries.

    PubMed

    Mansueto, Locedie; Fuentes, Roven Rommel; Borja, Frances Nikki; Detras, Jeffery; Abriol-Santos, Juan Miguel; Chebotarov, Dmytro; Sanciangco, Millicent; Palis, Kevin; Copetti, Dario; Poliakov, Alexandre; Dubchak, Inna; Solovyev, Victor; Wing, Rod A; Hamilton, Ruaraidh Sackville; Mauleon, Ramil; McNally, Kenneth L; Alexandrov, Nickolai

    2017-01-04

    We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-04

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. High-throughput SNP-genotyping analysis of the relationships among Ponto-Caspian sturgeon species

    PubMed Central

    Rastorguev, Sergey M; Nedoluzhko, Artem V; Mazur, Alexander M; Gruzdeva, Natalia M; Volkov, Alexander A; Barmintseva, Anna E; Mugue, Nikolai S; Prokhortchouk, Egor B

    2013-01-01

    Abstract Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested. PMID:24567827

  18. Novel approach for deriving genome wide SNP analysis data from archived blood spots

    PubMed Central

    2012-01-01

    Background The ability to transport and store DNA at room temperature in low volumes has the advantage of optimising cost, time and storage space. Blood spots on adapted filter papers are popular for this, with FTA (Flinders Technology Associates) Whatman™TM technology being one of the most recent. Plant material, plasmids, viral particles, bacteria and animal blood have been stored and transported successfully using this technology, however the method of porcine DNA extraction from FTA Whatman™TM cards is a relatively new approach, allowing nucleic acids to be ready for downstream applications such as PCR, whole genome amplification, sequencing and subsequent application to single nucleotide polymorphism microarrays has hitherto been under-explored. Findings DNA was extracted from FTA Whatman™TM cards (following adaptations of the manufacturer’s instructions), whole genome amplified and subsequently analysed to validate the integrity of the DNA for downstream SNP analysis. DNA was successfully extracted from 288/288 samples and amplified by WGA. Allele dropout post WGA, was observed in less than 2% of samples and there was no clear evidence of amplification bias nor contamination. Acceptable call rates on porcine SNP chips were also achieved using DNA extracted and amplified in this way. Conclusions DNA extracted from FTA Whatman cards is of a high enough quality and quantity following whole genomic amplification to perform meaningful SNP chip studies. PMID:22974252

  19. An innovative SNP genotyping method adapting to multiple platforms and throughputs.

    PubMed

    Long, Y M; Chao, W S; Ma, G J; Xu, S S; Qi, L L

    2017-03-01

    An innovative genotyping method designated as semi-thermal asymmetric reverse PCR (STARP) was developed for genotyping individual SNPs with improved accuracy, flexible throughputs, low operational costs, and high platform compatibility. Multiplex chip-based technology for genome-scale genotyping of single nucleotide polymorphisms (SNPs) has made great progress in the past two decades. However, PCR-based genotyping of individual SNPs still remains problematic in accuracy, throughput, simplicity, and/or operational costs as well as the compatibility with multiple platforms. Here, we report a novel SNP genotyping method designated semi-thermal asymmetric reverse PCR (STARP). In this method, genotyping assay was performed under unique PCR conditions using two universal priming element-adjustable primers (PEA-primers) and one group of three locus-specific primers: two asymmetrically modified allele-specific primers (AMAS-primers) and their common reverse primer. The two AMAS-primers each were substituted one base in different positions at their 3' regions to significantly increase the amplification specificity of the two alleles and tailed at 5' ends to provide priming sites for PEA-primers. The two PEA-primers were developed for common use in all genotyping assays to stringently target the PCR fragments generated by the two AMAS-primers with similar PCR efficiencies and for flexible detection using either gel-free fluorescence signals or gel-based size separation. The state-of-the-art primer design and unique PCR conditions endowed STARP with all the major advantages of high accuracy, flexible throughputs, simple assay design, low operational costs, and platform compatibility. In addition to SNPs, STARP can also be employed in genotyping of indels (insertion-deletion polymorphisms). As vast variations in DNA sequences are being unearthed by many genome sequencing projects and genotyping by sequencing, STARP will have wide applications across all biological organisms in

  20. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    PubMed

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. SNPversity: A web-based tool for visualizing diversity

    USDA-ARS?s Scientific Manuscript database

    Background: Many stand-alone desktop software suites exist to visualize single nucleotide polymorphisms (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualizat...

  2. HDC gene polymorphisms are associated with age at natural menopause in Caucasian women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Feng; Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131; Xiong Donghai

    2006-10-06

    Histidine decarboxylase gene (HDC) encodes histidine decarboxylase which is the crucial enzyme for the biosynthesis of histidine. Studies have shown that histamine is likely to be involved in the regulation of reproduction system. To find the possible correlation between HDC gene and AANM (age at natural menopause), we selected 265 postmenopausal women from 131 nuclear families and performed a transmission disequilibrium test. Significant within-family associations with AANM for SNP rs854163 and SNP rs854158 of HDC gene were observed (P values = 0.0018 and 0.0197, respectively). After 1000 permutations, SNP rs854163 still remained significant within-family association with AANM. Consistently, we alsomore » detected a significant within-family association between haplotype block 2 (defined by SNP rs854163 and rs860526) and AANM in the haplotype analyses (P value = 0.0397). Our results suggest that the HDC gene polymorphisms are significantly associated with AANM in Caucasian women.« less

  3. Multiple Locus Variable-Number Tandem-Repeat and Single-Nucleotide Polymorphism-Based Brucella Typing Reveals Multiple Lineages in Brucella melitensis Currently Endemic in China.

    PubMed

    Sun, Mingjun; Jing, Zhigang; Di, Dongdong; Yan, Hao; Zhang, Zhicheng; Xu, Quangang; Zhang, Xiyue; Wang, Xun; Ni, Bo; Sun, Xiangxiang; Yan, Chengxu; Yang, Zhen; Tian, Lili; Li, Jinping; Fan, Weixing

    2017-01-01

    Brucellosis is a worldwide zoonotic disease caused by Brucella spp. In China, brucellosis is recognized as a reemerging disease mainly caused by Brucella melitensis specie. To better understand the currently endemic B. melitensis strains in China, three Brucella genotyping methods were applied to 110 B. melitensis strains obtained in past several years. By MLVA genotyping, five MLVA-8 genotypes were identified, among which genotypes 42 (1-5-3-13-2-2-3-2) was recognized as the predominant genotype, while genotype 63 (1-5-3-13-2-3-3-2) and a novel genotype of 1-5-3-13-2-4-3-2 were second frequently observed. MLVA-16 discerned a total of 57 MLVA-16 genotypes among these Brucella strains, with 41 genotypes being firstly detected and the other 16 genotypes being previously reported. By BruMLSA21 typing, six sequence types (STs) were identified, among them ST8 is the most frequently seen in China while the other five STs were firstly detected and designated as ST137, ST138, ST139, ST140, and ST141 by international multilocus sequence typing database. Whole-genome sequence (WGS)-single-nucleotide polymorphism (SNP)-based typing and phylogenetic analysis resolved Chinese B. melitensis strains into five clusters, reflecting the existence of multiple lineages among these Chinese B. melitensis strains. In phylogeny, Chinese lineages are more closely related to strains collected from East Mediterranean and Middle East countries, such as Turkey, Kuwait, and Iraq. In the next few years, MLVA typing will certainly remain an important epidemiological tool for Brucella infection analysis, as it displays a high discriminatory ability and achieves result largely in agreement with WGS-SNP-based typing. However, WGS-SNP-based typing is found to be the most powerful and reliable method in discerning Brucella strains and will be popular used in the future.

  4. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages.

    PubMed

    Mikheecheva, Natalya E; Zaychikova, Marina V; Melerzanov, Alexander V; Danilenko, Valery N

    2017-04-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin-antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Associations of DNA polymorphisms in growth hormone and its transcriptional regulators with growth and carcass traits in two populations of Brangus bulls.

    PubMed

    Thomas, M G; Enns, R M; Shirley, K L; Garcia, M D; Garrett, A J; Silver, G A

    2007-03-30

    Sequence polymorphisms in the growth hormone (GH) gene and its transcriptional regulators, Pit-1 and Prop-1, were evaluated for associations with growth and carcass traits in two populations of Brangus bulls Chihuahuan Desert Rangeland Research Center (CDRRC, N = 248 from 14 sires) and a cooperating breeding program (COOP, N = 186 from 34 sires). Polymorphisms were SNP mutations in intron 4 (C/T) and exon V (C/G) in GH, A/G in exon VI in Pit-1, and A/G in exon III in Prop-1. In the COOP population, bulls of Pit-1 GG genotype had a significantly greater percentage of intramuscular fat than bulls of the AA or AG genotype, and bulls of the Prop-1 AA genotype had significantly greater scrotal circumference than bulls of AG or GG genotypes at ~365 days of age. Also, heterozygous genotypes for the two GH polymorphisms appeared advantageous for traits of muscularity and adiposity in the COOP population. The heterozygous genotype of GH intron 4 SNP was associated with advantages in weight gain, scrotal circumference, and fat thickness in the CDRRC population. The two GH polymorphisms accounted for >/=27.7% of the variation in these traits in the CDRRC population; however, R(2) was <5% in the COOP population. Based on haplotype analyses the two GH SNPs appeared to be in phase; the haplotype analyses also paralleled with the genotype analyses. Polymorphisms in GH and its transcriptional regulators appear to be predictors of growth and carcass traits in Brangus bulls, particularly those with heterozygous GH genotypes.

  6. Transcription Factor KLF5 Binds a Cyclin E1 Polymorphic Intronic Enhancer to Confer Increased Bladder Cancer Risk

    PubMed Central

    Pattison, Jillian M.; Posternak, Valeriya; Cole, Michael D.

    2016-01-01

    It is well established that environmental toxins, such as exposure to arsenic, are risk factors in the development of urinary bladder cancer, yet recent genome-wide association studies (GWAS) provide compelling evidence that there is a strong genetic component associated with disease predisposition. A single nucleotide polymorphism (SNP), rs8102137, was identified on chromosome 19q12, residing 6 kb upstream of the important cell cycle regulator and proto-oncogene, Cyclin E1 (CCNE1). However, the functional role of this variant in bladder cancer predisposition has been unclear since it lies within a non-coding region of the genome. Here, it is demonstrated that bladder cancer cells heterozygous for this SNP exhibit biased allelic expression of CCNE1 with 1.5-fold more transcription occurring from the risk allele. Furthermore, using chromatin immunoprecipitation assays, a novel enhancer element was identified within the first intron of CCNE1 that binds Kruppel-like Factor 5 (KLF5), a known transcriptional activator in bladder cancer. Moreover, the data reveal that the presence of rs200996365, a SNP in high linkage disequilibrium with rs8102137 residing in the center of a KLF5 motif, alters KLF5 binding to this genomic region. Through luciferase assays and CRISPR-Cas9 genome editing, a novel polymorphic intronic regulatory element controlling CCNE1 transcription is characterized. These studies uncover how a cancer-associated polymorphism mechanistically contributes to an increased predisposition for bladder cancer development. Implications A polymorphic KLF5 binding site near the CCNE1 gene explains genetic risk identified through genome wide association studies. PMID:27514407

  7. JARID1A, JMY, and PTGER4 Polymorphisms Are Related to Ankylosing Spondylitis in Chinese Han Patients: A Case-Control Study

    PubMed Central

    Chen, Chao; Liu, Jingyi; Shi, Lewis L.; Wang, Yan

    2013-01-01

    Susceptibility to ankylosing spondylitis (AS) is largely genetically determined. JARID1A, JMY and PTGER4 have recently been found to be associated with AS in patients of western European descent. We aim to examine the influence of JARID1A, JMY, and PTGER4 polymorphisms on the susceptibility to and the severity of ankylosing spondylitis in Chinese ethnic majority Han population. This work can lead the clinical doctors to intervene earlier. Blood samples were drawn from 396 AS patients and 404 unrelated healthy controls. Both the AS patients and the controls are Han Chinese. The AS patients are classified based on the severity of the disease. Thirteen tag single nucleotide polymorphisms (tagSNPs) in JARID1A, JMY and PTGER4 are selected and genotyped. Frequencies of different genotypes and alleles are analyzed among the different severity AS patients and the controls. The rs2284336 SNP in JARID1A, the rs16876619 and rs16876657 SNPs in JMY are associated with susceptibility of AS. The rs11062357 SNP in JARID1A, the rs2607142 SNP in JMY and rs10440635 in PTGER4 are related to severity of AS. Haplotype analyses indicate PTGER4 is related to susceptibility to AS; JARID1A and JMY are related to severity of AS. PMID:24069348

  8. Relationship between IL1 gene polymorphisms and periodontal disease in Japanese women.

    PubMed

    Tanaka, Keiko; Miyake, Yoshihiro; Hanioka, Takashi; Arakawa, Masashi

    2014-04-01

    Epidemiological evidence on the relationship between IL1A and/or IL1B polymorphisms and periodontal disease is inconsistent. We investigated associations between three IL1 single-nucleotide polymorphisms (SNPs) in genes encoding interleukin (IL) -1α (rs1800587) and IL-1β (rs1143634 and rs16944) and the risk of periodontal disease among young Japanese women. A case-control study was performed with a total of 1150 women, including 131 subjects who had at least one tooth with a probing pocket depth of 4 mm or deeper and 1019 periodontally healthy controls. Compared with a reference group of women with the GG genotype of SNP rs16944, those with the GA genotype had a significantly reduced risk of periodontal disease, while there was no significant relationship between the AA genotype and periodontal disease. No evident relationships were observed between SNP rs1800587 or rs1143634 and periodontal disease. Our study did not reveal any evidence of interaction between the IL1 polymorphisms and smoking. The results of this study showed that the heterozygous variant genotype of the IL1 rs16944 was significantly associated with a reduced risk of periodontal disease in young Japanese women. Smoking did not significantly modify the gene-disease associations under study.

  9. Relationship Between IL1 Gene Polymorphisms and Periodontal Disease in Japanese Women

    PubMed Central

    Miyake, Yoshihiro; Hanioka, Takashi; Arakawa, Masashi

    2014-01-01

    Epidemiological evidence on the relationship between IL1A and/or IL1B polymorphisms and periodontal disease is inconsistent. We investigated associations between three IL1 single-nucleotide polymorphisms (SNPs) in genes encoding interleukin (IL) -1α (rs1800587) and IL-1β (rs1143634 and rs16944) and the risk of periodontal disease among young Japanese women. A case–control study was performed with a total of 1150 women, including 131 subjects who had at least one tooth with a probing pocket depth of 4 mm or deeper and 1019 periodontally healthy controls. Compared with a reference group of women with the GG genotype of SNP rs16944, those with the GA genotype had a significantly reduced risk of periodontal disease, while there was no significant relationship between the AA genotype and periodontal disease. No evident relationships were observed between SNP rs1800587 or rs1143634 and periodontal disease. Our study did not reveal any evidence of interaction between the IL1 polymorphisms and smoking. The results of this study showed that the heterozygous variant genotype of the IL1 rs16944 was significantly associated with a reduced risk of periodontal disease in young Japanese women. Smoking did not significantly modify the gene–disease associations under study. PMID:24460370

  10. UPD detection using homozygosity profiling with a SNP genotyping microarray.

    PubMed

    Papenhausen, Peter; Schwartz, Stuart; Risheg, Hiba; Keitges, Elisabeth; Gadi, Inder; Burnside, Rachel D; Jaswaney, Vikram; Pappas, John; Pasion, Romela; Friedman, Kenneth; Tepperberg, James

    2011-04-01

    Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation. Copyright © 2011 Wiley-Liss, Inc.

  11. Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study.

    PubMed

    Orlow, Irene; Reiner, Anne S; Thomas, Nancy E; Roy, Pampa; Kanetsky, Peter A; Luo, Li; Paine, Susan; Armstrong, Bruce K; Kricker, Anne; Marrett, Loraine D; Rosso, Stefano; Zanetti, Roberto; Gruber, Stephen B; Anton-Culver, Hoda; Gallagher, Richard P; Dwyer, Terence; Busam, Klaus; Begg, Colin B; Berwick, Marianne

    2016-01-01

    Factors known to affect melanoma survival include age at presentation, sex and tumor characteristics. Polymorphisms also appear to modulate survival following diagnosis. Result from other studies suggest that vitamin D receptor (VDR) polymorphisms (SNPs) impact survival in patients with glioma, renal cell carcinoma, lung, breast, prostate and other cancers; however, a comprehensive study of VDR polymorphisms and melanoma-specific survival is lacking. We aimed to investigate whether VDR genetic variation influences survival in patients with cutaneous melanoma. The analysis involved 3566 incident single and multiple primary melanoma cases enrolled in the international population-based Genes, Environment, and Melanoma Study. Melanoma-specific survival outcomes were calculated for each of 38 VDR SNPs using a competing risk analysis after adjustment for covariates. There were 254 (7.1%) deaths due to melanoma during the median 7.6 years follow-up period. VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156, rs2238140, rs7305032, rs1544410 (BsmI) and rs731236 (TaqI) each had a statistically significant (trend P values < 0.05) association with melanoma-specific survival in multivariate analysis. One functional SNP (rs2239182) remained significant after adjustment for multiple testing using the Monte Carlo method. None of the SNPs associated with survival were significantly associated with Breslow thickness, ulceration or mitosis. These results suggest that the VDR gene may influence survival from melanoma, although the mechanism by which VDR exerts its effect does not seem driven by tumor aggressiveness. Further investigations are needed to confirm our results and to understand the relationship between VDR and survival in the combined context of tumor and host characteristics. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  13. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers

    PubMed Central

    2011-01-01

    Background Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. Results This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. Conclusions Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus. PMID:21992066

  14. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    PubMed

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  15. A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band

    NASA Astrophysics Data System (ADS)

    Zou, Quan; Shan, Xiao; Jiang, Yi

    Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.

  16. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    PubMed

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  17. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms.

    PubMed

    Sharma, Neeraj K; Langberg, Kurt A; Mondal, Ashis K; Das, Swapan K

    2013-01-01

    Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.

  18. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  19. Performance Comparison of Two Gene Set Analysis Methods for Genome-wide Association Study Results: GSA-SNP vs i-GSEA4GWAS.

    PubMed

    Kwon, Ji-Sun; Kim, Jihye; Nam, Dougu; Kim, Sangsoo

    2012-06-01

    Gene set analysis (GSA) is useful in interpreting a genome-wide association study (GWAS) result in terms of biological mechanism. We compared the performance of two different GSA implementations that accept GWAS p-values of single nucleotide polymorphisms (SNPs) or gene-by-gene summaries thereof, GSA-SNP and i-GSEA4GWAS, under the same settings of inputs and parameters. GSA runs were made with two sets of p-values from a Korean type 2 diabetes mellitus GWAS study: 259,188 and 1,152,947 SNPs of the original and imputed genotype datasets, respectively. When Gene Ontology terms were used as gene sets, i-GSEA4GWAS produced 283 and 1,070 hits for the unimputed and imputed datasets, respectively. On the other hand, GSA-SNP reported 94 and 38 hits, respectively, for both datasets. Similar, but to a lesser degree, trends were observed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets as well. The huge number of hits by i-GSEA4GWAS for the imputed dataset was probably an artifact due to the scaling step in the algorithm. The decrease in hits by GSA-SNP for the imputed dataset may be due to the fact that it relies on Z-statistics, which is sensitive to variations in the background level of associations. Judicious evaluation of the GSA outcomes, perhaps based on multiple programs, is recommended.

  20. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    PubMed

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  1. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients

    PubMed Central

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-01-01

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280

  2. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    PubMed

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  3. Functional characterisation of a SNP in the ABCC11 allele - effects on axillary skin metabolism, odour generation and associated behaviours.

    PubMed

    Harker, Mark; Carvell, Ann-Marie; Marti, Vernon P J; Riazanskaia, Svetlana; Kelso, Hailey; Taylor, David; Grimshaw, Sally; Arnold, David S; Zillmer, Ruediger; Shaw, Jane; Kirk, Jayne M; Alcasid, Zee M; Gonzales-Tanon, Sheila; Chan, Gertrude P; Rosing, Egge A E; Smith, Adrian M

    2014-01-01

    A single nucleotide polymorphism (SNP), 538G→A, leading to a G180R substitution in the ABCC11 gene results in reduced concentrations of apocrine derived axillary odour precursors. Determine the axillary odour levels in the SNP ABCC11 genotype variants and to investigate if other parameters associated with odour production are affected. Axillary odour was assessed by subjective quantification and gas chromatography headspace analysis. Metabolite profiles, microbiome diversity and personal hygiene habits were also assessed. Axillary odour in the A/A homozygotes was significantly lower compared to the G/A and G/G genotypes. However, the perception-based measures still detected appreciable levels of axillary odour in the A/A subjects. Metabolomic analysis highlighted significant differences in axillary skin metabolites between A/A subjects compared to those carrying the G allele. These differences resulted in A/A subjects lacking specific volatile odourants in the axillary headspace, but all genotypes produced odoriferous short chain fatty acids. Microbiomic analysis revealed differences in the relative abundance of key bacterial genera associated with odour generation between the different genotypes. Deodorant usage indicated a high level of self awareness of axillary odour levels with A/A individuals less likely to adopt personal hygiene habits designed to eradicate/mask its presence. The SNP in the ABCC11 gene results in lower levels of axillary odour in the A/A homozygotes compared to those carrying the G allele, but A/A subjects still produce noticeable amounts of axillary odour. Differences in axillary skin metabolites, bacterial genera and personal hygiene behaviours also appear to be influenced by this SNP. Copyright © 2013. Published by Elsevier Ireland Ltd.

  4. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds

    PubMed Central

    McClure, Matthew C.; Sonstegard, Tad S.; Wiggans, George R.; Van Eenennaam, Alison L.; Weber, Kristina L.; Penedo, Cecilia T.; Berry, Donagh P.; Flynn, John; Garcia, Jose F.; Carmo, Adriana S.; Regitano, Luciana C. A.; Albuquerque, Milla; Silva, Marcos V. G. B.; Machado, Marco A.; Coffey, Mike; Moore, Kirsty; Boscher, Marie-Yvonne; Genestout, Lucie; Mazza, Raffaele; Taylor, Jeremy F.; Schnabel, Robert D.; Simpson, Barry; Marques, Elisa; McEwan, John C.; Cromie, Andrew; Coutinho, Luiz L.; Kuehn, Larry A.; Keele, John W.; Piper, Emily K.; Cook, Jim; Williams, Robert; Van Tassell, Curtis P.

    2013-01-01

    To assist cattle producers transition from microsatellite (MS) to single nucleotide polymorphism (SNP) genotyping for parental verification we previously devised an effective and inexpensive method to impute MS alleles from SNP haplotypes. While the reported method was verified with only a limited data set (N = 479) from Brown Swiss, Guernsey, Holstein, and Jersey cattle, some of the MS-SNP haplotype associations were concordant across these phylogenetically diverse breeds. This implied that some haplotypes predate modern breed formation and remain in strong linkage disequilibrium. To expand the utility of MS allele imputation across breeds, MS and SNP data from more than 8000 animals representing 39 breeds (Bos taurus and B. indicus) were used to predict 9410 SNP haplotypes, incorporating an average of 73 SNPs per haplotype, for which alleles from 12 MS markers could be accurately be imputed. Approximately 25% of the MS-SNP haplotypes were present in multiple breeds (N = 2 to 36 breeds). These shared haplotypes allowed for MS imputation in breeds that were not represented in the reference population with only a small increase in Mendelian inheritance inconsistancies. Our reported reference haplotypes can be used for any cattle breed and the reported methods can be applied to any species to aid the transition from MS to SNP genetic markers. While ~91% of the animals with imputed alleles for 12 MS markers had ≤1 Mendelian inheritance conflicts with their parents' reported MS genotypes, this figure was 96% for our reference animals, indicating potential errors in the reported MS genotypes. The workflow we suggest autocorrects for genotyping errors and rare haplotypes, by MS genotyping animals whose imputed MS alleles fail parentage verification, and then incorporating those animals into the reference dataset. PMID:24065982

  5. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 Gene Polymorphisms to Acute Lymphoblastic Leukemia in a Yemeni Population.

    PubMed

    Al-Absi, Boshra; Razif, Muhammad F M; Noor, Suzita M; Saif-Ali, Riyadh; Aqlan, Mohammed; Salem, Sameer D; Ahmed, Radwan H; Muniandy, Sekaran

    2017-10-01

    Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent. Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals. We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children. The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.

  6. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    USDA-ARS?s Scientific Manuscript database

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  7. Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in Italian Large White pigs using a selective genotyping approach.

    PubMed

    Fontanesi, L; Galimberti, G; Calò, D G; Fronza, R; Martelli, P L; Scotti, E; Colombo, M; Schiavo, G; Casadio, R; Buttazzoni, L; Russo, V

    2012-08-01

    Combining different approaches (resequencing of portions of 54 obesity candidate genes, literature mining for pig markers associated with fat deposition or related traits in 77 genes, and in silico mining of porcine expressed sequence tags and other sequences available in databases), we identified and analyzed 736 SNP within candidate genes to identify markers associated with back fat thickness (BFT) in Italian Large White sows. Animals were chosen using a selective genotyping approach according to their EBV for BFT (276 with most negative and 279 with most positive EBV) within a population of ≈ 12,000 pigs. Association analysis between the SNP and BFT has been carried out using the MAX test proposed for case-control studies. The designed assays were successful for 656 SNP: 370 were excluded (low call rate or minor allele frequency <5%), whereas the remaining 286 in 212 genes were taken for subsequent analyses, among which 64 showed a P(nominal) value <0.1. To deal with the multiple testing problem in a candidate gene approach, we applied the proportion of false positives (PFP) method. Thirty-eight SNP were significant (P(PFP) < 0.20). The most significant SNP was the IGF2 intron3-g.3072G>A polymorphism (P(nominal) < 1.0E-50). The second most significant SNP was the MC4R c.1426A>G polymorphism (P(nominal) = 8.0E-05). The third top SNP (P(nominal) = 6.2E-04) was the intronic TBC1D1 g.219G>A polymorphic site, in agreement with our previous results obtained in an independent study. The list of significant markers also included SNP in additional genes (ABHD16A, ABHD5, ACP2, ALMS1, APOA2, ATP1A2, CALR, COL14A1, CTSF, DARS, DECR1, ENPP1, ESR1, GH1, GHRL, GNMT, IKBKB, JAK3, MTTP, NFKBIA, NT5E, PLAT, PPARG, PPP2R5D, PRLR, RRAGD, RFC2, SDHD, SERPINF1, UBE2H, VCAM1, and WAT). Functional relationships between genes were obtained using the Ingenuity Pathway Analysis (IPA) Knowledge Base. The top scoring pathway included 19 genes with a P(nominal) < 0.1, 2 of which (IKBKB and

  8. snpAD: An ancient DNA genotype caller.

    PubMed

    Prüfer, Kay

    2018-06-21

    The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling. I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals. The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/. Supplementary data are available at Bioinformatics online.

  9. Helicobacter Pylori Serology in Relation to Hepatitis C Virus Infection and IL28B Single Nucleotide Polymorphism

    PubMed Central

    Gutwerk, Alexander; Wex, Thomas; Stein, Kerstin; Langner, Cosima; Canbay, Ali; Malfertheiner, Peter

    2018-01-01

    The aim of the study was to evaluate the serological rate of Helicobacter pylori (H. pylori) infection in patients with chronic hepatitis C virus (HCV) infection and determine any correlations with liver damage and IL28B single-nucleotide polymorphism (SNP). One hundred eighty-nine patients with chronic HCV infection were included in the study, and H. pylori status was defined based on anti-H. pylori-IgG or anti-CagA-IgG antibodies using enzyme-linked immunosorbent assay (ELISA). Liver damage was assessed using histology or transient elastography. IL28B C/T polymorphism (rs12979860) was evaluated in circulating blood cells using a PCR-based restriction fragment length polymorphism assay. Overall H. pylori serology was positive in 38.1% of our HCV-infected subjects. Among those, the anti-CagA-IgG positivity rate was 43.1% and was within the range of previously described populations of the same region. Highest prevalence of H. pylori was found in patients between 31 and 40 years compared to other age subgroups. The seropositivity rate was higher in the non-cirrhotic group than the cirrhotic one (45.4% vs. 20.0%, p < 0.05). No difference was found in IL28B genotype between H. pylori-positive and -negative cohorts. However, we observed a trend for the lower anti-CagA-IgG expression level in relation to the IL28B T-allele. Our results do not support an association between HCV and H. pylori infection. Whether IL28B SNP has a functional role in modulation of serological response to H. pylori CagA needs further investigation. PMID:29510558

  10. MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells

    PubMed Central

    Schulz, Vincent; Chen, Min; Tuck, David

    2010-01-01

    Background Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. Methods We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. Conclusions We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. Availability The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM. PMID:20532221

  11. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  12. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium.

    PubMed

    Milne, Roger L; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P; Zamora, M Pilar; Arias-Perez, José Ignacio; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Wang, Qin; Bolla, Manjeet K; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Li, Jingmei; Anton-Culver, Hoda; Neuhausen, Susan L; Ziogas, Argyrios; Clarke, Christina A; Hopper, John L; Dite, Gillian S; Apicella, Carmel; Southey, Melissa C; Chenevix-Trench, Georgia; Swerdlow, Anthony; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Wang, Xianshu; Olson, Janet E; Vachon, Celine; Purrington, Kristen; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Dunning, Alison M; Shah, Mitul; Guénel, Pascal; Truong, Thérèse; Sanchez, Marie; Mulot, Claire; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; Collée, J Margriet; Jager, Agnes; Cox, Angela; Brock, Ian W; Reed, Malcolm W R; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Dumont, Martine; Soucy, Penny; Dörk, Thilo; Bogdanova, Natalia V; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Fasching, Peter A; Häberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; dos Santos Silva, Isabel; Peto, Julian; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Mariani, Paolo; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; García-Closas, Montserrat; Chanock, Stephen J; Lissowska, Jolanta; Figueroa, Jonine D; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Couch, Fergus J; Toland, Amanda E; Yannoukakos, Drakoulis; Pharoah, Paul D P; Hall, Per; Benítez, Javier; Malats, Núria; Easton, Douglas F

    2014-04-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.

  13. Hypoxia Inducible Factor-2 Alpha and Prolinhydroxylase 2 Polymorphisms in Patients with Acute Respiratory Distress Syndrome (ARDS).

    PubMed

    Dötsch, Annika; Eisele, Lewin; Rabeling, Miriam; Rump, Katharina; Walstein, Kai; Bick, Alexandra; Cox, Linda; Engler, Andrea; Bachmann, Hagen S; Jöckel, Karl-Heinz; Adamzik, Michael; Peters, Jürgen; Schäfer, Simon T

    2017-06-14

    Hypoxia-inducible-factor-2α (HIF-2α) and HIF-2 degrading prolyl-hydroxylases (PHD) are key regulators of adaptive hypoxic responses i.e., in acute respiratory distress syndrome (ARDS). Specifically, functionally active genetic variants of HIF-2α (single nucleotide polymorphism (SNP) [ch2:46441523(hg18)]) and PHD2 (C/T; SNP rs516651 and T/C; SNP rs480902) are associated with improved adaptation to hypoxia i.e., in high-altitude residents. However, little is known about these SNPs' prevalence in Caucasians and impact on ARDS-outcome. Thus, we tested the hypotheses that in Caucasian ARDS patients SNPs in HIF-2α or PHD2 genes are (1) common, and (2) independent risk factors for 30-day mortality. After ethics-committee approval, 272 ARDS patients were prospectively included, genotyped for PHD2 (Taqman SNP Genotyping Assay) and HIF-2α -polymorphism (restriction digest + agarose-gel visualization), and genotype dependent 30-day mortality was analyzed using Kaplan-Meier-plots and multivariate Cox-regression analyses. Frequencies were 99.62% for homozygous HIF-2α CC-carriers (CG: 0.38%; GG: 0%), 2.3% for homozygous PHD2 SNP rs516651 TT-carriers (CT: 18.9%; CC: 78.8%), and 3.7% for homozygous PHD2 SNP rs480902 TT-carriers (CT: 43.9%; CC: 52.4%). PHD2 rs516651 TT-genotype in ARDS was independently associated with a 3.34 times greater mortality risk (OR 3.34, CI 1.09-10.22; p = 0.034) within 30-days, whereas the other SNPs had no significant impact ( p = ns). The homozygous HIF-2α GG-genotype was not present in our Caucasian ARDS cohort; however PHD2 SNPs exist in Caucasians, and PHD2 rs516651 TT-genotype was associated with an increased 30-day mortality suggesting a relevance for adaptive responses in ARDS.

  14. SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease

    PubMed Central

    Martin, Eden R.; Lai, Eric H.; Gilbert, John R.; Rogala, Allison R.; Afshari, A. J.; Riley, John; Finch, K. L.; Stevens, J. F.; Livak, K. J.; Slotterbeck, Brandon D.; Slifer, Susan H.; Warren, Liling L.; Conneally, P. Michael; Schmechel, Donald E.; Purvis, Ian; Pericak-Vance, Margaret A.; Roses, Allen D.; Vance, Jeffery M.

    2000-01-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P⩽.05) was identified for 7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie <16 kb from APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes. PMID:10869235

  15. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease.

    PubMed

    Martin, E R; Lai, E H; Gilbert, J R; Rogala, A R; Afshari, A J; Riley, J; Finch, K L; Stevens, J F; Livak, K J; Slotterbeck, B D; Slifer, S H; Warren, L L; Conneally, P M; Schmechel, D E; Purvis, I; Pericak-Vance, M A; Roses, A D; Vance, J M

    2000-08-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (Ppolymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie <16 kb from APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes.

  16. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    PubMed

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  17. Sequential sentinel SNP Regional Association Plots (SSS-RAP): an approach for testing independence of SNP association signals using meta-analysis data.

    PubMed

    Zheng, Jie; Gaunt, Tom R; Day, Ian N M

    2013-01-01

    Genome-Wide Association Studies (GWAS) frequently incorporate meta-analysis within their framework. However, conditional analysis of individual-level data, which is an established approach for fine mapping of causal sites, is often precluded where only group-level summary data are available for analysis. Here, we present a numerical and graphical approach, "sequential sentinel SNP regional association plot" (SSS-RAP), which estimates regression coefficients (beta) with their standard errors using the meta-analysis summary results directly. Under an additive model, typical for genes with small effect, the effect for a sentinel SNP can be transformed to the predicted effect for a possibly dependent SNP through a 2×2 2-SNP haplotypes table. The approach assumes Hardy-Weinberg equilibrium for test SNPs. SSS-RAP is available as a Web-tool (http://apps.biocompute.org.uk/sssrap/sssrap.cgi). To develop and illustrate SSS-RAP we analyzed lipid and ECG traits data from the British Women's Heart and Health Study (BWHHS), evaluated a meta-analysis for ECG trait and presented several simulations. We compared results with existing approaches such as model selection methods and conditional analysis. Generally findings were consistent. SSS-RAP represents a tool for testing independence of SNP association signals using meta-analysis data, and is also a convenient approach based on biological principles for fine mapping in group level summary data. © 2012 Blackwell Publishing Ltd/University College London.

  18. Association of ADRB2 polymorphism with triglyceride levels in Tongans.

    PubMed

    Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro

    2013-07-23

    Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.

  19. Association of ADRB2 polymorphism with triglyceride levels in Tongans

    PubMed Central

    2013-01-01

    Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540

  20. Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize

    PubMed Central

    Fang, Zhou; Pyhäjärvi, Tanja; Weber, Allison L.; Dawe, R. Kelly; Glaubitz, Jeffrey C.; González, José de Jesus Sánchez; Ross-Ibarra, Claudia; Doebley, John; Morrell, Peter L.; Ross-Ibarra, Jeffrey

    2012-01-01

    Chromosomal inversions are thought to play a special role in local adaptation, through dramatic suppression of recombination, which favors the maintenance of locally adapted alleles. However, relatively few inversions have been characterized in population genomic data. On the basis of single-nucleotide polymorphism (SNP) genotyping across a large panel of Zea mays, we have identified an ∼50-Mb region on the short arm of chromosome 1 where patterns of polymorphism are highly consistent with a polymorphic paracentric inversion that captures >700 genes. Comparison to other taxa in Zea and Tripsacum suggests that the derived, inverted state is present only in the wild Z. mays subspecies parviglumis and mexicana and is completely absent in domesticated maize. Patterns of polymorphism suggest that the inversion is ancient and geographically widespread in parviglumis. Cytological screens find little evidence for inversion loops, suggesting that inversion heterozygotes may suffer few crossover-induced fitness consequences. The inversion polymorphism shows evidence of adaptive evolution, including a strong altitudinal cline, a statistical association with environmental variables and phenotypic traits, and a skewed haplotype frequency spectrum for inverted alleles. PMID:22542971

  1. Thymidylate Synthase Gene Polymorphism Affects the Response to Preoperative 5-Fluorouracil Chemoradiation Therapy in Patients With Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hur, Hyuk; Kang, Jeonghyun; Kim, Nam Kyu, E-mail: namkyuk@yuhs.ac

    2011-11-01

    Purpose: This study aims to correlate thymidylate synthase (TS) gene polymorphisms with the tumor response to preoperative 5-fluorouracil (5-FU)-based chemoradiation therapy (CRT) in patients with rectal cancer. Methods and Materials: Forty-four patients with rectal cancer treated with 5-FU-based preoperative CRT were prospectively enrolled in this study. Thymidylate synthase expression and TS gene polymorphisms were evaluated in tumor obtained before preoperative CRT and were correlated with the pathologic response, as assessed by histopathologic staging (pTNM) and tumor regression grade. Results: Patients exhibited 2R/3R and 3R/3R tandem repeat polymorphisms in the TS gene. With regard to TS expression in these genotypes, 2R/3RCmore » and 3RC/3RC were defined as the low-expression group and 2R/3RG, 3RC/3RG, and 3RG/3RG as the high-expression group. There was no significant correlation between TS expression and tumor response. There was no significant difference in the tumor response between patients homozygous for 3R/3R and patients heterozygous for 2R/3R. However, 13 of 14 patients in the low-expression group with a G>C single-nucleotide polymorphism (SNP) (2R/3RC [n = 5] or 3RC/3RC [n = 9]) exhibited a significantly greater tumor downstaging rate, as compared with only 12 of 30 patients in the high-expression group without the SNP (2R/3RG [n = 10], 3RC/3RG [n = 9], or 3RG/3RG [n = 11]) (p = 0.001). The nodal downstaging rate was also significantly greater in this low-expression group, as compared with the high-expression group (12 of 14 vs. 14 of 30, p = 0.014). However, there was no significant difference in the tumor regression grade between these groups. Conclusions: This study suggests that SNPs within the TS enhancer region affect the tumor response to preoperative 5-FU-based CRT in rectal cancer.« less

  2. Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro

    2012-04-01

    A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.

  3. Effects of Lead Exposure and Genetic Polymorphisms on ALAD and GPx Activities in Brazilian Battery Workers.

    PubMed

    da Cunha Martins, Airton; Mazzaron Barcelos, Gustavo Rafael; Jacob Ferreira, Anna Laura Bechara; de Souza, Marilesia Ferreira; de Syllos Cólus, Ilce Mara; Antunes, Lusânia Maria Greggi; Bastos Paoliello, Monica Maria; Adeyemi, Joseph A; Barbosa, Fernando

    2015-01-01

    Lead (Pb) is a toxic metal that is widely used by metallurgical industries such as car battery recycling. Exposure to the metal may modify the redox status of the cells and consequently result in changes in activities of important enzymes such as delta-aminolevulinic acid dehydratase (ALAD) and glutathione peroxidase (GPx). Similarly, genetic polymorphisms may modulate the activities of enzymes related to detoxification processes of the metal and may modify Pb body burden. Therefore, the aims of the present study were (i) to evaluate the correlation between blood lead levels (BLL) and activities of the enzymes ALAD and GPx, and (ii) to determine whether activities of these enzymes may be influenced by polymorphisms in ALAD and GPx genes in Brazilian automotive battery workers chronically exposed to Pb, as well as the effects of these polymorphisms on BLL. Our study included 257 participants; BLL were determined by inductively couple plasma-mass spectrometry (ICP-MS), and the activities of the enzymes ALAD and GPx were quantified spectrophotometrically; and genotyping of ALAD (rs1800435) and GPx-1 (rs1800668) polymorphisms was performed by TaqMan assays (real-time polymerase chain reaction, RT-PCR). Significant negative correlations were found between BLL and ALAD activity. Subjects who carried at least one polymorphic allele for ALAD gene displayed markedly lower ALAD activities, while no significant effect was observed regarding GPx-1 polymorphism and activity of the same enzyme. Further, ALAD and GPx-1 polymorphisms exerted no marked influence on BLL. Taken together, our results showed that BLL affected ALAD but not GPx activities, and these were not modulated by polymorphisms in ALAD and GPx gene. Further, the rs1800435 SNP showed a tendency to modulate ALAD activity, while the rs1800668 SNP did not modulate GPx activity in Brazilian automotive battery workers exposed to Pb.

  4. The −258 A/G (SNP rs12885300) polymorphism of the human type-2 deiodinase gene is associated with a shift in the pattern of secretion of thyroid hormones following a TRH-induced acute rise in TSH

    PubMed Central

    Peltsverger, Maya Y.; Butler, Peter W.; Alberobello, Anna Teresa; Smith, Sheila; Guevara, Yanina; Dubaz, Ornella M.; Luzon, Javier A.; Linderman, Joyce; Celi, Francesco S.

    2012-01-01

    Objective Type-2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary-thyroid axis homeostasis. The −258 A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of the −258 A/G polymorphism on intra-thyroidal T4 to T3 conversion and thyroid hormone secretion pattern we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland. Design Retrospective analysis. Methods The thyroid hormone secretion in response to 500 mcg iv TRH injection was studied in 45 healthy volunteers. Results Twenty-six subjects (16 females, 10 males, 32.8±10.4 years) were homozygous for the ancestral (−258 A/A) allele, 19 (11 females, 8 males, 31.1±10.9 years) were carrier of the (−258 G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (p<0.01). The −258G/x 92Thr/Thr haplotype, compared to the other groups, had lower TSH values at 60' (p<0.03). No differences were observed between genotypes in baseline thyroid hormone levels. Conclusions The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated free T4 secretion with a normal T3 release from the thyroid consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism cause changes in the pattern of hormonal secretion. These findings are a proof-of-concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of thyroid hormone and might modulate the thyroid hormone homeostasis. PMID:22307573

  5. A custom correlation coefficient (CCC) approach for fast identification of multi-SNP association patterns in genome-wide SNPs data.

    PubMed

    Climer, Sharlee; Yang, Wei; de las Fuentes, Lisa; Dávila-Román, Victor G; Gu, C Charles

    2014-11-01

    Complex diseases are often associated with sets of multiple interacting genetic factors and possibly with unique sets of the genetic factors in different groups of individuals (genetic heterogeneity). We introduce a novel concept of custom correlation coefficient (CCC) between single nucleotide polymorphisms (SNPs) that address genetic heterogeneity by measuring subset correlations autonomously. It is used to develop a 3-step process to identify candidate multi-SNP patterns: (1) pairwise (SNP-SNP) correlations are computed using CCC; (2) clusters of so-correlated SNPs identified; and (3) frequencies of these clusters in disease cases and controls compared to identify disease-associated multi-SNP patterns. This method identified 42 candidate multi-SNP associations with hypertensive heart disease (HHD), among which one cluster of 22 SNPs (six genes) included 13 in SLC8A1 (aka NCX1, an essential component of cardiac excitation-contraction coupling) and another of 32 SNPs had 29 from a different segment of SLC8A1. While allele frequencies show little difference between cases and controls, the cluster of 22 associated alleles were found in 20% of controls but no cases and the other in 3% of controls but 20% of cases. These suggest that both protective and risk effects on HHD could be exerted by combinations of variants in different regions of SLC8A1, modified by variants from other genes. The results demonstrate that this new correlation metric identifies disease-associated multi-SNP patterns overlooked by commonly used correlation measures. Furthermore, computation time using CCC is a small fraction of that required by other methods, thereby enabling the analyses of large GWAS datasets. © 2014 WILEY PERIODICALS, INC.

  6. A custom correlation coefficient (CCC) approach for fast identification of multi-SNP association patterns in genome-wide SNPs data

    PubMed Central

    Climer, Sharlee; Yang, Wei; de las Fuentes, Lisa; Dávila-Román, Victor G.; Gu, C. Charles

    2014-01-01

    Complex diseases are often associated with sets of multiple interacting genetic factors and possibly with unique sets of the genetic factors in different groups of individuals (genetic heterogeneity). We introduce a novel concept of Custom Correlation Coefficient (CCC) between single nucleotide polymorphisms (SNPs) that address genetic heterogeneity by measuring subset correlations autonomously. It is used to develop a 3-step process to identify candidate multi-SNP patterns: (1) pairwise (SNP-SNP) correlations are computed using CCC; (2) clusters of so-correlated SNPs identified; and (3) frequencies of these clusters in disease cases and controls compared to identify disease-associated multi-SNP patterns. This method identified 42 candidate multi-SNP associations with hypertensive heart disease (HHD), among which one cluster of 22 SNPs (6 genes) included 13 in SLC8A1 (aka NCX1, an essential component of cardiac excitation-contraction coupling) and another of 32 SNPs had 29 from a different segment of SLC8A1. While allele frequencies show little difference between cases and controls, the cluster of 22 associated alleles were found in 20% of controls but no cases and the other in 3% of controls but 20% of cases. These suggest that both protective and risk effects on HHD could be exerted by combinations of variants in different regions of SLC8A1, modified by variants from other genes. The results demonstrate that this new correlation metric identifies disease-associated multi-SNP patterns overlooked by commonly used correlation measures. Furthermore, computation time using CCC is a small fraction of that required by other methods, thereby enabling the analyses of large GWAS datasets. PMID:25168954

  7. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping.

    PubMed

    He, Fei; Zhou, Wanjun; Cai, Ren; Yan, Tizhen; Xu, Xiangmin

    2018-04-01

    In this study, we aimed to assess the performance of two whole-genome amplification methods, multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycle (MALBAC), for β-thalassemia genotyping and single-nucleotide polymorphism (SNP)/copy-number variant (CNV) detection using two DNA sequencing assays. We collected peripheral blood, cell lines, and discarded embryos, and carried out MALBAC and MDA on single-cell and five-cell samples. We detected and statistically analyzed differences in the amplification efficiency, positive predictive value, sensitivity, allele dropout (ADO) rate, SNPs, and CV values between the two methods. Through Sanger sequencing at the single-cell and five-cell levels, we showed that both the amplification rate and ADO rate of MDA were better than those using MALBAC, and the sensitivity and positive predictive value obtained from MDA were higher than those from MALBAC for β-thalassemia genotyping. Using next-generation sequencing (NGS) at the single-cell level, we confirmed that MDA has better properties than MALBAC for SNP detection. However, MALBAC was more stable and homogeneous than MDA using low-depth NGS at the single-cell level for CNV detection. We conclude that MALBAC is the better option for CNV detection, while MDA is better suited for SNV detection.

  8. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  9. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  10. Correlation between the NPPB gene promoter c.-1298 G/T polymorphism site and pulse pressure in the Chinese Han population.

    PubMed

    Zeng, K; Wu, X D; Cai, H D; Gao, Y G; Li, G; Liu, Q C; Gao, F; Chen, J H; Lin, C Z

    2014-04-29

    The aim of this study was to investigate the correlation between the natriuretic peptide precursor B (NPPB) gene single nucleotide polymorphism (SNP) c.-1298 G/T and pulse pressure (PP) of the Chinese Han population and the association between genotype and clinical indicators of hypertension. Peripheral blood was collected from 180 unrelated patients with hypertension and 540 healthy volunteers (control group), and DNA was extracted to amplify the 5'-flanking region and 2 exons of the NPPB gene by polymerase chain reaction; the fragment was sequenced after purification. The clinical data of all subjects were recorded, the distribution of the NPPB gene c.-1298 G/T polymorphism was determined, and differences in clinical indicators between the two groups were evaluated. The mean arterial pressure PP, and creatinine levels were significantly higher in the hypertension group than in the control group (P<0.05), but no other clinical indicators differed between the groups. There were no significant differences in genotype frequency and distribution of the NPPB gene c.-1298 G/T polymorphism between the hypertension group and the control group (P>0.05); in the control group, the mean PP of individuals with the SNP c.-1298 GG genotype was greater than that of individuals with the GT+TT genotype (P<0.05). In conclusion, there was no significant correlation between the NPPB gene c.-1298 G/T polymorphism and the incidence of essential hypertension in the Han population; however, the PP of the SNP c.-1298 GG genotype was greater than that of the GT+TT genotype in the control group.

  11. Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease

    PubMed Central

    Heidari, Mohammad Mehdi; Soheilyfar, Sorour

    2016-01-01

    Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013

  12. Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy.

    PubMed

    Balasubbu, Suganthalakshmi; Sundaresan, Periasamy; Rajendran, Anand; Ramasamy, Kim; Govindarajan, Gowthaman; Perumalsamy, Namperumalsamy; Hejtmancik, J Fielding

    2010-11-10

    Diabetic retinopathy (DR) is classically defined as a microvasculopathy that primarily affects the small blood vessels of the inner retina as a complication of diabetes mellitus (DM).It is a multifactorial disease with a strong genetic component. The aim of this study is to investigate the association of a set of nine candidate genes with the development of diabetic retinopathy in a South Indian cohort who have type 2 diabetes mellitus (T2DM). Seven candidate genes (RAGE, PEDF, AKR1B1, EPO, HTRA1, ICAM and HFE) were chosen based on reported association with DR in the literature. Two more, CFH and ARMS2, were chosen based on their roles in biological pathways previously implicated in DR. Fourteen single nucleotide polymorphisms (SNPs) and one dinucleotide repeat polymorphism, previously reported to show association with DR or other related diseases, were genotyped in 345 DR and 356 diabetic patients without retinopathy (DNR). The genes which showed positive association in this screening set were tested further in additional sets of 100 DR and 90 DNR additional patients from the Aravind Eye Hospital. Those which showed association in the secondary screen were subjected to a combined analysis with the 100 DR and 100 DNR subjects previously recruited and genotyped through the Sankara Nethralaya Hospital, India. Genotypes were evaluated using a combination of direct sequencing, TaqMan SNP genotyping, RFLP analysis, and SNaPshot PCR assays. Chi-square and Fisher exact tests were used to analyze the genotype and allele frequencies. Among the nine loci (15 polymorphisms) screened, SNP rs2070600 (G82S) in the RAGE gene, showed significant association with DR (allelic P = 0.016, dominant model P = 0.012), compared to DNR. SNP rs2070600 further showed significant association with DR in the confirmation cohort (P = 0.035, dominant model P = 0.032). Combining the two cohorts gave an allelic P < 0.003 and dominant P = 0.0013). Combined analysis with the Sankara Nethralaya cohort

  13. Application of LogitBoost Classifier for Traceability Using SNP Chip Data

    PubMed Central

    Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability. PMID:26436917

  14. Application of LogitBoost Classifier for Traceability Using SNP Chip Data.

    PubMed

    Kim, Kwondo; Seo, Minseok; Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.

  15. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL

    PubMed Central

    Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh

    2018-01-01

    Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028

  16. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

    PubMed

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Given the limited sample size, the results are tentative until replication. Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.

  17. The RTEL1 rs6010620 polymorphism and glioma risk: a meta-analysis based on 12 case-control studies.

    PubMed

    Du, Shu-Li; Geng, Ting-Ting; Feng, Tian; Chen, Cui-Ping; Jin, Tian-Bo; Chen, Chao

    2014-01-01

    The association between the RTEL1 rs6010620 single nucleotide polymorphism (SNP) and glioma risk has been extensively studied. However, the results remain inconclusive. To further examine this association, we performed a meta-analysis. A computerized search of the PubMed and Embase databases for publications regarding the RTEL1 rs6010620 polymorphism and glioma cancer risk was performed. Genotype data were analyzed in a meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analyses, tests of heterogeneity, cumulative meta-analyses, and assessments of bias were performed in our meta-analysis. Our meta-analysis confirmed that risk with allele A is lower than with allele G for glioma. The A allele of rs6010620 in RTEL1 decreased the risk of developing glioma in the 12 case-control studies for all genetic models: the allele model (OR=0.752, 95%CI: 0.715-0.792), the dominant model (OR=0.729, 95%CI: 0.685-0.776), the recessive model (OR=0.647, 95%CI: 0.569-0.734), the homozygote comparison (OR=0.528, 95%CI: 0.456-0.612), and the heterozygote comparison (OR=0.761, 95%CI: 0.713-0.812). In all genetic models, the association between the RTEL1 rs6010620 polymorphism and glioma risk was significant. This meta-analysis suggests that the RTEL1 rs6010620 polymorphism may be a risk factor for glioma. Further functional studies evaluating this polymorphism and glioma risk are warranted.

  18. The Association between ANXA11 Gene Polymorphisms and Sarcoidosis: a Meta-Analysis and systematic review.

    PubMed

    Zhou, Hongfei; Diao, Mengyuan; Zhang, Mingyue

    2016-08-01

    The associations of ANXA11 gene polymorphisms and susceptibility to sarcoidosis have been evaluated in recent years. However, the results remain controversial, especially in different ethnicity. To assess the associations between ANXA11 and sarcoidosis, we conducted this meta-analysis. Articles were searched in MEDLINE, EMBASE and PubMed from their establishment date to August of 2014, and 4,567 sarcoidosis patients and 4,278 controls from 6 studies were included. The strength of associations was determined by ORs with 95% CIs. The associations between ANXA11 SNP rs1049550, rs2573346, rs2789679 polymorphisms and sarcoidosis risk were assessed using additive, recessive and dominant models. ANXA11 SNP rs2573346 and rs2789679 T allele conferred protection against sarcoidosis (OR: 0.664, 95% CI: 0.607-0.726 for rs2573346, and OR: 0.698, 95% CI: 0.640-0.762 for rs2789679). For SNP rs1049550, individuals carrying the ''T'' allele (TT+CT) had a nearly 46% increased risk for the development of sarcoidosis, when compared with CC homozygotes (OR: 1.461, 95% CI: 1.183-1.803) in overall population. A significant association was also found in additive model (OR: 1.477, 95% CI: 1.328-1.642 for CC vs. CT; OR: 0.610, 95% CI: 0.412-0.905 for TT vs. CC). In addition, ethnicity factors may contribute to the disease risk. The meta-analysis revealed that ''T'' allele of ANXA11 SNP rs2573346 and rs2789679 conferred protection against sarcoidosis. ''C'' allele of SNP rs1049550 may be a risk factor for sarcoidosis in overall population. Our study shows that ANXA11 closely associated with the development of sarcoidosis but further studies in different ethnicity were needed.

  19. TNF-alpha SNP haplotype frequencies in equidae.

    PubMed

    Brown, J J; Ollier, W E R; Thomson, W; Matthews, J B; Carter, S D; Binns, M; Pinchbeck, G; Clegg, P D

    2006-05-01

    Tumour necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine that plays a crucial role in the regulation of inflammatory and immune responses. In all vertebrate species the genes encoding TNF-alpha are located within the major histocompatability complex. In the horse TNF-alpha has been ascribed a role in a variety of important disease processes. Previously two single nucleotide polymorphisms (SNPs) have been reported within the 5' un-translated region of the equine TNF-alpha gene. We have examined the equine TNF-alpha promoter region further for additional SNPs by analysing DNA from 131 horses (Equus caballus), 19 donkeys (E. asinus), 2 Grant's zebras (E. burchellii boehmi) and one onager (E. hemionus). Two further SNPs were identified at nucleotide positions 24 (T/G) and 452 (T/C) relative to the first nucleotide of the 522 bp polymerase chain reaction product. A sequence variant at position 51 was observed between equidae. SNaPSHOT genotyping assays for these and the two previously reported SNPs were performed on 457 horses comprising seven different breeds and 23 donkeys to determine the gene frequencies. SNP frequencies varied considerably between different horse breeds and also between the equine species. In total, nine different TNF-alpha promoter SNP haplotypes and their frequencies were established amongst the various equidae examined, with some haplotypes being found only in horses and others only in donkeys or zebras. The haplotype frequencies observed varied greatly between different horse breeds. Such haplotypes may relate to levels of TNF-alpha production and disease susceptibility and further investigation is required to identify associations between particular haplotypes and altered risk of disease.

  20. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...